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Abstract Security vulnerabilities are a concern in systems and software ex-
posed via networked interfaces. Previous research has shown that only a minority
of vulnerabilities can be emulated through software fault injection techniques.
This paper aims to accurately emulate software security vulnerabilities. To
this end, the paper provides a field-data study on the operators needed to
emulate vulnerabilities in software written in the C programming language.
A practical implementation is constructed and the feasibility of emulating
software vulnerabilities is evaluated. The emulation operators were obtained
by analyzing publicly available vulnerability databases for the Linux kernel,
the Xen hypervisor, and the OpenSSH tool. The results show that a typical
security vulnerability involves a single function and consists of combinations
of up to three fault operator instances. The expected impact of this study is
to allow practical emulation of security defects in large software projects, to
support software quality and security assessment.
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1 Introduction

Software vulnerabilities are a major concern for developers and organizations of
all kinds, as they represent serious security risks to computer systems, especially
those allowing remote access via networked interfaces. The increasing size and
complexity of software projects lead to a proliferation of software defects,
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informally known as bugs. While most software bugs create no security risks, a
subset of those faults opens weaknesses that can be exploited to compromise
a system’s information security. Furthermore, as software vulnerabilities do
not change the functionalities of the software, they are invisible to most of the
current testing strategies, requiring specific static and dynamic approaches.
Thus, managing a software project’s security bugs is both an essential task and
a complex challenge.

This paper addresses the emulation of software security defects for the
purpose of software quality and security assessment. Software faults have been
widely studied by the software reliability community, namely through detailed
analysis and classification of real defects found in production software [5] and,
subsequently, studies on the nature of software faults in open-source projects
aiming to emulate software defects introduced by developers [9]. However,
security defects have received much less attention and, to the best of our
knowledge, no general approach has been proposed thus far to emulate realistic
security bugs in the C programming language, which is widely used for building
systems software.

The first step toward emulating realistic software vulnerabilities is to un-
derstand the most common programming mistakes that result in security
vulnerabilities. To this end, public databases containing Common Vulnerabili-
ties and Exposures (CVEs) on software projects provide rich data on which we
base our field study. We used the Orthogonal Defect Classification method [4]
to classify and analyze the programming mistakes (vulnerabilities) helping us
to clarify what a security bug is. Understanding how to emulate security defects
then involves combining well-known software fault injection techniques with
the specific instances of programming mistakes found in real software projects.

In general, vulnerability injection consists in deliberately inserting security
defects in a system, with the goals of software quality and security assessment.
One may identify three main usage scenarios as follows:

– Validation of vulnerability scanners and source code analysis tools. Com-
puter systems and applications exposed to security risks are the object of
numerous techniques aiming to detect, isolate and recover from attacks.
Vulnerability scanners are a prime example. Such tools and techniques
must be evaluated and validated, as these are known as generally having
poor precision and recall [12]. To this end, one may use known security
vulnerabilities. Nevertheless, to assess the detection methods and scanners
in scenarios well beyond the known vulnerabilities, such as newly developed
software, one may inject security defects in target systems and validate
whether those defects are correctly identified.

– Software vulnerability seeding. The technique of defect seeding [19] consists
in deliberately inserting a number of bugs in a computer program before
verification. Then, once the verification process is complete, one can estimate
the number of defects remaining in the code through extrapolation based
on the number of bugs that were found from those that were deliberately
inserted. An equivalent process can be used to estimate the number of
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vulnerabilities remaining in a given program and, ultimately, to decide
whether the code is ready for deployment or needs to go through additional
vulnerability removal processes.

– Training and evaluating teams and processes. Security teams and software
processes aiming to improve the security of computer systems must be
trained and evaluated [21]. In essence, one cares to improve and evaluate
the ability to identify security vulnerabilities during software inspections.
In this context, being able to emulate representative security bugs is a
fundamental step to appraise whether those vulnerabilities are detected.
Fagan [10], in the historic paper on design and code inspections, highlights
the importance of the feed-forward step to increase defect detection efficiency,
by improving the knowledge of which defect types to look for and the ways
in which to find each defect type.

The field study presented in this paper consists of analysing a significant
number of vulnerabilities in three well-known projects written in the C program-
ming language. Each entry in the CVE database contains a patch file with the
exact modifications carried out to correct the vulnerability. Comparing those
modifications to the software fault injection operators identified by Durães et
al. [9], and thereby classifying the modifications according to the Orthogonal
Classification Method, we were able to identify a few important patterns that
make it feasible to inject vulnerabilities at the source-code level. Hence, the
main contributions of this paper are the following:

1. A precise characterization of the nature of software vulnerabilities, con-
ducted by analyzing a large set of real vulnerabilities publicly known for
the Linux kernel, the Xen hypervisor, and the OpenSSH tool. This field
study contributes to understanding which software defects become security
vulnerabilities, in the C programming language that is widely used for
developing systems software.

2. An analysis of the typical emulation operators needed to insert vulnera-
bilities in C programs and the typical distribution (whether it is across
a single function, multiple functions, and multiple files). An important
observation from the results is that the majority of vulnerabilities affect a
single function. Some emulation operators are deterministic in the sense
that an injection is functionally equivalent to an actual vulnerability, and
we propose to use non-deterministic emulation for some of the remaining
operators (for which deterministic emulation is unfeasible).

3. A practical approach to emulate security vulnerabilities at the source-
code level, applying a software fault injector with the necessary emulation
operators and their distribution to emulate representative security bugs.

The remainder of this paper is organized in the following manner. Section 2
presents the background in the area of software faults and security vulner-
abilities. Section 3 details the process used to obtain and analyze the real
vulnerabilities. Section 4 presents the field study and the main observations
derived from the results. Section 5 proposes a practical approach to emulate
software vulnerabilities. Section 6 concludes and summarizes the paper.
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2 Background

There have been a number of studies on the nature of software faults specifically
aiming at classifying them systematically by examining software patches and
defect corrections. Chillarege et al. [5] and Christmansson et al. [6] were among
the early studies leading to the Orthogonal Defect Classification method and
related approaches developed to improve software quality. Such studies have
recognized the importance of field data as a means to improve the knowledge
of how software failures manifest in real systems [8] and to increase defect
detection efficiency [10].

Maxion et al. [17] have investigated a few specific defect types introduced by
programmers writing software in the C programming language. This research
has subsequently led to more general approaches that systematically classify
the most frequently occurring software defects [9] and that allow practical fault
injection at the source code level [20]. These and other related efforts have
resulted in a specific subset of emulation operators [7] regarded as representative
for the purpose of software fault injection. Unlike these related research efforts,
the present paper focuses specifically on security vulnerabilities rather than
software defects in general.

In a previous publication, we have examined whether the emulation op-
erators used for software fault injection could be used to emulate software
vulnerabilities [3]. That article shows that only a minority of vulnerabilities can
be emulated accurately with the fault model for software faults. In comparison
with that work, the field data analyzed in the present study is supported by a
much larger set of security vulnerabilities, aiming to characterize the typical
programming mistakes that compose security vulnerabilities. Furthermore,
unlike this previous work, the present study proposes a practical approach to
emulate representative vulnerabilities by combining multiple emulation opera-
tors and includes a novel approach for non-deterministic emulation of some
operators for which exact emulation is unfeasible.

This paper builds upon previous research to investigate whether the prin-
ciples of software fault injection allow emulation of security vulnerabilities.
A conceptually similar study [11] has been conducted for software written in
the PHP programming language, targetting web applications. The authors
subsequently proposed an approach to validate vulnerability scanners for web
applications [12] and an approach to perform vulnerability and attack injec-
tion [13]. Unlike these related publications, the present paper addresses the
context of systems software written in the C language. In this context, the
results and observations are significantly different. Namely, the single most
frequent defect in PHP programs was found to be a missing function call,
whereas the present study for the C language displays a much more rich and
diverse set of common defects arising in real vulnerabilities and exposes the
need to combine multiple fault emulation operators.

Software fault injection consists in emulating common programming errors
by modifying the source code (or the binary code) according to certain rules [14].
One may use this method with several objectives, such as to validate and guide
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the design of fault tolerance mechanisms or to evaluate the behavior and failure
modes of applications under activated software faults. To achieve this, it is
particularly relevant to ensure the representativeness of the faults injected, i.e.,
to ensure that the injected faults reflect likely defects in the software which
remain after software verification (functional testing, design inspections, code
reviews, and so on). Although one may not know in advance which faults
will arise in a software project, fault representativeness may be achieved by
adopting a fault model that uses knowledge from previous defects found in real
software projects. One may regard the emulation of security vulnerabilities as
an instantiation of software fault injection with security-specific fault operators
and combinations of fault operators.

Performing software fault injection comes with the unavoidable complexity
concerning the large number of faults to be injected and the time needed to
inject them. To address this problem one may apply different techniques to
reduce the temporal effort without sacrificing the representativeness and the
validity of the results. An improvement consists in sorting and instantiating
each software fault according to the McCabe complexity number [18], also
known as cyclomatic complexity, of the function where it is applied.

3 Method

In order to characterize the key elements of a representative security vulnera-
bility, this paper relies on the analysis of 147 publicly known vulnerabilities of
the Linux kernel, the Xen hypervisor, and the OpenSSH tool. These software
projects are written in the widely used C programming language, have a large
installed base, and the correction of known vulnerabilities can be found as
patch files released in public databases and repositories.

We adopt the definition used in Orthogonal Defect Classification (ODC),
according to which a software defect is “a necessary change to the software” [4].
Then, in the context of our analysis, a software vulnerability is defined as a
software defect that can be exploited to compromise a system’s information
security, thereby having an impact on the security requirements of confidential-
ity, integrity, and availability [21]. Hence, software vulnerabilities are a subset
of all software defects.

A software vulnerability can be formally specified by means of one or more
patch files containing operations of addition, removal, or modification of source
code lines. This captures the notion that defects are composed of missing,
extraneous, and wrong constructs, which are in line with ODC’s distinction
between something that is missing and something that is incorrect. Our goal
is to map each operation required to fix a vulnerability onto the operators
needed to reverse that fix. In other words, we are able to reintroduce a certain
vulnerability, in a later version of the same software, by applying a specific
combination of emulation operators. Therefore, each operator aims to emulate
a unitary programming mistake (in the present case, a mistake related to a
software vulnerability). We consider ODC’s defect types listed below.
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– Algorithm – Programming errors that affect correctness or efficiency of
some computation and that can be corrected through reimplementation of
an algorithm without requiring changes to the architecture or design.

– Assignment – Defects that affect localized parts of the source code and
consist of missing or incorrect variable assignments or initializations.

– Checking – Incorrect or missing program constructs where selection or loop
conditions are affected and therefore influence program logic.

– Function – Defects that affect a significant part of a program, including for
instance functionality that is missing or large algorithms, and that would
require changes to the design or architecture of the program.

– Interface – Programming errors that involve interaction among functions
or components through incorrect parameters or incorrect return values.

By adopting the Orthogonal Defect Classification method we are implicitly
following the defect types specified by Chillarege et al. [5]. To ensure that defect
types are orthogonal, ODC stipulates that a programmer implicitly chooses
the defect type by making a correction. Consequently, when a correction is
translated into a software patch, one may examine the exact changes that were
made to the source code to determine the defect type.

We selected three open-source software projects based on their large user
base, public availability of CVE repositories, and coding language (our study is
limited to the C programming language). The goal is to base our analysis upon
a representative set of vulnerabilities. The Linux kernel [15] is used in a wide
range of systems and supports numerous hardware architectures and devices. A
vulnerability in the Linux kernel can be exploited to gain unauthorized access
to a machine, often including administration access. The Xen hypervisor [2] is
extensively used in cloud computing datacenters by major cloud providers. A
vulnerability in Xen may allow an attacker to interfere with, or gain control
over, virtual machines running on the platform. The OpenSSH tool [16] is a
suite of utilities designed to secure network traffic using the SSH protocol. A
vulnerability in OpenSSH can allow an attacker to remotely obtain access and
execute unauthorized code in a system. All of these projects

We specified and followed a set of rules and inclusion criteria to ensure
repeatable analysis of vulnerabilities. These rules stipulate how to obtain
vulnerabilities for analysis, how to verify if they are applicable to the analyzed
software versions, and how to map the vulnerabilities to emulation operators
and classify them. The software vulnerabilities and the respective patch files
were collected from public repositories, giving preference to the most official
source for this information. In the case of the Xen hypervisor, we used the
project’s Xen Security Advisories (XSA) official repository. For the Linux kernel
and the OpenSSH tool we used the CVEDetails repository. Our analysis covers
recent vulnerabilities applicable to the selected software versions.

Each vulnerability included in the field study obeyed several criteria. First,
we considered vulnerabilities affecting the software projects and versions selected
for the study sequentially by date of publication. We collected the patch files
from the vulnerability databases, starting with the most recent toward the
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oldest vulnerability, and performed the analysis without modifying neither the
patch file nor the project code. Then, we manually analyzed each patch file to
confirm that only C code was being altered and that source code macros were
not part of the changes. Finally, only those vulnerabilities directly affecting
the selected software projects were included, while we excluded those affecting
other projects that may be packaged or that are somehow related (e.g., the
qemu project is packaged by the Xen project) or components not belonging to
the project’s core (e.g., the libxl utility is a part of Xen but does not belong to
the core of the project, since Xen does not require it to execute). This resulted
in 147 vulnerabilities in total, corresponding to (at the time of the study) all
the vulnerabilities that could be obtained for the OpenSSH tool that obeyed
the criteria for inclusion and the majority of vulnerabilities for the other two
projects.

After collecting the vulnerabilities, each patch file was analyzed to map the
actual code changes to fault emulation operators. This process was manually
conducted by the authors, by comparing the faults classified according to ODC
with the individual operations needed to reproduce each vulnerability (i.e.,
the changes required to reintroduce a vulnerability given the source code that
corrected it). We aimed for functional equivalence when applying changes, i.e.,
the resulting code after applying the operators should be functionally the same
as the real vulnerabilities. In some cases there may be more than one way of
emulating a given vulnerability and for those cases we selected the alternative
which minimizes the total number of emulation operators applied.

The example provided below aims to clarify the mapping process in detail.
Considering that we analyze a patch file including the information shown in
Figure 1, one may observe that this vulnerability was fixed by adding a new
function call (with return value) and a new if construct. These additions are
marked with the plus sign.

1 if( nestedhvm_vcpu_in_guestmode(v) )

2 nvmx_idtv_handling();

3 + mode = vmx_guest_x86_mode(v);

4 + if(mode == 8 ? !is_canonical_address(regs->rip) : regs->rip!=regs->_eip){

5 + struct segment_register ss;

6 + gprintk(XENLOG_WARNING, "Bad rIP %lx for mode %u\n", regs->rip, mode);

7 + vmx_get_segment_register(v, x86_seg_ss, &ss);

8 + if ( ss.attr.fields.dpl ) {

9 + __vmread(VM_ENTRY_INTR_INFO, &intr_info);

10 + if ( !(intr_info & INTR_INFO_VALID_MASK) )

11 + hvm_inject_hw_exception(TRAP_gp_fault, 0);

12 + if ( mode == 8 )

13 + regs->rip = (long)(regs->rip << (64-VADDR_BITS)) >> (64-VADDR_BITS);

14 + else

15 + regs->rip = regs->_eip;

16 + }

17 + else

18 + domain_crash(v->domain);

19 + }

20 }

Fig. 1: Excerpt from the patch file associated with CVE-2016-2271 (XSA-170).
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Hence, to emulate this vulnerability, we need to remove that same function
call and the if construct. This removal operation can be mapped to one instance
of the MFC operator and one instance of the MIFS operator (see Table 7).
Using this information, we run our fault injection tool on the source code of
the project with the patch shown in Figure 1 applied (i.e., the vulnerability
is fixed in the source code) and verify whether our tool has applied the MFC
operator (to line 3) and, separately, the MIFS operator to the if construct
including statements (lines 4 through 19). If it did, then the software fault
operators are capable of emulating that vulnerability.

4 Field study

We collected and analyzed 147 real vulnerabilities in order to characterize the
typical programming mistakes that cause security defects. Each entry in a
CVE repository provides patch files (often a single file) that correct a specific
vulnerability. Those patch files were the object of our analysis and the resulting
dataset, along with the source files, shall be publicly released with the paper.
The remainder of this section presents the results obtained in the field study.

Fig. 2: Distribution of emulation operators across multiple functions and multiple files.

Each vulnerability was mapped onto a set of emulation operators necessary
to inject the vulnerability, as described in the preceding section. Figure 2 shows
that 64 out of 147 vulnerabilities (43.5%) consist of a unitary programming
mistake (i.e., a single instance of an operator). Furthermore, in 30 cases (20.4%)
the vulnerability affected a single function but was composed of multiple
operator instances (i.e., multiple programming mistakes in the same function).
In the remaining cases, 20 vulnerabilities involved multiple functions in a single
file and 33 vulnerabilities affected multiple files.
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Thus, it is a relevant observation that the majority of vulnerabilities affect
a single file, either requiring a single operator (43.5%) or multiple operators
(20.4%). These add up to 63.9% of all cases – nearly two thirds of the vul-
nerabilities examined. This is an important observation, because emulating
vulnerabilities involving a single function is less complex than doing so for
multiple functions (and far less complex than those involving multiple files).

Figure 3 shows how many instances of emulation operators are needed for
each vulnerability. The histogram shows the absolute number of vulnerabilities
which consist of 1 operator instance, 2 operator instances, and so on. Note
that in case a given emulation operator appears more than once in a single
vulnerability, all those instances are counted in the histogram.

Fig. 3: Absolute frequency of vulnerabilities over the number of operator instances necessary
to emulate them.

One can observe in Figure 3 that the vast majority of vulnerabilities
consist of up to three programming mistakes (i.e., three instances of emulation
operators). A single operator is sufficient in 43.5% of the vulnerabilities, two
operators are needed in 16.3% of the vulnerabilities, and three operators are
needed in 15.0% of the vulnerabilities. Thus, it is a relevant observation that
74.8% – nearly three fourths of the vulnerabilities are composed of up to three
programming mistakes.

Due to the combinatorial nature of the problem, emulating vulnerabilities
with 3 operators is much less complex than emulating vulnerabilities with, for
example, 5 operators. Nevertheless, if we wish to increase the coverage of our
analysis, 5 operators cover up to 89.1% of all vulnerabilities. Table 1 shows
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the same information as the histogram, broken down by software project, from
which similar observations can be drawn.

Table 1: Absolute number of vulnerabilities over the number of operator instances for each
software project.

Having presented the overall results regarding the number of operators
and their distribution across multiple functions and multiple files, Table 2
shows a detailed analysis of the actual programming mistakes found in all
software projects, specifically for algorithm defects. The table shows the number
of vulnerabilities in which each operator was found. If an operator appears
more than once in the same vulnerability it is nevertheless counted as a single
vulnerability in which it appears.

Table 2: Detailed description and frequency of algorithm faults.
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One can observe in Table 2 that algorithm faults predominantly consist of
MFC, MIFS, WALR, EFC, and EIFS types (for example, missing function call
(MFC) was found in 32 vulnerabilities, and missing if construct plus statements
(MIFS) was found in 57 vulnerabilities). The remaining algorithm defects are
relatively infrequent, as those appear in 7 or less vulnerabilities (i.e., less than
5% of the vulnerabilities).

Assignment faults are less common than algorithm faults, as shown in
Table 3. The table shows that assignment faults are very diverse, and only the
MVAV operator (missing variable assignment using a value) appears in more
than 5% of the vulnerabilities.

Table 3: Detailed description and frequency of assignment faults.

Table 4 shows that three operators dominate checking faults, namely MLOC,
MLAC, and WLEC. The MLAC and MLOC operators are fairly simple to
emulate by removing parts of expressions used in branch conditions (IF state-
ments in nearly all cases). The WLEC operator consists of an incorrect branch
condition and is therefore difficult to emulate exactly. For cases such as this
one, we propose non-deterministic emulation in the implementation section of
the paper.

Function faults are detailed in Table 5. Such faults usually require large
modifications to functionality, but are also infrequent (only 4 cases out of 147
vulnerabilities).

The detailed description of interface faults is presented in Table 6. One can
observe that interface faults, as a class, appear in 32 out of 147 vulnerabilities.
Nevertheless, all defect types occur in less than 5% of all vulnerabilities.

The results of this field study are in line with previous research conducted
on programs written in the C language, in the sense that algorithm, assignment,
and checking faults are the most frequent. However, upon detailed analysis, the
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Table 4: Detailed description and frequency of checking faults.

Table 5: Detailed description and frequency of function faults.

Table 6: Detailed description and frequency of interface faults.

most frequent defect types differ to some extent when compared to those found
in previous studies on software defects in general [6, 9]. The most frequent
operators, shown in Table 7, consist of nine common programming mistakes
that appear (each one) in more than 5% of all vulnerabilities.

The results summarized in Table 7 show that new operators, which have
not been considered for the emulation of software faults, are needed to emulate
software vulnerabilities. Specifically, the WLEC, EIFS, EFC and WALR types
of defect are relatively frequent in software vulnerabilities, whereas these were
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Table 7: Most frequent fault types occurring in software vulnerabilities.

Operator Description Type #Vulnerabilities

MIFS Missing IF construct plus statements Algorithm 57 (38.8%)
MFC Missing function call Algorithm 32 (21.8%)
EFC Extraneous function call Algorithm 16 (10.9%)

WLEC Wrong logical expression used as branch
condition

Checking 12 (8.2%)

EIFS Extraneous IF construct plus state-
ments

Algorithm 10 (6.8%)

MLOC Missing OR EXPR in expression used
as branch condition

Checking 10 (6.8%)

MLAC Missing AND EXPR in expression used
as branch condition

Checking 10 (6.8%)

WALR Wrong algorithm - code was misplaced Algorithm 9 (6.1%)
MVAV Missing variable assignment using a

value
Assignment 9 (6.1%)

not previously included among the most representative types in software fault
injection.

5 Practical emulation of software vulnerabilities

Having extensively studied the characteristics of software vulnerabilities, by
analyzing the three software projects included in our field study, we now
describe a practical approach for emulating vulnerabilities. While software fault
injection has not been designed to emulate software vulnerabilities, it already
provides the means to emulate the simplest ones and the techniques behind
it are applicable with some modifications for our purpose. In this section we
describe the adaptation of a software fault injection tool to emulate software
vulnerabilities.

5.1 Overview

To emulate security vulnerabilities one must modify programs according to a
set of operators that specify the modification that should take place, either
at the source code or at the binary level. Although some adaptations are
necessary, this process is conceptually similar to the emulation of software
faults in general. Therefore, as the basis we use a software fault injector, which
specifies a subset of the fault emulation operators, along with the associated
constraints, which stipulate the conditions under which an operator may be
applied. The injection flow remains largely unchanged, with the exception that
a mechanism is needed to combine multiple operator instances to produce a
single security vulnerability.

It should be highlighted that this approach to emulate software vulnerabili-
ties is complete, in the sense that all representative security vulnerabilities can
be injected. In other words, taking the fault model derived from the field study
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as a set of representative vulnerabilities, one may emulate all such vulnerabili-
ties (within the restrictions of time and limitations of the parsing stage in which
the abstract syntax tree is built). However, the converse is untrue as an injected
fault may or may not be a true security vulnerability. Consequently, when
this approach is used to evaluate a vulnerability detection method, scanner, or
team process, one should not aim for full detection as some injected faults may
not be true vulnerabilities.

Fig. 4: Flow for software fault injection at the source code level.

Our vulnerability injector has been developed as an extension to the software
fault injection tool in the ucXception suite [20]. This tool allows software faults
to be injected at the source code according to the shortlist of fault operators [9]
for programs in the C language. Our tool starts by parsing the source code and
building an abstract syntax tree (AST) using the Eclipse CDT library. This
process works generally well but is limited by some restrictions of the library in
handling macros and C preprocessor directives. Once the AST is constructed,
as shown in Figure 4, the various fault operators consist of Java functions that
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operate directly over the syntax tree to introduce the intended fault if and only
if all constraints are met.

Fig. 5: Combined flow for emulating security vulnerabilities.

The flow of software fault injection campaigns in the ucXception tool is
depicted in Figure 4. The tool produces a set of patches – each consisting of
a single emulation operator instance. Figure 5 conveys the flow to emulate
software vulnerabilities. A software vulnerability usually requires multiple
instances of emulation operators to be combined (as observed in the field study,
the fault model consists of multiple operators applied to a single function
at a time). This key difference requires the tool to join all the source code
modifications into a single patch file that represents one software vulnerability.

Returning to the example provided in Figure 1, the tool produces one patch
for each emulation operator instance, including in that example one MFC and
one MIFS operator (among many others). This is the case given, as input, the
source code of the software with the vulnerability fixed, but could also be some
other source code containing potential injection locations. Those two patch
files are applied to the original software to obtain a combined insertion of two
operators, thereby emulating the security vulnerability shown in the example.
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As a result of our field study, we conclude that the most commonly used
fault model for emulating software faults [9, 20], while valid in its context, is not
a representative fault model for emulating security vulnerabilities. The usage of
a fault model tailored for the emulation of software vulnerabilities, which shares
similarities but is adapted for this specific purpose, yields better coverage (i.e.,
is able to emulate a greater number of vulnerabilities) and is more efficient, as
it forgoes the individual operators that have been shown not to be required
for emulating software vulnerabilities. In Section 4 we have described the fault
model and its operators, of which some were already included in the original
model of software faults, while others had not been considered prior to the
present work. Having described the modifications to the injection flow, we now
turn to the details of the new fault operators and the changes needed to the
ones extended from previous research, all of which are needed to cover the list
shown in Table 7 with the objective of emulating software vulnerabilities.

5.2 Relaxation of constraints

Most of the operators in the fault model for emulating software vulnerabilities
were already present in the fault model for software faults. Thus, it is possible to
take advantage of this fact and reuse their implementation in existing software
fault injection tools. However, in some occasions, small changes are required
so that they become adequate for emulating vulnerabilities. This is the case
with the MFC (Missing function call) operator. In software fault injection this
operator has the following constraints [20]:

– C01 – Return value of the function must not be used
– C02 – Call/Assignment/The if construct/The statements must not be the

only statement in the block

However when applying this operator for the purpose of emulating software
vulnerabilities, constraint C01 must be ignored. Dropping this constraint comes
as a result of our field study, given the large number of situations where one was
required to remove a function call even though its return value was assigned to
a variable.

5.3 Extraneous operators

The model of software faults features solely operators that imply modification
(those that start with a ‘W’) or removal (those that start with an ‘M’), which
are, by nature, moderately simple to implement. The proposed fault model
of software vulnerabilities sees the appearance of ‘extraneous operators’ (i.e.,
operators that imply adding new constructs to the source code). These operators
present a new challenge: choosing what to add and where to add the new
constructs.

In particular, if we look at the EFC (Extraneous function call) operator, it
is easily understood that the fault injector must determine to which function
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it should add a call. In this scenario, the set of possible functions includes not
only the functions defined in the current file, as well as the functions defined
in the project and which are visible from that file and also the functions of all
included libraries. Not only that, but each function has its own parameters
which must receive a value. Thus, for this particular operator, there is also the
challenge of deciding which values or variables should be passed to the function.
If we look at the EIFS (Extraneous IF construct plus statements) operator we
see a similar scenario. Not only do we need to choose which condition will be
used (as discussed in the next subsection) but also which statements shall be
inside the If block.

In all extraneous operators there is one more decision that must be taken:
where to apply the operator, or, in other words, where to add a new construct.
Whereas non-extraneous operators are regulated by constraints that strongly
limit the locations in the code where they can be applied, for example, the
MVAV (Missing variable assignment using a value) operator can only be applied
if an assignment is not inside of a for loop [9], extraneous operators can be
applied almost anywhere in the code (e.g., inside of every function) and are
less restricted by constraints.

The outcome of these characteristics that are inherent to extraneous opera-
tors is not only the increased difficulty when building the fault injection tool,
but also the very high number of possible combinations that can be produced.
This means that extraneous operators contribute more significantly to the
combinatorial cost of performing fault injection than other operators. This is
particularly important to the emulation of software vulnerabilities since one
vulnerability may imply applying operators more than once.

5.4 Approximate emulation

Two of the newly introduced operators present a challenge that has not yet been
addressed by previous research in software fault injection or related areas. The
EIFS (Extraneous IF construct plus statements) and WLEC (Wrong logical
expression used as branch condition) operators imply the creation of a new
logical expression. In the case of EIFS, a new logical condition has to be created
from the ground up and will determine whether the flow of execution should
enter inside of the statements enclosed by the if, while in WLEC, the original
logical expression has to be changed as to become wrong but syntactically and
programmatically correct. Before a careful analysis of this problem is performed,
the domain of possible conditions that can be used appears tremendously large
and far from feasible to emulate in practice. However, this problem can be
simplified without loss of fidelity, as described in the next paragraphs.

We propose the concept of approximate emulation of operators. Approximate
emulation is a novel idea that uses non-determinism to solve the aforementioned
problem of creating logical expressions. The key insight behind approximate
emulation is that a logical expression always yields either true or false. Thus
by replacing a logical expression with a function that randomly (and hence
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non-deterministically) returns true or false, we are able to emulate the outcome
of any logical expression. The disadvantage of this approach is that the user
must be aware of this peculiarity and take into account that the execution of the
program (that has an operator that requires approximate emulation) will have
a non-deterministic behavior (i.e., executing the same program multiple times
can lead to multiple different outcomes depending on the random choices).

while (<random logical condition>) {

(...)

}

Fig. 6: Example of a situation that leads to infinite possible paths.

To construct random logical conditions one may use rand() % 2, for in-
stance, as the expression to compute a pseudo-random logical value true or
false. The rand() function is provided by stdlib.h along with the srand()

function that may be used to set the initial seed, thereby selecting a specific
sequence of random numbers. By executing, for example, srand(time(NULL))
during initialization, one may obtain pseudo-random executions in which the
defect may or may not manifest.

for (int i = 0; i < some_variable; i++) {

if (<random logical condition>) {

(...)

}

}

Fig. 7: Example of a condition where the outcome may vary in every execution.

It is worthy to highlight that most vulnerabilities examined in the field study
are deterministic, i.e., wrong conditions always compute the same incorrect
value. Nevertheless, there are exceptions such as missing initializations and
code involving I/O that result in implicit non-determinism. In our context,
explicitly using non-determinism to perform approximate emulation resembles
Monte Carlo approaches and, consequently, one may need to execute the same
program multiple times to activate an emulated vulnerability.

By applying non-determinism we are able to emulate the EIFS and WLEC
operators, which were found to appear frequently in software vulnerabilities
although these had not been considered as relevant by previous research.
Situations such as the one depicted in Figure 6 lead to an infinite number
of possible executions and situations such as the one in Figure 7, where the
result of the condition can vary at each execution of the main loop, cannot be
deterministically represented (except certain situations where loop unrolling [1]
can be applied).

Finally, we argue that a non-deterministic vulnerability is still a vulnerability
as it may be exploited with some probability. As a result, we are able to emulate
all the fault operators found to be representative of software vulnerabilities and
the combined flow provides the means to aggregate multiple fault operators
into a single emulated vulnerability.
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6 Conclusion

This paper presents a field study to characterize the most frequent programming
mistakes that cause security vulnerabilities and a practical approach to emulate
those vulnerabilities. To this end, we analyzed 147 publicly known vulnerabilities
of the Linux kernel, the Xen hypervisor, and the OpenSSH tool, to determine
what composes a representative security vulnerability in the C programming
language. We conclude that a typical vulnerability affects a single function, as
this was observed in two thirds of the cases. Moreover, a typical vulnerability
consists of no more than 3 fault operator instances, as this was observed in
three fourths of the cases.

Furthermore, we find that nine specific emulation operators appear, each
one, in more than 5% of the vulnerabilities. These are the most frequent
programming mistakes found in our field study. Compared to previous studies
on software faults in general, we conclude that four new emulation operators
must be added for adequate emulation of vulnerabilities. Moreover, unlike
software faults in general, emulating vulnerabilities requires combining multiple
operator instances rather than applying one emulation operator at a time.

A practical approach for emulating software vulnerabilities is presented and
we find that existing software fault injection techniques are suitable to emulate
software vulnerabilities. However, the set of emulation operators (or mutations)
should consist of the specific types found to be representative of software
vulnerabilities and the injection procedure should combine multiple emulation
operators in each injection. This, in turn, increases the complexity and the
number of combinations when compared to standard software fault injection.
Moreover, this paper proposes non-deterministic emulation for some of the
new operators for which exact emulation would be too complex. The expected
impact of this study is to allow practical emulation of software vulnerabilities
for software quality and security assessment.

As future work, we envisage the model of vulnerabilities and the injection
method to be applied to validate vulnerability scanners and static analysis
tools, to assess vulnerability detection methods, to enable software vulnerability
seeding, and to train and evaluate teams and processes regarding the efficiency
of defect detection.
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