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Abstract

This paper presents BlendVille, a computational sy-
stem based on the Conceptual Blending framework,
where the search for the best blend is handled as an
optimisation task by a Multi-Threaded (MT) Genetic
Algorithm (GA). The new system departs from ideas
explored in a previous framework, Divago. One of the
most substantial di�erences from the latter lies in the
usage of entropy to create new concepts with varying
levels of information complexity. Additionally, Blend-
ville explores the use of multiple analogies when pro-
jecting concepts into the blend space and in the evo-
lutionary process. We investigate the behaviour of the
new system, compare its output with its predecessor's
and report on our �ndings.

Introduction

The Conceptual Blending (CB) theory (Fauconnier and
Turner 2002) was proposed to explain mechanisms in-
volved in the creation of meaning and insight in the
every day mind. In the last years, one can witness an
emergence of various computational systems based on
CB with diverse origins, including international pro-
jects such as CoInvent (Schorlemmer et al. 2014) and
ConCreTe (�nidar²i£ et al. 2016).
This paper describes recent e�orts, initiated within

the latter project, towards the proposal of a new, writ-
ten from scratch, computational approach to CB, which
we named BlendVille. We build on the legacy of Divago,
one of the �rst and most comprehensive implementati-
ons of CB,developed by Pereira (2005).
We start this paper with short overviews of both the

Conceptual Blending theory and the Divago computati-
onal framework. Then, we expose our proposed blender,
its inner workings and the optimality measures the sy-
stem uses, after which we evaluate the impact of those
measures on the system's output. Finally, we outline
further work to improve our blender and conclude on
our �ndings.

Background

Conceptual Blending (CB) was suggested as cognitive
theory by Fauconnier and Turner (2002) to explain pro-
cesses of conceptual integration occurring in human

thought. Its potential to model mechanisms of concept
invention has increasingly inspired research in Com-
putational Creativity in recent years (e.g., the recent
works by (�nidar²i£ et al. 2016) in the ConCreTe pro-
ject and (Schorlemmer et al. 2014) in the CoInvent pro-
ject). A key element in the theory is the mental space,
a partial and temporary structure of knowledge assem-
bled for purposes of thought and action (Fauconnier and
Turner 2002). The CB process takes two input spaces
and looks for a partial mapping between elements of
both spaces that may be perceived as similar or analo-
gous in some respect. A third mental space, called ge-
neric, encapsulates the conceptual structure shared by
the input spaces, providing guidance to the next step
of the process, where elements from each of the input
spaces are selectively projected into a new mental space,
called the Blend Space. Further stages of the process
elaborate and complete the blend.
As the input spaces can be blended in many forms,

CB proposes a set of optimality principles to characte-
rise good blends. These principles have a key role in
the process and help to ensure that the resulting blend
represents a coherent and integrated structure.
Another important notion is that of frames, which

in the theory play a role in the structuring of mental
spaces (Fauconnier and Turner 2002). Frames are men-
tal structures that provide a kind of abstract prototy-
ping of entities, actions or reasonings and may guide
the process of blend construction to recognizable who-
les (Pereira 2005). For instance, the mental space Dis-
ney's Dumbo encloses the idea of an elephant capable
of �ying, in which two invoked frames of thought are
the frames elephant and �ight.

Divago

Divago (Pereira 2005) is one of the �rst developed com-
putational architectures based on the CB framework.
It is composed of three major working modules (Fig.
1): the Mapper, the Blender and the Factory.
In Divago, input spaces are represented as computa-

tional versions of Conceptual Maps , i.e. graphs where
nodes are concepts and arcs are relations between a
source and a target concepts. The input spaces are sto-
red as semantic networks in the form of text triples.
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Figure 1: The architecture of Divago. The relevant
modules to this paper are shown in colour. Best viewed
in colour.

The Mapper computes analogy mappings between
concepts from two input spaces, using a structural alig-
nment algorithm based on Sapper (Veale and Keane
1997). The input spaces are in the form of semantic
networks, same structure used by our blender. The
mappings calculated are grouped in a single set and
represent the analogy of concepts to be used by the
Blender module. The analogy is formed by �nding the
largest (in cardinality) isomorphic sub-graphs of both
input spaces. Once the isomorphism is found, aligned
pairs of nodes from both subspaces are mapped toget-
her to produce an analogy mapping.
The Blender takes one analogy and performs a se-

lective projection into the blend space, which leads to
the construction of a blendoid, an intermediate graph
that subsumes the set of all possible blends. This blen-
doid feeds a GA in the Factory module, which explores
the space of all possible combinations of projections of
the input spaces taking into account the generic space.
The Factory uses an implementation of CB optima-

lity principles, intended to ensure a coherent and in-
tegrated blend, as �tness function of the evolutionary
process (the Constraints module). When an adequate
solution is found, the Factory stops the execution and
returns the best blend.

A city of blends

The architecture of BlendVille is shown in Fig. 2, where
the search for the best blend is handled as an optimi-
sation task by a GA that evolves a population of com-
peting blends. By comparing with Fig. 1, we can see
that BlendVille roughly plays the role of the modules
Factory and Constraints in Divago. Its inputs are (i) a
list of input spaces in the same format as Divago, (ii)
a list of analogies and (iii) a list of frames. The �tness
of each blend is computed through a weighted sum of
a number of measures, discussed later. The reason for
using a GA is that the space to search for an optimal
blend is highly complex. This is mainly due to the high
variability in the semantic structure of a blend (relati-
ons, edge directions and concepts).

<List> of
input spaces

<List> of
analogies

<List> of
frames

Prolog
engine

Blender

<List> of blends

Genetic Algorithm Best
blend

Figure 2: BlendVille's architecture and input know-
ledge. Best viewed in colour.

Three major di�erences between BlendVille and the
Divago's Factory are: the usage of multiple analogies
(sets of mappings) in the projection of concepts from
the input spaces to the blend space; the investigation
of di�erent metrics/constraints for guiding the blending
process; and the performance improvement of the blen-
ding process itself. The �rst two are discussed on a
section of their own, further below.
To ensure a better performance, BlendVille uses a

Multi-Threaded (MT) GA, allowing the evolution of a
greater number of blends, the handling of complex se-
mantic structures (input spaces, analogies, frames) and
the parallel execution of multiple Prolog calls, used to
check frame matching.

Input Spaces

The input spaces are represented as seman-
tic graphs of concepts and relations (concept
maps). Each input space graph represents a di-
rected pseudo-graph, described as a set of triples
relation(conceptsource, concepttarget), where both
relations and concepts are text strings (arrays of
characters). Our blender supports multiple input
spaces, identi�ed by their title (horse, bird, boat, etc.)
which we term domain or namespace. In a declarative
language (Prolog), the input space corresponds to a
knowledge base of facts, where each fact is an edge
of the graph, the predicate is the label of this edge
(relation) and both concepts are the atoms of the
fact. As an example, the sentence �Socrates is a man�
corresponds to the fact isa('Socrates','man') and in the
semantic graph is represented as an edge labelled isa
going from the vertex Socrates to the vertex man.

Analogies

Also required is a set of analogies. Each analogy rela-
ting two input spaces is de�ned as a set of mappings
mi = {ci, cj}, each of which associating two concepts ci
and cj , one from each space. In each analogy, a concept
can only be present in one mapping. However, a con-
cept can be mapped to di�erent concepts in di�erent
analogies. We expect that this rationale will favour a



higher blend diversity, when compared to a blender sy-
stem which uses a single set of mappings (one analogy)
as in Divago. Currently, we use an additional tool with
an algorithm similar to Divago's Mapper to generate
analogies from the input spaces.

Frames

Frames are handled in the form of either semantic
graphs or logical clauses, compatible with the Prolog
language. They allow the blend to be matched against
speci�c composite concepts, situations, abstract ideas
or similar cognitive contexts.
The supported frames are of three types, according

to the elements (relations or concepts) matched in the
blend and the existing elements present in one or more
input spaces:

local frames compare the existence of elements bet-
ween the blend space and the input spaces. When
comparing relations, these are counted for a given la-
bel and must be connected to a concept (eg. count all
the isa,pw relations connected to the horse concept)
or in all the graph (count all the isa,w relations in
the graph). The local frames ignore both edge tran-
sitivity (memoryless) and directionality, thus their
naming. Examples of these frames are the Divago's
aprojection/bprojection frames, whose purpose is to
compare the existence of a custom set of concepts in
the blend; and Divago's aframe/bframe which counts
relations of a given mental space in blend. The fra-
mes nomenclature (a or b) is because each frame is
related to a speci�c input space, eg. a to the horse
and b to the bird input space.

pattern frames match the maximum number of con-
cepts in the blend space, subject to the speci�ed re-
strictions. With the usage of variables and atoms in
a clause, the blender is able to detect a pattern of
interconnected relations. The score for an individual
pattern frame is 1 when the clause applies fully. Ot-
herwise, Prolog iteratively chunks the frame clause's
predicates in individual clauses of one predicate and
counts the number of predicates which are success-
fully solved. Then, the score will be k/(n− 1), with
k the number of successfully solved predicates and
n the total amount of predicates of the frame. An
example of a pattern frame is shown in Fig. 3.

delta frames are semantically equivalent to pattern
frames with the di�erence that the instantiation of
variables must be di�erent between a mental space
and the blend space. For instance, using the frame in
Fig. 4 as a delta frame, the frame is maximised when
the variables W,A,P are instantiated with di�erent
concepts from the blend space than those instantia-
ted from the input space. The score for a delta frame
is directly proportional to the amount of di�erent in-
stantiated concepts between the blend space and a
mental space. When more than one instantiation for
the variables is possible, the �nal score is the maxi-
mum of the individual scores. Our rationale is that in

ability(A,'bird/�y'), pw('bird/wing',A),
pw('horse/leg',A), ability(A,'horse/run'),

pw(A2,A1), pw(A1,A), purpose(A2,'horse/hear').

Figure 3: Pattern frame of an A composed of a wing
and a leg part, with the ability to �y and run, as well
as a sub-part whose purpose is to hear.

ability(W,A), purpose (P,A), pw(P,W).

Figure 4: Delta frame new_ability of an entity W with
the ability A and with a part P performing the purpose
A.

this case there is at least one frame which maximises
the di�erence between the blend space and a mental
space and as such, there is a pattern which di�ers
between a mental space and the blend by having the
greatest amount of concepts. An example of a delta
frame used in the experiments is shown in Fig. 4,
which detects entities W with ability A and part P
with purpose A. Hence, this frame gives importance
to the emergence of entities with parts whose abilities
and purposes are di�erent than the ones present in
the combined input space.

Blend chromosome

The chromosome of each blend is de�ned by a local ana-
logy and a local blend space. Both analogy and blend
space are stored in the chromosome and therefore spe-
ci�c to an individual blend. When the GA starts, the
blend space of every chromosome is an empty space.
Then, the analogy chunk of each chromosome is initi-
alized as either a full copy or a random subset of the
mappings contained in a random supplied analogy. The
blender then selects a random subset of mappings from
the blend's analogy. For each mapping mi, one of four
operations is then executed: extract the �rst concept
ci; extract the second concept cj ; ignore the current
mapping; or create a blend (fusion) ck of both con-
cepts. Depending on the chosen concept(s), a nearby
set of relations touching the concept(s) are pulled from
the input space into the blend space. The name of a
blended concept ck is the concatenation of both names
separated by an underscore: ck = ci0_ci1. During each
epoch, the GA applies a mutation to every blend in the
population. Afterwards, all the blends are evaluated
according to a �tness function.

Blend mutation

The mutation is applied to a blend in two steps: muta-
tion of the blend mappings and of the blend space. The
set of mappings is mutated as follows: setting them to
fully match one of the supplied analogies; the random
removal of one or more mappings from the blend's ana-
logy; and the random insertion of one (or more) map-
pings from the supplied analogies.
The mutation does not create mappings which do not

exist in the supplied analogies. If this happened there



was no reason to require a list of analogies as the blen-
der would wildly conceive random mappings. On the
other hand, these mappings would likely to �awed, as
the blender omits semantic and structural knowledge
related to the concepts present in the input space. As
such, our blender assumes there is an external adequate
algorithm which supplies the analogies.
The mutation of the blend space is divided in �ve

steps, transforming its structure as follows:

• addition of edges from the input space, including new
concepts;

• removal of edges and/or concepts from the blend
space;

• inclusion of two blended concepts and relations linked
with one or both concepts. When two concepts a and
b are blended together, the new concept is named
concepta|conceptb, eg. 'horse/leg |bird/leg' ;

• inclusion of one concept c0 from a random mapping
mr with some (or all) relations associated with the
other concept c1 of the mapping mr = {c0, c1}, re-
placing in those relations one concept by the other.
Concepts c0 and c1 may be randomly swapped;

• selection of a random concept in the blend space,
changing it and its associated relations to an oppo-
sing concept, according to a chosen random mapping.

For each epoch, the above steps are independently
and randomly applied to each blend of the current po-
pulation. The presence of the mutation operator is suf-
�cient (Tate and Smith 1993) to allow the emergence of
a diversity of blends through the evolutionary process.

How enlightened is that blend?
Divago used six optimality principles: Integration, To-
pology, Unpacking, Maximisation/Intensi�cation of Vi-
tal Relations, Web and Relevance (Pereira 2005). The
optimality principles are used to exert pressure towards
stable, consistent and integrable blends.
Martins et al. (2016) did a deeper analysis on both

the impact and importance of each individual principle
in achieving a �good blend�. The authors, supported
by empirical experiments, suggest that �ve principles:
Integration, Topology, Unpacking, Relevance, and In-
tensi�cation / Maximisation of vital relations - could
be enough for achieving interesting blends.
Encouraged by the study, we decided on walking new

grounds with the idea of Simplicity Theory (ST) (Des-
salles 2013) in mind, with the aim of studying simpler
and intuitive methods in conceiving interesting blends.
In ST, Dessales asserts that the human mind is highly
sensitive to any discrepancy in the complexity of infor-
mation (Fig. 5). Motivated by the assumption that
the human brain is sensitive to algorithmic complexity,
the author alleges that the impact induced in people
is proportional to how much simplicity is present in
the information people are shown. This corresponds to
the idea that much of cognition is regarding the com-
pression or the elimination of redundancy (Chater and

Figure 5: Simple and intricate interpretations for an
occluded �gure (blue). Best viewed in colour.

Vitányi 2003) in whatever information is the human
brain processing. As entropy is related to the idea of in-
formation compression, our blender contains two forms
of graph entropy as optimality measures. As such, the
blender currently neglects most optimality principles of
CB theory, accepting the fact that we may lose some
consistency and coherence in the obtained blends. Ho-
wever, with the execution of experiments we expect con-
clusions to be made regarding a future study regarding
a trade-o� of some (or all) of theory's principles, per-
haps including the study of new measures. Neverthe-
less, our blender requires other heuristics which either
individually either combined, guide the blending pro-
cess towards the direction of �good� blends.
The assessment of the blends is done in four per-

spectives: topology, entropy, frame related and general
informative measures. These are explained below:

Topology

We follow the de�nition of Topology used in Divago,
where topology exerts a form of inertia in the blending
process. For any mental space and any element in
that space projected into the blend, it is optimal for
the relations of the element in the blend to match the
relations of its counterpart. A relation present in the
blend space is topologically correct when it occurs in at
least one of the mental spaces. The topology measure
is de�ned as a ratio of topologically correct relations
present in the blend space. The de�nition we used
for topology is the same as de�ned in (Pereira 2005),
section 4.2. For reference, it is given as follows:

Topology: for a set TC ⊆ CMb of topologically
correct relations, de�ned as

TC = {r(x, y) : r(x, y) ∈ CM1 ∪ · · · ∪ CMn}, (1)

where CM1 · · ·CMn correspond to the concept maps
of the n input/mental spaces. The topology measure is
then calculated as the ratio:

Topology =
#TC

#CMb
. (2)

Topology drives against change in the blend space
because while preserving a similar topological con�gu-
ration as the input space. According to its de�nition,
the blend should preserve the same neighbourhood re-
lations between every concept in the blend space.



Entropy

Various measures of graph entropy exist (Dehmer and
Mowshowitz 2011). To measure one form of complexity
(or compressibility) of the blend space, we implemen-
ted two entropy measures based on Shannon's entropy.
These are calculated according to the relation labels of
the blend space. The majority of the blend's concepts
are unique and in turn, we decided to disregard entropy
related to the concepts.
BlendVille contains two entropy measures for the

blend's relations: 0-order and 1-order. The di�erence is
due to the relevance given or not to sequences and the
directivity of relations. We explain these below.

0-order entropy: this measure of entropy coincides
with Shannon's classical entropy, de�ned as follows:
given a discrete random variable R with n symbols
r0, · · · rn and probability density function P (R) de�ned
for each symbol ri, the 0-order entropy H(R) is:

H(R) = −
n∑

i=1

P (ri) loge P (ri). (3)

The random variable R corresponds to the set of all
the relations (ie. R ={isa, pw, ability, ...}) present in
the blend space. Accordingly, P (ri) is the relative fre-
quency of the relation ri in the blend space. Hence, the
probability density function P (Ri) of a relation ri is
de�ned as the ratio between that relation's label abso-
lute frequency and all the relations present in the blend
graph:

P (ri) =
Fri∑n
j=1 Frj

. (4)

The reason for this measure being named 0-order is be-
cause it corresponds to a stateless description of the
blend space, having no interpretation on the sequen-
ces of relations. This measure applied to a fully con-
nected or disconnected graph would naturally result in
the same measured value. However, it allows one asses-
sment of the redundancy or uniqueness of labels of the
relations in the blend.

1-order entropy: This measure is de�ned as an ex-
tension to the 0-order entropy, with the di�erence
that it takes into account pairs of consecutive relati-
ons {ri0, ri1} and their directivity (Fig. 6). For in-
stance, the relations connected (through the horse con-
cept) isa(horse,animal) and pw(horse,leg) generate the
relation pair {isa, pw}. The calculus of the 1-order en-
tropy is done analogous to the steps above, with sum-
mations adapted to include pairs of connected relations
and their directivity, instead of single relations. The di-
rectivity of the pairs is de�ned as related to a common
concept: if in the same direction; incoming; or outgoing
to the concept (Fig. 6).

Frame evaluation

To have a meaningful interpretation and purpose,
BlendVille uses frames to de�ne the content and con-
text of the blend, conforming to CB's view of mental
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Figure 6: 1-order entropy patterns for the pairs of rela-
tions {a, b}: in the same direction, incoming or outgoing
to the common concept �2�. Best viewed in colour.

spaces. The types of frames exposed in the previous
section Frames are evaluated and given individual sco-
res according to their type: concept frames (for a gi-
ven mental space), edge frames (also for a given mental
space), delta frames and pattern frames.
In the case of multiple delta Frames and/or pattern

Frames, our blender does not currently prioritise one
delta or pattern frames over another. We expect this
to be improved in the future. In the situations where
there are multiple delta/pattern frames to evaluate, the
system gives a score to a frame proportional to the
matching of each individual frame's predicates (range
[0 · · · 1[ or 1 if the frames matches fully) and proporti-
onal to the number of applicable frames.

General Informative

The last two measures are not related to semantics but
are used to �ne-tune the global structure of the blend
graph and the relative contribution of the input spaces.
These are the number of graph islands and the amount
of inter-space edges.
graph islands counts what in graph theory is de�ned
as the number of connected components (islands) in
the blend space. It is calculated in linear time using
breadth �rst search for all the concepts in the graph.

inter-space edges is the number of relations pre-
sent in the blend space which connect concepts of
distinct mental spaces. An example is the rela-
tion pw('bird/wing','horse/horse'). The exception is
when a blended concept of di�erent mental spaces,
such as 'horse/leg|bird/leg' is present in the relation.
In this case, as the relation associates concepts of the
same mental space as subject and object, we consider
the relation as not inter-space.

Novelty and Usefulness

For assessing the quality of the generated blends and va-
lidating our blender against Divago, we used the same
measures novelty and usefulness as de�ned by Pereira,
themselves based on the work by Ritchie (2007). Rit-
chie considers typicality and value where Pereira de�nes
novelty as the opposite of typicality and usefulness as
a synonym of value (Pereira 2005). Both measures are
de�ned next:

novelty describes a measurement of non typicality,
surprise, a change in information. Novelty of a blend,



which Pereira describes as the �converse of Ritchie's
typicality function�, is de�ned as a function of d(b, x)
and the size of the blend sizeb.
Let x be one of the n input spaces and b the blend
space. Then, d(b, x) is �the sum of the relations that:
1) belong to b and that are missing in x with 2) those
that belong to x and are missing in b�. Next, an edit
distance distance(b) is de�ned as:

distance(b) =
min(d(b, x1), · · · , d(b, xn))

sizeb
. (5)

The measure novelty of the blend b is calculated as:

novelty(b) =

{
1 distance(b) > 1

distance(b) otherwise
. (6)

usefulness evaluates the blend according to a purpose.
In Divago, the purpose was de�ned before an expe-
riment, after which the usefulness of the blend is as-
sessed. Furthermore, the purpose is de�ned as the
blend having an exact similarity (both structural and
semantic) to a speci�c conceptual map (semantic net-
work).
Given a conceptual map t and a blend space b, d(b, t)
is the sum of relations that belong to t and are mis-
sing in the blend b. Then, usefulness is:

usefulness(b) = 1− d(b, t)

sizeb
. (7)

Next, we experimented our blender in various situations
and assessed its results with the above measures. These
experiments are exposed in the next section.

Experiments and discussion
The experiments were carried out with the conceptual
maps horse and bird, available in Pereira's PhD thesis
(Pereira 2005) in Tables 5.1 and 5.2 of page 100. The
three analogies (sets of mappings) for the horse and
bird experiment are also found in the same thesis, in
Fig. 4.5, page 110. The delta frame used for detecting
a new ability is given in Fig. 4. For the usefulness, the
target blend was set as a conceptual map representing
the Pegasus. The Pegasus is de�ned as containing the
same conceptual map of the horse to which two wings
were added as well as the ability to �y. Therefore, the
�ve following relations were added:

ability('horse/horse', 'bird/�y'),
pw('bird/wing', 'horse/horse'),

quantity('bird/wing', '2'),
purpose('bird/wing', 'bird/�y'),

motion_process('horse/horse', 'bird/�y').

Testing the measures

The measures were evaluated either individually or
combined. Their impact and validity in novelty and use-
fulness are described next. Unless otherwise noted, all
experiments minimised the measure number of graphs
islands (components) in order to obtain a fully inter-
connected blend space.

Figure 7: Example of a blend with low 1-order entropy.
Edges in red are inter-space relations. Best viewed in
colour.

Topology When we used exclusively this measure as
the �tness function, the blend ended as a projected copy
of the input space. Although one could expect novelty
to be inversely correlated with topology, the novelty
measure - as de�ned by Pereira - is speci�c to the exact
structure (semantic and relational) of the input spaces.
On the other hand, topology is de�ned on the relations
directly connected to each concept of the blend space.
Therefore it does not guarantee topology at a higher
structural level. We observed that when the blend's to-
pology had in average score of 100%, novelty was con-
tained in the interval of [95%, 100%]. This happened as
a result of the stochastic nature of the GA, which al-
lowed the blends to randomly evolve in both the blend
space and the set of mappings. On all the topology
experiments there was at least a dozen of inter-space
relations connecting concepts of di�erent mental spa-
ces. By itself, this is enough to maximise novelty.
On the other hand, usefulness was between 25% and

50%, which somewhat demonstrates that on its own,
there is no relation between topology and usefulness.
This is expected, as the above de�nition of topology
has no reason to justify the emergence of a Pegasus
blend, even though the Pegasus mental space is de�ned
as the union of the horse mental space with �ve speci�c
relations of the Pegasus, with the particularity that 90%
of Pegasus' relations are from the horse input space.
This demonstrates that topology re�ects a statistical
description of the relations labels and ignores the global
structure of both the blend and input spaces.

Entropy

These measures had no impact in the semantic struc-
ture of the blend space. However, they did have a de�-
nitive in�uence in the compression of the blend, as well
as an e�ect in the presence of redundant structures.

• 0-order entropy directly a�ects the variety of rela-
tions of each type in the blend. This allows two limits:
when 0-order entropy is maximum the blend has the
highest amount of unique relations of a certain label
(1×isa, 1×pw, 1×ability, etc.) and the opposing case,



Figure 8: A blend with high 1-order entropy. Edges in
red are inter-space relations. Best viewed in colour.

when entropy is minimum the blend has only relati-
ons of one label, ie. 1×isa or 1099×isa. However,
0-order entropy does not a�ect the total amount of
relations present in the graph, but in fact the rela-
tive amount of relations of each type. Given a blend
with 2 isa and 5 pw relations, its 0-order entropy is
the same as another blend with 20 isa and 50 pw
relations, or in another words, the blend is allowed
to contain n groups of {2 × isa ∪ 5 × pw} relations
without a�ecting the value of the measure. This is
because 0-order entropy is de�ned on the relative pro-
babilities P (X) of the discrete variable X (the labels
of the relations) occurring in the blend.

• 1-order entropy - This measure a�ects the variety
of sequences of relations present in the blend space.
For instance, if a certain blend has the relation pat-
tern pw(A,B) and quantity(A,C), this pattern is allo-
wed to materialize elsewhere in the blend space wit-
hout a�ecting 1-order entropy (Fig. 7). Therefore,
this usage of this measure allows the appearance of
repeating structures in the blend space or, on the ot-
her hand, the manifestation of diversi�ed structures
in the blend (Fig. 8).

An understandable observation is that the entropy me-
asures have no obvious correlation with novelty, much
less with usefulness. Even when the blend's entropy
is equal to one or more of the input spaces (or the
conceptual map of the Pegasus), that equality would
not imply a structural and semantic similarity between
those spaces. This is expected as entropy is a statistical
description of information.

Frames

The local frames (a/bprojection) bring the concepts of
their input space into the blend space. Similarly, the
a/bframes allow the blend space to have a statistical
distribution of relations equal to their speci�c input
space. Thus, achieving a useful blend in the context
of the Pegasus concept map requires the aprojection
and aframe frames to be present in the blend, in or-
der to emerge the structure of the horse mental space
in the blend space. The inclusion of the delta frame

Figure 9: Example of a blend de�ned by the pattern
frame in Fig. 3. Best viewed in colour.

new_ability in Fig. 4 allowed the blend to di�er from
the input spaces, materialising a new ability in the
blend space which did not existing in any of the input
spaces, increasing the blend's novelty.
The inclusion of the horse concepts (aprojection),

horse relations (aframe), delta frame new_ability and
topology enabled the creation of blends with a useful-
ness of 93%...95%. However, without more elaborated
forms of expressing the frames required to represent
the Pegasus mental space, it is not possible with our
current blender to obtain the Pegasus conceptual map.
This also exposes what we consider is an issue with the
de�nition of usefulness.
Adding pattern frames to the �tness function favou-

red the manifestation of blends with more elaborated
semantic interpretations. Using the pattern frame in
Fig. 3, the delta frame new_ability, maximising the
number of inter-space relations while minimising the
1-order entropy allowed the blender to generate inte-
resting blends, one of such blends is shown in Fig. 9.
That blend shows is a bird with a mouth of a horse,
able to chirp, eyes used to stand up and with a horse
mantle. Intriguing to note that the ears are used to �y
instead of the wings, being these used to run. In sepa-
rate experiments we witnessed blends that represented
animals which could hear using their wings, being these
attached to their snout. Kind of giving a new purpose
to the de�nition of wing... in the form of a tympanic
membrane.

Graph Islands

This measure is useful in creating strongly connected
blends. It allows the penalisation of blends whose spa-
ces have disconnected components, ie., with no deta-
ched relations ��oating� around.

Inter-Space edges

Reinforcing the number of inter-space relations in the
blend space tends to maximise novelty, as the blend
space becomes �lled with a mixture of connected con-
cepts from di�erent input spaces. In the horse-bird ex-
periment which has two input spaces, the blend space
ends with roughly 50% of the concepts of each input



space. As novelty measures the amount of missing rela-
tions (and related concepts) from each input space, the
emergence of relations connecting concepts from di�e-
rent input spaces naturally increases novelty.

Comments on Novelty and Usefulness

We can con�rm that novelty as de�ned in Divago does
indeed measure a modi�cation of semantic structures
in the blend, when compared to the input spaces. Ho-
wever, it only measures a total mismatch of a relation,
not having into account, for example, when in a rela-
tion the only change from an input space to the blend
space is the modi�cation of a single concept, or of the
label of the relation itself. We believe novelty should
be proportional to the minimal possible change in the
representation of the blend space.
We agree with Ritchie (2007) regarding usefulness. It

should not be de�ned strictly according to a purpose,
but in a more general and fuzzier perspective. This is
the main reason why during the pegasus experiment our
blender was not able to reach a score of 100% in useful-
ness. We believe that the change in usefulness should
correspond to Ritchie's de�nition of value, which rates
the worth or importance of the newly created artefact,
not necessarily before its creation.

Future Work

We expect a great deal of work to be done. We envi-
sion the improvement of the measures novelty and use-
fulness. Regarding the entropy we expect at least two
developments: multiple orders of entropy which will al-
low the emergence of structural redundancy at various
levels; and the involvement of both semantics and fra-
mes in the calculation of entropy. The exploration of
di�erent types of frames, as well as the latest develop-
ments in image schemas, is also expected to be pursued.

Conclusion

In this work we proposed an evolutionary system mo-
delled on CB theory. The blender implementation -
BlendVille - receives input spaces, frames, analogies and
outputs blends capable of displaying novelty. We feel
that the system exhibits a form of creativity. Our sy-
stem has its roots on Divago but follows a di�erent re-
cipe regarding the use of optimality principles in order
to generate understandable, independent and coherent
artefacts. The main ingredient is based on information
theory, mainly the concept of entropy. Therefore, we
think our system allows the emergence of a form of re-
dundancy in the generated blends, in accordance with
the idea present in Simplicity Theory.
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