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Abstract

The pharmaceutical industry is facing new challenges. The development of a new drug takes
around 12 years to reach the market, with a cost of around £1.5bn per drug and only around
1 in each 5.000 drugs manages to reach it. The toxicity of the drugs on the biological tissue is
one of the critical points in the drug development process, as it may cause the termination
or recall of a drug. To measure such toxicity, the assessment of the perturbation of the
mitochondria is one of the techniques that can be used. This dissertation aims to create
a Machine Learning (ML) model that early predicts the toxicity levels of pharmacological
compounds. Such a model could then be used to identify and prevent the development of
new drugs with a toxic composition. This work is done in cooperation with the MitoXT
group, based at the UC-BIOTECH, Center for Neuroscience and Cell Biology, that will
provide a dataset containing the information regarding the toxic effects of pharmacological
compounds on the mitochondria.

Keywords: Machine Learning, Classification, Clustering, Mitochondria, Drug Toxicity
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Resumo

A indústria farmacêutica enfrenta novos desafios. O desenvolvimento de um novo medica-
mento leva cerca de 12 anos para chegar ao mercado, com um custo aproximado de £ 1,5
biliões e apenas 1 em cada 5.000 o consegue alcançar. A toxicidade dos medicamentos no
tecido biológico é um dos pontos críticos no processo de desenvolvimento de fármacos, uma
vez que pode causar o seu término ou retração. Para medir essa toxicidade, a avaliação
da perturbação das mitocôndrias é uma das técnicas que podem ser utilizadas. Esta disser-
tação visa criar um modelo gls ML que permita prever precocemente os níveis de toxicidade
de compostos farmacológicos. Esse modelo poderá então vir a ser usado para identificar
e prevenir o desenvolvimento de novos medicamentos com uma composição tóxica. Este
trabalho é feito em cooperação com o grupo MitoXT, com base no UC-BIOTECH, Centro
de Neurociências e Biologia Celular, que irá fornecer um conjunto de dados que contém
informações sobre os efeitos tóxicos de compostos farmacológicos nas mitocôndrias.
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Chapter 1

Introduction

1.1 Motivation

With the passage of time the pharmaceutical industry is facing new challenges. Typically the
development of a new drug takes around 12 years from the initial discovery stage to reach
the market, with a cost of around £1.5bn per drug, with it growing almost exponentially
every year. Despite all that, still only around 1 in each 5.000 drugs manages to reach the
market. Developing a drug normally takes six stages: pre-discovery, drug-discovery, pre-
clinical testings and phase one, two and three of clinical trials (The Guardian - Healthcare
Network 2016). Even after the drug is approved and launched in the market there is the risk
of unforeseen consequences that could force a recall of the product, incurring on extremely
high costs for the company, not to mention the possible threat to human health.

The toxicity of the drugs on the biological tissue is one of the critical points in the drug
development process. The assessment of the perturbation of the mitochondria is one of the
techniques used to measure such toxicity. Mitochondria are organelles that exist in most
eukaryotic cells, being responsible for cellular respiration and the production of Adenosine
Triphosphate (ATP). Its impairment may result in cell death and organ failure, with liver
failure and cardiovascular lesions as the most common consequences. In order to measure
how the mitochondria are affected it is possible to use various indicators, such as the val-
ues of Oxygen Consumption Rate (OCR), Extracellular Acidification Rate (ECAR), ATP
generation, mitochondrial membrane potential, amongst others (Cyprotex 2013).

There are multiple techniques to identify mitochondrial dysfunction however many are ex-
pensive, lengthy and require multiple experiments (Cyprotex 2013). Still, even after the
experiments are made the decision of whether there is evidence of dysfunction is mainly
done through a visual and statistical data analysis of key indicators of mitochondrial func-
tion.

1.2 Context

In today’s society we generate and store an exponentially increasing amount of data. With it
comes the need to transform these data into different types of knowledge. Large companies,
such as Google, Amazon and Netflix, invest strongly in models that try to extract this
knowledge for any number of purposes, be it to improve its search heuristics and results, or
to make better recommendations. Other companies, such as PayPal, try to detect other
serious subjects such as frauds and irregularities in real time. These interests combined
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with the recent evolution of technology led to the expansion of an Artificial Intelligence (AI)
area known as Machine Learning (ML). Although it has been around for years, the powerful
technologies that are available nowadays allowed it to apply its algorithms on the larger
datasets, bringing it (back) to the spotlight.

Albeit the amount of data collected has risen, so has its inherent complexity, alongside the
fact that everything is gathered regardless of its structure. Many of the created datasets
present certain characteristics that make it difficult to process, such as inconsistency, unbal-
anced data, small datasets, missing features, high and low dimensionality, amongst others,
which if not handled properly may lead to bad or misleading conclusions. As the interest in
creating models that may adapt to a system is growing, the need to create techniques and
solutions to these constraints has led to the development of certain practices that can be
applied in all types of learning.

Given this context it seems only natural to apply ML techniques to data regarding mito-
chondrial (dys)function to create models that can make predictions on the toxicity of new
compounds.

1.3 Objectives

This project aims to overcome the existing limitation on detecting and predicting mitochon-
drial dysfunction and to take advantage on the ability of ML algorithms to extract knowledge
that would otherwise not be found. Its main goal is to develop a ML model that is able
to predict the toxicity of pharmacological compounds present in the drugs, using mitochon-
drial indicators both to prevent the development of new drugs with potential consequences
and to analyze drugs that are already in the market with toxic compounds. This will be
done through the study of the dataset provided by the MitoXT group, based at the UC-
BIOTECH, Center for Neuroscience and Cell Biology. This dataset contains the information
regarding the toxic effects of pharmacological compounds on the mitochondria, mainly on
their ability to generate energy (Adenosine Triphosphate (ATP)) through aerobic cellular
respiration (Oxidative Phosphorylation (OXPHOS)), as well as the Extracellular Acidifica-
tion Rate (ECAR). As with many biological datasets, it presents some challenges, such as
limited samples, unbalanced data, high variance, and so forth. As such, one important step
of the study consists on a careful preprocessing of the data. Afterwards some ML algorithms
will be applied and the results and performances compared.

For the final model to be useful it must be able to identify the toxicity of the drugs with
a satisfactory success rate. Hence, its threshold of success is to correctly identify at least
50% of the samples exposed to compounds with known mitochondrial toxicity, otherwise
the model will be deemed unfit. If the development of the model is indeed successful it will
afterwards be integrated in a software program and delivered to the MitoXT team to assist
in the development of new drugs.

Complementary, we perform a thorough and comprehensive analysis of common ML algo-
rithms and techniques, and their application in a real case scenario. In a more ambitious
mood there is also the goal of trying to develop a program that will be able to predict a
toxicity index using techniques from other AI areas. To do so a population-based metaheuris-
tic optimization approach with biological inspired mechanisms, also known as Evolutionary
Algorithm (EA), will be used through a Genetic Programming (GP) implementation.
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1.4 Contributions

The contributions from this work can be divided between the biological and the ML fields.
For the biological area the main contributions are:

• a thorough analysis of the experiments data using statistical techniques which provide
insights into the mitochondrial effects of the drugs

• the development of tools that ease the interpretation, extraction and analysis of the
experiments results

• a new method to detect Drug Induced Mitochondrial Dysfunction (DIMD) in the early
stages of drug development and that is able to give insights into the similarity of the
dysfunction induced by the drugs

• a preliminary GP model to predict a toxicity index

As for the ML field, they are:

• a comprehensive literature review on ML concepts, techniques and algorithms

• a thorough study of the data preparation methods and a comparison of the standard
ML problems and algorithms performance

• the development, implementation, testing and analysis of a fusion expert based ensem-
ble algorithm that considers the performance of each algorithm and their predictions’
probabilities

1.5 Structure

This document is organized as follows:

• In Chapter 2 there is a state-of-the-art revision of the current techniques and ap-
proaches used in the biological field to study the toxic effects of compounds, with
emphasis on the detection of DIMD

• Chapter 3 holds a state-of-the-art revision of the current ML techniques and algorithms

• Chapter 4 describes and analyses the experiments process and their data

• Chapter 5 contains the configurations and implementations of the ML techniques and
algorithms used and in Chapter 6 their results are thoroughly analyzed

• Chapter 7 contains a discussion of the results obtained and in Chapter 8 the final
conclusions and future work are presented
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Chapter 2

Drug Development

Due to the extensive development time and cost of a new drug it is becoming increasingly
important to identify potential toxicities in an early stage of its development process. Still,
the main purpose of drug toxicity testing is to create methods that can protect the public
health from the hazardous effects of drugs.

The development of a new drug has multiple stages that spread for several years, as depicted
in Figure 2.1. Typically, from discovery to manufacturing, takes around 12 years and can
reach up to costs of approximately £1.5bn per drug (The Guardian - Healthcare Network
2016). Besides the risk and financial cost of a withdrawal due to unforeseen side effects,
the risk of developing a drug that can compromise human health is a constant concern. It
is however particularly difficult to completely guarantee that there will be no adverse side
effects.

Toxicity is often missed precisely because it is a rare occurrence. If a specific drug causes a
side effect in 0.1% of patients, more than 10 000 would have to be exposed for it to even
become realistic (Dykens and Will 2007).

Figure 2.1: Drug Development Process, from (Trac Drug Development Pro-
cess 2017)

Toxicity prediction is an essential step in the development process and is carried in its first
stages, the preclinical phase. The studies used to predict such toxicity can be separated into
three categories: In silico, which means performed entirely in a computer or via computer
simulation, In vitro, those performed in a controlled laboratory environment outside of a
living organism and In vivo, which are performed using a whole living organism. Each of
these categories has its own advantages and disadvantages. An approach to improve the
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results it is to combine predictions from different high-throughput assays. Although there is
not any preclinical experiment that is expected to completely predict the potential of human
health hazards, the combination of in silico, in vitro and in vivo can strongly improve its
assessment (Differences between in vitro, in vivo and in silico studies 2017).

2.1 Drug-Induced Toxicity

Drug induced toxicity remains one the main reasons for late stage attrition of drugs. The liver
and the heart have been shown to be the main targets of drug-induced adverse effects. Due
to the fact that many of them only manifest during clinical trials or post-launch, cardiotoxicity
and hepatotoxicity are one of the main areas of investigation and focus (Cyprotex 2013).
The toxic effects of a drug are a complex multitude of different and interlinking pathways,
which makes it extremely difficult to fully understand them.

There are many ways a drug may induce toxicity. Reactive Oxygen Species (ROS) are derived
from molecular oxygen and can be either radical or non-radical. The balance between ROS
and antioxidants is important for maintaining the vital cellular and biochemical functions. If
there is an excess of ROS it is known as oxidative stress and if there is a depletion is called
reductive stress. Oxidative stress can lead to macromolecular damage and / or disruption
of redox signaling and control. It has several targets, such as lipid membranes, DNA and
proteins, which can lead to cardiotoxicity, nephrotoxicity, ototoxicity, skeletal myopathy and
hepatotoxicity (Cyprotex 2013).

Reactive metabolite mediated toxicity can be dose dependent, where the toxicity is usually
predictable, or idiosyncratic, where the toxicity is unpredictable, dose independent and prob-
ably does not manifest in preclinical tests. Due to the fact that the liver is the main organ
involved in drug metabolism, it is often a target of such metabolites toxic effects, although
they may also affect other organs such as skin and blood (Cyprotex 2013).

Another effect of drug induced toxicity is changes to cell cycle. The primary function of the
cell cycle is to duplicate DNA in the chromosomes into two genetically identical daughter
cells. This process is comprised of several steps which are controlled through checkpoints
based on highly complex signaling pathways. Drug induced cell cycle toxicity affects this
process by interfering in some of the steps (Cyprotex 2013).

Apoptosis is the process of programmed cell death. It is usually a beneficial process through
which the system removes unwanted cells, however it can be also be a detrimental process.
It is a complex system and is controlled through a range of extracellular or intracellular
signals. Two major signaling pathways that lead to apoptosis have been identified and they
are mitochondrial and receptor mediated. Drug induced toxicity to these pathways may
active pro-apoptotic signals that lead to increased cell death (Cyprotex 2013).

Depending on their mode of action, carcinogens can be classified as genotoxic or non-
genotoxic. Genotoxic carcinogens have a direct interaction of the chemical with DNA and
/ or the cellular apparatus that regulates the fidelity of the genome. Non-genotoxic on the
other hand act as a non DNA damaging mechanisms in which a variety of cellular processes
may be involved (Cyprotex 2013).

Cardiotoxicity is one of the main causes of toxicity related drug attrition. Initial physiological
effects of drugs often manifest themselves as Electrocardiogram (ECG) changes and cardiac
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arrhythmias. Cardiomyopathy often occurs in the later stages of cardiac dysfunction with
cardiac hypertrophy a common observation which can lead to heart failure.

2.2 Mitochondrial Dysfunction

Mitochondria are tiny but essential organelles to the survival of cells. They are responsible for
the generation of almost all of our energy in the form of ATP (Lane 2006). Mitochondria can
be thought of as cellular powerhouses converting energy release through substrate oxidation
into a form usable by cellular processes (Dykens and Will 2008). With the exception of
the cell nucleus, the mitochondria are the only organelles in animal cells to have their own
genome, known as Mitochondrial DNA (mtDNA). They also have many other functionalities
such as fatty acid oxidation, heme synthesis, calcium signaling and apotosis (Dykens and Will
2008). They are for that matter one of the most important elements in our body. They are
composed of two membranes that separate the inter-membrane and the inner compartment
where the mitochondrial matrix is (Rotella 2012), as illustrated in Figure 2.2.

Figure 2.2: Mitochondria Structure, from (Molecular Expressions - Mito-
chondria 2017)

Mainly there are three distinct processes through which the human body generates almost
all of its energy (ATP). Glycolysis, one of such processes, is an anaerobic pathway that
happens in the cytosol and yields 2 ATP. Briefly, it converts glucose into pyruvate, which
can either be converted to lactate through lactic acid fermentation or it can be used by
another pathway to generate ATP (Alberts et al. 2002). The remaining two processes
happen in the mitochondria and consist in two pathways: the citric acid cycle (also known
as the Krebs cycle) which mainly uses the pyruvate generated by glycolysis and Oxidative
Phosphorylation (OXPHOS), an aerobic metabolism which generates most of the ATP.
Through aerobic respiration the net yield is approximately 36 ATP for a single molecule of
glucose (Ristow and Cuezva 2009).

OXPHOS consists of two independent processes: oxidation of reduced substrates and phos-
phorylation of Adenosine Diphosphate (ADP). The inner-membrane is where it occurs. It
contains the complexes I, II, III, IV and V and its process can be seen in Figure 2.3. The
OXPHOS machinery consists of two proton-pumping systems that are able to translocate
protons across the membrane. The complex V, also known as ATP synthase as it catalyzes
ATP production, is driven by an electrochemical proton gradient (∆ψ) between the inside
and the outside of the inner membrane (Dykens and Will 2008).
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Figure 2.3: Oxidative Phosphorylation (OXPHOS), from (Oxidative Phos-
phorylation 2017)

Due to the complexity and structural details of the mitochondria there are many mecha-
nisms through which DIMD can happen. Some drugs may inhibit the complexes involved in
OXPHOS, conditioning the production of ATP. They can also uncouple electron transport
from ATP synthesis by disrupting the proton gradient. It can also happen by inhibition of
the enzymes involved in fatty acid oxidation or the citric acid cycle, causing the depletion
of substrates. Some drugs may limit mtDNA replication while others may interfere with
mtDNA encoded proteins (Rotella 2012). In summary, there are several mechanisms that
can lead to DIMD.

The main toxic effects caused by DIMD (Cyprotex 2013) are:

• Inhibition of Protein Complexes - certain drugs are able to inhibit Complex I, Com-
plex II / III, Complex IV or Complex V, impairing the mitochondrial ATP production

• Uncoupling of Electron Transport from ATP Synthesis - some drugs uncouple the
electron transport from ATP synthesis by shuttling protons across the inner membrane

• Inhibition of Mitochondrial Membrane Transporters - inhibition of such transporters
may cause substrate depletion and compromise ATP synthesis

• Inhibition of Krebs Cycle Enzymes and Fatty Acid Metabolism - the inhibition
of Krebs Cycle Enzymes or fatty acid β-oxidation can also result in the depletion of
substrates

• Inhibition of mtDNA Replication and mtDNA-encoded Proteins Synthesis - some
drugs are able to interfere with mtDNA replication and mtDNA-encoded proteins
synthesis

• Oxidative Stress - redox cycling, depletion of antioxidants or ROS can lead to the
activation of cell death signaling and induction of mitochondrial membrane permeabi-
lization

• Mitochondrial Permeability Transition (MPT) Pore - certain drugs may cause ir-
reversible creation of a MPT pore leading to osmotic swelling and consequential cell
death

As it can be seen, despite its critical role mitochondria are highly vulnerable to inhibition or
uncoupling of the energy harnessing process, and have a high risk for permanent damage to
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the cell (Wallace and Starkov 2000). For that reason the perturbation of the mitochondria is
one of the techniques used to measure the toxicity of a drug. DIMD is known to contribute to
late stage compound attrition (Swiss et al. 2013). Although it is a fairly recent approach, the
withdrawal of Cerivastatin and Troglitazone and a black box warning for Tolcapone showed
the importance of testing drugs for mitochondrial impairment in early stages (Rotella 2012)
. Since then multiple assays to detect such dysfunction have been developed, however many
require expensive and specialized components and expertise.

2.2.1 In Vitro Methods to detect DIMD

The variety of mechanisms that may lead do DIMD means that there is no single assay that
identifies them all. Thus, there are several techniques that can be used to analyze them,
each one giving different insights into how the drug may induce toxicity. The main assays
that are currently used to detect DIMD are (Rotella 2012) (Cyprotex 2013):

• Mitochondrial Membrane Potential Measurements
A common method to detect DIMD is to monitor the mitochondrial membrane poten-
tial. For this, a variety of fluorescent dyes have been used in traditional fluorescence
microscopy, automated high-content imaging, or high-throughput screening assays
utilizing plate readers. A drawback of using this method to detect DIMD is that a
decrease in the membrane potential is not necessarily a direct cause of mitochondria
impairment.

• Oxygen Consumption Measurements of Mitochondria
Due to the fact that OXPHOS consumes oxygen measuring the OCR is one of the
techniques to study changes to its pathway. The first methods to analyze oxygen
uptake were done with the Clark electrode, which had a limited throughput of approx-
imately 10-20 compounds per day at a single dose. Nowadays however there are new
technologies using oxygen sensors which can measure 96 or 384 wells in a single plate,
giving a high-throughput screening of compounds.

• Mitochondrial Mass
The number of mitochondria per cell can also be used to assess mitochondrial toxicity.
An increase in mitochondrial mass may occur as a consequence of a response to
increased energy production. Also a decrease in mitochondrial mass can also be a
manifestation of early stage mitochondrial damage.

• Measurement of mtDNA-Encoded Protein Levels in Cells
Drugs that interfere with mtDNA replication or mtDNA-encoded protein synthesis are
rarely identified in 24-72h cell viability assays since both have lower turnover rates.
Furthermore, the protein complexes involved in OXPHOS have to fall below a critical
threshold in order to affect ATP synthesis, which varies between cell types. Since the
mtDNA-encoded proteins are subunits of the complexes, they too have to fall below a
critical threshold. Due to the time that these experiments take they are not ideal for
high-throughput screening.

• Metabolomics
Metabolomics is a scientific field that analyzes small molecules that constitute the
metabolism (Roessner 2012). There is a growing interest in Metabolomics to investi-
gate mitochondrial dysfunction. A non-radioactive tracer can be added to the culture
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media of cells and its distribution into multiple metabolites produced by processes such
as the Krebs cycles, lactate production and fatty acid oxidation can be monitored.

• Assays for Measuring the Activity of Enzymes Involved in OXPHOS
In case there is a reduction of oxygen consumption with either isolated mitochondria or
cells, the target of inhibition in OXPHOS can be identified either by classical biochem-
ical models or by immunocapturing the individual protein complexes and determining
each enzyme’s activity in the presence of the test compounds.

• Measurement of ATP Levels in Cells Grown in Glucose / Galactose Media
A way to measure the viability of the cells is through the measurement of ATP levels.
This is usually done through immortalized cell lines. Although they possess the capa-
bility to be aerobic they have a preference to produce ATP via glycolysis when grown
in glucose media. This is known as the Crabtree effect and to overcome this cells can
be grown galactose containing media. Since the production of ATP through glycolysis
is zero in galactose media the cells rely on OXPHOS which will make the cells more
susceptible to DIMD.

• Oxygen Consumption and Extracellular Acidification Measurements of Cells
Albeit oxygen sensors are able to identify changes to the OXPHOS in isolated mi-
tochondria, a decrease in oxygen consumption alone can not be interpreted as mito-
chondrial toxicity. Dying cells, regardless of the mechanism of toxicity, will also display
decrease in oxygen consumption. Therefore, pH sensors were developed to measure
the ECAR and by doing so, the glycolytic rate. This provides the information required
to identify which compounds directly impair the mitochondrial function and those that
cause cytotoxicity.

There are a multitude of tests from different companies that use some of these techniques
to attempt to detect DIMD. Two of them are particular recent and use the state of art on
technology: the Searhorse XF Cell Mito Stress Test and the Seahorse XF Glycolysis Stress
Test. Both measure the OCR and ECAR, one of the techniques just described, after adding
a sequence of compounds that allow the analysis of some indicators for the OXPHOS and
glycolytic pathway. As these tests allow plates with multiple wells it is also possible to use
both culture media, glucose and galactose, to test the effects of drugs, which is another of
the previously described methods. However, the processing of the results is mainly based
on a visual analysis of the values distributions and deviations, usually in comparison to the
control samples.
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Chapter 3

Machine Learning

Although there is no consensus on what intelligence really is, it can be informally defined
as: "Intelligence measures an agent’s general ability to achieve goals in a wide range of
environments" (Legg and Hutter 2006).

Artificial Intelligence (AI) has already been around for some time, and in conjunction with
the previous definition it can be explained as the science of making intelligent machines,
including intelligent computer programs (McCarthy 1987). From that evolved the idea of
creating systems that can adapt and learn within an environment, that came to be known
as Machine Learning (ML). Machine Learning (ML) is a subfield of Computer Science (CS)
that gives computers the ability to learn without being explicitly programmed (Samuel 1959).
Despite its recent intensive development in the last years, it has also been around for quite
some time.

Depending on the type of feedback available to the learning system, ML tasks can be clas-
sified into Supervised Learning, Unsupervised Learning, Semi-supervised Learning and
Reinforcement Learning (Ayodele 2010).

Different types of algorithms can be used to learn a computational model of a given problem.
However, to create an accurate model it is crucial to thoroughly prepare the data, as it will
directly influence its performance. Also essential to the analysis of ML algorithms is the
ability to compare them and being able to state which are best at what.

3.1 Data Preparation

Due to the fact that nowadays most data gathering processes are loosely controlled, many of
the datasets usually have irrelevant, noisy or unreliable, redundant or invalid data. Moreover,
if these data are not carefully prepared the model may not be representative of the situation at
study. For that matter, data pre-processing is one the most important steps in ML, usually
consuming a considerable amount of the development time. Preparing the data includes
several techniques, namely cleaning, normalization, transformation, feature reduction
and extraction (Kotsiantis, Kanellopouloss, and Pintelas 2006).

In ML the basic requirements of the data for its models are fairly simple. It needs a dataset,
large if possible, of historical examples of the scenario it represents, containing enough
detail to describe it and its outcome. A standard structure is as the one in Figure 3.1. It
is a simple table where the columns are divided into a set of descriptive features and a
target, and each row represents an instance, that contains a value for each feature and
target (Kelleher, Namee, and D’Arcy 2015).
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Figure 3.1: Data Table, descriptive features and target, from (Kelleher,
Namee, and D’Arcy 2015)

In order to prepare the data, some steps should be taken to allow the algorithm to perform
to its best abilities in a generalized manner:

3.1.1 Data Cleaning

• Noise Reduction and Outliers Detection
In ML noise is simply errors in the data or unpredictable random events. If the existing
data has a lot of noise there are some methods that may be used to reduce it, such
as binning, clustering and regression. To detect outliers there are several methods
such as Extreme Value Analysis, Probabilistic and Statistical Models, Linear Models,
Proximity-based Models, Information Theoretic Models and High-dimensional Outlier
Detection (Aggarwal 2013).

• Missing Values
Missing feature values is one of the most common situations one can find in real data.
This is a subject that has already been thoroughly studied (Bruha and Franek 1996)
(Grzymala-Busse and Hu 2001) that identifies the source of reason why the values are
missing as one of the most important factors, as it will influence the choice amongst
the different algorithms for each situation. There are a some options to deal with the
missing values (Lakshminarayan, Harp, and Samad 1999):

– Ignoring Instances with Unknown Feature Values - this method suggests to
ignore the instances with at least one missing value

– Most Common Feature Value - the value of the feature that occurs most often
is selected and applied to all the unknown values of that feature

– Concept Most Common Feature Value - the value of the feature that occurs
the most within the entry class will be selected and applied to all the unknown
values of that class for that feature

– Mean Substitution - uses the feature’s mean to fill the unknown values

– Regression or Classification Methods - develop a regression or classification
model based on the data available for that feature and use the other relevant
features as predictors

– Hot Deck Imputation - identify the most similar record with the one with missing
values and use its values for the missing feature

– Method of Treating Missing Feature Values as Special Values - consider the
value of unknown/missing as a valid feature value
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• Data Inconsistency
In order to detect existing errors or inconsistencies in the data, a thorough analysis is
required, as these may be silent errors. Using domain knowledge or expert help the
dataset should be validated in order to detect inconsistencies or illegal values that may
exist.

3.1.2 Data Transformation

• Normalization
Normalization is the scaling of a feature values so that they fall under a certain range
or relate to the feature values distribution. The most common methods to achieve
this are:

– min-max scaling - the data is scaled to a fixed range, usually 0 to 1:

v ′ =
v −minx

maxx −minx
(new_maxx − new_minx) + new_minx (3.1)

where v is the feature value to be scaled, minx and maxx are the old minimum
and maximum of the feature range, new_minx and new_maxx are the intended
minimum and maximum and v ′ is the scaled value of v

– z-score normalization (or standardization) - all features will be rescaled so that
they will have the properties of a standard normal distribution, with zero mean (
µ = 0 ) and a standard deviation of one ( σ = 1 ):

v ′ =
v − µ
σ

(3.2)

where v is the value to be normalized, µ and σ are the current mean and standard
deviation of the feature and v ′ is the normalized value of v

• Aggregation and Decomposition
Some datasets possess features that individually do not provide much information,
however if aggregated with others may give a good representation. On the other
hand, the opposite may happen as well, where a feature represents a complex concept
that may be more useful when split into its building parts.

• Discretization
This is the process of dividing a continuous attribute into intervals, drastically reducing
the number of possible values, resulting in a faster and effective ML process. It can
be separated into two types (Agre and Peev 2002):

– Unsupervised Discretization
Discretize attributes discarding the class labels. Some of the unsupervised meth-
ods are Equal Size, Equal Width, Equal Frequency and Clustering Discretization
(Rajashree Dash, Paramguru, and Rasmita Dash 2011).
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– Supervised Discretization
Takes into account the item class, finding intervals where most of the data in-
stances have the same class and they differ amongst intervals. The most common
are entropy-based and Chi-squared discretization (Rajashree Dash, Paramguru,
and Rasmita Dash 2011).

3.1.3 Dimensionality Reduction

The complexity of any model usually depends on the number of inputs it has, as it determines
both the time and space complexity to train it. In order to facilitate the development of a
model it may be important to reduce its dimensionality (Alpaydin 2014):

• both the complexity and the size of many algorithms strongly depend on the number of
input dimensions, features, of the problem, hence, reducing it decreases its complexity,
time and space

• avoid processing unnecessary inputs

• simpler models have less variance, being more robust against noise and outliers

• reducing the number of features may allow for an easier understanding of the underlying
process in the data, eventually allowing a visualization of it, and knowledge extraction

That being said, dimensionality reduction can be achieved through feature extraction and /
or feature selection.

• Feature Selection
Due to the way most of the information is gathered, without a purpose and a controlled
supervision, most of the datasets have irrelevant or redundant features in them. The
removal of these features is called feature selection. There are a few methods to
perform feature selection, although they are usually grouped in three:

– Filter Methods
Filter methods use some form of statistical measures that assign a score to
each feature, and the features are then ranked by their scores and either kept
or discarded according to some threshold. Some of the most common methods
include the information gain, mutual information, the correlation and coefficient
factors and the Chi squared test.

High-correlated features are those that depend on one-another and thus have
similar information. Therefore keeping only one of the two columns will not
drastically decrease the amount of information available (Silipo et al. 2014).
To remove the highly correlated features, the correlation between all features is
first measured and afterwards those that had a value above a given threshold
are removed. One of the most common measures of correlation is Pearson’s
correlation, where mi is the sample mean of feature xi , si is its sample standard
deviation, and n is the number of samples (Sa 2001):

ri j =

∑n
k=1(xk,i −mi)(xk,j −mj)

(n − 1)sisj
, ri ,j ∈ [−1, 1] (3.3)
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Another method, theMutual Information (MI) measures the dependence between
two features. Similar to the correlation coefficient, it is 0 if the variables are
independent and higher values indicate higher dependency. Unlike the correlation
coefficient that can only handle linear dependence this is able to detect both
linear and non-linear relationships (Sulaiman and Labadin 2015). Formally MI
is defined by the probability density function of X, Y and joint variables (X, Y ).
However it can also be defined in terms of entropy (Sulaiman and Labadin 2015):

MI(X, Y ) = h(Y )− h(Y |X) (3.4)

And the entropy of X is expressed as:

h(X) = −
∫
fx(x) logfx (x) dx (3.5)

– Wrapper Methods
Wrapper methods on the other hand consider the feature selection as an op-
timization problem, where different combinations are prepared, evaluated and
compared against other combinations. Wrapper methods are essentially solving
the "real problem", resulting in a higher computational cost and with a tendency
to create overfitting. Nonetheless it can find a better feature subset and it allows
the process to detect possible interactions between variables. Some of the most
common methods are recursive feature elimination, sequential feature selection
algorithms and genetic algorithms

Recursive Feature Elimination (RFE) methods perform dimensionality reduction
using a given ML algorithm. Initially the algorithm is trained on n features and
both weights and rankings are assigned to each feature. In the end, the feature
whose weight is the smallest is removed. This process is repeated until only one
feature remains (Guyon et al. 2002). Then subset with the best performance is
chosen.

– Embedded Methods
Embedded are quite similar to wrapper methods, as they manage to learn which
features contribute more positively to the accuracy of the model while it is being
created. The difference is that embedded methods have an intrinsic building
metric that is used during learning, and also manage to avoid as much overfitting.
Some of the most common methods are L1 regularization and decision trees

• Feature Extraction
In feature extraction the goal is to find a new set of dimensions that are a combination
of the original ones. These methods can be supervised or unsupervised, and some of the
most widely used are Principal Component Analysis (PCA), and Linear Discriminant
Analysis (LDA) (Alpaydin 2014), which are both linear projection methods:

– PCA
An unsupervised method, that is a statistical procedure that takes a dataset
consisting of a representation of points in a high-dimensional space and performs
an orthonormal transformation to find the directions along which the variance is
higher. These directions, called principal components, are ordered by the amount
of variance they contain. The first component is the one that contains the
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maximum variance and each succeeding component contains the highest possible
variance under the constraint that it is orthogonal to the preceding components
(Silipo et al. 2014).

– LDA
Also known as Fisher Discriminant Analysis (FDA), a supervised method, that
tries to separate the samples of distinct groups by transforming them to a space
that maximizes their between-class separability while minimizing their within-class
variability (James et al. 2014)

Other methods, albeit less common, such as Factor Analysis (FA) and Multidimen-
sional Scaling (MDS), which are quite similar to PCA, and Single Value Decomposition
(SVD) and Sammon Mapping are also available.

3.1.4 Instance Selection

Instance selection methods are used in order to help the algorithms to cope with the infeasi-
bility of very large data sets. It becomes an optimization problem to minimize the data size
while keeping the datamining quality. Instance selection can be achieved through sampling,
boosting, prototype selection and active learning (Ghosh 2005). One of the major means
of instance selection is sampling, whereby a sample is selected for testing and analysis, and
randomness is a key element in the process (H. Liu and Motoda 2001). Some of the most
well known are (Cano, Herrera, and Lozano 2005):

• Random sampling - Randomly selects a subset from the original set with equally
distributed probabilities

• Stratified sampling - Applicable when the classes representations are not uniformly
distributed, it increases the frequency of the minority classes in order to balance the
discrepancy

It is well accepted that a "powerful computationally intensive procedure operating on a
sub-sample of the data may in fact provide superior accuracy than a less sophisticated one
using the entire data base" (J. H. Friedman 1997). Also, imbalanced datasets may lead the
models to overfitting, removing its ability to generalize, hence there are specific solutions
for instance selection on these sets.

Undersampling techniques seek to reduce the number of samples of the majority class in the
dataset (Kubat and Matwin 1997). As a result the overall number of records in the dataset
is decreased, also shortening training time. Whilst it reduces the model complexity, it may
also lose some valuable information with the discarded items. One of the most effective
techniques is Random Undersampling where samples of the majority class are randomly
eliminated until the ratio between the majority and minority class is at the intended level.
One of the problems with this approach is that it is not possible to control what information
about the majority class is lost. Nonetheless, despite its simplicity it has been shown to be
one of the most effective undersampling methods (A. Y.-c. Liu 2004).

Oversampling on the other hand seeks to increase the number of samples from the minority
class. The obvious advantage is that it does not lose information since all the samples are
kept. It does however increase the size of the dataset and consequently the time to train
the model. Some of the methods to achieve this are:
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• Random Oversampling
Similar to Random Undersampling, Random Oversampling is a simple but effective
technique. It works by choosing members from the minority class at random which
are then duplicated on the new dataset. This happens with replacement, that is, the
same sample may be chosen multiple times. The dataset from which the samples are
chosen is always the original to avoid changing the initial probabilities (A. Y.-c. Liu
2004).

• Synthetic Minority Over-sampling Technique (SMOTE)
SMOTE is an oversampling technique in which the minority class is oversampled
through the creation of synthetic examples (Chawla et al. 2002). It takes each mi-
nority class sample and introduces synthetic examples along the line segments joining
the k minority class nearest neighbors. This approach forces the decision region of the
minority class to become more general (Chawla et al. 2002).

3.2 Data Analysis

• Descriptive Statistics
Because data are organized in distributions, it is possible to analyze them through some
statistics that describe or summarize them, taking into account its characteristics, such
as centrality and spread, as in Figure 3.2.

Figure 3.2: Descriptive Analysis

Based on the data centrality:

– mean - µ = 1
n

∑n
i=1 xi

– median - midpoint of the distribution

– mode - most frequent element(s)

Based on the spread of the data:

– standard deviation

σ =

√√√√ 1

n − 1

n∑
i=1

(xi − µ)2 (3.6)

– variance

σ2 =
1

n − 1

n∑
i=1

(xi − µ)2 (3.7)
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• Exploratory Data Analysis (EDA)
Exploratory Data Analysis (EDA) has its focus on the data, mainly using graphical tools
that provide a different perspective on the data. Through EDA it is possible to visualize
the centrality and spread of the data, using boxplots, scatterplots, histograms and
runcharts, amongst others. These graphical tools allow the user to perceive patterns,
distributions, outliers and relationships between features that would not been easily
detected or understood with other analysis.

3.3 Learning Types

The main concept of ML is that it is built from a set of data and tries to learn from it.
However, the data that is available for a problem limits, or at least constraints, the type of
the learning task.

3.3.1 Supervised Learning

By far the most common type of ML, this type of learning contains the data and the expected
output for every combination of inputs. The goal is to map the relation between the input
variables and its outputs in such a manner that for a new set of inputs it will be able to predict
the output. The term "supervised" comes from the learning process, where the algorithm
iteratively tries to learn to predict from the dataset and is corrected until it achieves an
acceptable error rate. Based on the type of problem it can be one of the following:

• Classification - when the expected output for the input variables is a discrete value,
such as a category or a class

• Regression - when the output is a continuous value

3.3.2 Unsupervised Learning

On the other hand, unsupervised learning has no such supervision, that is, for a combination
of inputs there is no class or label for it. In this type of learning the aim is to find a structure
or distribution in the input space so that recurring patterns can be found. It can be one the
following, depending on the problem:

• Clustering - this method tries to discover the inherent groupings in the data

• Association - tries to find rules and relations between variables in large datasets to
discover interesting patterns

3.3.3 Semi-supervised Learning

Semi-supervised learning falls between supervised and unsupervised learning, as it has both
labeled and unlabeled data. Usually only a small set of data is labeled as normally it is too
expensive to label all the entries. Semi-supervised learning may refer to either transductive
or inductive learning, where transduction refers to the labeling of the unlabeled data provided
through an approximate model, and the second to the prediction function for the entire input
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space (Chapelle, Schlkopf, and Zien 2010). Many real world problems fall into this category
due to the cost of labeling all the entries in a large dataset.

3.3.4 Reinforcement Learning

Reinforcement learning algorithms interact with the environment, while learning a model
that maps situations to actions, as to maximize the reward signal. It learns through those
interactions and observing the results they produce. The model is not told explicitly which
actions to take, in turn it must discover which actions yield the most reward by trying them,
affecting not only the immediate reward but all the subsequent rewards (Sutton and Barto
1998). Trial-and-error are the two characteristics that distinguish this type of learning from
the remaining.

3.4 Algorithms

There are many inductive learning problems, and one of the main differences between them
is what type of prediction they try to make. Depending on the problem there are a few
options on which algorithms to use. In this section some of the most known, and the ones
that will most likely yield better results for the goal of this project, will be detailed. Although
some of these algorithms are represented in one type of problem they may be used for others
as well, with some adjustments.

To develop a ML predictor it is necessary to first create the model, and then train it to fit
the problem data. Afterwards it must be evaluated to measure how well it can predict new
unseen data. To do so, usually the dataset of the problem is divided in two, the training and
the test set, which will be used for the fitting of the model and its evaluation, respectively.
This subject will be further explained in Section 3.5.1.

3.4.1 Supervised

Classification problems are concerned with separating data into distinct classes. In these
problems the target value is discrete, categorical. For these problems the algorithms try
to build models that are able to separate the data into distinct classes through training
with labeled data. The models are then used with new data and try to predict its classes
from what it learned from the training set. As this type of algorithm requires labeled data
it is considered a form of supervised learning. Some of the most common classification
algorithms are:

• Naive Bayes
The Naive Bayes algorithm is a classical demonstration of how generative assumptions
and parameter estimations simplify the learning process. It makes the assumption that
given the label (Y ) of each sample, the features (X) are independent, that is (Shalev-
Shwartz and Ben-David 2014):

P [X = x |Y = y ] =

d∏
i=1

P [Xi = xi |Y = y ] (3.8)
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With this assumption the Bayes optimal classifier is (Shalev-Shwartz and Ben-David
2014):

hBayes(x) = argmaxy∈{0,1}P [Y = y ]

d∏
i=1

P [Xi = xi |Y = y ] (3.9)

• Gaussian Process
The Gaussian Process is a generalization of the Gaussian probability distribution. While
a probability distribution describes random variables as scalars or vectors a stochas-
tic process governs the properties of functions. Loosely thinking, a function can be
thought of as a very long vector, where each entry in the vector specifies the function
value f (x) at a particular point x (Rasmussen and Williams 2005). Gaussian Process
can be used both for regression and classification. For the classification it uses a
Laplace’s method which in turn utilizes a Gaussian approximation, as properly detailed
in (Rasmussen and Williams 2005).

• Logistic Regression
Logistic Regression is a linear classifier that tries to predict the probability of a sample
belonging to each class, that is, a value between 0 and 1. To do so, in Logistic
Regression the logistic function, that has a form like Figure 3.3, is used (James et al.
2014):

p(X) =
eβ0+β1X

1 + eβ0+β1X
(3.10)

Figure 3.3: Logistic Function, from (Shalev-Shwartz and Ben-David 2014)

Which leads to:
p(X)

1− p(X)
= eβ0+β1X (3.11)

The left-hand side of this equation is known as the odds, and can take any value
from 0 to ∞, meaning very low and very high probability respectively. By taking the
logarithm of both sides one arrives at (James et al. 2014):

log(
p(X)

1− p(X)
) = β0 + β1X (3.12)

where the left-hand side is called the log-odds or logit. The regression coefficients, β0
and β1 have to be estimated through the training data, and the most common way
is through maximum likelihood, which tries to find the coefficients that maximize the
likelihood (James et al. 2014):

`(β0, β1) =
∏
i :yi=1

p(xi)
∏

i ′:yi ′=0

(1− p(xi ′)) (3.13)
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To transform it to a multiple logistic regression it can be generalized as (James et al.
2014):

log(
p(X)

1− p(X)
) = β0 + β1X1 + ...+ βpXp (3.14)

Where X = (X1, ..., Xp) are p predictors. Then it can be rewritten to(James et al.
2014):

p(X) =
eB0+B1X1+...+βpXp

1 + eB0+B1X1+...+βpXp
(3.15)

The regression coefficients can also be estimated through the maximum likelihood
function.

• Linear Regression
Regression problems are fairly similar to classification problems, and consequently also
a form of supervised learning. While classification problems try to predict discrete
values, the classes, regression tries to predict continuous values. These methods
attempt to explicitly model the relationship between the inputs and the outputs. Some
of the most common algorithms are the same as the ones for classification, such
as Support Vector Machine (SVM), Decision Tree (DT) and Random Forest (RF),
however there is also Linear Regression.

Linear Regression tries to learn a linear function that best approximates the relationship
between the inputs and the target. Simple Linear Regression is a straightforward
approach of predicting Y based on a single input X, it assumes a approximately linear
relation between X and Y (James et al. 2014):

Y ≈ β0 + β1X (3.16)

As with the logistic regression, β0 and β1 are coefficients, the intercept and slope
respectively. In order to estimate them the most common method is through the least
squares criterion, that tries to minimize the Residual Sum of Squares (RSS) for the
coefficients (James et al. 2014):

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ))∑n

i=1(xi − x̄2)
(3.17)

β̂0 = ȳ − ˆβ1x̄ (3.18)

• Decision Tree (DT)
DTs are top-down, recursive classifiers, and one of the most intuitive prediction models,
mimicking how a human programmer would model it. They construct models based
on values present in the training data using a decision tree as a predictive model,as
the one in Figure 3.4. It makes predictions of the value associated with an instance
by traveling from a root node to a leaf (Shalev-Shwartz and Ben-David 2014). If the
target variable is continuous the models are called regression trees and classification
trees otherwise.

Due to the computational cost of trying to cover the whole solution space to find the
tree that optimizes the problem, practical decision tree learning algorithms are based
on heuristics. A general tree algorithm, similar to Iterative Dichotomizer 3 (ID3),
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Figure 3.4: Decision Tree, from (University of Florida The ID3 Algorithm
2012)

starts with a tree containing a single leaf (root) and assigns it a label according to
some rule. Then a recursive process begins, where on each iteration it measures some
form of "gain" that quantifies the the improvement of splitting a leaf. Afterwards,
amongst all possible splits it chooses the one that generates a higher gain and splits
it, or chooses not to split it at all (Shalev-Shwartz and Ben-David 2014).

Different algorithms use different gain functions, being some of the most common
Train Error, Information Gain and Gini Index or Impurity (Shalev-Shwartz and
Ben-David 2014). Decision tree algorithms usually suffer from generating very large
trees, creating low empirical risk but having a high true risk. A solution to avoid that is
to limit the number of iterations, creating a bounded tree, or prune it, reducing the size
but keeping the empirical error (Shalev-Shwartz and Ben-David 2014). Some of the
most well known tree predictors are ID3, C4.5 and Chi-squared Automatic Interaction
Detector (CHAID).

• Support Vector Machine (SVM)
SVMs are binary classification algorithms that are able to predict both linear and non-
linear data in high dimensional feature spaces. This high dimensionality raises both
computation and sample complexity challenges. To face the sample complexity the
SVM searches for "large margin" separators, by maximizing the distance between the
samples of each class and the hyperplane that separates them (Shalev-Shwartz and
Ben-David 2014).

Figure 3.5: Hard Margin SVM, from (Univer-
sity of Maryland, Hard Margin SVM 2012)

Figure 3.6: Soft Margin SVM, from
(Wikipedia Soft Margin SVM 2008)
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SVMs halfspaces can be calculated through hard or soft margins. Hard margin SVMs
(Equation 3.19) require that all data points must be correctly classified, which can be
difficult in noisy sets and lead to overfitting.

min
1

2
||w ||2

s.t. yi(w ∗ xi + b) ≥ 1,∀xi
(3.19)

Soft margin SVMs on the other hand introduce slack variables εi to allow the misclas-
sification of some points, as in Figure 3.6, and can be found through Equation 3.20
(III 2012):

min
1

2
||w ||2 + C

R∑
k=1

εk

s.t. yi(w ∗ xi + b) ≥ 1− εi ,∀xi
εi ≥ 0

(3.20)

If the data are not linearly separable it is also possible to map it to a high dimensional
space, where it is easier to classify with linear decision surfaces. Mapping all the data
to the high dimension space may be too expensive, so it is possible to use kernels, in
order to avoid explicitly making the mappings. Some of the most used kernels are the
Polynomial and the Gaussian, and their use can be observed in Figure 3.7.

Figure 3.7: An SVM with a Polynomial (left) and Gaussian (right) kernels
applied on a non-linear data, from (James et al. 2014)

As it can be seen the Gaussian kernel creates decision boundaries that resemble a
circular shape, allowing it to separate the classes. The polynomial kernel creates very
different hyperplanes from the polynomial, which in this case are almost linear decision
borders. Different kernels are able to project the data to different spaces, allowing the
model to create the necessary decision boundaries to model the data.

• Neural Networks (NNs)
An artificial NN is a model of computation inspired in the structure of neural networks
in the brain. It can be described as a directed graph, where the nodes are the neurons
and the edges are the links between them. Each neuron has as input a weighted
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sum of the outputs of the neurons connected to its incoming edges (Shalev-Shwartz
and Ben-David 2014). The most common structure is a feedforward NN where the
underlying graph does not contain cycles, as the example illustrated in Figure 3.8.

Figure 3.8: Feedforward Neural Network, from (Shalev-Shwartz and Ben-
David 2014)

For a NN with N number of layers, the layers V0, ..., VN−1 are usually called hidden
layers, V0 the input and VN is the output layer. In order to improve the weights of the
edges some algorithms can be used, such as backpropagation. Briefly, it calculates the
gradients of the loss function on an example (x, y) with respect to a weights vector
w (Shalev-Shwartz and Ben-David 2014).

• Genetic Programming (GP)
GP is a technique of machine learning inspired by the biological evolution theory, it
is a type of Evolutionary Algorithm (EA). GP encodes programs as a set of genes,
and based on an evolutionary cycle tries to generate solutions that are able to solve a
problem. The resulting program can be thought of as a model, such as the ones gen-
erated from the other algorithms. An EA works on a large set of candidate solutions,
also known as a population, and to be developed requires the following items to be
defined:

– Representation - In GP solutions may be represented as regulatory networks,
artificial regulatory networks, grammars or trees, the latter as illustrated in Figure
3.9. The variables and constants (x, y and 3) are the leaves of the tree and are
called terminals. The arithmetic operations (+, ∗ and max) are internal nodes,
also called functions. The sets of allowed functions and terminals combined
constitute the primitive set of a GP system (Poli, Langdon, and McPhee 2008).

– Initialization - The are some options regarding how the initial population is
generated, such as Full, Grow or Ramped Half-and-Half. Ramped Half-and-Half
initializes half of the population using the Full method, which generates trees
with the same depth for all leafs, and the other half using the Grow method,
which allows the creation of trees with varied sizes and shape and with different
depths (Poli, Langdon, and McPhee 2008).
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Figure 3.9: GP Syntax Tree Representation of max(x + x, x + 3 ∗ y), from
(Poli, Langdon, and McPhee 2008)

– Evaluation - It is usually under the form of a fitness function, and it is problem
dependent. It should try to measure how good the individual is, that is, how well
does the model fit the data. The fitness function may be, or take into account,
factors such as errors, time, accuracy, payoff or compliance

– Variation - Usually is done through crossover and/or mutation operators. Point
Mutation is one of the most common mutations, it is the approximate equivalent
of the bit-flip mutation commonly used in Genetic Algorithm (GA). It works by
selecting a random node and replacing it with a different primitive of the same
arity taken from the primitive set (Poli, Langdon, and McPhee 2008). Subtree
Crossover is a common crossover operator, which is depicted in Figure 3.10.

Figure 3.10: GP Subtree Crossover, from (Poli, Langdon, and McPhee 2008)

Given two parents it randomly selects a crossover point in each parent tree. It
then creates the offspring by replacing the subtree rooted at the crossover point in
a copy of the first parent with the subtree rooted at the crossover point from the
second parent (Poli, Langdon, and McPhee 2008). Mutation operators randomly
modify certain parts of the individuals.

Usually a GP algorithms works like as it is described in Figure 3.11:

1. Population - a set of individuals, each one representing a program is initially
generate through one of the initialization methods.

2. Parent’s Selection - a stochastic selection of a subset of individuals is made from
the original population, accordingly to some heuristic, such as a deterministic
tournament. These individuals constitute the Parent’s Population, which will
be used to create the next generation
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Figure 3.11: GP Cycle

3. Reproduction With Variation - the main evolutionary part of this approach,
here the parents are combined, usually in pairs, using crossover. The new indi-
viduals may still suffer from further modifications through mutation. These new
individuals constitute the Offspring.

4. Survival’s Selection - the new individuals that will be placed in the population
are chosen accordingly to some heuristic, such as elitism and/or generational
selection. Elitism guarantees that the best defined percentage of the current
population will be kept. Generational selection selects the remaining number of
required individuals from the best of the offspring (Poli, Langdon, and McPhee
2008).

This cycle will run until it meets a stop criterion, such as maximum number of gener-
ations, stagnation of evolution or problem specific.

• Ensemble
Ensemble methods are a compilation of several weak independent algorithms that are
trained and whose predictions are gathered to work as whole, as depicted in Figure
3.12. They contain a number of learners called based learners (weak learners, that
is, not much better than a random classifier), which are usually generated from the
training data by a base learning algorithm such as decision tree, neural network or
other kinds of learning algorithms (Zhou 2012).

Figure 3.12: Ensemble Methods, from (Zhou 2012)

Usually an ensemble is constructed in two steps: generating the weak learners and
then combining them. It is believed that a good ensemble is made of as accurate
and diverse as possible base learners. The computational cost of the creation of the
ensembles is not much higher than creating a single learner. Some of the most well
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known ensemble methods are based on DTs classifiers, such as Boosting, Bagging and
RFs.

Bagging is an ensemble algorithm, which is an abbreviation for Bootstrap AGGregat-
ING, and it is based on bootstrap and aggregation. It works on the premise that the
combination of independent based learners will lead to a decrease of errors. It applies
bootstrap sampling to generate the data subsets for training the base learners. To
aggregate the learners for classification it combines the outputs with a voting strategy
(Zhou 2012).

RF is an ensemble method that has proven to be particularly effective with large
datasets. It is an extension of Bagging, being the difference in the incorporation of
randomized feature selection. In the construction of a decision tree, at each step of
split selection the RF selects a subset of features at random and then performing the
split selection process (Zhou 2012). After a large number of trees is generated a vote
for the most popular class is cast.

The construction of an ensemble can be separated in two approaches: Classifier
Selection and Classifier Fusion (Nagi and Bhattacharyya 2013). In classifier selection
the classifiers are trained to become experts in some area of the feature space. Then
the output of the classifiers identified as the best for a specific classification problem
is selected. Usually the input sample space is partitioned into smaller areas and each
classifier learns the example in each area. Classifier fusion combines the outputs of the
different classifiers. Each one of them has some knowledge of the entire feature space
and tries to solve the same classification problem using different methods based on
different training datasets, classifiers or parameters (Nagi and Bhattacharyya 2013).

To combine the outputs of the algorithms there are some options, such as Majority
Voting and Weighted Majority Voting. Majority voting ensembles will make a de-
cision based on a majority vote, that is, each classifier has equal vote and the most
predicted target is the one chosen by the ensemble as a whole (Polikar 2012). Voting
based methods operate on labels only, where dt,j takes a value of 0 or 1 depending on
whether the class j was chosen by the classifier t or not, and the most predicted is
the one returned by the ensemble:

y = argmaxj∈{1,2,...,C}

T∑
t=1

dt,j (3.21)

However, if there is some evidence that certain classifiers are more qualified than
others, giving more weight to their decision may improve overall performance. Hence,
a weighted majority voting can be used, where there is a product between the classifier
weight wt and its decision dt,j , and similar to the majority voting, the class that receives
the highest weighted vote is selected as the final decision (Nagi and Bhattacharyya
2013).

y = argmaxj∈{1,2,...,C}

T∑
t=1

wtdt,j (3.22)
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3.4.2 Unsupervised

Clustering problems don’t have a class or label in the data, making it a form of unsupervised
learning. Instead, these problems try to find structures that exist in the data, grouping
the samples into groups of maximum commonality, by maximizing the intraclass similarity
while minimizing interclass similarity (Han 2005), using some model approaches such as
hierarchical and centroid-based. Some of the most common algorithms are:

• Density-based spatial clustering of applications with noise (DBSCAN)
As its name says, DBSCAN is a density-based clustering algorithm that tries to identify
and distinguish points in clusters from noise, based on its density. The main idea is that
for each point in a cluster its neighborhood, based on a given radius, has to contain
at least a minimum number of other points, that is, the density in the neighborhood
has to exceed a defined threshold (Ester et al. 1996). In this algorithm, points are
divided into core points, which have many neighbor points, border points which lie in
the neighborhood of at least one core point, and noise points (Celebi 2015).

First there is the need to formally define when a point should become a core point,
by defining the ε-neighborhood (the set of points that are at most at a distance of ε
from a point):

Nε(xi) = {x ∈ D|d(xi , x) 6 ε} (3.23)

Then the core points within the point’s ε-neighborhood can be defined as follows, with
respect to a local density measure minPts:

P = {x ∈ D| ||Nε(x) > minP ts} (3.24)

A point p is called directly density-reachable from a core point x if p ∈ Nε(x). Also, it
may be called density-reachable from a point x if there is a series of points p1, p2, ..., pn
with p = pn and x = p1 and for every (pi , pi+1) holds that pi+1 is directly density-
reachable from pi . It is also possible to say that if two points p and q are density-
connected if there is a point o such that p and q are both density-reachable from o

(Celebi 2015). Every point that is not density-connected to any other is considered
noise. This is one of the most well known algorithms for clustering problems as it can
handle data clusters of different shape and size and is also resistant to noise.

• Hierarchical Clustering (HC)
HC uses linkage rules to produce a hierarchical sequence of clustering solutions. It
can be either agglomerative (the most common, depicted in Figure 3.13), sequentially
merges clusters, or divisive, where it sequentially splits them. The evaluation of the
clusters similarity can be made with the following distances (Sa 2001):

– Euclidean norm - ||x −m||e = (
∑d
i=1(xi −mi)2)

1
2

– Squared Euclidean norm - ||x −m||s =
∑d
i=1(xi −mi)2

– City Block norm - ||x −m||c =
∑d
i=1 |xi −mi |

– Chebychev norm - ||x −m||C = maxi(|xi −mi |)

– Minkovsky norm - ||x −m||p = (
∑d
i=1(xi −mi)p)

1
p
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The linkage function uses the distance calculated by these formulas for any two pairs
of objects to determine the proximity of objects. They can be one of the following
(Sa 2001):

– Single Linkage
The distance between two clusters is determined by the distance between the
two nearest objects between them

d(wi , wj) = min
x∈wi ,y∈wj

||x − y || (3.25)

– Complete Linkage
The opposite of the Single Linkage, it is determined by the distance between the
two furthest objects between the clusters

d(wi , wj) = max
x∈wi ,y∈wj

||x − y || (3.26)

– Group Average Linkage
The distance between two clusters is determined by the average of the distances
amongst all pairs in them

d(wi , wj) =
1

C(ni + nj , 2)

∑
x,y∈{wi ,wj}

||x − y || (3.27)

– Wards Linkage
Minimizes the variance of the cluster obtained by merging the two clusters

d(wi , wj) =
1

ni + nj

∑
x∈{wi ,wj}

||x − y ||2 (3.28)

Figure 3.13: Agglomerative Hierarchical Clustering (HC), from (Segaran
2007)

• Clustering Using REpresentatives (CURE)
CURE is an agglomerative hierarchical algorithm. Usually single-linkage implementa-
tion of bottom-up hierarchical algorithms are able to discover cluster of arbitrary shape



30 Chapter 3. Machine Learning

through the computation of distances between all pairs of points in the clusters for
merging. CURE instead uses a set of representatives carefully chosen amongst the
most distant to the center of the cluster and that represent its shape. Afterwards they
are shrunk towards the center of the cluster reducing the impact of the outliers (Aggar-
wal 2015). CURE measures the similarity of two clusters based on the representative
points without considering the internal closeness, such as density or homogeneity.

• k-Means
k-Means is a centroid adjustment algorithm, as it iteratively tries to adjust the centroids
of its clusters, which number must be defined beforehand. It begins with randomly
placed centroids, and assigns every item to the nearest one. Afterwards, iteratively,
they are moved into the average location of all the nodes assigned to them, and the
assignments are done once again, until there are no more changes in the clusters,
minimizing the function:

E =

C∑
j=1

∑
xi∈wj

||xi −mj ||2 (3.29)

Figure 3.14: k-Means, from (Segaran 2007)

3.5 Algorithm Evaluation

A learning model is good if it produces good predictions on unseen examples. To do so, its
performance is usually measured through its error / success rate.

Albeit some of the problems have undifferentiated costs for different errors, that is, the
cost of misclassifying A as B is the same as misclassifying it as C (also know as a 0/1 loss
function), that is not the case for some more complex problems. It may be the case that
wrong decisions are not equally costly, requiring the implementation of a more complex error
loss function to account for the problem specifics.

Despite the fact that the errors are one of the main criteria for evaluating an algorithm, it
should be kept in mind that there are many others, some of them even dependent on the
problem in hand. Some of them are (Turney 2002):
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• the risk when errors are generalized using loss functions instead of 0/1 loss

• training time and space complexity

• testing time and space complexity

• interpretability, that is, whether the method allows knowledge extraction that can be
checked and validated by experts

• easy programmability

Despite all of the factors that we may take into account when evaluating an algorithm, one
should not forget that whatever conclusions that may arise are conditioned by the dataset
with which the model was developed. Also, the comparison that can be made using the
results is not domain independent, because we are not comparing the expected error rates
of a learning algorithm in general, rather for a specific application and only as long as the
sample used represents the target application. When it is said that a classification algorithm
is good, it is only a qualification of how well its inductive bias matches the properties of the
data (Alpaydin 2014). In fact, there is no universal algorithm that is on average the best
for every situation, as stated by the No Free Lunch Theorem (Wolpert and Waters 1994).

3.5.1 Training and Testing

A fundamental problem in ML is how to obtain a realistic estimate of the prediction error of
a model. This task is of particular relevance when the dataset is not large and the underlying
distribution is not known (Borra and Di Ciaccio 2010). This estimate is important as it is
based on its value that a model will be chosen instead of others due to having a better
prediction performance.

As was previously stated, Machine Learning (ML) usually works with two main datasets:
training, and test. The training set contains the data that are going to be used to fit
the model while it is in training. Within the training set, a subset might also be used for
validation, that is, it will be used to estimate the overfitting of the model. The test set
estimates the generalization error of the final model (Hastie, Tibshirani, and J. Friedman
2009). The division between these two sets is not trivial, as when the model is in training it
will not have access to the test set, hence the selection of the datasets must be representative
of the problem. To create both sets there are some options (Sa 2001):

• Resubstitution Method - this method uses the whole set of data both for the training
and testing of the algorithm. Due to the fact that they lack independence the error
estimates obtained from this method are usually optimistic.

• Holdout Method - the available samples are randomly divided into two sets, normally
with half each.

• Partition / Leave-one-out Methods - this approach divides the data in equally sized
subsets which then rotate, serving for both training and testing the models. This way
the subsets are independent of one another giving better error estimates for a big
enough number of subsets.

Cross Validation (CV) can be used to improve the prediction. Briefly, after the data
is split in k disjoint subsets the model is then trained k times. Each time one of
the subsets is left out and then used to compute the prediction error. For partition
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methods sometimes it is also important to pay attention to the representation of the
classes in the resulting folds so that it does not disturb their prior probabilities. This
is called Stratification (Alpaydin 2014). The final performance of the model is then
the average performance obtained on each fold.

• Bootstrap Method - this method bases itself in the generation of artificial samples
by randomly extracting samples with a uniform distribution for each class. In this case
the error estimates are calculated with the original data set and the algorithm trained
with large sets of the bootstrap samples, achieving estimates similar to the partition
methods (Sa 2001).

With every model created using a dataset a problem arises, that is known as the bias /
variance dilemma. Bias is a source of error derived from wrong assumptions made by the
algorithm, as variance is a source of error due to the sensitivity to changes in the training
set. Its behavior can be observed in Figure 3.15.

Figure 3.15: Bias and Variance, from (Domingos 2015)

A flexible model will allow for a low bias, although risking a higher variance. The opposite
also happens, that is, if the variance is kept low the model may not fit the data and have
a high bias. The dilemma part of this relation is to find a balance in the trade-off between
the bias and the variance.

As a result of the existence of bias and variance in a model, two problems may derive from
them, underfitting and overfitting respectively. Overfitting is the most common of both,
and every model has a tendency to have it. It happens when the developed model is too
flexible, learned too much, noise and random events included. This negatively impacts the
performance of the model to new data as it limits its ability to generalize. On the other
hand, when it can neither generalize nor can it not model the training data it is called
Underfitting.

3.5.2 Performance Metrics

In order to evaluate an algorithm its performance must be measured. These can be divided
by algorithms types, either Classification or Regression.
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Classification Metrics

• Confusion Matrix (CM)
If the loss function for the problem at study is binary, either 0/1 loss, all losses are
equally bad, and the error calculations are based on a confusion matrix, as can be seen
in Figure 3.16. They summarize the performance of a classifier in a two-dimensional
matrix, indexed in one dimension by the true class and in the other by the predicted
class (Sammut and Webb 2011). The samples that are correctly predicted are also
known as True Positive (TP) and True Negative (TN). The positive samples that
are predicted as negative are the False Negative (FN) and the opposite are the False
Positive (FP).

Figure 3.16: Confusion Matrix, from (Wordpress Confusion Matrix 2012)

• Class Confusion Matrix
If the algorithm is intended to work on more than 2 classes, the previous binary confu-
sion matrix should be replaced by a class class confusion matrix, which is a K x K such
that its entry (i , j) contains the number of instances that belong to class i but were
classified as class j as in Figure 3.17. This matrix allows to visualize which classes are
being more commonly confused and to which classes.

Figure 3.17: Class Confusion Matrix, from (WSO2 Class Confusion Matrix
2012)

• Error Rate
As such the error rate can be calculated as in Formula 3.30, where N = TP + FP +

TN + FN , which represents the total number of validation samples. For problems
that require a specific loss function this should be modified to take that into account.

ErrorRate =
FN + FP

N
(3.30)
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• Loss Functions
These functions are used to represent the cost paid for inaccurate predictions, in order
to minimize the expected risk. Some of the most common loss functions are Square
Loss, Hinge Loss, Logistic Loss and Cross Entropy Loss (Hastie, Tibshirani, and J.
Friedman 2009).

• Accuracy
Accuracy is the most common metric to evaluate the performance of an algorithm.
Its formula 3.31 creates a ratio of all the correct predictions made, TN + TP related
to all the predictions made, N. This ratio is only useful, and accurate, when there is
a balanced number of observations in each class, and that both the predictions and
prediction errors have the same importance.

Accuracy =
TP + TN

N
(3.31)

• Precision and Recall
A very common metric that measures the performance of an algorithm is the precision
/ recall, where both of them give a relation of the occurrences that the algorithm
found. Precision 3.32 relates the correct occurrences the system found of a class,
TP , against all the occurrences of that class that it found, TP + FP .

P recision =
TP

TP + FP
(3.32)

Recall 3.33 on the other hand relates the number of corrected occurrences the system
found, TP , against all the occurrences of that class in the data, TP + FN.

Recal l =
TP

TP + FN
(3.33)

• F-Score
This metric combines the precision and recall in one single function, giving a single
value for a performance of an algorithm. The f-score, also known as the balanced
f-measure, is the harmonic mean of the precision3.32 and recall3.33.

F − score =
2 ∗ P recision ∗ Recal l
P recision + Recal l

(3.34)

• Sensitivity and Specificity
These metrics are usually used in medical areas, for example to identify if a patient has
a given decease. Sensitivity is exactly the same as the recall3.33, however specificity
3.35 measures how good a model is in not finding what it doesn’t want want to find.
A system with a high specificity will have a very low number of false alarms.

• Receiver Operating Characteristics (ROC)
To optimize a classifier it is usual to use a ROC curve, that displays the hit rate
(sensitivity), TP/(TP + FN), versus false alarm rate, FP/(FP + TN), and has as
form similar to 3.18. Each classification algorithm has a parameter, such as a threshold
of decision, that can be tweaked to change the number of true positives versus false
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positives. As there is an increase in true positives theres is also an increase in false
alarms, and vice-versa, and depending on the gain or cost for the problem in hand is
chosen a threshold that represents a point on this curve. Using the ROC curve it is
also possible to calculate the Area Under Curve (AUC) metric, which is also a good
single number performance for a system’s performance.

Figure 3.18: ROC Curve, from (James et al. 2014)

Specif icity =
TN

TN + FP
(3.35)

Regression Metrics

• Mean Absolute Error (MAE) 3.36 - it is the sum of the absolute differences between
the prediction values and the real ones. It gives an idea of the dimension of the error
but it does not take into account its direction.

MAE =
1

n

n∑
i=1

|Ŷi − Yi | (3.36)

• Mean Squared Error (MSE) 3.37 - similarly to the MAE it gives an idea of the
magnitude of the error, by averaging the squares of differences.

MSE =
1

n

n∑
i=1

(Ŷi − Yi)2 (3.37)

• Coefficient of Determination 3.41 - this metric, also known as R Square or R^2,
provides an indication of how good of a fit a set of predictions is to the real values,
based on the proportion of the total variation of outcome explained by the model.

Ȳ =
1

n

n∑
i=1

Yi (3.38)



36 Chapter 3. Machine Learning

SStot =
∑
i

(Yi − Ȳ )2 (3.39)

SSres =
∑
i

(Yi − Ŷi)2 (3.40)

R2 = 1−
SSres
SStot

(3.41)

Clustering Metrics

Evaluating the performance of an algorithm for a clustering problem is not as straightforward
as for classification or regression. Clustering metrics can be divided in two: Internal Vali-
dation and External Validation. External validation can be used if the data contains the
targets of each instance. Some of such metrics are Rand Index, Mutual Information, Homo-
geneity, Completeness and V-Measure as detailed in (Tan, Steinbach, and Kumar 2005). In
this scenario the metrics used for evaluation of the classification problems can also be used.
On the other hand if the targets are not known, as it happens with most clustering problems,
then the internal validation metrics must be used (Aggarwal 2015). Unsupervised validation
criteria can still be further divided into two classes: cohesion and separation measures.
Cohesion determines how closely related are the objects in the cluster, and separation how
distinct and separated the cluster is from the remaining (Tan, Steinbach, and Kumar 2005).
Some of these metrics are:

• Sum of Square Errors (SSE) - a measure of cluster cohesion, it measures how close
are the items in a cluster to its centroids. It is probably the most common measure,
for each point, the error is the distance to the nearest cluster (Tan, Steinbach, and
Kumar 2005):

SSE =

k∑
i=1

∑
x∈Ci

dist(mi , x)2 (3.42)

where x is a data point in cluster Ci , and mi is the representative point for cluster Ci

• Silhouette Coefficient - this metric combines both cohesion and separation, that is,
how close are the items in the cluster and how far apart are the items from each other.
With this method each cluster is represented by its silhouette, through the positions of
the instances that lie within the cluster. The silhouette coefficient for a single sample
xi is (Walde 2003):

S(xi) =
b(xi)− a(xi)

max{a(xi), b(xi)}
(3.43)

where a(xi) is the mean distance between the instance xi and all other points in the
same cluster (within-cluster distance), and b(xi) is the mean distance between xi and
all other points in the nearest cluster (between-cluster distance). The silhouette score
of a cluster is given by the mean of the individual scores of its samples as in Equation
3.44, and the score for all the data is given by the mean of the clusters scores, as in
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Equation 3.45 (Walde 2003).

S(Ci) =
1

|Ci |
∑
xj∈Ci

S(xj) (3.44)

S(C) =
1

k

k∑
i=1

S(Ci) (3.45)

3.5.3 Assessing and Comparing Algorithms Performance

After implementing and compiling the results for the target algorithms there is a need to
compare them. For that there are several tests, depending on the characteristics of the
data as represented by the graph in Figure 3.19. In short, the idea is to postulate that
the performances of the algorithms to compare are the same, which is known as the null
hypothesis, H0, and ensure that the difference in performance between them is statistically
significant, with some value of confidence.

Figure 3.19: Statistical Tests

Due to the representation we have from the sample data, our conclusion on keeping or
rejecting H0 may be wrong, and those errors may be divided in two types 3.20. In the Type
II error the (wrong) decision is to retain H0, which is the same as doing nothing. However
the Type I error is rejecting H0, which means wrongfully rejecting a previous idea of truth
(Field 2013).

When there are multiple algorithms that need to be compared it is necessary to use spe-
cific tests to do so. However, as multiple hypothesis testing requires several comparisons
the probability of getting a significant result by chance adds up. To deal with that some
corrections must be applied in order to adjust the confidence level so that the probability
of observing significant results remains below the intended level, such as the Bonferroni
correction and Holm procedures (Field 2013).
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Figure 3.20: Hypothesis Errors, from (Fundamentals of Statistics 2012)

It is worth noticing that when comparing different classification algorithms we are only testing
whether they have the same expected error rate. If they do it does not mean that they made
the same mistakes. The standard applications of these tests usually consider that all the
misclassifications have the same cost, and if that is not the case the tests need to take into
account the loss function for the problem.
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Chapter 4

Biological Experimental Setup

As it was described in Section 2.2, there are several ways to identify Drug Induced Mito-
chondrial Dysfunction (DIMD). For this work the techniques used were the analysis of the
Oxygen Consumption and Extracellular Acidification Measurements of Cells 2.2.1, combined
with the Measurement of ATP Levels in Cells Grown in Glucose / Galactose Media 2.2.1.

4.1 Context

All cells have the ability to accelerate the metabolic processes and in aerobically poised cells
mitochondial OXPHOS has the capacity to exceed bioenergetic demand. During exercise or
stress they can increase the production of ATP as needed, up to a maximum. The reverse
also happens, that is, they can halt OXPHOS to the minimum required to cell survival.
Drug exposure however can impair the mitochondrial capacity to adapt and at some point
a bioenergetic threshold is crossed, that leads to cell death (Dykens and Will 2008).

Tolcapone is a drug used in the treatment of Parkinson’s disease. It is an effective drug,
however it has been inferred that induces hepatotoxicity. After approximately 1 year on the
market it led to three fatalities which granted it a withdrawal and black box warnings in
some countries (Chen 2011). Tolcapone’s toxicity has been associated with mitochondrial
dysfunction due to ultrastructural changes it presents in the mitochondria (Sardão and Tiago
B. Silva 2016). Another drug used in this study is Entacapone, which is similar to Tolcapone
and is also used in Parkison’s treatment, though is not associated with hepatotoxicity (P
2000). In order to surpass the Tolcapone toxic limitation the MitoXT group developed new
compounds with profile similar to both Tolcapone and Entacapone (Silva et al. 2016). Based
on an initial analysis there were indications that they present lower in vitro toxicity when
compared with Tolcapone (Sardão and Tiago B. Silva 2016)

To analyze the toxicity of the new drugs the OCR and ECAR of living cells exposed to them
were measured using the Mito Stress test and Glycolysis Stress test from Seahorse, ran in a
XFe96 Extracellular Flux Analyzer. The set of drugs tested were: Tolcapone, Entacapone,
and the new drugs, ABA, ABE, APA and APE (Sardão and Tiago B. Silva 2016).

4.2 Description

Assays that measure ATP levels to analyze cell viability are routinely used to investigate drug
toxicity. Usually the cells used for such assays are done with immortalized cell lines due to its
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ease of usage. However, despite these cells having the ability to generate ATP aerobically
(that is, through the mitochondria) they tend to generate it through glycolysis, which makes
it harder to identify mitochondrial toxicants. To bypass this, cells can be grown in galactose
where the net yield of glycolysis is zero, forcing them to use the OXPHOS pathway to
generate ATP (Rotella 2012). Nonetheless, in the experiments used for this project both
media were used to distinguish the toxic effects primarily through mitochondrial targets from
those that cause toxicity from multiple targets.

The consumption of oxygen in the cells is a way to analyze how much Oxidative Phos-
phorylation (OXPHOS) is happening, and consequently ATP synthesis. However, the sole
measurement of oxygen consumption is not enough to identify compound toxicity since there
are other situations that can cause it to be altered, such as cell death. To complement the
analysis pH sensors are used to measure the Extracellular Acidification Rate (ECAR), and
therefore, the glycolytic rate of cells. With this information it provides the necessary data
to distinguish between compounds that impair mitochondrial function from those that cause
general cytotoxicity. This is due to the fact that generally there is an increase in the gly-
colytic rate when OXPHOS is impaired, whereas this does not happen when there is only
cytotoxicity (Rotella 2012).

TheMito Stress test measures the OCR of the cells when exposed to specific compounds and
intends to highlight particular indicators of the cells viability, as it can be seen in Figure 4.1. In
order to measure the amount of oxygen that is being consumed due to the OXPHOS and as
it is not the only process that uses oxygen, it is necessary to identify what is being consumed
by other processes. To do so, inhibitors of the electron transport chain are added, and this
is known as Non-Mitochondrial Respiration. The Basal Respiration is the respiration
used to meet the endogenous ATP demand of the cell. Proton Leak respiration is due to
protons that leak through the membrane but are not used to produce ATP. The ATP-linked
Production is the respiration that is used to drive the ATP synthesis. Maximal Respiration
corresponds to the maximum respiration rate of the cells working at full capacity. Reserve
/ Spare Respiratory Capacity is the difference between the basal and the maximal, and it
indicates the ability of a cell to meet an increased energy demand (Divakaruni et al. 2014).

To measure the glycolytic pathway the Glycolysis Stress test was used. Glycolytic turnover
is associated with acidification of the extracellular medium, hence the measurement of ex-
tracellular pH is used as an indicator of the glycolysis. Similarly to the oxygen consumption
this test measures the changes in pH when the cells are exposed to specific compounds
Figure 4.2. In order to identify the variations due to the glycolytic pathway it is neces-
sary to find the Non-Glycolytic Acidification, which corresponds to the acidification made
by other processes. The Glycolysis measurement represents the ECAR reached after the
addition of saturating amounts of glucose. Glyocolytic Capacity is the maximum ECAR
when OXPHOS is halted, driving the cells to use glycolysis at its maximum capacity. Lastly,
Glycolytic Reserve indicates the cells ability to respond to an energetic demand (Seahorse
2017).
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Figure 4.1: Respiration Function, from (Agilent
Technologies 2016)

Figure 4.2: Glycolytic Function, from (Agilent
Technologies 2016)

4.3 Setup

For these tests plates with dimensions 12 * 8, 96 wells, were used to hold the solutions for
analysis, similar to the one in Figure 4.3.

Figure 4.3: XF96 microplate, from (WK Labe - Seahorse XFe96 2017)

Each corner well does not contain any compound and is used as reference (A1, A12, H1
and H12). In total there were 3 Mito Stress and 4 Glycolysis Stress tests. The number
of experiments for each test and combination of drug concentrations (10 and 50 µM) and
media (glucose and galactose) are in Table 4.1 and Table 4.2. These concentrations were
defined based on a dose response analysis to identify which concentrations induced cell
death. With 50µM it was already possible to measure some cell death whilst with 10µM it
was not.

4.4 Results Processing

The Mito Stress test and the Glycolysis Stress test generate two files for each run: one
where the configurations and measurements taken are stored, and another which holds the
cell concentrations for each well. Both files come in a spreadsheet format with multiple
sheets.
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Medium Drug Conc. µM # Exp. Conc. µM # Exp.
Glucose Control 42
Glucose ABA 10.0 8 50.0 8
Glucose ABE 10.0 8 50.0 8
Glucose APA 10.0 8 50.0 8
Glucose APE 10.0 8 50.0 8
Glucose Entacapone 10.0 8 50.0 8
Glucose Tolcapone 10.0 8 50.0 8

Galactose Control 44
Galactose ABA 10.0 8 50.0 8
Galactose ABE 10.0 8 50.0 8
Galactose APA 10.0 8 50.0 8
Galactose APE 10.0 8 50.0 7
Galactose Entacapone 10.0 8 50.0 7
Galactose Tolcapone 10.0 8 50.0 7

Table 4.1: Mito Stress - Experiments per Drug

Medium Drug Conc. µM # Exp. Conc. µM # Exp.
Glucose Control 68
Glucose ABA 10.0 10 50.0 10
Glucose ABE 10.0 10 50.0 10
Glucose APA 10.0 4 50.0 4
Glucose APE 10.0 6 50.0 6
Glucose Entacapone 10.0 14 50.0 14
Glucose Tolcapone 10.0 14 50.0 14

Galactose Control 69
Galactose ABA 10.0 10 50.0 10
Galactose ABE 10.0 10 50.0 10
Galactose APA 10.0 4 50.0 4
Galactose APE 10.0 6 50.0 6
Galactose Entacapone 10.0 14 50.0 14
Galactose Tolcapone 10.0 14 50.0 12

Table 4.2: Glycolysis Stress - Experiments per Drug

The results files have a matrix on the first sheet with the labels of the experiment for each
well, representing what was in each one (i.e. a well with the description "Tolcapone 10µM-
Starving media Glu" means that in that well there was a solution with 10µM of Tolcapone
on a glucose medium). Both experiments make 12 consecutive measures timed to execute
on relevant time frames, such as the addition of a new compound, as described in Section
4.2. There are two types of measures that are collected and important for the project: the
Oxygen Consumption Rate (OCR) and the Extracellular Acidification Rate (ECAR). On the
second sheet there are 12 * 2 matrices of 96 cells each with the values collected for each
well at each measurement.

Because it is not possible to guarantee that a given sample has a fixed number of cells in it,
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the returned results can not be used directly. Hence, the normalization files are necessary
in order to normalize the values that are measured based on the cellular concentration. In
these files there is a matrix with dimensions 12 * 8 (96) that matches the tray used in the
experiment and in each cell there is the cellular concentration for the respective well.

For these data to be used to develop the predictive model they must be gathered and stored
in a way that better fits the needs of the process. It should follow a structure where the first
few columns refer to the initial conditions, such as, the compounds present in the solution
and the type of the medium, and the remaining columns would be all the measured values,
similar to Table 4.3.

IC1 IC2 IC3 MV1 MV2 MV3 Target

Table 4.3: Data Structure

Primarily the data that was delivered was being parsed by hand by the MitoXT group.
However, due to the latency and required work to do so and the amount of data that needed
to be converted, a specific parser was created to export the data from the experiments into
the required structure. To do so, after a thorough analysis of the tests specifications and
with expert support it was established that the measurements that were required to identify
the addition and effects of the compounds were: 3rd, 6th, 9th and 12th, for both tests.
Briefly, for each test the parser works as follows:

1. Open each experiment results file

1.1. Load the labels 12 * 8 matrix present in the first sheet into a multidimensional
array

• parse the label to extract the compound, dosage and medium

1.2. Parse each required measurement (3rd, 6th, 9th and 12th) 12 * 8 matrix in the
measurements sheet

• store each measurement for each well in the multidimensional array on the
corresponding index (i.e. [0,0], [0,1], ...) both for the OCR and ECAR

1.3. Open the normalization file of the experiment

i. parse the 12 * 8 normalization matrix

ii. store each cell value on the corresponding index in the multidimensional array

2. Save the all the gathered data for the test into a unique file in the required structure

• concentration of the compound in the well

• medium and its concentration

• 4 measurements for OCR

• 4 measurements for ECAR

• well cell concentration

• target of the sample (the compound it was exposed to)
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Although the logic behind the parser was fairly simple, most of the files did not follow a
standard naming convention nor all the tables followed the same positioning across files.
This required a thorough and lengthy debugging of all the files in order to generalize the
parser to all the variants that existed, as well as to detect small differences that would be
otherwise impossible to detect. Examples of the experiments data tables can be seen in
Appendix A.
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Chapter 5

Data Preprocessing and
Experimental Settings

To create the best possible models there are a variety of techniques that can be used.
Although some of them do not have hyperparameters to configure some others require a
prior analysis to choose the best parameters.

5.1 Data Preprocessing

To develop models that can make accurate predictions and are able to generalize the data
need to be prepared. To do so, it is necessary to thoroughly analyze them and choose the
adequate techniques that will improve their performance.

The data available from the experiments was stored in two files: one for the Mito Stress
test and another for the Glycolysis Stress test, as explained in Section 4.

5.1.1 Data Cleaning & Transformation

Data cleaning and transformation is a process that can take up to 80% of the time involved in
a ML project (Dasu and Johnson 2003). It is not just a "first-step" either, it must repeated
many times during the development of the project, as new problems are identified or new
data is collected (Wickham 2014). Without this the models may not work as expected and
/ or lead to wrong or invalid conclusions. To do so, a careful study and analysis of the
problem was done with the support and expert knowledge of the MitoXT team.

After an initial analysis of the data it was observed that there were several wells in the
experiments with low cell concentrations. If the concentration of the well is too low the
measurements obtained will not be accurate due to lack of sensitivity, hence introducing
noise in the data. Therefore, wells that presented a concentration below a given threshold
defined by the experts (0.2) were removed. The data from the Glycolysis Stress tests were
the ones that had more invalid samples. The remaining valid experiments can be seen in
Table 5.1. By comparing with the initial results, seen in Table 4.2, the main losses in
experiments were in the galactose medium, where some of the setups lost up to 50% of
samples.

Outliers were also analyzed, however the choice was not to remove them. Due to the fact
that this is a biological dataset an outlier may have relevance, indeed they could even be the
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Medium Drug Conc. µM # Exp. Conc. µM # Exp.
Glucose Control 68
Glucose ABA 10.0 10 50.0 9
Glucose ABE 10.0 10 50.0 10
Glucose APA 10.0 4 50.0 4
Glucose APE 10.0 6 50.0 6
Glucose Entacapone 10.0 14 50.0 14
Glucose Tolcapone 10.0 14 50.0 14

Galactose Control 37
Galactose ABA 10.0 5 50.0 4
Galactose ABE 10.0 7 50.0 6
Galactose APA 10.0 4 50.0 4
Galactose APE 10.0 4 50.0 4
Galactose Entacapone 10.0 12 50.0 10
Galactose Tolcapone 10.0 10 50.0 9

Table 5.1: Glycolysis Stress - Remaining Experiments per Drug

most important data. An outlier may represent an instance of an adverse effect, which will
usually have a very low occurrences and may deviate strongly from the the rest of the data.

Another important step was the analysis of the consistency of the data. Once again, based
on the literature and expert knowledge, the data were thoroughly analyzed to detect invalid
values, be them by the values themselves or by relation to other measurements. By doing
so some situations were detected, which were then formally justified by the experts. One
of those was a Glycolysis Stress test which gave results that were visibly different from
the remaining, which are those marked as outliers in Figure 5.3. In biology there is always
the possibility of deviations amongst experiments in similar conditions. For this case, some
of the possible explanations are that small changes in the incubation of the cells, such as
temperature and CO2 variations, may cause different media conditions which may lead to
different cell metabolism and proliferation. Another factor that may cause the dispersion
is that the cell lines used in the experiments have proliferation capabilities. That means
that the cells from one week are not the same as the next, as these will be the result
from the division of the previous cells. Another situation that appeared was the existence
of negative ECAR values. As these refer to the extracellular acidification they should not
be negative. After expert advise these values were identified as measurement errors due
to lack of sensitivity and set to 0. Lastly, the relations between the measurements were
controlled (i.e. if the maximum measure was lower than the basal, which normally should
not happen). There were some samples that had situations like this, and with expert support
they were reviewed one by one. Most of them fell under the category of sensitivity, that
is, the differences were so small that they were considered the same. The remaining cases
did not have such a direct explanation, however they were kept as they could, for example,
represent a change in cell concentration during the experiment due to cell death caused by
the drug, and as such be a relevant measure.

In the end the values used to create the models were normalized using a z-score normaliza-
tion.
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5.1.2 Data Analysis

After cleaning and validating the data the first step was to perform a descriptive analysis.
With it is possible to observe how the features are distributed along their values. The means
and standard deviations for the Mito Stress test and the Glycolysis Stress test are present
in Table 5.2 and Table 5.3

Feature Mean Std. Deviation Range [min,max]
OCR_BAS 549 93 [284, 841]
OCR_OLI 243 60 [145, 607]

OCR_FCCP 977 287 [358, 1667]
OCR_ROT 144 27 [79, 215]
ECAR_BAS 82 28 [25, 144]
ECAR_OLI 154 34 [72, 252]

ECAR_FCCP 192 37 [91, 287]
ECAR_ROT 151 71 [28, 298]

Table 5.2: Mito Stress - Descriptive Analysis

Feature Mean Std. Deviation Range [min,max]
OCR_BAS 708 625 [93, 2478]
OCR_GLU 594 517 [95, 2038]
OCR_OLI 528 524 [75, 1981]
OCR_2DG 483 496 [73, 1960]

ECAR_BAS 71 46 [3, 205]
ECAR_GLU 181 105 [0, 416]
ECAR_OLI 209 117 [14, 457]
ECAR_2DG 94 58 [0, 264]

Table 5.3: Glycolysis Stress - Descriptive Analysis

As it can be seen in Table 5.2 the OCR values have a wide range of values. Some of
the features, such as OCR_FCCP, have a high standard deviation when compared to their
means. For Table 5.3 however there are some things that immediately catch the eye. All
the OCR values have an excessively wide range of values and standard deviations, specially
when comparing their respective means.

Hence, to observe the distribution of the data and its high variance, a study of the features
distribution was made. From Figure 5.1 it is possible to observe that there is a considerable
amount of variance amongst the features regarding OCR.

In order to understand if the variance could be explained by the effects of the drugs and
/ or media, a boxplot of the features only with Control samples on a glucose medium
was generate Figure 5.2. Although the dispersion is somewhat diminished, there is still
a significant variance amongst the OCR values. After excluding the possibility that the
data could be have been wrongly parsed, it was accepted that it is a consequence of the
nature of the problem (biology), where diversity and variation are constant influences. This
high variance also means that a good part of the features range for the different drugs
will overlap with each other, making it difficult to distinguish the drug effects from natural
diversity. Combining this with the fact that there are not many samples for each condition
makes it particularly challenging for ML algorithms.
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Figure 5.1: Mito Stress - Feature Boxplot Figure 5.2: Mito Stress - Control Feature Box-
plot

Figure 5.3: Glycolysis Stress - Feature Boxplot

The boxplot for the Glycolysis Stress test is yet another example of the inherent variability
that exists in biological datasets. As it is visible in Figure 5.3 there is a complete group of
samples that are represented as outliers. Although every controllable experiment conditions
are the same, due to factors that are not possible to control, such as cell reproduction, an en-
tire experiment gives results that deviate considerably from the remaining. Nonetheless, the
trend between the features / measurements appears to be the same across all experiments.

Then an analysis was made to the drug distribution of the samples, that is, how many items
there were per drug per test. As it is possible to see in Figure 5.4 and Figure 5.5 the Control
samples are in much larger numbers than the ones exposed to drugs. Another aspect that
can be observed, mainly in Figure 5.5 is the reduced number of samples for each class,
specially taking into account that the numbers observed encompass both media (glucose
and galactose) and concentrations (10µM and 50µM).
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Figure 5.4: Mito Stress - Drugs Distribution Figure 5.5: Glycolysis Stress - Drugs Distribu-
tion

Afterwards the averages by drug for both tests were plotted Figure 5.6 and Figure 5.7. For
the Mito Stress test the averages are very close to each other. For the Glycolysis Stress
test however the variations caused by the drugs are more visible.

Figure 5.6: Mito Stress - Feature Averages by
Drug

Figure 5.7: Glycolysis Stress - Feature Averages
by Drug

Figure 5.8 and Figure 5.9 represent the scatter plot matrix and correlation of each pair of
features in the experiments data. The diagonal of the matrix shows a histogram of the
feature values distribution. As it is illustrated in the Figure 5.8 most of the features do
not have high correlations (over 80%) with the exception of ECAR_BAS with ECAR_-
OLI. On the other hand, for the Glycolysis Stress test, Figure 5.9, many features are highly
correlated.

Due to the fact that both the Mito Stress test and the Glycolysis Stress test measure the
same amount and type of events (4 OCR and 4 ECAR), the initial dataset used for this
problem was a combination of both data. To do so another feature was added to identify
the test a sample belongs to. The final structure of the dataset possesses 11 features and
the target, which is the compound it was exposed to:

• 1 boolean feature to identify which test it refers to, either the Mito Stress or the
Glycolysis Stress
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Figure 5.8: Mito Stress - Scatter Plot and Correlation

Figure 5.9: Glycolysis Stress - Scatter Plot and Correlation

• 1 boolean feature for the medium it used

• 1 numeric feature to define the concentration of the compound

• 4 OCR measures
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• 4 ECAR measures

• 1 target value

Biological Analysis

To interpret the effects of the drugs some new graphs were generated. For the Mito Stress
experiments the concentrations of 10µM and 50µM in a glucose medium were plotted, and
can be seen in Figure 5.10 and Figure 5.11. Only the measurements for the OCR are shown
as they are the main focus of the Mito Stress test.

With the concentration of 10µM most compounds keep similar means to the Control’s with
the exception of ABA and ABE that have a higher oxygen consumption after OCR_FCCP.
For the concentration of 50µM however the effects are exacerbated. The measures where
it can be seen the most is at OCR_Basal and OCR_FCCP. Changes at the OCR_Basal
level mean that the normal function of the cell is altered and changes after OCR_FCCP
mean that the maximum respiratory capacity of the cell may be impaired. Only ABE keeps
similar values to 10µM, and ABA measurements reduce considerably when compared to its
effects in 10µM. APA, APE and Entacapone also induce some inhibition and Tolcapone
shows a considerable deviation, both at OCR_Basal and OCR_FCCP.

Figure 5.10: Mito Stress - 10µM Feature Aver-
ages by Drug in Glucose for

Figure 5.11: Mito Stress - 50µM Feature Aver-
ages by Drug in Glucose

Tolcapone is known to cause mitochondrial toxicity. Hence it would be expected that it
would influence the most in the galactose medium as it forces OXPHOS. However, when
the data were analyzed the cells in glucose were more affected than the ones in galactose, as
can be seen in Figure 5.12 and Figure 5.13. A possible, yet still theoretical, reason for these
results is that instead of directly impairing the OXPHOS it may target something upstream
of it, compromising the availability of the substrate.
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Figure 5.12: Mito Stress - 10µM Feature Aver-
ages by Drug in Galactose

Figure 5.13: Mito Stress - 50µM Feature Aver-
ages by Drug in Galactose

For the Glycolysis Stress experiments a plot for the concentrations of 10µM and 50µM in
a glucose medium were also generated, and can be seen in Figure 5.14 and Figure 5.15. In
both of them only the measurements for the ECAR were plotted as they are the main focus
of the Glycolysis Stress test.

Both plots show that all compounds induce some dysfunction however the more visible are
APA and APE. For the 50µM concentration the values do not change significantly, with
ABA and ABE closer to the Control. The main difference is with the compound APA which
presents a reduced value after the ECAR_Oligo.

Figure 5.14: Glycolysis Stress - 10µM Feature
Averages by Drug in Glucose

Figure 5.15: Glycolysis Stress - 50µM Feature
Averages by Drug in Glucose

However, once again the results of the compounds in a galactose medium show steeper
effects, as it can be seen in Figure 5.16 and Figure 5.17. In 10µM concentrations most
of the compounds have similar values to the Control, however ABA shows a significant
reduction. In 50µM all the compounds show some deviation and the ABA reduces even
further.
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Figure 5.16: Glycolysis Stress - 10µM Feature
Averages by Drug in Galactose

Figure 5.17: Glycolysis Stress - 50µM Feature
Averages by Drug in Galactose

For the Glycolysis Stress test data a factor that must be taken into account is that the
number of samples is very low and in some cases the records for a compound came from a
single experiment.

5.1.3 Dimensionality Reduction

In order to improve the results obtained by the models and reduce its complexity a set of
feature selection and extraction techniques were used. Although dimensionality reduction
techniques are mainly used to reduce the complexity and time required to create the models
they can also be used to remove irrelevant or noisy data, as well as improve the ratio
between samples and features. Although the data that exist for this dataset are scarce
these techniques were experimented nonetheless. The impact on computational performance
generated by removing features was not taken into account due to the fact that all the
datasets were small and thus were already swiftly processed. The methods applied were:

• Correlation - Based on the correlation values for the pairs of features, those higher
than 80% were identified and one of the features of the pair was removed from the
dataset. Using this method the features removed were:

– Mito Stress - ECAR_BAS

– Glycolysis Stress - OCR_BAS, OCR_GLU, OCR_OLI, OCR_2DG, ECAR_-
BAS, ECAR_GLU, ECAR_OLI

As it was previous analyzed most of the features in the Glycolysis Stress experiments
had a high correlation, hence most of them were removed with this filter.

• MI - This method calculates the amount of information contained in each feature
using the MI functions described in Section 3.1.3. Then the 20% that had the lowest
relation with target variable were removed. Using this method the features removed
were:

– Mito Stress - Dosage, ECAR_FCCP

– Glycolysis Stress - Dosage, OCR_GLU

The Dosage feature is the one that contains the concentrations used for each sample.
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• Recursive Feature Elimination (RFE) - Due to the effectiveness and the way De-
cision Tree (DT) algorithms uses features to develop its trees (Ratanamahatana and
Gunopulos 2002) this algorithm was chosen to be used in this procedure. To choose
the number of features to keep, a cross-validation approach was applied to each com-
bination of features resulting from the RFE, and in the end the subset of features
that produced better results were kept. The scoring function used for this method was
the recall, to try to benefit those who could better predict the most elements of each
class. Using this method the features removed were:

– Mito Stress - Environment, OCR_BAS, OCR_FCCP, OCR_ROT, ECAR_-
OLI, ECAR_ROT

– Glycolysis Stress - Environment, OCR_BAS, OCR_GLU, OCR_2DG, ECAR_-
BAS, ECAR_GLU, ECAR_OLI

The Test and Environment features contain the type of test (either Mito Stress or
Glycolysis Stress) and the media (either glucose or galactose).

• Principal Component Analysis (PCA) - Although the interpretability of the results is
important in this project a PCA feature extraction was used. Due to the transformation
from the initial features to the computed components the interpretability of the results
is mostly lost as they do no longer represent direct variables from the problem. After
the PCA was applied the principal components that represented 99% of the variance
were kept. Using PCA the following components were used: Mito Stress: 9, and
Glycolysis Stress: 5.

5.1.4 Data Balancing

To mitigate the imbalance in the dataset both undersampling and oversampling techniques
were tested. The goal was to improve the results by avoiding the overfitting of the model to
the overrepresented classes, therefore losing the ability to generalize to the remaining ones.

The methods used were Random Undersampling, Random Oversampling and SMOTE. For
SMOTE the number of neighbors to be considered was kept as in its original article, 5
(Chawla et al. 2002).

5.2 Clustering

The first approach was to treat this work as a clustering problem. The intention was to
verify if the algorithms would be able to create a decent separation between the drugs. The
algorithms that will be analyzed further are k-Means, DBSCAN, Hierarchical Clustering (HC)
and CURE. Some other algorithms such as Birch and Gaussian Mixture were also tested
however they are neither algorithms of reference nor did their results merit further analysis.
Nonetheless, they can be seen in Appendix B.

For the clustering problem the targets were removed from the data, using them only to
calculate some external performance measures. All the algorithms were also used in combi-
nation with the data balancing and dimensionality reduction techniques described in Section
5.1.3.
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5.2.1 k-Means

Due to the fact that k-Means requires the definition of the number of clusters, an opti-
mization logic was implemented to find it by identifying the k which produced the highest
silhouette score. The number of clusters tested laid within a range, between 2 and 14.
Although the ideal number would be lower than the maximum tested, due to the nature of
the clusters obtained by k-Means it would be possible that by having more clusters it would
be able to create a better separation between the drugs (Tan, Steinbach, and Kumar 2005).
Through this method the k value found was 2.

5.2.2 Density-based spatial clustering of applications with noise (DBSCAN)

As described in Section 3.4.2, DBSCAN requires the definition of two parameters, the ε and
minP ts. In order to select the best values a basic approach was implemented. It analyzes
the distance from a point to its k th nearest neighbor, referred as k-dist. Points that belong
to the same cluster will have a low k-dist, and the remaining will have a high value. The
computation of the k-dist with k = 4, a number already proven to be effective (Ester et al.
1996), for all the data points was made. Afterwards it was sorted in ascending order and the
values were plotted, expecting to see a sharp change at the value of k-dist that corresponds
to a suitable value of ε. Using the k value as minP ts the points for which k-dist is less than
ε will be labeled as core points, while the others will be labeled as noise or border points
(Tan, Steinbach, and Kumar 2005). Also, the metric used to calculate the distance between
the instances was the euclidean. As it can be seen in Figure 5.18 there is a fairly sharp
change when the value of the distance is approximately 0.92. Therefore, the chosen values
for DBSCAN were ε = 0.92 and minP ts = 4.

Figure 5.18: k-dist plot for k = 4

5.2.3 Hierarchical Clustering (HC)

The type of HC used was the agglomerative, also known as bottom-up, in which the indi-
vidual points are successively merged into higher-level clusters (Aggarwal 2015). The choice
of which linkage method and metric to use was made by testing the common combinations:
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average, complete and ward linkages, with cityblock, euclidean and chebchevy distance met-
rics. Then the pair that possessed the higher cophnetic correlations was chosen. Briefly,
this correlates the real pairwise distances of all the instances to those implied by the hier-
archical clustering (Saraçli, N. Doğan, and İ. Doğan 2013). In this case the chosen linkage
was average with the euclidean distance metric. To chose the number of clusters to be
used the silhouette coefficient was also studied with the same technique implemented for
k-Means. This also defined that the number of clusters that produced a higher silhouette
score was 2.

5.2.4 Clustering Using REpresentatives (CURE)

To use this algorithm it is necessary to define some parameters, which were mainly chosen
based on the existing literature (Guha, Rastogi, and Shim 1998):

• k clusters - to define the number of clusters an identical approach to the one used
for k-Means was used, based on the silhouette score, which defined it as 2

• Representative points - the number of representative points was set to 10, a value
shown to be effective

• Compression - for the shrink factor the value of 0.5 was used, halfway between its
defined range

5.3 Classification

Some algorithms were tested for the classification approach to this problem. The list of
algorithms used: Naive Bayes, Gaussian Process, Logistic Regression, Decision Tree (DT),
k Nearest Neighbors (k-NN), Support Vector Machine (SVM), Neural Network (NN) and
Genetic Programming (GP). The ensemble methods Bagging and Random Forest (RF) were
also tested. Additionally an ensemble comprising some of these methods was implemented.
Some of the parameters of the various algorithms were chosen based on existing literature.

5.3.1 Naive Bayes, Gaussian Process and Logistic Regression

The Naive Bayes used is a Gaussian Naive Bayes, where the likelihood of the features is
assumed to Gaussian.

For the Gaussian Process a RBF kernel was chosen. To optimize the kernel parameters the
Limited-memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS)-B optimizer is used. As
this is a multi-class problem the One-Versus-Rest (OVR) schema was used, where each class
has a classifier and the one that has a higher value is the chosen class.

As for the Logistic Regression the only configuration made was to use the L2 regularization.
To make a prediction it also uses an OVR approach.
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5.3.2 k Nearest Neighbors (k-NN)

For the k Nearest Neighbors (k-NN) implementation used a k of 5 was chosen due to the
number of experiments for each configuration in the data. The metric used to calculate the
distance between the neighbors was the minkowski.

5.3.3 Support Vector Machine (SVM)

The SVM method used was configured with a Radial Basis Function (RBF) kernel. The
gamma value for the kernel was set with a relative number: 1

n_f eatures . Also it uses One-
Versus-One (OVO) to develop its classifiers. That means that involves creating a model
for each pair of classes, which results in N(N−1)

2 classifiers. When testing, a majority voting
of the votes of each classifier will define the predicted class (Gidudu, Hulley, and Marwala
2007).

5.3.4 Neural Network (NN)

For the NN algorithm a couple of parameters must be defined. The NN was created with
1 hidden layer, thus making it a two-layer NN which is proved to be very efficient and are
considered an universal function approximators (III 2012). The activation function used is
the rectified linear unit function f (x) = max(0, x). The solver used to optimize the weights
is the LBFGS and the regularization parameter was set as 0.0001. A constant learning rate
of 0.001 was used.

5.3.5 Decision Tree (DT), Bagging and Random Forest (RF)

To create the DT models the Gini Impurity was used to measure the quality of the split at
each node, and the best one was always chosen. The algorithm used was the Classification
and Regression Trees (CART) which is similar to C4.5, however instead of the entropy
based approach it uses the Gini index, a generalization of the binomial variance (Loh 2011).

As for Bagging, 10 DT were used as base learners. The DT algorithm was chosen due to
their general ability to create good classifiers across datasets.

The RF was configured with a maximum number of 10 estimators and also the Gini Im-
purity for the measure of the node quality.

5.3.6 Expert Ensemble

To overcome the limitation of each individual model and to exploit its capabilities an ensemble
method was implemented. The first implementation was a Majority Voting Ensemble.

Another approach to combine the decisions of the individual classifiers was developed on the
concept that some classifiers perform better than others, inspired by the work in (Nagi and
Bhattacharyya 2013). The approach they propose combines n classifiers into an ensemble
based on an estimation of their performance. The main idea is that it can give different
weights to classifiers based on their ability to predict a part of the problem better than the
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remaining. The method they suggest has an architecture of a two-layer model, as illustrated
in Figure 5.19.

Figure 5.19: Expert Ensemble Architecture, from (Nagi and Bhattacharyya
2013)

Their approach creates a specific training dataset for measuring the performance of the
algorithm, by removing redundant information. It then trains the classifier with a 10-fold
cross-validation. The classifiers are then tested, and the one with the highest performance
(precision) for a given class becomes the expert of such class. When making a prediction it
has several rules to decide which class is returned if any of the classifiers is an expert in the
class it predicted, and in ties looks at the probabilities obtained during training.

Thus, the second ensemble implemented for this project follows some of those ideas. It
is also a two-layer system as in Figure 5.19. In the first layer the models are trained with
the entire training set and its performance is also measured using 10-fold cross-validation.
However, instead of using the metric as in the original article (precision) the recall is used.
As the intention is to create models that would be able to classify as most of a given class as
possible and recall attempts to measure just that. The main difference from its inspiration
is on the voting heuristic. In the original article the experts had a definite decision, that is,
if there was an expert in the predicted classes, that would be the choice. We on the other
hand thought that a weighted expertise and the algorithms confidence in each class would
create better decision borders. All the classifiers contribute to the class weights with their
confidence from its probabilities and its expertise for that class. The reasoning behind it
is that by only using the final decision of the algorithm we are ignoring the confidence (or
lack of it) that the classifier has in its decision. As an example, if the probabilities are: 34%
for class A, 33% for class B and C, then the class A would be chosen even if the classifier
almost had the same probabilities for each class. In the end the class that has the highest
weight is chosen. It implements the following formula:

y = argmaxj∈{1,2,...C}

[ T∑
i=1

et,j ∗ we ∗ pt,j ∗ wp +

T∑
t=1

dt,j ∗ ws
]

(5.1)

where:

• et,j is the expertise of classifier t for class j , which if j is not its predicted class will
take the value of 1 (only contributing with its probability)

• pt,j is the probability returned by the classifier t for the class j
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• we , wp and ws are weights for the expertise, class prediction probability and support
respectively

As it can be seen by the formula it is a voting process inspired in both weighted and majority
voting.

5.3.7 Genetic Programming (GP)

To study how an evolutionary approach would fare in such a problem, a Genetic Program-
ming (GP) algorithm was developed. The implementation made treats this as a symbolic
regression problem, which is a process of mechanically creating a computer program that
fits certain numerical data (Poli, Langdon, and McPhee 2008).

In this case the purpose was to evolve a program that would be able to distinguish between
the classes. The implementation made had the following configurations:

• Representation - Syntax trees were chosen for the representation

• Initialization - Ramped Half-and-Half method was used to initialize the population

• Population Size - The population size chosen was 500, as it is considered a reasonable
minimum for a GP approach (Poli, Langdon, and McPhee 2008)

• Mutation Probability - The mutation probability used was of 10%, as it is an accepted
and tested good value (Poli, Langdon, and McPhee 2008)

• Mutation Operator - The operator used for mutation was point mutation

• Crossover Probability - The crossover probability used was of 90%, as suggested in
(Poli, Langdon, and McPhee 2008)

• Crossover Operator - The crossover operator chosen was subtree crossover.

Typical GP primitive sets lead to trees with an average branching factor, that is, the
number of children of each node, of at least two. Hence, the majority of nodes will be
leafs, which if the choice of the crossover point is made by uniform probability leads to
frequently exchanging only very small amounts of genetic materials. To prevent this,
90% of the times a function node is selected and leaves only 10%, as suggested in
(Koza 1992)

• Maximum Tree Size - In order to prevent bloat and excessive growth of the problems
a maximum tree size of 1000 nodes was set

• Generations - The number of generations chosen was 100, due to the fact that usually
the most productive search is performed in the initial generations, and if it is not found
then, it is not likely to be found in a reasonable amount of time (Poli, Langdon, and
McPhee 2008)

• Terminal Set - The terminal set was comprised of a number of variables that matches
the number of features of the dataset, and an ephemeral random constant uniformly
chosen from the range [-5, 5], as suggested in (Poli, Langdon, and McPhee 2008)

• Function Set - The function set used included the basic arithmetic functions: +, ∗, /
and exponents of 2 and 3
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• Parents Selection - The selection of parents to reproduce is made through tournament
selection of 3 individuals

• Offspring Selection - The offspring that will constitute the next generation is made
through generational selection and 2% of elitism

• Fitness Function
Since symbolic regression outputs a continuous value it is necessary to discretize it
to convert it into a classification model. A discretization method that had promising
results was using theMinimum Description Length Principle (MDLP) (Fayyad and Irani
1993). In short, it creates multi-interval bins using a entropy minimization heuristic.
After the discretization, a majority voting of the samples that were in the ranges of
each bin was applied to define the target class for each bin. To evaluate the fitness
of the solution the real classes of the samples were compared against the predictions,
and the performance metric recall was used.

The second implementation of GP attempted to develop a program that would be able
to predict a toxicity index. To do so a different fitness function was developed. The
main idea was to create a sequence of contiguous bins that would be able to separate
the different drugs. For each individual (program) a bin was created for each class,
where the minimum and maximum of each bin was based on the lowest and highest
value for the samples of that class, as illustrated in Figure 5.20. However this would
lead to overlapping bins, thus to avoid it the intersection point of the sequential bins
was calculated and the boundaries redefined.

Figure 5.20: GP Bins Definition

Afterwards, similar to the other approach the samples target would be compared to the
predictions and the recall was used to measure the performance of the model. To guide
the evolution of the programs individuals in which the minimum of the lower bin was
lower than 0 and those that predicted very high indexes (above 108) were penalized.
Also, solutions to which the Control bin was not the one with the lowest indexes and
those that did not have the Tolcapone as the most toxic were also penalized.

5.4 Training and Testing

As the dataset for this problem is not very large the recommended approach to evaluate
the performance of the algorithm is cross-validation (Alpaydin 2014). Stratification was also
used to keep the representation of the classes from the original dataset in the resulting folds.
The number of folds used was 10, which was based on previous studies where it was proved
that it produces good results across multiple models (Borra and Di Ciaccio 2010). Also,
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each method used for classification was ran 30 times with different seeds for the random
generators, to allow the reproducibility of the experiments and to minimize the possible bias
from random values.
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Chapter 6

Results

To analyze the performance of the different algorithms with the data from the Mito Stress
and Glycolysis Stress tests some combinations of the data were used. As both tests measure
the same type and amount of information (OCR and ECAR) an extra dataset was created
that combines them. Hence, three separate datasets were studied: one exclusively with the
Mito Stress test data, another only with the Glycolysis Stress test data and a third that
combines both Mito Stress and Glycolysis Stress test data. For this last dataset an extra
feature was added to identify to which test each sample belongs to. This dataset will be
referred to from now on as the complete dataset.

6.1 Clustering

For the clustering study the target of each sample, that is, the drug it was exposed to, was
removed from the dataset that would be used to create the models. They were however
used to calculate some external performance measures and to analyze which samples were
in each cluster. The algorithms used were k-Means, DBSCAN, Hierarchical Clustering (HC)
and Clustering Using REpresentatives (CURE).

As part of the goal of this project was to study the new drugs toxic effects, and how they
compare to Entacapone and Tolcapone, the ideal clustering would separate them from the
remaining, indicating that their effects were indeed different. Also, if the generated clusters
grouped the new drugs with the Control it could be interpreted as that they did not have
enough mitochondrial effects to distinguish between them. Some of the remaining results
can be seen in Appendix B.

6.1.1 k-Means

The silhouette coefficient was used to select the number of clusters to be used. The
coefficient for each number of clusters for the Complete can be seen Table 6.1. As it
can be seen, k = 2 generates the clusters with the highest score. In order to analyze the
composition of each cluster the class distribution of the samples in each one was plotted. In
Figure 6.1 it is possible to see that most of the classes fell under a single cluster. We also
analyzed the class distribution for 7 clusters, one for each condition, as illustrated in Figure
6.2. Still, the samples from the different classes are scattered across the clusters, with no
visible separation amongst them.
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# Clusters Silhouette
2 0,612
3 0,380
4 0,362
5 0,416
6 0,480
7 0,454
8 0,429
9 0,446
10 0,438
11 0,451
12 0,459
13 0,419

Table 6.1: k-Means
Complete Silhouette

Coefficients

# Clusters Silhouette
2 0,610
3 0,554
4 0,486
5 0,484
6 0,527
7 0,485
8 0,459
9 0,478
10 0,476
11 0,506
12 0,541
13 0,527

Table 6.2: k-Means Gly-
colysis Stress Silhouette

Coefficients

Figure 6.1: k-Means Complete Class Distribu-
tion - 2 Clusters

Figure 6.2: k-Means Complete Class Distribu-
tion - 7 Clusters

Although k-Means is a very known and commonly used algorithm it is also a simple and
therefore has some limitations. One of them is that it assumes that the clusters have a
spherical structure and hence does not perform well with clusters of arbitrary shape (Aggarwal
2015). A further analysis was made to the data from each test separately. The Mito Stress
test data was not able to perform any better, however with Glycolysis Stress there were
results that merited attention. The number of clusters chosen based on the silhouette
coefficient was the same as the Complete, as it can be seen in Table 6.2. The distribution
of the cluster formed was also similar to the Complete, as it can be seen in Figure 6.3.
Nonetheless, after a thorough analysis of the clusters that formed with other cardinality a
pattern appeared. As it can be seen in Figure 6.4, it is visible that two pairs of drugs are
regularly grouped together, with minimum overlapping between them. The samples of pairs
of drugs ABA & ABE and APA & APE are found in the same clusters, and only 4 instances
of APE show up in clusters mainly of ABA & ABE. There is not however any particular
association between the pairs and the controls, Entacapone or Tolcapone. Additionally, by
analyzing these results it suggest that the clustering of ABA and ABE with the Control is
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more common than with APA and APE.

Figure 6.3: k-Means Glycolysis Stress Class Dis-
tribution - 2 Clusters

Figure 6.4: k-Means Glycolysis Stress Class Dis-
tribution - 12 Clusters

Both the techniques of data balancing and dimensionality reduction detailed in Section 5.1.4
and Section 5.1.3 respectively were applied, yet the results were not altered.

On a later stage, after the classification algorithms were studied, another attempt was made
with new datasets that comprised the differentials between the measures, as will be further
describe in Section 6.2.3. For the Glycolysis Stress dataset some improvements were seen.
The number of clusters that had a higher silhouette changed to 6. As it can be seen in
Figure 6.5 these clusters were able to make a good separation between the pairs of drugs
previously identified, with the exception of the same number of APE’s that appear in a
cluster with ABA & ABE. Also, after a thorough analysis it was found that with 3 clusters
the results would be as Figure 6.6, which creates fewer and bigger clusters by keeping the
same mixture of 4 APE’s.

Figure 6.5: k-Means Differential - Glycolysis
Stress Class Distribution - 6 Clusters

Figure 6.6: k-Means Differential - Glycolysis
Stress Class Distribution - 3 Clusters
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6.1.2 Density-based spatial clustering of applications with noise (DBSCAN)

DBSCAN is an algorithm that has been shown to perform well on several datasets with
clusters of varying shape and size. The minPoints was set at 4 based on the literature and
then the ε was set based on the distances of the 4th neighbors. With these parameters the
algorithm found 17 clusters, as can be seen in Figure 6.7. Once more, the clusters are not
able to separate the effects between the compounds into distinct clusters. Analyzing the
datasets individually allowed the algorithm to be able to separate the drugs ABA & ABE
and APA & APE with the Glycolysis Stress as in Figure 6.8.

Figure 6.7: DBSCAN Complete Class Distribu-
tion - 17 Clusters

Figure 6.8: DBSCAN Glycolysis Stress Class
Distribution - 11 Clusters

Figure 6.9: DBSCAN Differential - Glycolysis
Stress Class Distribution - 16 Clusters

Once again on a later stage tests were performed by using the differentials dataset and
the results improved slightly, providing some more information. In Figure 6.9 it is possible
to observe that the clusters separate both pairs of drugs and the algorithm also managed
to create clusters that completely separate Control samples. Again, data balancing and
dimensionality reduction techniques did not produce any improvements.
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DBSCAN is known to also have some limitations. One of them, and certainly one of the
reasons it was not able to perform better is related to the way it uses densities to define the
clusters, which make it difficult to deal with clusters of varying density.

6.1.3 Hierarchical Clustering (HC)

One of the main reasons why HC it is an interesting algorithm is that it provides different
levels of clustering granularities which in turn give different application specific insights
(Aggarwal 2015).

Figure 6.10 shows a dendogram of the clusters generated by HC and their distances that
result from the configurations made. The silhouette score was also used to determine the
number of clusters, which also resulted in 2. The coefficients for each number of clusters
can be seen in Table 6.3 and the distribution of the samples classes for each cluster can be
seen in Figure 6.11.

# Clusters Silhouette
2 0,625
3 0,426
4 0,379
5 0,451
6 0,430
7 0,460
8 0,457
9 0,439
10 0,421
11 0,446
12 0,404
13 0,385

Table 6.3: HC Complete
Silhouette Coefficients

# Clusters Silhouette
2 0,371
3 0,387
4 0,411
5 0,444
6 0,475
7 0,469
8 0,446
9 0,428
10 0,409
11 0,419
12 0,435
13 0,424

Table 6.4: HC Glycoly-
sis Differentials Dataset
Silhouette Coefficients

Once again the results obtained are not able to acceptably separate the drugs by clusters.
Hierarchical methods are usually sensitive to small mistakes done during the merging of
the clusters. Some of the linkage methods are particular known for successively merging
neighboring clusters due to the presence of a small amount of noise (Aggarwal 2015).

By analyzing the Mito Stress and Glycolysis Stress test data separately no improvements
were found. However, once again on a later, stage using the differentials for the Glycolysis
Stress dataset there were some improvements. These results however are not an improve-
ment on what was already found with k-Means and DBSCAN. The best silhouette score for
this dataset was for 6 clusters, as it can be seen in Table 6.4. With this number HC was
also able to create clusters that would separate the ABA & ABE and APA & APE with the
same 4 APE’s mixed with ABA & ABE Figure 6.12.
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Figure 6.10: HC Dendogram with 2 Clusters Cut

Figure 6.11: HC Complete Class Distribution -
2 Clusters

Figure 6.12: HC Differential - Glycolysis Stress
Class Distribution - 4 Clusters

Again, data balancing techniques and dimensionality reduction did not improve the results.

6.1.4 Clustering Using REpresentatives (CURE)

The last clustering algorithm used was CURE. One of the reasons for the choice of this
algorithm was that it is able to identify clusters of varying shape and size regardless of
their density (Aggarwal 2015). The silhouette score was also used once again and for the
combined dataset, the number of clusters that produced the highest score was 2, as listed
in Table 6.5 and illustrated in Figure 6.13. With this number of clusters, like the previous
algorithms, most of the samples were mixed in the same cluster. Similar to the previous
algorithms analysis were made with the individual tests data, data balancing and dimension-
ality reduction techniques that yielded no improvements. However using the differentials for
the Glycolysis Stress dataset similar improvements to the ones observed in the remaining
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algorithms were found. The highest silhouette score for this dataset was for 6 clusters, as
can be observed in Table 6.6 and illustrated in Figure 6.14.

# Clusters Silhouette
2 0,625
3 0,425
4 0,424
5 0,451
6 0,481
7 0,440
8 0,427
9 0,404
10 0,374
11 0,413
12 0,387
13 0,382

Table 6.5: CURE Complete Silhouette Coeffi-
cients

# Clusters Silhouette
2 0,395
3 0,436
4 0,376
5 0,510
6 0,513
7 0,517
8 0,456
9 0,425
10 0,399
11 0,436
12 0,442
13 0,431

Table 6.6: CURE Glycolysis Differentials
Dataset Silhouette Coefficients

Figure 6.13: CURE Complete Class Distribution
- 2 Clusters

Figure 6.14: CURE Differential - Glycolysis
Stress Class Distribution - 6 Clusters

6.2 Classification

By treating this as a classification problem the purpose becomes to create models that are
able to classify the samples based on the compounds they have been exposed to. As with
clustering, the same three datasets were used.

6.2.1 Initial Configuration

Because the toxicity of the new drugs is not yet thoroughly studied a problem arises when
trying to determine which classes to predict for each sample. The tests that were previously
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made on the new drugs by the expert team indicated that they had somewhat similar thera-
peutic effects and are most likely less nefarious than Tolcapone (Sardão and Tiago B. Silva
2016). Hence the samples exposed to the new drugs were grouped as a single class. Thus
the list of 4 classes that would used for the samples, based on the compound they were
exposed to, were: Control; ABA, ABE, APA and APE; Entacapone; Tolcapone.

The classes distribution was as illustrated in Figure 6.16, Figure 6.17 and Figure 6.15.

Figure 6.15: Complete Class Distribution

Figure 6.16: Mito Stress Class Distribution Figure 6.17: Glycolysis Stress Class Distribution

Afterwards, the classification algorithms discussed in Section 5.3 were ran on all three
datasets. One of the main tools used to analyze the performance of the algorithms in
classifying the samples from the different classes were confusion matrices. Due to the fact
that in this problem each drug may have an associated toxicity it is of utmost importance
to understand which classes are being confused with one another as it may indicate similar
effects.

The algorithms RF and NN were the ones that had better and consistent results across
the datasets, hence they will be used to illustrate the development of the models. The
remaining algorithms results can be seen in Appendices Section B.2.1. The results of the
models created with these algorithms for the Complete dataset can be seen in Figure 6.18
and Figure 6.19. They can clearly distinguish the controls from the samples exposed to
compounds, correctly classifying 93% of the Control samples with RF and 94% with NN, with
a minimal number of other samples being confused as Control. This is a very good indicator
that despite all the variance present in the data the algorithms are still able to identify the
impaired cells. They are not however able to acceptably distinguish between the drugs.
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RF has a high percentage, 80%, of correct classifications of the class ABA|ABE|APA|APE
however almost all the remaining samples are also classified as it, with 55% and 45% for
Entacapone and Tolcapone respectively. NN was the only algorithm that was somewhat
able to distinguish between the classes, with 71%, 36% and 45% for ABA|ABE|APA|APE,
Entacapone and Tolcapone respectively.

Figure 6.18: Complete RF CM Figure 6.19: Complete NN CM

By using only the data from the Mito Stress, as illustrated in Figure 6.20 and Figure 6.21,
the results were similar. However they lost some of the ability to classify the Control, with
82% and 88% for RF and NN. Still the NN algorithm was slightly better at distinguish-
ing amongst the classes with 74%, 39%, 52% for ABA|ABE|APA|APE, Entacapone and
Tolcapone respectively.

Figure 6.20: Mito Stress RF CM Figure 6.21: Mito Stress NN CM

With the data from the Glycolysis Stress test alone an interesting result appears, as can be
seen in Figure 6.22 and Figure 6.23. With them some of the algorithms, such as RF and
NN, are able to completely separate the control samples from the remaining. Although their
ability to classify the other samples did not improve, the fact they can entirely distinguish the
controls is of particular interest. It is so because ultimately the main purpose is to identify if
the compounds create mitochondrial dysfunction regardless of its intensity. Hence, with such
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classifier if the prediction given by it is "Control" it means that the drug has no detectable
effects on the mitochondrial function.

Figure 6.22: Glycolysis Stress RF CM Figure 6.23: Glycolysis Stress NN CM

Data Balancing

Random Undersampling
When compared with the initial results of the Complete data it can be seen in Figure 6.24
and Figure 6.25 that both algorithms slightly improved in classifying the samples exposed to
drugs. The RF model is able to correctly classify 43% for both Entacapone and Tolcapone
against the initial 25% and 32%. However the classification of ABA|ABE|APA|APE is
considerably reduced from 80% to 55%. A similar analysis can be made for the NN model.
The predictions of Entacapone and Tolcapone went from 36% and 45% to 44% and 51%
respectively and the ABA|ABE|APA|APE decreased from 71% to 50%. Also the ability to
identify the control samples was lower in both algorithms.

Figure 6.24: Complete Undersampling RF CM Figure 6.25: Complete Undersampling NN CM

For the Mito Stress test dataset the classifications of the RF model for Entacapone and
Tolcapone improved from 25% and 31% 47% and 41% respectively. For the NN model the
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predictions for Entacapone improved from 35% to 50% and Tolcapone from 52% to 56%.
However for both algorithms this improvement came ate the expense of the ability to classify
the Control and ABA|ABE|APA|APE samples, which decreased considerably. Nonetheless
the NN was the first algorithm to classify all the classes above 50%.

Figure 6.26: Mito Stress Undersampling RF CM Figure 6.27: Mito Stress Undersampling NN CM

For the Glycolysis Stress test dataset the results were identical. For both RF and NN
models the classifications for Entacapone and Tolcapone improved however the predictions
of ABA|ABE|APA|APE decreased.

Figure 6.28: Glycolysis Stress Undersampling
RF CM

Figure 6.29: Glycolysis Stress Undersampling
NN CM

Random Oversampling
For the Complete dataset the results obtained through Random Oversampling remained very
similar, as it can be seen in Figure 6.30 and Figure 6.31. For the RF model the prediction
of ABA|ABE|APA|APE slightly decreased from 80% to 73% and both Entacapone and
Tolcapone increased from 25% and 32% to 34% and 37% respectively. For the NN model
there were no significant differences, just Entacapone increasing from 36% to 37% and
ABE|ABE|APA|APE and Tolcapone slightly reducing their performance.
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Figure 6.30: Complete Oversampling RF CM Figure 6.31: Complete Oversampling NN CM

There were however better results for the Mito Stress test dataset. The previous analyzed
RF and NN models did not improve but two other algorithms, Gaussian Process and SVM
produced good results. Their initial confusion matrices can be seen in Figure 6.32 and Figure
6.33 respectively. Both models were able to achieve classifications above 50% for almost
all classes, as depicted in Figure 6.34 and Figure 6.35. The k-NN and Logistic Regression
models also showed similar improvements, but not as good.

Figure 6.32: Mito Stress Gaussian Process CM Figure 6.33: Mito Stress SVM CM
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Figure 6.34: Mito Stress Oversampling Gaussian
Process CM

Figure 6.35: Mito Stress Oversampling SVM
CM

For the Glycolysis Stress test dataset the results of the RF model, seen in Figure 6.36,
slightly increased for Entacapone and Tolcapone from 28% and 33% to 35% and 39%
respectively, and decreased from 77% to 72% in the ABA|ABE|APA|APE predictions. For
the NN model an increase from 35% and 43% to 37% and 44% was seen for Entacapone
and Tolcapone respectively.

Figure 6.36: Glycolysis Stress Oversampling RF
CM

Figure 6.37: Glycolysis Stress Oversampling NN
CM

SMOTE
For the Complete data this oversampling technique did not induce many changes in the
results. The RF model, as illustrated in Figure 6.39, had some loss of performance in the
class ABA|ABE|APA|APE from 80% to 69%. There was a slight increase for Entacapone
and Tolcapone, from 25% and 32% to 36% and 40% respectively. For the NN model there
were some losses for ABA|ABE|APA|APE from 71% to 69% and an increase for Entacapone
from 36% to 37% as well as for Tolcapone from 45% to 50% as can be seen in Figure 6.39.
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Figure 6.38: Complete SMOTE Dataset RF CM Figure 6.39: Complete SMOTE NN CM

Similar to what was seen with Random Oversampling for theMito Stress test dataset the RF
and NN models did not improve, however there were a couple of algorithms that presented
promising results. The Gaussian Process and SVM, as can be seen in Figure 6.40 and Figure
6.41. Compared with the results obtained with Random Oversampling, ABA|ABE|APA|APE
increased to 54% and Tolcapone to 56%. The SVM model on the other hand did not show
as much changes in comparison however Entacapone reached 52% and Tolcapone 50%.

Figure 6.40: Mito Stress SMOTE Gaussian Pro-
cess CM

Figure 6.41: Mito Stress SMOTE SVM CM

For the Glycolysis Stress test dataset the results did not improve much for any of the models,
as it can be seen in Figure 6.42 and Figure 6.43. RF lost 11% for the ABA|ABE|APA|APE
class and increased Entacapone and Tolcapone from 28% and 33% to 34% and 43% re-
spectively. NN slightly improved Entacapone from 35% to 36% and Tolcapone from 43%
to 46%.



6.2. Classification 77

Figure 6.42: Glycolysis Stress SMOTE RF CM Figure 6.43: Glycolysis Stress SMOTE NN CM

6.2.2 Dimensionality Reduction

All the dimensionality reduction techniques described in Section 5.1.3 were applied to the
three datasets. None of them produced any improvements worth mentioning and most of
the models in fact had worst results. The results can be seen in Appendices Section B.2.1.

6.2.3 Differentials

Due to the fact that none of the described approaches had significantly improved the initial
results, a new perspective on the data was required. Thus, instead of directly using the
measurements, which as previous analyzed had considerable variation for similar conditions,
the differentials between the measurements were used.

For each test there are some indicators of particular interest, as detailed in Section 4.2.
These indicators of the metabolic pathways function can be obtained by extracting values
from the relations between the measurements for each test. For the Mito Stress these are
based on the OCR and are:

• Basal Respiration - the difference between the OCR_BAS and OCR_ROT

• ATP Production - the difference between OCR_BAS and OCR_OLI

• Proton Leak - the difference between OCR_OLI and OCR_ROT

• Maximal Respiration - the difference between the OCR_FCCP and OCR_ROT

• Spare Capacity - the difference between the OCR_FCCP and OCR_BAS

• Non-mitochondrial Respiration - the OCR_ROT value directly

• Bioenergetic Health Index (BHI) - serves as a dynamic index of bionergetics health,
and is a relation between the Spare Respiratory Capacity, the ATP Production, the
Non-Mitochondrial Respiration and the Proton Leak (Chacko et al. 2014)
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However for this test there are still the ECAR measurements. As for these there are no
specific indicators the direct differentials between them were used (i.e ECAR_2 - ECAR_1,
ECAR_3 - ECAR_2, and so on). The first ECAR measurement was also kept to avoid
losing the initial condition.

For the Glycolysis Stress test the indicators used were based on the ECAR:

• Glycolysis - the difference between ECAR_GLU and ECAR_2DG

• Glycolytic Capacity - the difference between ECAR_OLI and ECAR_2DG

• Glycolytic Reserve - the difference between ECAR_OLI and ECAR_GLU

• Non-glycolytic Acidification - the ECAR_2DG value directly

For the OCR measurements an identical approach to the other test data was used. With
these new datasets however it was no longer possible to combine the data from both tests
as the differentials for each one differ in number and meaning.

The boxplots for each dataset can be seen in Figure 6.44 and Figure 6.45. With this approach
most of the measurements are no longer so dispersed, mainly for the Glycolysis Stress test
data. As it is possible to observe even the experiment that had a significant offset from the
average, which can still be seen in the OCR_1 feature, is no longer noticeable, indicating it
indeed followed a similar range of effects as the remaining experiments.

Figure 6.44: Differential - Mito Stress Feature
Boxplot

Figure 6.45: Differential - Glycolysis Stress Fea-
ture Boxplot

For the Mito Stress test data most of the models had a slight improvement in the results,
similar to Figure 6.46 and Figure 6.47. The results for the remaining algorithms can be seen
in Appendices Section B.2.2. The NN model was mainly able to improve the predictions
for the lower represented classes. The class ABA|ABE|APA|APE improved from 75% to
76%, Entacapone from 35% to 41% and Tolcapone from 52% to 54%. RF however lost
performance and it did not reduce the confusion between the underrepresented classes.
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Figure 6.46: Differential - Mito Stress RF CM Figure 6.47: Differential - Mito Stress NN CM

For the Glycolysis Stress test data the results also did not change significantly, still some
of the algorithms had a slight increase in classifying the underrepresented classes, such as
Figure 6.48 and Figure 6.49. The RF model improved the ABA|ABE|APA|APE samples from
77% to 79% and Tolcapone from 33% to 37%. The NN model lost some performance in
ABA|ABE|APA|APE from 71% to 70%, but managed to improve Entacapone and Tolcapone
from 35% and 43% to 41% and 52% respectively.

Figure 6.48: Differential - Glycolysis Stress RF
CM

Figure 6.49: Differential - Glycolysis Stress NN
CM

6.2.4 Individual Targets

Although some algorithms were able to classify the data better than others, the results were
still poor. Hence an analysis was made to see how the algorithms would do when trying to
predict each drug individually. By doing so new information was found regarding the effects
of the new drugs.

As it is possible to see in Figure 6.50 and Figure 6.51, for the Mito Stress test data the
drugs ABA and ABE, as well as APA and APE, are often confused with each other. It is
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also possible to observe that the drugs ABA and ABE are only confused with the controls
while APA and APE are often confused with Entacapone and Tolcapone.

Figure 6.50: Individuals - Mito Stress RF CM Figure 6.51: Individuals - Mito Stress NN CM

This is also visible in Figure 6.52 and Figure 6.53 which are the results with the data from
the Glycolysis Stress test. In them it is possible to observe that almost none of the samples
exposed to drugs was confused with the controls. However it shows that the drugs ABA
and ABE are also confused with Entacapone and Tolcapone alongside APA and APE.

Figure 6.52: Individuals - Glycolysis Stress RF
CM

Figure 6.53: Individuals - Glycolysis Stress NN
CM

The results for the remaining algorithms can be seen in Appendices Section B.2.3.

6.2.5 Grouped Drugs

After some analysis with the expert team it was conclude that the pairs with similarities
shared a molecular structure and therefore it was plausible, and interesting, that they were
being confused. Hence, the next attempt was to group the samples exposed to ABA and
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ABE in a new class, and the ones exposed to APA and APE in another. By doing so the
distribution of the classes in the datasets was as illustrated in Figure 6.54, Figure 6.55.

Figure 6.54: Groups - Mito Stress Class Distri-
bution

Figure 6.55: Groups - Glycolysis Stress Class
Distribution

The results of this change with the Mito Stress test data can be seen in Figure 6.56 and
Figure 6.57. The RF model is not able to separate the Entacapone and Tolcapone samples,
which are being misclassified as APA|APE. However it is possible to see that by grouping
those two pairs of compounds the model was able to classify them considerably well, with
83% for ABA|ABE and 69% for APA|APE. Still, the NN model performed slightly better.
For the class ABA|ABE it correctly classified 79% with little confusion with other classes,
60% for APA|APE, 41% for Entacapone and was able to correctly classify 52% of the
Tolcapone samples.

Figure 6.56: Groups - Mito Stress RF CM Figure 6.57: Groups - Mito Stress NN CM

By looking at the Glycolysis Stress test data it is also possible to see that the classifiers
were able to acceptably distinguish between the samples from ABA|ABE and APA|APE, as
can be seen in Figure 6.58 and Figure 6.59. As with the data from the Mito Stress test
here the RF model was not able to separate the Entacapone and Tolcapone samples. The
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NN model was able to perform better but still only with 41% and 53% for Entacapone and
Tolcapone respectively.

Figure 6.58: Groups - Glycolysis Stress NN CM Figure 6.59: Groups - Glycolysis Stress NN CM

The results for the remaining algorithms can be seen in Appendices Section B.2.4.

6.2.6 No Controls

As there was already a way to classify the Control samples with almost 100% accuracy in
both tests and the models were still having difficulty classifying the drugs samples, some
tests were made by removing the controls from the dataset. The purpose was to reduce
possible noise and thus allowing the algorithms to specialize on the drugs.

For the Mito Stress test, as illustrated in Figure 6.60 and Figure 6.61, there were some
small improvements. The results for the remaining algorithms can be seen in Appendices
Section B.2.5. For the RF classifier the samples of ABA|ABE were almost entirely correctly
classified, 97%, with very low confusion with other classes. APA|APE also had a high value,
73%, however almost all of the Entacapone and Tolcapone samples were also classified as
APA|APE. The NN model improved in predicting ABA|ABE, Entacapone and Tolcapone,
however it lost in predicting APA|APE.
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Figure 6.60: No Controls - Mito Stress RF CM Figure 6.61: No Controls - Mito Stress NN CM

For the Glycolysis Stress test the results were not much better as can be seen in Figure
6.62 and Figure 6.63. The RF classifier can still predict ABA|ABE and APA|APE acceptably
well, however Entacapone and Tolcapone have very few correct predictions. The NN model
improved in predicting APA|APE, Entacapone and Tolcapone and lost some performance
for ABA|ABE.

Figure 6.62: No Controls - Glycolysis Stress RF
CM

Figure 6.63: No Controls - Glycolysis Stress NN
CM

As these are different datasets both data balancing and dimensionality reduction techniques
were also tested. However, just like with the previous datasets, using the dimensionality
reduction techniques did not produce any improvements on the classifiers performances.
The remaining results can be seen in Appendices Section B.2.5.

Random Undersampling

Like with the original datasets the data balancing techniques produced some improvements.
Although the final results are still not satisfactory it is possible to observe that Random
Undersampling aids the models in predicting the underrepresented classes.
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The results obtained for the Mito Stress data are depicted in Figure 6.64 and Figure 6.65.
The RF model gained some ability to classify Entacapone and Tolcapone, at the expense of
the classifications of APA|APE. With this balancing the NN classifier loses some ability to
identify the classes ABA|ABE and APA|APE and gained in the underrepresented, Entacapone
and Tolcapone, increasing from 43% and 56% to 52% and 60% respectively.

Figure 6.64: No Controls - Mito Stress Under-
sampling RF CM

Figure 6.65: No Controls - Mito Stress Under-
sampling NN CM

For the Glycolysis Stress test however there were no visible improvements, and some losses
can be observed in Figure 6.66 and Figure 6.67.

Figure 6.66: No Controls - Glycolysis Stress Un-
dersampling RF CM

Figure 6.67: No Controls - Glycolysis Stress Un-
dersampling NN CM

6.2.7 Random Oversampling

With the original dataset the oversampling techniques produced interesting results. With
these there were also some algorithms that showed a considerable improvement, such as the
Gaussian Process, which went from 26% and 39% for Entacapone and Tolcapone to 48%
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and 53% respectively, as it is observable in Figure 6.68. The NN model kept the same results
obtained with Random Oversampling, only increasing Entacapone by 1% Figure 6.69.

Figure 6.68: No Controls - Mito Stress Over-
sampling Gaussian Process CM

Figure 6.69: No Controls - Mito Stress Over-
sampling NN CM

Figure 6.70: Data Balancing - Mito Stress - Classification Algorithms

For the Glycolysis Stress test there was no visible improvement and some models lost per-
formance, as illustrated in Figure 6.71 and Figure 6.71.

Figure 6.71: No Controls - Glycolysis Stress
Oversampling RF CM

Figure 6.72: No Controls - Glycolysis Stress
Oversampling NN CM

6.2.8 SMOTE

With the SMOTE method and following the footsteps of the previous analysis, with Mito
Stress data some algorithms produced slightly better results, such asGaussian Process, Fig-
ure 6.73. The NN model however kept approximately the same results, as can be seen in
Figure 6.74.
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Figure 6.73: No Controls - Mito Stress SMOTE
Gaussian Process CM

Figure 6.74: No Controls - Mito Stress SMOTE
NN CM

For the Glycolysis Stress dataset the NN classifier lost some performance and the RF model
gained some, as can be seen in Figure 6.76 and Figure 6.75 respectively, improving in most
classes, mainly from 70% to 80% in APA|APE.

Figure 6.75: No Controls - Glycolysis Stress
SMOTE RF CM

Figure 6.76: No Controls - Glycolysis Stress
SMOTE NN CM

6.2.9 Expert Ensemble

Although some of the techniques previously applied generated better results to some extent,
most of them improved the classification of some classes in exchange of some performance
in others. Even still, the best algorithms had very poor overall performances, most of them
struggling to go over the considered "random" 50%.

Different algorithms handle the problem of classification in different ways. Based on this
fact the combination of some learners of different families may produce better results when
combined than any of them individually. Hence an attempt was made to combine the
classifiers that performed acceptably well in each test as an ensemble and see how this
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could improve the final classifier performance. To do so, and due to fairly large number
of algorithms and combinations that were tested, a list was made of those that performed
better. As it was previously covered there were some algorithms that were able to completely
distinguish between the Control samples. Hence, an algorithm with that ability (DT with
the Glycolysis Stress test data) was used to classify them, and the remaining algorithms of
the ensemble would be used to classify the other classes.

The initial approach to the ensemble, as previously described, was a voting majority ensemble.
After a thorough test and analysis, the initial algorithms chosen were:

• NN - one model with the Glycolysis Stress test data and another with Mito Stress
test data with SMOTE balancing

• RF - with the Glycolysis Stress test data

• Bagging - this algorithm was used with the Mito Stress test with random undersam-
pling balance

• Gaussian Process - with the Mito Stress test data with SMOTE balancing

The results obtained, illustrated in Figure 6.77, were a considerable improvement over the
ones obtained from the individual models. For the simple majority voting the results of the
ensemble were 100% correctly classified Control samples without any misclassification of
other classes, 98% for ABE|ABE, 68% for APA|APE, 52% for Entacapone and 55% for
Tolcapone. Some other results for different ensembles can be seen in Appendices Section
B.2.6. Although these results were good when compared to individual performances they
were still poor results. Hence the expert ensemble was implemented and the performance
improved even further as can be seen in Figure 6.78. Initially all the components in the expert
ensemble formula, seen in Equation 5.3.6, had equal weights of 1. Comparing with results
from the voting ensemble all the classes that were having difficulties were improved. Enta-
capone increased from 52% to 54% and Tolcapone from 55% to 66%, however APA|APE
decreased from 68% to 63%. Considering the characteristics of the dataset in hand and the
initial results for individual classifiers these were finally some promising results.

Figure 6.77: Voting Ensemble CM Figure 6.78: Expert Ensemble CM

Nonetheless, to perform an even thorougher analysis of the best combinations, a set of
algorithms and environments were chosen:
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Test Structure Preparation Algorithm
Glycolysis ABA|APA & ABE|APE None Bagging, Neural Network, Random

Forest and SVM
Mito ABA|APA & ABE|APE Random Un-

dersampling
Bagging, Decision Tree, Gaussian
Process, Logistic Regression, Naive
Bayes, Neural Network, Random For-
est and SVM

Mito ABA|APA & ABE|APE SMOTE Gaussian Process, k-NN, Logistic Re-
gression, Neural Network and SVM

Mito ABA|APA|ABE|APE Random Un-
dersampling

Gaussian Process, Logistic Regres-
sion, Neural Network and SVM

Mito ABA|APA|ABE|APE SMOTE Gaussian Process, Logistic Regres-
sion, k-NN and SVM

Table 6.7: Ensemble Algorithms Base

In order to create the best ensemble the combinations between these algorithms were ran
and then compared. After an analysis of the results, the combination that produced the
best results, as illustrated in Figure 6.80, were:

• Bagging - with the Glycolysis Stress test data

• NN - one model with the Glycolysis Stress test data and another with the Mito Stress
test data with Random Undersampling balancing

• RF - with the Glycolysis Stress test data

• DT - with the Mito Stress test data with Random Undersampling balancing

• Gaussian Process - withMito Stress test data with Random Undersampling balancing

• SVM - with the initial grouping of the new compounds (ABA|ABE|APA|APE) and
with Mito Stress test data with Random Undersampling balancing

As it can be seen in Figure 6.79 the model was able to transversely classify all the classes.
ABA|ABE class correct classifications decreased from 97% to 96%, APA|APE from 63% to
61% and Entacapone increased from 54% to 61% and Tolcapone from 66% to 71%. Still,
afterwards, a sweep of the combinations of the weights for the parameters of the ensemble
was done, and the best combination found was: we = 1.78, wp = 2.5, ws = 1.2. As it can
be seen in Figure 6.79 comparing with the previous results it generated even better results,
with ABA|ABE improving to 97%, a near perfect distinction of the other classes, APA|APE
and Entacapone improved to 62% and Tolcapone to 72%.
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Figure 6.79: Expert Ensemble Equal Weights
CM

Figure 6.80: Expert Ensemble Best Combination
CM

Figure 6.81: Expert Ensemble Best ROC

In Figure 6.81 it is possible to observe the ROC curve by the different classes and the
weighted average. As it can be seen the average ROC curve has a very good area under
the curve of 0.94. In Table 6.8 it is possible to see the values for the different performance
metrics for the voting ensemble and the expert ensemble with equal and optimized weights.
The performance metrics obtained by the voting ensemble were already acceptable as well,
with an F1-score of 0.78, accuracy and recall of 0.79 and the precision of 0.80. The initial
version of the expert ensemble was able to improve these results, by increasing the accuracy
and recall to 0.81 and the F1-score and precision to 0.82. The best results in all the
performance metrics, and agreeing with the confusion matrices analyzed, belongs the expert
ensemble with the optimized weights, which improved the F1-score, accuracy and recall to
0.83 and the precision to 0.84.

6.2.10 Genetic Programming (GP)

Genetic Programming (GP) was the last development in the attempt of creating a classi-
fication model. Initially an implementation was made to create a classifier, similar to the
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PPPPPPPPPPerf.
Alg.

Voting Initial Ensemble Expert Ensemble

F1 0,78 0,82 0,83
Accuracy 0,79 0,81 0,83
Precision 0,80 0,82 0,84

Recall 0,79 0,81 0,83

Table 6.8: Ensemble Best Classification Performance

ones obtained by the other classes. To achieve that, the MDLP was used to discretize the
continuous value returned by the GP solutions into multiple bins. However, this implemen-
tation did not achieve an acceptable performance, as it was not able to distinguish between
any of the drugs, instead almost every sample was considered as Control. The ranges of
the bins that were created through the discretization were not useful either, as there was
no visible pattern or logic amongst them. This poor performance was most likely due to the
dispersion of the features values which made it difficult to create a program that was able
to model such complexity. Data balancing and dimensionality reduction techniques were not
able to improve the results either

Other GP implementation intended to give more insight on the results obtained by the
classification models. Although the results previously documented tell that the effects of
the compounds are different from each other, they do not provide any information regarding
which are more toxic. The purpose of the GP approach was to evolve a program that would
try to create an index that would allow to predict the compounds toxicity. For this, the
Complete and the differentials datasets were used with the grouping of the pairs ABA|ABE
and APA|APE. The results can be seen in Table 6.9.

Algorithm Drug Index Order
Complete Dataset APA|APE=>ABA|ABE=>Entacapone=>Tolcapone

Differential - Mito Stress ABA|ABE=>APA|APE=>Entacapone=>Tolcapone
Glycolysis Differential APA|APE=>Entacapone=>ABA|ABE=>Tolcapone

Table 6.9: Genetic Programming (GP) Datasets Compounds Toxicity

By looking at the table it is possible to observe that the compounds are indeed grouped
differently across the datasets. For the Mito Stress test the solution places the compounds
ABA|ABE with the lowest indexes followed by APA|APE, then Entacapone and finally Tol-
capone. For the Glycolysis Stress test however the results were different. The compounds
with the lowest indexes were APA|APE. ABA|ABE appears between Entacapone an Tol-
capone. Using the Complete APA|APE appear as the drug with the lowest indexes, followed
by ABA|ABE, then Entacapone and finally Tolcapone. These differences between the Mito
Stress and the Glycolysis Stress test data corroborates the possibility that the compounds
have different effects on each pathway.

6.2.11 Models Comparison

Although the evolution of the ML models was mainly based on the interpretation of the
performance metrics and the confusion matrices, in order to undoubtedly state that the final
model is better than the remaining a statistical comparison was made. The models used for
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the comparison were: SVM with SMOTE data balancing, NN with Random Undersampling
data balancing, Voting Ensemble with the initial combination of algorithms and Expert
Ensemble with the final combination of algorithms and weights. The performance metric
used to compare them was the F1-Score as it is a measure that balances both the precision
and recall.

The null hypothesis (H0) that was to be tested was that the means of the performances of
all four models were the same and the alternative hypothesis (H1) was that not all of them
were equal:

H0 : ∃(i , j) : µi = µj

H1 : ∃(i , j) : µi 6= µj
(6.1)

As the subjects of the experiments were not the same throughout the process an unpaired
statistical test must be used. Then, to decide between parametric and non-parametric tests
the normality of the data was tested with the Shapiro-Wilk normality test which gave the
following results: W = 0.81731, p − value = 6.692e−11, that proved that the data did not
follow a normal distribution. Thus, based on all these conditions the Kruskal-Wallis non-
parametric test was chosen (Field 2013). The results for this test were: chi − squared =

98.118, df = 3, p − value < 2.2e−16. With this p-value it was safe to state that there are
differences between at least two of the algorithms for a significance level of 5%. To identify
which models were indeed different the Dunn test with Bonferroni correction was used. The
results can be seen in Table 6.10.

SVM NN Voting Ensemble
NN -2.917119

0.0106
Voting Ensemble -7.842078 -4.924958

0.0000 0.0000
Expert Ensemble -8.435894 -5.518774 -0.593815

0.0000 0.0000 1.0000

Table 6.10: Dunn’s test With Bonferroni Correction

From these results it was possible to observe that SVM was different from the remaining
three algorithms, NN was also different from both ensembles and that between these the
null hypothesis holds for a significance level of 5%.

These results statistically prove that the ensembles used were indeed a significant improve-
ment over the best individual models.
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Chapter 7

Discussion

Due to the variability and small size of the dataset it was accepted from the start that
it would be a challenge to create a model that would be able to generalize to the effects
from the different drugs. Also, the concentrations of the compounds that were used in the
experiments carried by the MitoXT team were of already non-toxic dosages, that is, they
were concentrations for which there was no measurable or significant toxicity. This implies
that whatever effects could arise would already be difficult to find.

7.1 Clustering

As previously stated, one of the main goals with clustering was to analyze how the samples
would be organized in groups (clusters) based on their similarity. What was hopped to be
seen was that the drugs known to have toxic effects would be in separate clusters and that
the new drugs would either be in their own cluster or gathered with the controls, indicating
that they had no significant effects.

However, none of the algorithms was able to make such a separation. The algorithms used
were unsupervised, hence no knowledge of the samples compound was used to develop the
model. Also, the dataset contained a small number of samples and a considerable amount
of diversity and variability. These conditions combined made it unlikely for any algorithm
to separate the samples by the effects of the drugs. Although very large datasets can
also pose a challenge to clustering algorithms, if the dataset is too small and there is not
enough samples to represent the problem then it becomes virtually impossible to create
representative clusters.

Nonetheless, there were some insights that could be drawn from the results. Using DBSCAN
it was possible to create clusters exclusively, or almost, of Control samples. This indicated
that the despite the variance in the data the algorithm was still able to separate them from
rest. With other algorithms it was also possible to observe that there were two pairs of drugs,
ABA and ABE, and APA and APE, which were often, and mutually exclusively, clustered
together. This suggests that the effects of the drugs in these pairs are most likely similar,
whilst being distinguishable from the other pair.
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7.2 Classification

As these are supervised problems, the algorithms were developed based on the target informa-
tion in the dataset. However, even using it most of the algorithms struggled in generalizing,
thus having low performances. Once again, the size, diversity and variance of the dataset
were part of the reason why the classification algorithms were not able to thrive.

Algorithms from different families and multiple combinations of the data were used, yet none
were able to create a model that could acceptably make predictions on unseen examples. As
a result, data balancing and dimensionality reduction techniques were applied to attempt to
overcome some of the limitations imposed by the dataset. Both undersampling and over-
sampling techniques were able to slightly improve some classifiers performance, which due to
their nature are more sensitive to unbalanced datasets. It allowed those algorithms to better
classify the original underrepresented classes. SMOTE, one of the oversampling methods,
was the one that most improved the results. The dimensionality reduction techniques were
used with the expectation that the removal of irrelevant and noisy features would allow the
algorithms to focus on the useful data, however none were able to improve the classifiers
performance.

Nonetheless, using the differentials between the measurements in the data increased most
of the algorithms performance. Also, by making predictions using the individual drugs it was
possible to identify similarities between the new drugs that were not initially defined. As the
similar drugs share a common molecular structure (Silva et al. 2016) the confusion amongst
them may indicate that the effects on the cells are identical. Their aggregation, ABA with
ABE and APA with APE, allowed the algorithms to create better decision boundaries between
the classes, thus improving their classification performances. These were the same drugs
that were also found to be clustered together. Further, the fact that ABA and ABE are not
confused with Entacapone nor Tolcapone in the Mito Stress but they are in the Glycolysis
Stress test data may indicate that their effects are more alike in the glyoclytic pathway than
the OXPHOS. It was also concluded that by exclusively using the Glycolysis Stress test data
it was possible to completely distinguish the Control samples from the remaining.

The results obtained by the ensembles demonstrated once again the power and flexibility of
such methods. By combining algorithms that were otherwise weak it was at last possible
to achieve some interesting results. The majority voting ensemble proved that a simple
implementation can generate a model with a higher performance than any of the algorithms
did individually. The expert ensemble developed weights the predictions of the models, their
performance in training and the probabilities of their predictions. With this approach it was
possible to considerably improve the results. One of the reasons that allowed the ensembles
to perform so well was the varied nature of their algorithms and how they were able to focus
on different areas of the datasets.

For the best ensemble, by using the Glycolysis Stress test data it was possible to have 100%
correct classifications of the Control samples. Hence, a DT model trained with those data
was used for that the sole purpose. Models of the algorithms Bagging, NN, SVM and RF
using these data were able to acceptably classify across the drugs. By using the Mito Stress
test dataset without the Control samples and with the new drugs grouped in a single class
the algorithms were better at distinguishing them from Entacapone and Tolcapone. By
oversampling the data and thus removing its imbalance the Gaussian Process was also able
to acceptably distinguish between the new drugs and Entacapone and Tolcapone. DT and
NN however benefited from balancing the same data through undersampling.
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As it is known, different algorithms are able to explore different areas of the problem, derived
from their internal mechanisms. The fact that they were tested in multiple datasets that
benefit certain characteristics allowed them to perform better where they excelled. After
performing a statistical comparison between the best individual algorithms and the ensem-
bles it was shown that the latter were indeed better. Although there were no significant
differences between the ensembles, the expert ensemble with the final configurations was
able to outperform the remaining in all performance metrics.

By using GP, although it does not give a formal statement of the drugs toxicity from a
biological point of view, it is nonetheless an indication of their effects. The high variance
in the dataset poses a challenge to the GP algorithm due to the complexity of developing
a single formula that could account for all the diversity. Still, the results were consistent
with the data previously obtained from the classifiers and exploratory analysis. For the Mito
Stress dataset the results comply with the classifications predictions, where the compounds
APA and APE were commonly misclassified as Entacapone or Tolcapone. For the Glycolysis
Stress the results were also in agreement with the insights obtained from the classification
models, where the compounds ABA, ABE, Entacapone and Tolcapone were misclassified
with one another. What these results indicate is that the drugs ABA and ABE create less
dysfunction in the OXPHOS pathway than APA and APE, but all four induce less changes
than Entacapone and Tolcapone. However, the results obtained for the Glycolysis Stress
test suggest that APA and APE generate less dysfunction on the glycolytic pathway than
all the remaining drugs, and ABA and ABE induce more than Entacapone but less than
Tolcapone. By combining the data from both tests it hints that APA and APE are the
drugs that create less dysfunction in both metabolic pathways, followed by ABA and ABE,
Entacapone and Tolcapone.

The results obtained were already validated and presented at the International symposium
MitoPorto - Advances in mitochondrial research, University of Porto, May 26th, 2017, as
can be seen in the Appendix Section B.2.8. Also, the main insights and results obtained
regarding the comparative analysis between the different compounds will be submitted to an
international journal from the computational biology/ML area.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

The purpose of this work was to create a Machine Learning (ML) model to predict the
toxicity of pharmacological compounds present in the drugs. This was to be done by de-
tecting mitochondrial perturbation using data pertaining to the ability of the mitochondria
to generate ATP through OXPHOS and the Extracellular Acidification Rate (ECAR). In the
process of developing the models the standard ML techniques such as data preparation, data
balancing and dimensionality reduction would be used. Both clustering and classification al-
gorithms were to be tested to explore the data and create a model that would perform well
and be able to generalized to new data.

Due to the intrinsic nature of the problem it was a challenge from the beginning, starting
with the fact that the dataset available was considerably small and contained a high level
of variance. In order to even understand and prepare the data a significant amount of time
was spent studying and understanding the problem.

Throughout the development of this project a lot of effort was put into creating better ML
models. With the original data it was necessary to invest a considerable amount of work into
analyzing and preparing it so that it could be safely used with ML algorithms. Through the
use of several data preparation techniques, from data balancing to dimensionality reduction,
it was possible to iteratively improve some of the algorithms performance. Afterwards, by
interpreting the data and using some key indicators between the measurements to reduce
the overall variance of the data proved to be an effective way to boost their performance.

Using the ensemble paradigm has shown once again that the combination of weak learners
can lead to very good results even with small datasets. The development of an expert
ensemble heuristic that considered the performance of the algorithms in predicting each
class, their probabilities and respective predictions demonstrated to be a compelling heuristic
to combine the decisions of multiple algorithms in a comprehensive way. After performing a
statistical analysis it was proven that the expert ensemble developed was indeed better than
the best individual algorithms. Based on these results it is safe to say that the achieved
model is above and beyond the threshold of success defined and viable to assist in the drug
development process.

The resulting model that is able to predict the mitochondrial toxicity is an innovation in
the field of drug discovery and toxicity prediction. There is no other method or tool that
uses the in vitro measurements of ECAR and OCR to identify and predict the drugs toxicity
through the ATP metabolic pathways. The fact that it is not only a binary classifier but can
in fact distinguish by the degree of dysfunction is yet another remark. Also, the publishing
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of the preliminary results in a symposium specifically directed to the study of mitochondria
highlights the interest and innovation of such a tool.

The use of a Genetic Programming (GP) algorithm also proved to be able to provide some
insight on the development of a formula to predict the toxicity of the compounds. The
results obtained by this model, although preliminary, were in agreement with the classifiers.

Hence, based on what was achieved it is safe to say that Machine Learning (ML) is indeed
an area that can provide new insights into biological inspired datasets. With it is possible to
extract knowledge even from small datasets with high variability and noise.

From a biological perspective, once again it was shown that the mitochondrial function can
be a good indicator of drug toxicity. Through the use of the ML algorithms it was possible to
completely distinguish the control samples and amongst those exposed to drugs to separate
them by compound. In regard to the new drugs there are good indicatons that their effects
are in fact different and cause less dysfunction than Tolcapone.

8.2 Future Work

The development done in this work was based on a small and limited dataset. The use
of larger datasets with more drugs and experiments would be necessary to draw significant
conclusions, both in terms of the new ensemble approach and the biological interpretation
of the results. It would also be interesting to have enough experiments of multiple concen-
trations for each drug that would allow a study regarding the effects of the concentrations
as well as the drugs.

Although many ML algorithms were used most of the parameters and configurations chosen
for each one were based on existing literature and adhoc optimizations. A thorough study of
the individual algorithms performance for multiple parameters would possible improve their
results, which in turn could eventually improve the ensemble results.

Further work on the Genetic Programming (GP) would also be interesting as there were
some promising preliminary results, however due to the data and time limitations of this
project it was not possible to develop further. A thorough study of other GP approaches,
such as representations and operators, using larger populations and generations could also
yield better solutions. Such work however would also imply a strong support of a team with
a sound biological background to validate and assist on the development of a formula that
is both able to calculate the toxicity and make logic from a biological point of view.
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Appendix A

Biological Experiments Results

Figure A.1: Experiment Data File -
Plate Wells Description

Figure A.2: Normalization Data File - Well Cell Concen-
trations
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Figure A.3: Experiment Data File - First 3 Measurements for OCR (Similar
tables exist for ECAR
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Figure A.4: Experiment Data File - Initial Conditions Description
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Figure A.5: Parsed Data File - Results Table for ML
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Appendix B

Machine Learning Results

B.1 Clustering

B.1.1 Birch

Figure B.1: Birch Complete CD 3 Clusters Figure B.2: Birch Complete CD 5 Clusters

Figure B.3: Birch Complete CD 9 Clusters Figure B.4: Birch Complete CD 13 Clusters
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Figure B.5: Birch Mito CD 3 Clusters Figure B.6: Birch Mito CD 5 Clusters

Figure B.7: Birch Mito CD 9 Clusters Figure B.8: Birch Mito CD 13 Clusters

Figure B.9: Birch Glycolysis CD 3 Clusters Figure B.10: Birch Glycolysis CD 5 Clusters
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Figure B.11: Birch Glycolysis CD 9 Clusters Figure B.12: Birch Glycolysis CD 13 Clusters

B.1.2 Gaussian Mixture

Figure B.13: Gaussian Mixture Complete CD Figure B.14: Gaussian Mixture Mito CD

Figure B.15: Gaussian Mixture Glycolysis CD
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B.1.3 k-Means

Figure B.16: k-Means Complete CD 3 Clusters Figure B.17: k-Means Complete CD 5 Clusters

Figure B.18: k-Means Complete CD 9 Clusters Figure B.19: k-Means Complete CD 13 Clusters

Figure B.20: k-Means Mito CD 3 Clusters Figure B.21: k-Means Mito CD 5 Clusters
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Figure B.22: k-Means Mito CD 9 Clusters Figure B.23: k-Means Mito CD 13 Clusters

Figure B.24: k-Means Glycolysis CD 3 Clusters Figure B.25: k-Means Glycolysis CD 5 Clusters

Figure B.26: k-Means Glycolysis CD 9 Clusters Figure B.27: k-Means Glycolysis CD 13 Clusters
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B.1.4 Hierarchical Clustering (HC)

Figure B.28: HC Complete CD 3 Clusters Figure B.29: HC Complete CD 5 Clusters

Figure B.30: HC Complete CD 9 Clusters Figure B.31: HC Complete CD 13 Clusters

Figure B.32: HC Mito CD 3 Clusters Figure B.33: HC Mito CD 5 Clusters
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Figure B.34: HC Mito CD 9 Clusters Figure B.35: HC Mito CD 13 Clusters

Figure B.36: HC Glycolysis CD 3 Clusters Figure B.37: HC Glycolysis CD 5 Clusters

Figure B.38: HC Glycolysis CD 9 Clusters Figure B.39: HC Glycolysis CD 13 Clusters
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B.1.5 Density-based spatial clustering of applications with noise (DBSCAN)

Figure B.40: DBSCAN Complete CDminP ts =

2, ε = 0.9
Figure B.41: DBSCAN Complete CDminP ts =

2, ε = 1.8

Figure B.42: DBSCAN Complete CDminP ts =

4, ε = 0.6
Figure B.43: DBSCAN Complete CDminP ts =

4, ε = 1.8
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Figure B.44: DBSCAN Complete CDminP ts =

6, ε = 0.6

Figure B.45: DBSCAN Complete CDminP ts =

6, ε = 1.8

Figure B.46: DBSCAN Mito CD minP ts =

2, ε = 0.9

Figure B.47: DBSCAN Mito CD minP ts =

2, ε = 1.8

Figure B.48: DBSCAN Mito CD minP ts =

4, ε = 0.6

Figure B.49: DBSCAN Mito CD minP ts =

4, ε = 1.8
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Figure B.50: DBSCAN Mito CD minP ts =

6, ε = 0.6

Figure B.51: DBSCAN Mito CD minP ts =

6, ε = 1.8

Figure B.52: DBSCAN Glycolysis CD
minP ts = 2, ε = 0.9

Figure B.53: DBSCAN Glycolysis CD
minP ts = 2, ε = 1.8

Figure B.54: DBSCAN Glycolysis CD
minP ts = 4, ε = 0.6

Figure B.55: DBSCAN Glycolysis CD
minP ts = 4, ε = 1.8
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Figure B.56: DBSCAN Glycolysis CD
minP ts = 6, ε = 0.6

Figure B.57: DBSCAN Glycolysis CD
minP ts = 6, ε = 1.8

B.1.6 Clustering Using REpresentatives (CURE)

Figure B.58: CURE Complete CD 3 Clusters Figure B.59: CURE Complete CD 5 Clusters
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Figure B.60: CURE Complete CD 9 Clusters Figure B.61: CURE Complete CD 13 Clusters

Figure B.62: CURE Mito CD 3 Clusters Figure B.63: CURE Mito CD 5 Clusters

Figure B.64: CURE Mito CD 9 Clusters Figure B.65: CURE Mito CD 13 Clusters
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Figure B.66: CURE Glycolysis CD 3 Clusters Figure B.67: CURE Glycolysis CD 5 Clusters

Figure B.68: CURE Glycolysis CD 9 Clusters Figure B.69: CURE Glycolysis CD 13 Clusters
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B.2 Classification

B.2.1 Initial Configuration

Figure B.70: Mito Bagging CM Figure B.71: Mito DT CM

Figure B.72: Mito Gaussian Process CM Figure B.73: Mito k-NN CM
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Figure B.74: Mito Logistic Regression CM Figure B.75: Mito SVM CM

Figure B.76: Glycolysis Bagging CM Figure B.77: Glycolysis DT CM

Figure B.78: Glycolysis Gaussian Process CM Figure B.79: Glycolysis k-NN CM
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Figure B.80: Glycolysis Logistic Regression CM Figure B.81: Glycolysis SVM CM



B.2. Classification 125

Data Balancing

Random Undersampling

Figure B.82: Mito Undersamp. Bagging CM Figure B.83: Mito Undersamp. DT CM

Figure B.84: Mito Undersamp. Gaussian Pro-
cess CM

Figure B.85: Mito Undersamp. k-NN CM



126 Appendix B. Machine Learning Results

Figure B.86: Mito Undersamp. Logistic Regres-
sion CM

Figure B.87: Mito Undersamp. SVM CM

Figure B.88: Glycolysis Undersamp. Bagging
CM

Figure B.89: Glycolysis Undersamp. DT CM

Figure B.90: Glycolysis Undersamp. Gaussian
Process CM

Figure B.91: Glycolysis Undersamp. k-NN CM
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Figure B.92: Glycolysis Undersamp. Logistic
Regression CM

Figure B.93: Glycolysis Undersamp. SVM CM

Random Oversampling

Figure B.94: Mito Oversamp. Bagging CM Figure B.95: Mito Oversamp. DT CM
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Figure B.96: Mito Oversamp. Gaussian Process
CM

Figure B.97: Mito Oversamp. k-NN CM

Figure B.98: Mito Oversamp. Logistic Regres-
sion CM

Figure B.99: Mito Oversamp. SVM CM

Figure B.100: Glycolysis Oversamp. Bagging
CM

Figure B.101: Glycolysis Oversamp. DT CM
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Figure B.102: Glycolysis Oversamp. Gaussian
Process CM

Figure B.103: Glycolysis Oversamp. k-NN CM

Figure B.104: Glycolysis Oversamp. Logistic
Regression CM

Figure B.105: Glycolysis Oversamp. SVM CM

Synthetic Minority Over-sampling Technique (SMOTE)
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Figure B.106: Mito SMOTE Bagging CM Figure B.107: Mito SMOTE DT CM

Figure B.108: Mito SMOTE Gaussian Process
CM

Figure B.109: Mito SMOTE k-NN CM

Figure B.110: Mito SMOTE Logistic Regression
CM

Figure B.111: Mito SMOTE SVM CM
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Figure B.112: Glycolysis SMOTE Bagging CM Figure B.113: Glycolysis SMOTE DT CM

Figure B.114: Glycolysis SMOTE Gaussian Pro-
cess CM

Figure B.115: Glycolysis SMOTE k-NN CM

Figure B.116: Glycolysis SMOTE Logistic Re-
gression CM

Figure B.117: Glycolysis SMOTE SVM CM
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Dimensionality Reduction

Correlation

Figure B.118: Mito Correlation Bagging CM Figure B.119: Mito Correlation DT CM

Figure B.120: Mito Correlation Gaussian Pro-
cess CM

Figure B.121: Mito Correlation k-NN CM
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Figure B.122: Mito Correlation Logistic Regres-
sion CM

Figure B.123: Mito Correlation SVM CM

Figure B.124: Glycolysis Correlation Bagging
CM

Figure B.125: Glycolysis Correlation DT CM

Figure B.126: Glycolysis Correlation Gaussian
Process CM

Figure B.127: Glycolysis Correlation k-NN CM
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Figure B.128: Glycolysis Correlation Logistic
Regression CM

Figure B.129: Glycolysis Correlation SVM CM

Mutual Information (MI)

Figure B.130: Mito MI Bagging CM Figure B.131: Mito MI DT CM

Figure B.132: Mito MI Gaussian Process CM Figure B.133: Mito MI k-NN CM
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Figure B.134: Mito MI Logistic Regression CM Figure B.135: Mito MI SVM CM

Figure B.136: Glycolysis MI Bagging CM Figure B.137: Glycolysis MI DT CM

Figure B.138: Glycolysis MI Gaussian Process
CM

Figure B.139: Glycolysis MI k-NN CM
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Figure B.140: Glycolysis MI Logistic Regression
CM

Figure B.141: Glycolysis MI SVM CM

Principal Component Analysis (PCA)

Figure B.142: Mito PCA Bagging CM Figure B.143: Mito PCA DT CM

Figure B.144: Mito PCA Gaussian Process CM Figure B.145: Mito PCA k-NN CM
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Figure B.146: Mito PCA Logistic Regression
CM

Figure B.147: Mito PCA SVM CM

Figure B.148: Glycolysis PCA Bagging CM Figure B.149: Glycolysis PCA DT CM

Figure B.150: Glycolysis PCA Gaussian Process
CM

Figure B.151: Glycolysis PCA k-NN CM
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Figure B.152: Glycolysis PCA Logistic Regres-
sion CM

Figure B.153: Glycolysis PCA SVM CM

Recursive Feature Elimination (RFE)

Figure B.154: Mito RFE Bagging CM Figure B.155: Mito RFE DT CM

Figure B.156: Mito RFE Gaussian Process CM Figure B.157: Mito RFE k-NN CM
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Figure B.158: Mito RFE Logistic Regression
CM

Figure B.159: Mito RFE SVM CM

Figure B.160: Glycolysis RFE Bagging CM Figure B.161: Glycolysis RFE DT CM

Figure B.162: Glycolysis RFE Gaussian Process
CM

Figure B.163: Glycolysis RFE k-NN CM
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Figure B.164: Glycolysis RFE Logistic Regres-
sion CM

Figure B.165: Glycolysis RFE SVM CM
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B.2.2 Differentials

Figure B.166: Differential Mito Bagging CM Figure B.167: Differential Mito DT CM

Figure B.168: Differential Mito Gaussian Pro-
cess CM

Figure B.169: Differential Mito k-NN CM
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Figure B.170: Differential Mito Logistic Regres-
sion CM

Figure B.171: Differential Mito SVM CM

Figure B.172: Differential Glycolysis Bagging
CM

Figure B.173: Differential Glycolysis DT CM

Figure B.174: Differential Glycolysis Gaussian
Process CM

Figure B.175: Differential Glycolysis k-NN CM
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Figure B.176: Differential Glycolysis Logistic
Regression CM

Figure B.177: Differential Glycolysis SVM CM
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B.2.3 Individual Targets

Figure B.178: Individuals Mito Bagging CM Figure B.179: Individuals Mito DT CM

Figure B.180: IndividualsMito Gaussian Process
CM

Figure B.181: Individuals Mito k-NN CM
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Figure B.182: Individuals Mito Logistic Regres-
sion CM

Figure B.183: Individuals Mito SVM CM

Figure B.184: Individuals Glycolysis Bagging CM Figure B.185: Individuals Glycolysis DT CM

Figure B.186: Individuals Glycolysis Gaussian
Process CM

Figure B.187: Individuals Glycolysis k-NN CM
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Figure B.188: Individuals Glycolysis Logistic Re-
gression CM

Figure B.189: Individuals Glycolysis SVM CM
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B.2.4 Grouped Drugs

Figure B.190: Groups Mito Bagging CM Figure B.191: Groups Mito DT CM

Figure B.192: Groups Mito Gaussian Process
CM

Figure B.193: Groups Mito k-NN CM
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Figure B.194: Groups Mito Logistic Regression
CM

Figure B.195: Groups Mito SVM CM

Figure B.196: Groups Glycolysis Bagging CM Figure B.197: Groups Glycolysis DT CM

Figure B.198: Groups Glycolysis Gaussian Pro-
cess CM

Figure B.199: Groups Glycolysis k-NN CM



B.2. Classification 149

Figure B.200: Groups Glycolysis Logistic Re-
gression CM

Figure B.201: Groups Glycolysis SVM CM
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B.2.5 No Controls

Figure B.202: No Controls Mito Bagging CM Figure B.203: No Controls Mito DT CM

Figure B.204: No Controls Mito Gaussian Pro-
cess CM

Figure B.205: No Controls Mito k-NN CM
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Figure B.206: No Controls Mito Logistic Re-
gression CM

Figure B.207: No Controls Mito SVM CM

Figure B.208: No Controls Glycolysis Bagging
CM

Figure B.209: No Controls Glycolysis DT CM

Figure B.210: No Controls Glycolysis Gaussian
Process CM

Figure B.211: No Controls Glycolysis k-NN CM
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Figure B.212: No Controls Glycolysis Logistic
Regression CM

Figure B.213: No Controls Glycolysis SVM CM
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Data Balancing

Random Undersampling

Figure B.214: No Controls Mito Undersamp.
Bagging CM

Figure B.215: No Controls Mito Undersamp.
DT CM

Figure B.216: No Controls Mito Undersamp.
Gaussian Process CM

Figure B.217: No Controls Mito Undersamp. k-
NN CM
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Figure B.218: No Controls Mito Undersamp.
Logistic Regression CM

Figure B.219: No Controls Mito Undersamp.
SVM CM

Figure B.220: No Controls Glycolysis Under-
samp. Bagging CM

Figure B.221: No Controls Glycolysis Under-
samp. DT CM

Figure B.222: No Controls Glycolysis Under-
samp. Gaussian Process CM

Figure B.223: No Controls Glycolysis Under-
samp. k-NN CM
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Figure B.224: No Controls Glycolysis Under-
samp. Logistic Regression CM

Figure B.225: No Controls Glycolysis Under-
samp. SVM CM

Random Oversampling

Figure B.226: No Controls Mito Oversamp.
Bagging CM

Figure B.227: No Controls Mito Oversamp. DT
CM
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Figure B.228: No Controls Mito Oversamp.
Gaussian Process CM

Figure B.229: No Controls Mito Oversamp. k-
NN CM

Figure B.230: No Controls Mito Oversamp. Lo-
gistic Regression CM

Figure B.231: No Controls Mito Oversamp.
SVM CM

Figure B.232: No Controls Glycolysis Oversamp.
Bagging CM

Figure B.233: No Controls Glycolysis Oversamp.
DT CM
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Figure B.234: No Controls Glycolysis Oversamp.
Gaussian Process CM

Figure B.235: No Controls Glycolysis Oversamp.
k-NN CM

Figure B.236: No Controls Glycolysis Oversamp.
Logistic Regression CM

Figure B.237: No Controls Glycolysis Oversamp.
SVM CM

Synthetic Minority Over-sampling Technique (SMOTE)
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Figure B.238: No Controls Mito Oversamp.
Bagging CM

Figure B.239: No Controls Mito Oversamp. DT
CM

Figure B.240: No Controls Mito Oversamp.
Gaussian Process CM

Figure B.241: No Controls Mito Oversamp. k-
NN CM

Figure B.242: No Controls Mito Oversamp. Lo-
gistic Regression CM

Figure B.243: No Controls Mito Oversamp.
SVM CM
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Figure B.244: No Controls Glycolysis Oversamp.
Bagging CM

Figure B.245: No Controls Glycolysis Oversamp.
DT CM

Figure B.246: No Controls Glycolysis Oversamp.
Gaussian Process CM

Figure B.247: No Controls Glycolysis Oversamp.
k-NN CM

Figure B.248: No Controls Glycolysis Oversamp.
Logistic Regression CM

Figure B.249: No Controls Glycolysis Oversamp.
SVM CM
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B.2.6 Voting Ensemble

Figure B.250: Voting Ensemble #1 - NN, RF,
Bag., Gau. Proc., Log. Reg., CM

Figure B.251: Voting Ensemble #2 - NN, R,
Bag., Gau. Proc., CM

B.2.7 Expert Ensemble

Figure B.252: Expert Ensemble #1 Equal
Weights - Bag., NN, RF, DT, NN, Gau. Proc.,

SVM CM

Figure B.253: Expert Ensemble #2 Equal
Weights - Bag., NN, RF, DT, Gau. Proc., Gau.

Proc. CM
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Figure B.254: Expert Ensemble #1 - Bag., NN,
RF, DT, NN, Gau. Proc., SVM, 1.0, 0.4, 0.4

CM

Figure B.255: Expert Ensemble #2 - Bag., NN,
RF, DT, NN, Gau. Proc., SVM, 1.0, 0.4, 2.8

CM

Figure B.256: Expert Ensemble #3 - Bag., NN,
RF, DT, NN, Gau. Proc., SVM, 1.0, 1.2, 0.0

CM

Figure B.257: Expert Ensemble #4 - Bag., NN,
RF, DT, NNm Gau. Proc., SVM, 1.8, 0.2, 1.0

CM
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Figure B.258: Expert Ensemble #4 - Bag., NN,
RF, DT, NNm Gau. Proc., SVM, 1.8, 0.2, 3.0

CM

Figure B.259: Expert Ensemble #4 - Bag., NN,
RF, DT, NNm Gau. Proc., SVM, 1.8, 1.0, 3.0

CM
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B.2.8 MitoPorto

Figure B.260: MitoPorto
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Figure B.261: MitoPorto Poster
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Appendix C

Technologies

The development of this project requires the use of several technologies. In order to choose
which tools to use a research was made to gather all the pros and cons of each alternative.
After weighting all the criteria that influenced the choice, the author chose Python as the
programming language to be used. Some of the main reasons to choose it included the
ease of usage, the availability of packages useful to the subject of this project as well
the existing implementations and community for support. Within the Python environment
several packages will be used, nonetheless these are the ones more related to subject:

• Pandas

• SciPy library

• Matplotlib

• Scikit

• NumPy

R was used to perform the all the statistical analysis.
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