
Geometric Search in TGTP

Yannis Haralambous1, Pedro Quaresma2

1 IMT Atlantique Bretagne-Pays de la Loire, Computer Science Department
UMR CNRS 6285 Lab-STICC, Technopôle Brest-Iroise CS 83818,

29238 Brest Cedex 3, France
yannis.haralambous@imt-atlantique.fr

2 CISUC / Department of Mathematics, University of Coimbra
Apartado 3008, EC Santa Cruz, 3001-501 Coimbra, Portugal

pedro@mat.uc.pt

Abstract. In this age of information the importance of retrieve the
knowledge from the many sources of information is paramount. In Ge-
ometry, apart from textual approaches, common to other areas of math-
ematics, there is also the need for a geometric search approach, i.e. se-
mantic searching in a corpus of geometric constructions.
The Web-based repository of geometric problems Thousands of Geomet-
ric problems for geometric Theorem Provers (TGTP) has, from the start,
some text search mechanisms. Since version 2.0 an implementation of the
geometric search mechanism is integrated in it. Using a dynamic geom-
etry system it is possible to build a geometric construction and then
semantically search in the corpus for geometric constructions that are
super-sets of the former, with regard to geometric properties.
It should be noted that this is a semantic check, the selected construc-
tions may not look like the query construction, but they will possess
similar sets of geometric properties.

Keywords: geometric automated theorem proving; repository of geometric prob-
lems; common formats; geometric search; conceptual graphs; typed sub-graph
isomorphism.

1 Introduction

Having repositories of information, one of the first question to solve is how to
browse the information contained within. Regarding repositories of geometric
information we should add to the usual text searches, geometric searches, i.e.
we should be able to provide a geometric construction and look for similar con-
structions.

Searching the TGTP repository can be done in three ways: a simple textual
query, a more comprehensive textual search, and a geometric search [7].

The simple textual query is done using MySQL regular expressions queries [6],
over the name attribute of the Conjectures table, it will provide the list of
conjectures with names similar to the query. Another, more powerful, textual

query mechanism is available, using the full-text search of MySQL [6]. The at-
tributes name, description, shortDescription, keyword of the theorems

and keywords tables are used, allowing, for a given input sentence, to get the
list of most similar sentences in any attribute of the different problem descrip-
tions.

Based on some preliminary work on geometric search [4] we developed a geo-
metric search mechanism. The queries are constructed using a dynamic geometry
system (GeoGebra3) and the constructed figure is semantically compared with
the figures in the repository.

2 Geometric Search in TGTP

2.1 Conceptual Graphs

Knowledge representation provides techniques for describing objects in a knowl-
edge domain, using concepts and relations defined by consensus in a community
of users. In the case of Euclidean geometry the choice of concepts and relations is
quite straightforward: we will use points, segments, lines (see 2.2). Once the sig-
nature decided, there are several mathematical structures for building knowledge
bases. We have chosen to use conceptual graphs [1] rather than OWL ontologies
based on RDF triples because the former allow relations of arbitrary arity and
because conceptual graphs can be processed with graph theory algorithms.

To give an example, the (trivial) geometric figure of a single line segment
AB is represented by a CG of four concepts and three relations (see Fig. 1):
two concepts of type point, with markers A and B, one concept of type segment,
with marker SAB and one concept of type line, with marker LAB ; the three
relations are: between A and SAB as well as between B and SAB there are
binary relations I “is incident to,” and between SAB and LAB there is a binary
relation C “contained in”:

point:A

point:B

segment:SAB line:LAB

I

I

C

1
2

1 2

1
2

Fig. 1. Conceptual Graph, Single Line Segment AB

The semantics are as follows: point:A and point:B are distinct4 extremities
of segment:SAB , which, in turn, is contained in line:LAB . When converting a

3 https://www.geogebra.org/
4 We consider that every concept of the graph represents a distinct geometric object.

Whenever inference reveals that two concepts represent the same object, they are
merged.

geometric figure from some other representation to conceptual graphs, geometric
constraints of the figure (as in [5, §2.2]) become conceptual graph relations.
Furthermore, geometric inference rules become conceptual graph λ-rules. We
repeatedly apply inference rules until inferential closure is obtained. By doing
this a search will succeed in finding a figure even if it has been originally described
in a different but geometric equivalent way. For example, if a figure has been
converted into a conceptual graph as a triangle with three equal sides and the user
searches a triangle with three equal angles (which is geometrically equivalent),
the search will be successful because—thanks to inferential closure—the property
that angles are equal will be already part of the graph (see Fig. 2).

corpus preparation query

A

B C

conversion−−−−−−→
to CG

C inferential−−−−−−→
closure

C sub-graph←−−−−−−−−
isomorphism

C′ conversion←−−−−−−
to CG

A

B C

Fig. 2. Geometric Query Using Conceptual Graphs

For each construction in TGTP the conceptual graphs is found, then its
inferential closure is calculated. When a query is done the conceptual graph is
found, then a intermediate representation (see Section 2.4) is used as a filter to
found a list of potential candidates and the (still to be implemented), using a
sub-graph isomorphism the matches would be found.

2.2 Figures Represented as Conceptual Graphs

We use concepts point, segment, line, circle, angle, ratio. The model semantics
of this vocabulary are the corresponding geometric notions (interpretations of
the former four concepts take their values in R2, the interpretation of angle is a
full-angle ([2, p. 44–50]) and interpretation of ratio is a real number). We also
use three constants: angle:0 and angle:1 are angle-type individuals corresponding
to full-angles ∠[0] and ∠[1] (in Chou notation), and ratio:1 is a ratio individual
of value 1. The relations of our vocabulary are the following (see Table 1):

In conceptual graphs representing geometric figures, every segment has to be
connected to a single line by an is contained in relation and every pair of lines
`, `′ is connected to angle concepts ∠[`, `′] and ∠[`′, `] by is angle of relations.
These angle concepts are interconnected by the is negative of relation. When
two lines are geometrically parallel, their angle is the individual angle:0; when
two lines are geometrically perpendicular, their angle is the angle:1 individual.
Every pair of segments is connected to a ratio by an is ratio ofs relation; when
they are geometrically congruent, then their ratio is the ratio:1 individual. If
point:C is the geometric midpoint of segment:AB then three segments AB, AC

relation arity signature relation arity signature

is incident tos 2 (point,segment) is negative of 2 (angle,angle)
is incident toc 2 (point,circle) is ratio ofs 3 (ratio,segment,segment)
is contained in 2 (segment,line) is ratio ofa 3 (ratio,angle,angle)
is center of 2 (point,circle) is equal toa 2 (angle,angle)
is angle of 3 (angle,line,line) is equal tor 2 (ratio,ratio)
is summit of 2 (point,angle)

Table 1. Geometric Relations

and BC have to be provided in the graph and the ratio of AC and BC is ratio:1.
As for is equal to relations, they are only used between angles or between ratios.
Consistency checking algorithms continuously verify that equality is transitive
and that for every path containing an even number of is negative of relations
there will an equality relation. Integrity checking algorithms verify that every
segment is connected to a single line, that lines with zero angle and a common
point are merged, that every circle has a single center point, etc.

2.3 Inferential Closure

We have implemented the inference rules as Python functions. They are then
repeatedly applied until the CG remains unchanged, which means inferential
closure has been attained. We have adapted rules specific to full-angles to this
format, as well as rules D1–D75 of [3, p. 242].

The fact that we use CGs allows us to be independent of predicate argument
order: for example, the sole purpose of rules D14–D17 in [3] is to ensure that
the predicate cyclic(A,B,C,D) is true for any order of arguments A,B,C,D. In
our case, we get four point concepts connected to the same circle concept via a
is incident to relation, without any order. This allows us to significantly reduce
the number of inference rules to apply, compared to [3].

Applying an inference rule is finding a pattern in the graph (i.e., a CG λ-
rule, see [1, Ch. 10]) and transforming the graph in a specific way (by adding
or merging vertices and/or edges). To avoid unnecessary use of the sub-graph
isomorphism algorithm, the system calculates global trail distributions of infer-
ence rule patterns so that they are applied only if there is a chance that they
will indeed match some sub-graph and transform it.

2.4 Global Trail Distributions

The inferential closure and the sub-graph isomorphism algorithms are heavy
CPU consumers, we have developed a strategy for finding sets of potential
matches, so that the set of figures to which the algorithms has to be applied
is as small as possible.

To allow easier searching of match candidates in the corpus, a sequence of
numeric values, called global trail distribution, is calculated out of the query
graph.

A global trail distribution5 is a sequence of key/value pairs partially describing
the query conceptual graph. It has the important property that if the query
graph is indeed contained in some corpus graph, then (a) all keys of the query
graph must also be keys of the corpus graph, and (b) the value of every key of
the query must be smaller or equal to the value of the same key in the corpus
graph. Verification of graph compatibility is straightforward: we check whether
all query keys also belong to the corpus graph key set, if not then the corpus
graph is removed from the candidate list. Once this test is passed we compare
values of query keys and corpus keys and check whether inequality is verified in
all cases.

Keys are obtained in the following way: we take all trails of the CG. Let
p = (e1, . . . , en) be a trail (and hence ei 6= ej for all 1 ≤ i < j ≤ n), where ei are
concept nodes, relation nodes and relation edge labels. If we replace concepts
by their types and relations by their symbols, we get a sequence (t1, . . . , tn)
of concept types, relation symbols and relation edge labels. We replace tis by
numeric identifiers and call the obtained numeric sequence τ(p). Sequence τ(p)
describes the specific trail p but also all other trails containing similar concepts
and relations in the same order. The fact is that if we want the query graph to
be contained in the corpus graph, then the latter must also contain at least the
same number of trails of the same type sequence as the former. Let #τ(p) =
|{p′ ∈ Trails(G) : τ(p) = τ(p′)}| where Trails(G) is the set of trails of G. We use
τ(p) sequences as keys and #τ(p) as values, i.e., the global trail distribution
GTD(G) of graph G is defined as:

GTD(G) = {(τ(p),#τ(p)) : p ∈ Trails(G)}

3 Geometric Search Implementation in TGTP

The implementation of the geometric search in TGTP is divided in two steps
with several sub-steps:

1. corpus preparation (to be done once for each figure in TGTP)6:
(a) convert the corpus into conceptual graphs. This conversion is very effi-

cient, 0.54s ≤ t ≤ 5.55s, for the examples timed, with an average value
of 1.34s;

(b) obtain the inferential closure of each figure in the corpus. This can be
very heavy time consuming process, ranging from 0.91s to > 100000s.
This step is still not completed, not all the figures have a corresponding
conceptual graphs, inferential closure.

2. the query (to be done for every query):
(a) use a DGS (GeoGebra, JavaScript applet) to make the query;
(b) convert the query into a conceptual graph (very efficient, see 1a);

5 In graph theory, a trail is a path with no repeated edges.
6 It should be noted that some geometric conjectures can be in TGTP without a

corresponding figure, For those cases the geometric search is not applicable

(c) compare the global trail distribution of the query with those in the
corpus, obtaining a set of candidates. Using a MySQL right outer join
query [6] this is done very quickly (few seconds);

(d) apply typed sub-graph isomorphism algorithm to candidates. This step
is still to be implemented;

(e) if the algorithm succeeds, return a list of corpus graphs as standard
geometry figures representations. Using the same DGS used for making
the query, the TGTP ’s user should be able to browse the list of results.
For each geometric construction in the list it will be possible to visualise
it, with the part matching the query highlighted.

In TGTP the queries are constructed using GeoGebra, the global trail distri-
butions for that construction are calculated and then matched against the ones
in the corpus. This provides a very fast mechanism to build a list of similar
constructions that is made available to the TGTP user making the query.

4 Future Work and Conclusion

The TGTP system has already fulfilled many of the goals specified at the begin-
ning of the project. The geometric search mechanism is, in our opinion, a very
interesting addition to the platform. Nevertheless there are still many improve-
ments to be done.

For now all the searches are independent of each others, the user should be
able to combine them, e.g. after a given full-text search, run a geometric search
in the resulting list.

Stopping the query at the global trail distribution matching level, is a very
fast way to get results, but the price to pay is uncertainty about precise matching
and impossibility to highlight the query match inside the corpus graph. The
next steps, still to be implemented in TGTP , are: to improve the filtering of the
result list (step 2c) with a deep learning generic graph representation learning
framework [8]; after having the result list of problems we should be able to
apply the typed sub-graph isomorphism, the result could then be visualised using
GeoGebra, with colours marking the query construction as a sub-construction of
the corpus constructions.

References

1. Chein, M., Mugnier, M.L.: Graph-based Knowledge Representation. Computational
Foundations of Conceptual Graphs. Advanced Information and Knowledge Process-
ing Series, Springer (2009)

2. Chou, S.C., Gao, X.S., Zhang, J.Z.: Machine Proofs in Geometry. World Scientific
(1994)

3. Chou, S.C., Gao, X.S., Zhang, J.Z.: A deductive database approach to automated
geometry theorem proving and discovering. Journal of Automated Reasoning 25,
219–246 (2000)

4. Haralambous, Y., Quaresma, P.: Querying geometric figures using a controlled lan-
guage, ontological graphs and dependency lattices. In: et al., S.W. (ed.) CICM 2014.
LNAI, vol. 8543, pp. 298–311. Springer (2014)

5. Mathis, P., Thierry, S.E.B.: A formalization of geometric constraint systems and
their decomposition. Formal Aspects of Computing 22(2), 129–151 (Mar 2010),
https://doi.org/10.1007/s00165-009-0117-8

6. Oracle: MySQL 5.5 Reference Manual. Oracle, 5.5 edn. (January 2011), revision:
24956

7. Quaresma, P.: Thousands of Geometric problems for geometric Theorem Provers
(TGTP). In: Schreck, P., Narboux, J., Richter-Gebert, J. (eds.) Automated De-
duction in Geometry, Lecture Notes in Computer Science, vol. 6877, pp. 169–181.
Springer (2011)

8. Rossi, R.A., Zhou, R., Ahmed, N.K.: Deep inductive network representation learn-
ing. In: Companion Proceedings of the The Web Conference 2018. pp. 953–960.
WWW ’18, International World Wide Web Conferences Steering Committee, Re-
public and Canton of Geneva, Switzerland (2018), https://doi.org/10.1145/

3184558.3191524

