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Uncertainty in optimization can be modelled with the concept of scenarios, where

each scenario corresponds to possible values for each parameter of the problem.

The Min-Max Regret criterion aims at obtaining a solution that minimizes the maxi-

mum deviation, over all possible scenarios, from the optimal value of each scenario.

The study of this criterion is motivated by practical applications where an anticipa-

tion of the worst case is crucial. Well-known problems, such as the Shortest Path

problem and the Minimum Spanning Tree become NP-hard with a Min-Max Regret

criterion. Currently, there is a lack of knowledge on how to solve these problems

in an efficient manner. This work consists in developing algorithms based on the

Branch-and-Bound paradigm to solve the Minimum Spanning Tree problem under

a Min-Max Regret criterion. An experimental analysis as well a comparison with a

state-of-the-art pseudo-polynomial algorithm are also reported. The experimental

results showed that this dissertation approach has better performance in most cases.

Keywords. min-max regret, branch-and-bound, minimum spanning tree, com-

binatorial optimization, graph algorithms, performance evaluation
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Chapter 1

Introduction

Combinatorial optimization problems are widely found in several fields that in-

clude, but are not limited to, artificial intelligence, transportation systems, logistics

and telecommunications [15, 27]. These problems consist of finding an optimal ob-

ject from a finite set of objects. For most of them, it is not possible to perform an

exhaustive search for all feasible solutions, since its execution time may be exponen-

tially large [26]. For that reason, there has been a strong focus on the development

of efficient algorithms to solve these problems.

Min-Max and Min-Max Regret (MMR) problems are widely used in decision the-

ory and game theory [5, 29, 25]. These formulations model uncertainty on the objec-

tive function coefficients. The regret version of the problem is useful when the deci-

sion maker may feel regret if the wrong decision is made and it is taken into account

when the problem is being solved. For example, if we make an investment, there is

some expected profit. The profit obtained may be evaluated with some uncertainty

due to various factors, such as, inflation, market evolution, etc. This uncertainty can

take the form of scenarios, which may be discrete or interval. In the discrete scenario,

the scenario is described explicitly by a vector of values in every scenario. In the

interval scenario, each coefficient can take a number from a defined interval.

The Minimum Spanning Tree (MST) problem [14, 8, 22, 1] is a well-known prob-

lem of combinatorial optimization. Given a weighted undirected graph G = (V,E),

where V is the vertex set, E is the edge set and each edge has a positive weight

w(e), e ∈ E, the goal is to find a spanning tree with minimum total weight. A span-

ning tree is a graph without cycles, contains all the vertices in V and is connected.

This formulation is used in several situations, such as network telecommunications.

There exist two main algorithms to solve this problem: Kruskal algorithm and Prim

algorithm [14]. The Min-Max Regret (MMR) Minimum Spanning Tree (MST) prob-

lem consists of finding an MST of a graph with several scenarios, i.e., more than one

value per edge, minimizing the deviation from the optimal MST of each scenario.

Given that the MMR formulation of the MST is NP-hard [3], those algorithms cannot

be applied to solve it.

Branch-and-Bound (B&B) [10] is an algorithm paradigm that implicitly searches
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for an optimum solution among all feasible solutions. This paradigm is used when a

combinatorial optimization problem is known to be NP-hard. It is divided into two

main parts: branching and bounding. The branching does an exhaustive enumeration

of the sub-problems, while the bounding discards solutions to these sub-problems

that do not provably lead to optimal solutions.

This dissertation proposes a solution method to solve the MMR formulation of

the MST under the discrete scenario. In particular, this method consists of an im-

plementation of an MST algorithm to obtain the optimal solution for each scenario,

followed by a Branch-and-Bound (B&B) that uses two bound functions to obtain the

best solution among all scenarios. The first bound function compares a partial so-

lution to an upper bound that is the best solution found so far. If the value of the

partial solution is greater than or equal to the upper bound, then the partial solution

can be discarded since it can not lead to an optimal solution. Afterwards, the second

bound function compares a lower bound of a partial solution to the upper bound.

The lower bound is a point obtained by solving the MST for each scenario consid-

ering the set of vertices not considered in the partial solution. If the value of the

partial solution plus the lower bound is greater than or equal to the upper bound,

then the partial solution can be discarded. Moreover, an initial solution for the B&B

is proposed that is obtained by calculating a weighted sum among scenarios. Finally,

an experimental analysis is reported and the B&B framework is compared to an im-

plementation of a generic pseudo-polynomial algorithm to solve MMR problems as

described by Aissi et al. [4].

The remainder of this document is structured as follows: Chapter 2 describes

the background of the main topics covered in this dissertation. Chapter 3 explains

the main goal of this work and the algorithm proposed for this problem. Chapter 4

presents experimental analysis on a wide range of instances of this problem. Finally,

Chapter 5 concludes this dissertation and discusses some future work.
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Chapter 2

Background

This chapter describes the main topics covered in this work. It introduces a brief

explanation of computational complexity, based on Garey and Johnson [26], Cormen

et al. [14] and Sipsen [28] as well as the Minimum Spanning Tree (MST) problem

and its most important algorithms, based on the descriptions given in Cormen et

al. [14]. Afterwards, the Min-Max Regret (MMR) formulation is described, based

on the work in Aissi et al. [5] for the MST problem. Finally, the Branch-and-Bound

(B&B) approach for combinatorial optimization problems is introduced, based on

the article of Clausen [10].

2.1 Computational Complexity

Computational complexity [26, 14, 28] focuses on classifying problems according to

their difficulty of being solved. A problem is defined as a task to be solved, usually

on a computer, by a series of steps, i.e., an algorithm. For convenience, this classifi-

cation is only done in decision problems, i.e., problems that only have two solutions:

yes or no. This facilitates the formal definition of the problems, since they are ap-

propriate to be studied in a more precise manner in terms of theory of computation.

Therefore, the counterpart of the problem is defined by a language, with a finite set

of symbols. To correspond these languages to decision problems, and viceversa, an

encoding scheme is defined. This encoding scheme defines the representation of the

data into the language. To apply the representation to the decision problem, a decod-

ing is applied. Therefore, the encoding defines the transformation of the data into

the language and the decoding defines the transformation of the encoded data into

the original data of the decision problem. An optimization problem may be easily

turned into a decision problem by adding a constraint to the problem, making it

possible to solve the question with a yes or no answer.

To formalize an algorithm, a Deterministic Turing Machine (DTM) model is used.

A DTM is an abstract machine that is composed of a finite state control, a read-write

head and a tape. This model manipulates symbols on the tape by using a set of rules.

Despite being a simple model, it is capable of simulating any algorithm’s logic [28].
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There exist two important classes to classify the problems by time complexity:

P and NP. Class P represents the set of problems for which there is a polynomial

time DTM program that finds the yes/no answer to the problem p represented by

a language L under an encoding scheme e. Class NP represents the set of problems

for which a Non Deterministic Turing Machine (NDTM) program finds the yes/no

answer to the problem p, in polynomial time. The NDTM implies some guess of the

answer, since polynomial time solvability does not imply polynomial time verifia-

bility. In a problem that belongs to the NP class, it is possible to check if a solution

X belongs to the problem in polynomial time, but it is not possible to search all

solutions, in polynomial time, to find the desired one.

The relation between P and NP is not yet known. If P = NP, then there must be a

deterministic algorithm that may solve any problem in polynomial time. Since, until

now, no algorithm capable of solving any problem has been found, it is believed

that P 6= NP. Under this assumption, there are two important subsets of the NP

class. First, there is the NP-complete class, which contains all the hardest problems

that are in NP, i.e., a decision problem dp belongs to NP-complete only if dp belongs

to NP and every problem in NP is reducible in polynomial time. Reducibility is the

process of transforming one problem into another. Finally, there is the NP-hard class,

which describes the hardest decision problems in NP, even the ones that may not be

decidable, i.e., problems that are impossible to solve. It is conjectured that the NP-

complete class is a subset of the NP-hard class and even problems that are not in NP

belong to NP-hard.

2.2 Graph, Tree, Forest and Spanning Tree

In order to define an MST, is necessary to define a graph, a tree, a forest and a span-

ning tree. A graph G is an abstract mathematical structure composed of two finite

sets, V and E, usually represented by a set of circles (V ) and lines (E) as shown

in Figure 2.1 (left) and denoted by G = (V,E). V represents the set of vertices (or

nodes), |V | represents the number of vertices, E represents the set of edges and |E|
represents the number of edges in the graph. In a graph, each edge is a connection

between two vertices.

There are several graph structures depending on the definition of the set E. If an

edge consists of unordered pairs of vertices, then the graph is undirected, as shown

in Figure 2.1 (left). If an edge consists of ordered pairs of vertices, then the graph

(or digraph) is directed, as shown in Figure 2.2 (left). Finally, if an edge consists of

repeated pairs of vertices, then the graph is a multigraph, as shown in Figure 2.2

(right). Also, it is possible to have weighted graphs. These graphs have weights

associated to each edge, w(e), e ∈ E, indicating a cost to transition from one vertex
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FIGURE 2.1: A graph with one cycle (left) and a spanning tree (right)

to another as shown in Figure 2.3. In this dissertation the focus is on undirected

weighted graphs.

A graph can be sparse or dense depending on its number of edges [14]. A sparse

graph has a low number of edges, i.e., |E| is much lesser than |V |2. A dense graph

has a high number of edges, i.e., |E| is close to |V |2. An example of a dense graph is

a complete graph [16], denoted by Kn, where n denotes the number of vertices |V |,
every vertex is adjacent to every other vertex and its number of edges is n(n−1)

2 .

A tree [16] is a connected graph without cycles. If it has |V | vertices, then it is

composed of |V | − 1 edges. In a connected graph there is a path between every pair

of vertices. A cycle is a connection between two vertices where, at least, one has

already been visited. A forest [16] is an undirected acyclic graph, where all of its

components are trees.

Finally, a spanning tree is a tree that contains all the vertices in V . For example,

Figure 2.1 shows a graph (left) and one of its spanning trees (right). Note that from

this connected graph, it is possible to obtain several spanning trees. By Cayley’s

Formula [2], is possible to conclude that, on a complete graph, there are |V ||V |−2

spanning trees.

There exist two methods to obtain a spanning tree from a graph: building-up

and cutting-down. The building-up method starts with the original graph without

edges and adds one edge at a time without creating cycles until a spanning tree is

obtained. Using Figure 2.1 (right) as an example, the method chooses edges (A,D),

(B,C), (E,F ), (A,B) and (C,F ). The cutting-down method starts with the original

graph and removes edges keeping the connectedness of the resulting graph until a

spanning tree is obtained. To obtain the spanning tree from the graph of Figure 2.1

(right), only edges (B,D) and (D,E) would need to be removed.

2.3 Minimum Spanning Tree

When the graph has weights associated to the edges, as seen Figure 2.3, one could

be interested in finding an Minimum Spanning Tree (MST). The goal of an MST al-

gorithm is to find the spanning tree of a graph whose total weight, that is, the sum
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FIGURE 2.2: A digraph (left) and multigraph (right)
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FIGURE 2.3: An undirected weighted graph

of the weights of the tree’s edges, is as minimum as possible. This problem belongs

to the P class since there are algorithms that solve it in polynomial amount of time.

MST problems arise very often in network telecommunications, for instance, to min-

imize the amount of cable needed to connect a given number of routers. Supposing

that the graph in Figure 2.3 is a network that connects several routers in a company,

the routers can be connected as a spanning tree to avoid redundancy and as an MST

to save on the length of cable.

There are two main algorithms to solve the MST problem in a connected undi-

rected graph, Kruskal and Prim [14]. Although this document focuses on Prim’s

algorithm, an explanation of Kruskal’s algorithm is also provided.

2.3.1 Kruskal Algorithm

Kruskal algorithm is a greedy algorithm. A greedy algorithm [14] is an algorithm

that chooses the option that seems the best at each moment. Although in general, a

greedy algorithm only finds approximations to the optimal solution, Kruskal algo-

rithm ensures that the optimal solution is found. For efficiency reasons, it is assumed

that the edges are sorted in a non-decreasing order. This algorithm is more efficient

for sparse graphs [14].

To generate the MST, Kruskal algorithm goes through each edge {u, v} ∈ G and

checks if the vertices u and v are in different components of the forest. If they are,

both components are joined into one. This ensures that the algorithm does not accept

edges that cause cycles.
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Algorithm 2.1: Kruskal Algorithm
Data: G(V,E)
Result: Set A with the MST

Function Kruskal(G)
A← ∅
foreach vertex v ∈ G do

MakeSet(v)
G′ ← Sort edges of G by non decreasing weight
foreach edge {u, v} ∈ G′ do

if Find(u) 6= Find(v) then
A.append({u, v})
Union(u, v)

return A

In order to improve the efficiency of Kruskal algorithm, a disjoint-set data struc-

ture is used for maintaining the forest being created. This data structure uses a Make-

Set operation, which creates |V | subsets, each of which containing a distinct vertex

in the forest, a Find operation that searches for the subset to which a specific element

belongs to and a Union operation that joins the two subsets into a single one. The

pseudo-code of Kruskal algorithm is described in Algorithm 2.1.

In the following, the several steps of Kruskal algorithm in the graph of Figure 2.3

are illustrated. First, the algorithm initializes the set with singletons, in this case, six

sets with one different vertex in each singleton. Afterwards, the edges are sorted in a

non-decreasing order of their weights. The order, in this example, is: {B,C}, {B,D},
{C,F}, {A,B}, {E,F}, {A,D} and {D,E}. Finally, the algorithm follows the sorted

list of edges and, for each vertex u and v, it compares if they belong to the same set

using the Find operation. This ensures that the algorithm does not add a vertex to

the set that causes a cycle. If they do not belong to the same set, the edge is added

to the set containing the forest being created and the Union operation updates the

Union-Find data structure by merging the two subsets into one, as shown in Figure

2.4. Its complexity is given by O(|E| log |V |). The time complexity can be improved

with the path compression technique. In this case, the time complexity becomes

O(|V | log |V |) [14].

2.3.2 Prim Algorithm

Prim algorithm is also a greedy algorithm that, at each iteration, adds an edge with

minimum weight to the current tree such that no cycle is created, ensuring the cor-

rectness of the final tree. Also, it is similar to Dijkstra algorithm to find the shortest

path in a graph. This algorithm is more efficient for dense graphs [14].

To generate the MST, Prim algorithm (see Algorithm 2.2) selects a random vertex

u and builds up a tree until all vertices in G are chosen. This tree is generated by
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FIGURE 2.4: An MST from the graph in Figure 2.3

Algorithm 2.2: Prim Algorithm
Data: G(V,E), root vertex r

Function Prim(G, r)
foreach vertex u ∈ G do

u.key ←∞
u.parent← NULL

r.key ← 0
Q← G
while Q 6= ∅ do

u← ExtractMin (Q)
foreach edge {u, v} ∈ G do

if v ∈ Q and w(u, v)< v.key then
v.parent← u
v.key ← w(u, v)

choosing the lowest weighted edge that connects the vertex to the tree. To optimize

the choice of the next edge, the algorithm implements a min-priority queue, a queue

based on an attribute. This attribute is unique to each vertex and is the smallest

weight of an edge incident to that vertex.

Figure 2.3 is used to show how this algorithm works. First, a random vertex is

chosen, for example, A. Next, the edge with the lowest weight is chosen, {A,B}.
Afterwards, {B,C} is the edge with the lowest weight, so this will be the next edge

added to the tree. Then, edges {B,D}, {C,F} and {E,F} are chosen in this order.

The result, as in Kruskal algorithm, is an MST as shown in Figure 2.4. Its complexity,

similarly to that of Kruskal algorithm, is O(|E| log |V |), if a binary heap is used in

the min-priority queue. A binary heap [14] is heap data structure that behaves as a

binary tree. A heap is a tree that satisfies the following condition: a vertex u with

a parent v has a value (key) ordered with respect to its parent’s key. There are two

types of heaps: min-heap and max-heap. The first minimizes the parent’s key, while the

former maximizes it. When a fibonacci heap is used, the complexity of Prim algorithm

becomes O(|E| + |V | log |V |) [14]. A fibonacci heap is a type of heap that has several

operations with amortized constant time.
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Note that different MSTs may be generated with these algorithms if there are

edges with the same weight.

2.4 Min-Max Regret Criterion

In this dissertation, optimization problems under MMR criterion are considered. An

optimization problem consists of a set of feasible solutions, an objective function and

a set of constraints. A combinatorial optimization problem is an optimization prob-

lem with discrete variables and a finite set of feasible solutions [15]. The optimiza-

tion problem with MMR criterion is a possible formulation when exists uncertainty

on the objective function coefficients. An objective function f is a function to be min-

imized or maximized over the set X of feasible solutions. X is defined by a set of

constraints of the problem. The uncertainty composes a scenario and the goal is to

find a solution that minimizes the deviation between the value of the solution and

the value of the optimal solution for each scenario. This way, the regret of a wrong

decision is taken into account into the problem when the decision is being made.

This problem formulation differs from the usual Min-Max formulation whose

goal is to obtain the solution at its best possible performance in the worst-case sce-

narios. The Min-Max formulation of a linear sum optimization problem is formu-

lated as follows:

min
x∈X

max
s∈S

f(x, s) (2.1)

where f(x, s) is the value of a solution x under a scenario s ∈ S, S is the set of

scenarios and X is the set of feasible solutions.

The i-th coefficient in a problem instance according to a scenario s is denoted by

csi . It is assumed that the value of a solution x = {x1, . . . , xm}, where m denotes

the number of coefficients, is calculated by f(x, s) =
∑m

i=1 c
s
ixi. The values of this

vector are defined by the types of scenarios considered, which will be described

later in this section. The value of the optimal solution x∗s in a scenario s is denoted

as f∗s = f(x∗s, s).

For a given solution x ∈ X and scenario s ∈ S, the regretR is defined asR(x, s) =

f(x, s)− f∗s . Then, its maximum regret Rmax(x) of a given solution x is defined as:

Rmax(x) = max
s∈S

R(x, s) (2.2)

A possible way to state the MMR problem, as shown in [5] is as follows:

min
x∈X

Rmax(x) = min
x∈X

max
s∈S

(f(x, s)− f∗s ) (2.3)

There are two natural ways of describing the set of all possible scenarios: discrete

scenario and interval scenario. This document focuses on the discrete scenario case.
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FIGURE 2.5: Two instances for Example 1 (left) and Example 2 (right)

2.4.1 Discrete Scenario

In the Min-Max Regret (MMR) Minimum Spanning Tree (MST) under the discrete

scenario, cs is a vector of size m, where each coefficient csi corresponds to an edge

on the graph in a scenario s. The coefficient is represented by cs = (cs1, . . . , c
s
m),

where csi ∈ N, i = 1, . . . ,m. This version assumes a finite set of scenarios s ∈ S. In

this type of scenario, first, the optimal value f∗s for each scenario s ∈ S is obtained

and, finally, an MST that solves Problem 2.3 is sought. In the following, the MST

formulation with two examples, based on Figure 2.5 are illustrated.

Example 1 (left): in this example there is a graph with 4 vertices and 2 scenarios,

S = {s1, s2}. For the first scenario s1, the optimal value obtained by calculating the

MST is f∗1 = 5, with edges E1 = {{A,C}, {A,D}, {B,D}}. For the second scenario

s2, the optimal value is f∗2 = 5, with edges E2 = {{A,D}, {B,C}, {C,D}}. The

optimal MST for this MMR example is MST = {{A,C}, {A,D}, {B,C}}with value

(7, 6) and Rmax(MST ) = max(7− 5, 6− 5) = 2.

Example 2 (right): in this example there is a graph with 4 vertices and 2 scenarios,

S = {s1, s2}. Assuming that 0 < ε < 1 and γ > 1 is a large integer value, for the

first scenario s1, the optimal value obtained by calculating the MST is f∗1 = 1 + 2ε

with edges E1 = {{A,D}, {B,C}, {C,D}}. For the second scenario s2, the optimal

value is f∗2 = 1 + 2ε with edges E2 = {{A,B}, {A,D}, {B,C}}. The optimal MST for

this MMR example is MST = {{A,C}, {A,D}, {B,C}}with value (2 + ε, 2 + ε) and

Rmax(MST ) = 1 − ε. This example shows that the optimal value of the MMRMST

can be arbitrarily far from the optimal value for each scenario.

In the next Section, a general pseudo-polynomial algorithm to solve MMR dis-

crete problems is described.
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A General Pseudo-Polynomial Algorithm

Aissi et al [4] introduces a general pseudo-polynomial algorithm to solve MMR opti-

mization problems. A pseudo-polynomial algorithm is an algorithm that is polyno-

mial in its number of inputs but exponential in the length of the input. This length

is the number of bits necessary to write the input. This algorithm solves a sequence

of decision problems for every possible value of a modified objective function. This

transformation consists in aggregating the several scenarios into one. The authors

show that, once a solution is found for the related decision problem, it is also a so-

lution for the original MMR problem. This decision problem needs to be solvable

in polynomial or pseudo-polynomial time to ensure that the overall performance is

pseudo-polynomial.

This algorithm (see Algorithm 2.3) starts by calculating the optimal value f∗s for

each scenario s ∈ S and by generating an instance I ′. Then, for an increasing order

of all possible values v = 0, . . . ,mM −maxs∈S f
∗
s , where M = maxi,s c

s
i , it decides if

there exist a solution for instance I ′ with a specific value αp for a p that describes a

p-th scenario, p = 1, . . . , k and k = |S|, where αp ≤ f∗p + v and there is a q ≤ k, such

that, αq = f∗q + v. The authors show that these conditions can be transformed into a

unique condition, as shown in the following equation:

k∑
p=1

f(x, p)(mM + 1)p−1 =
k∑

p=1

αp(mM + 1)p−1 (2.4)

Then, this problem can be solved by finding a solution with value
∑k

p=1 αp(mM +

1)p−1 in an instance I ′. This instance I ′ is obtained from the original instance prob-

lem by aggregating its coefficients among scenarios. This way, the coefficients in I ′

are obtained as follows:

c′i =
k∑

p=1

csi (mM + 1)p−1 (2.5)

The ValueFound function in Algorithm 2.3 finds if the value obtained in each

loop iteration given by Equation 2.4 corresponds to the value of a feasible solution.

A way to ensure that this value is found, is to enumerate all feasible solutions in

the modified instance I ′. Since I ′ is an aggregation of all coefficients on the original

instance, this problem has now only one scenario. Considering there is only an in-

terest on the solution value, a possibility is to enumerate all possible values for all

feasible spanning trees in I ′. Barahona and Pulleyblank [6] show that it is possible

to enumerate all possible values for all feasible spanning trees of a graph using a

polynomial function. Let MX be a matrix |V |x|V | constructed as shown in Equation

2.7. Let D(MX) be the determinant of the matrix M obtained by removing the first
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Algorithm 2.3: Pseudo-polynomial algorithm for the MMR problem [4]
Data: I ′, f∗s for all s ∈ S
Result: Optimal solution v

Function Pseudopolynomial(I ′, f∗s )
v ← 0
test← false
while test 6= true do

for (α1, . . . , αk) : max{α1 − f∗1 , . . . , αk − f∗k} = v do
value←

∑k
p=1 αp(mM + 1)p−1

if ValueFound(I ′, value) then
test← true

if test 6= true then
v = v + 1

return v

A B

C

2

34

A B C
A x2 + x4 −x2 −x4
B −x2 x2 + x3 −x3
C −x4 −x3 x3 + x4

FIGURE 2.6: Example graph (left) and its polynomial matrix MX
(right)

row and column, corresponding to root vertex. The authors show that the equal-

ity in Equation 2.6 holds, where in this polynomial function, ak corresponds to the

number of spanning trees with value k.

D(M) =
∑

akx
k (2.6)

Mij(x) =

{
−xw(j,i) if (j, i) /∈ E, i 6= j

0 if (j, i) /∈ E, i 6= j

(2.7)

Mii(x) =
∑
j 6=i

−Mij(x)

In order to illustrate these results, an example is shown in Figure 2.6. In this

example, a complete graph (left) with three vertices is represented. Matrix MX

is shown in Figure 2.6 (right), using Equation 2.7. Then, the polynomial determi-

nant, D(MX) = ((x2 · x3) · (x3 · x4)) − (x3 · x3) = x5 + x6 + x7 is obtained. This

solution indicates that there are three spanning trees in this graph with values 5,

6 and 7. These values correspond to the spanning trees ST1 = {{A,B}, {B,C}},
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ST2 = {{A,B}, {A,C}} and ST3 = {{A,C}, {B,C}}, respectively.

2.4.2 Interval Scenario

In the interval scenario case, each coefficient ci has a value in a given interval [ci, c̄i],

where 0 ≤ ci ≤ c̄i and i = 1, . . . , n. The set of scenarios S is obtained by the carte-

sian product of the intervals. Similarly to the discrete scenario case, the method to

obtain the optimal solution is by calculating an optimal solution x∗s for each scenario

individually and then calculating minRmax(x).

In the next section, several algorithms to solve MMR interval problems are pre-

sented.

Interval Algorithms

Makuchowski [21] introduces a perturbation algorithm for a MMRMST interval sce-

nario formulation. A perturbation algorithm is a modification of an existing algo-

rithm, usually a construction algorithm. This algorithm applies multiple random

perturbations on the input data and then solves this problem with modified input

data, using a base algorithm. Then, this solution is tested on the original input data.

After performing n iterations, the algorithm returns the best solution found thus far.

It should be noted that this algorithm is only able to return an approximation to the

optimal solution.

Montemanni and Gambardella [23] describe an exact algorithm for the MMR

shortest path formulation. In a shortest path problem [14] the goal is to finding the

minimum weight path in a given weighted directed graph.

Kasperski and Zieliński [17] describe a polynomial time approximation algo-

rithm for generic MMR interval problems. First, the algorithm calculates, for each

coefficient, a fixed value with the midpoint of their interval values, csi = 1
2(ci + c̄i).

Then, an algorithm to solve the problem is applied to only this new scenario s. The

authors show that this algorithm has a performance ratio of at most 2, i.e., the ob-

tained solution is, at most, 2 times worse than the optimal solution.

2.5 Branch-and-Bound

In B&B the goal is to search for the optimal solution, among an interesting set of

candidate solutions. When all candidate solutions have been implicitly visited, the

optimal solution is the best solution found so far. This search process can be seen

as a decision tree. A decision tree is a method to display the search process of an

algorithm by drawing a graph, as a tree. Each vertex of this tree corresponds to a

state of the search. A subproblem is used to denote a new problem with additional

constraints obtained from the original problem and it corresponds to a subspace of
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the original space of solutions. There are several subproblems, where each one starts

in a given vertex and contains all the subproblems that can be generated from the

actual subproblem.

For the explanation, an optimization problem is assumed, with an objective func-

tion f , variables {x1, . . . , xn} and a set X of feasible solutions. Without loss of gen-

erality, minimization is assumed, as follows:

min
x∈X

f(x) (2.8)

Usually, these problems have constraints. Let P denote the set of solutions that

are obtained by relaxing some of these constraints, that is X ⊆ P . A bounding

function g(x), such that g(x) ≤ f(x), for all x ∈ X , is also defined.

There are critical subproblems that, when having a bounding function applied to

them, the obtained value is strictly lesser than the optimal solution to the problem.

At the end, they are used to prove optimality when the value has been discovered.

There are four important steps in each iteration of the algorithm: branching, bounding,

selecting a candidate solution from the subset of available solutions (also called the next

subproblem) and choosing a good initial solution.

2.5.1 Branching

An important step on a B&B algorithm is branching. This consists of partitioning the

search space based on the assignment of values to a certain variable. There are two

types of branching: dichotomic and polytomic. When the search space is divided in

two parts, the branching is dichotomic, otherwise it is polytomic. To ensure the con-

vergence of a B&B algorithm it is necessary to ensure that the size of each subprob-

lem is smaller than the original problem and the solutions are finite. This branching

is also used in exhaustive enumeration algorithms.

2.5.2 Bounding

The bounding function is also an important component of a B&B algorithm because

it makes it possible to discard (partial) solutions that will provably not lead to the

optimum. The solutions are discarded based on a bounding function. A bounding

function may be strong or weak, depending on the problem and the values obtained

from it. There are three problems that are useful to discard solutions:

min
x∈X

g(x) (2.9)

min
x∈P

f(x) (2.10)

min
x∈P

g(x) (2.11)
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Problem 2.9 consists of finding the solution that minimizes the bounding func-

tion, i.e., the objective function is modified and ensures that g(x) ≤ f(x), for all,

x ∈ X . Problem 2.10 consists in a relaxation, i.e., removing some constraints from

the original problem or relaxing them. Finally, Problem 2.11 consists of combining

the two strategies. This combination may seem weaker, but may be strong enough

if P and g are chosen correctly. The following relation holds for the three problems:

min
x∈P

g(x) ≤

{
minx∈P f(x)

minx∈X g(x)

}
≤ min

x∈X
f(x) (2.12)

These three problems give lower bounds on the original problem and can be used

to discard solutions during the search process if the optimal value is worse than the

best solution value found so far.

2.5.3 Selection of a Candidate Solution

When selecting a candidate solution from the subset of available solutions there is a

trade off between having a low number of explored solutions and not exceeding the

memory of the computer. In order to handle this, two strategies have been proposed:

Best First Search (BeFS) and Depth First Search (DeFS). The BeFS strategy chooses the

subproblem with the lowest bound. This strategy usually consumes more memory

when the given problem has a large number of critical subproblems as they can not

be discarded. Also, it needs to store the subproblems from each level. The alternative

is to use a DeFS strategy, which requires much less memory since it only stores in

memory the children of the actual solution in the space search. A problem occurs

when the optimal solution is far from the actual solution, since it need to search for

many other solutions until reaching a leaf. In order to avoid these problems, usually

a combination of BeFS and DeFS is applied.

2.5.4 Good Initial Solution

A good initial solution allows the algorithm to discard more partial solutions. Since

the best solution is set to infinity at the beginning, a lot more solutions are to be ana-

lyzed. The tighter the initial solution is, the more partial solutions that do not lead to

the optimal solution are discarded. There are several strategies to obtain the initial

solution, where the most common are using heuristics, such as Simulated Anneal-

ing, Genetic Algorithms or Tabu Search. This constrains the number of subproblems

to be explored, specially on a DeFS strategy for selecting solutions. The arrange-

ment of the previously defined steps depends on the problem or the strategy used

to solve it. One strategy is to first calculate the bound of the selected solution and

then branch on the solution if necessary, also called lazy strategy. If the eager strategy
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is used instead, the branching is applied first, to subdivide the actual space of solu-

tions into smaller subspaces. This way, at least two child solutions are constructed

after being added constraints to the subproblem.

In the next chapter, a B&B framework implementation and several improve-

ments are described.
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Chapter 3

A Branch-and-Bound Framework

The purpose of this chapter is to describe a Branch-and-Bound (B&B) framework to

solve the Min-Max Regret (MMR) Minimum Spanning Tree (MST) problem. First,

it describes the implementation to obtain the optimal solution f∗s for each scenario

s ∈ S, where S denotes the set of scenarios, using Prim algorithm. Then, it de-

scribes the branching and selection of a candidate solution implementation to solve

the MMRMST problem by enumerating all spanning trees in a graph, based on the

algorithm described by Gabow and Myers [13] and two bound functions. Also,

an implementation of an initial solution is described. Finally, a multithreading im-

provement is described.

3.1 Solving each Scenario

To obtain an optimal solution for each scenario s ∈ S in the MMRMST problem, an

MST algorithm needs to be implemented. As explained in Section 2.2, in this disser-

tation the focus is on undirected weighted complete graphs with positive weights,

since they are the worst-case instances of undirected graphs. Therefore, the algo-

rithm used is Prim algorithm (see Algorithm 2.2), since it performs better in dense

graphs [14]. It is assumed that the optimal value for all scenarios are stored in an

array called opt.

3.2 Branching and Selection of a Candidate Solution

In this section, the algorithm for generating all spanning trees in a graph is described.

This algorithm is based on the approach of Gabow and Myers [13], since it does

not generate duplicated spanning trees. It is the basis for the B&B that is proposed

in this dissertation. The authors show that this algorithm has complexity O(|V |N),

whereN denotes the number of spanning trees in a given graph. As noted in Section

2.2, in a complete graph there are N = |V ||V |−2 spanning trees, therefore its time

complexity is exponential, O(|V ||V |−1), for complete graphs. It is important to note

that this algorithm can be used in directed and undirected graphs.
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This algorithm is called recursively and uses a method for detecting bridges us-

ing the Depth First Search (DeFS) principle. A bridge is an edge that when deleted

increments the number of connected components in a graph, i.e., separates the graph

into two or more subgraphs. It finds all spanning trees containing a given subtree in

a starting vertex. It proceeds by choosing an edge ei incident to a vertex visited and

a non-visited. Then, all spanning trees containing that edge are found. Next, this

edge is deleted, is chosen another edge and the same steps are done until a bridge

is found. This bridge is found at the end of the series of steps by a bridge test and

ensures that all spanning trees are found exactly once.

The pseudo-code of the approach to generate all spanning trees is given in Algo-

rithm 3.1. The algorithm starts with a vertex r, which is marked as visited. During

the construction, two lists, F and T , are implemented. These two lists act as a stack.

Therefore, the selection of the candidate solution in each iteration uses a DeFS prin-

ciple, as explained in Section 2.5.3. List F contains the candidate edges to the span-

ning tree being constructed and list T contains the actual spanning tree. In addition,

there are two arrays (as global variables) used in this algorithm: an array visited

contains the vertices visited and the opt array is used to calculate the maximum regret

of each partial solution. At the beginning, all edges (r, u) ∈ G are added to list F .

Afterwards, there exists a variable denoted by best, which contains the best solution

found so far and is initialized to infinity.

The input of the algorithm is given by two parameters. First, it receives a value

n that denotes the number of vertices visited at the moment. It is used to indicate

when the actual spanning tree contains all the vertices. In its first call, is set to 1.

Second, it receives an array val, which indicates the actual value for each scenario of

the actual spanning tree T . It is used to calculate the maximum regret of the partial

solution. In its first call, is set to 0 for all scenarios s ∈ S.

In each recursive function call, there is a verification to check if all vertices have

been visited (line 2). When the algorithm starts, the number of vertices visited is

one, therefore it jumps to the else condition (line 6). Then, a variable denoted by b

is set to false. This variable is used in the while condition to check if the chosen

edge is a bridge, to ensure that all spanning trees are found. Also, two local lists

FF and restore are set as empty. The first list is used to store all edges used and

marked as visited in the graph, in order to restore them when the edge is a bridge.

The second list is used to restore edges that are removed from the F list. When it

enters the while condition, an edge e is popped from F (line 11). This edge has a

vertex u already visited and a vertex v not visited. This vertex v is obtained by using

function Extract (line 12). Then, edge e is pushed into list T and v is marked as

visited (lines 13-14).

Next, some operations on list F are performed. First, all edges (v, w), w /∈ T , i.e.,
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Algorithm 3.1: Branch Algorithm based on [13]
Data: G(V,E), root vertex r
Result: Finds all spanning trees in G and returns the optimal solution for the

MMRMST problem
1 Function Branch(n, val)
2 if n = |V | then
3 r_max← Rmax(val)
4 if best > r_max then
5 best← r_max
6 else
7 b← false
8 FF, restore← ∅
9

10 while b = false do
11 e← F.Pop()
12 v ← Extract (e)
13 T.Push(e)
14 visited[v]← true
15 F.Push(v, w), w /∈ T
16 foreach edge (w, v) ∈ F do
17 restore.Push(w, v)
18 F.Remove(w, v)

19 foreach scenario s ∈ S do
20 val[s] += ω(e, s)
21 Branch(n+ 1, val)
22 foreach scenario s ∈ S do
23 val[s] −= ω(e, s)
24 F.Remove(v, w), w /∈ T
25 foreach edge (w, v) ∈ restore do
26 F.Push(w, v)
27 restore.Remove(w, v)

28 visited[v]← false
29 T.Pop (e)
30 G.Pop (e)
31 FF.Push(e)
32 b← BridgeTest()

33

34 Restore each edge (u, v) from FF to F and G

all edges incident to v and incident to vertices that are not yet visited, are pushed

into F (line 15). Now, all edges (w, v) ∈ T , i.e., all edges incident to v that were

already visited, are removed from F and pushed into restore, together with their

original position on list F (lines 16-18). This way, list F has only edges (u,w) such

that w /∈ T . Then, the val array is updated with the weight ω of edge e for each

scenario s ∈ S (lines 19-20).

Finally, the function is called recursively with updated val and n is incremented

by 1 (line 21). After this recursive call is made and the algorithm backtracks, the
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operations above are undone. Array val is update with the removal of the previous

weight ω (lines 22-23). All edges (v, w), w /∈ T are removed and all edges previously

removed and existing in restore list are restored in their original positions (lines 25-

27). Then, vertex v is marked as unvisited and edge e is removed from list T and

removed from the graph and pushed into list FF (lines 28-31). This allows us to

restore this edge, and all other edges used in the process, when a bridge is detected

(line 34). Finally, the bridge test is performed in Function BridgeTest (line 32).

This test is explained in the approach of Gabow and Myers [13], using the DeFS

principle.

3.3 Bounding

In the following, two bounding functions are introduced. Let T be a partial solution,

Nu denote the set of vertices for which a decision has not yet taken in the search

process and UB be an upper bound on the optimal solution, for example, the best

solution found during the search process. Finally, let f(T ) = Rmax(T ) (see Equation

2.2) and f(UB) = Rmax(UB).

Bound 1: If f(T ) ≥ f(UB), T can be discarded as it will not lead to optimal

solutions.

Let s1, s2 ∈ S be two scenarios, f∗s1,s2 = (α, β) be the optimal solutions for each

scenario s, UB = (γ, ω) and T = (a, b). By Equation 2.2, f(UB) = max(γ − α, ω − β)

and f(T ) = max(a− α, b− β). Without loss of generality, lets assume that f(UB) =

(γ − α) and f(T ) = (b − β). Therefore, if (b − β) ≥ (γ − α), this solution will not

lead to an optimal solution, since the maximum regret of any extension of T is always

greater.

Figure 3.1 illustrates an instance of the algorithm using Bound 1. The optimal

solution value f∗s is obtained by MST1 and MST2, therefore, f∗s1,s2 = (1, 1). Also,

the best solution found so far is UB = (5, 6), f(UB) = max(5 − 1, 6 − 1) = 5. Note

that a partial solution with value T1 can not be discarded, since it may lead to an

optimal solution. This is easy to observe since f(T1) = max(4 − 1, 4 − 1) = 3 and

f(UB) = 5, therefore f(T1) � f(UB). However, note that T2 can be discarded, since

f(T2) = max(7− 1, 8− 1) = 7, therefore f(T2) > f(UB). Finally, for similar reasons,

T3 can be discarded as well. This happens because its value is the same as f(UB),

f(T3) = max(6 − 1, 5 − 1) = 5, therefore f(T3) = f(UB).1 Any solution that lies

inside the red rectangle can not be discarded since the optimal solution value of the

maximum regret value is lesser than the one obtained by UB.

1Note that only graphs with positive weights are considered.
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FIGURE 3.1: Bound 1 example

Bound 2: Let LB be a lower bound. LB can be obtained by solving the MST

for the subproblem defined by the vertices in Nu for each scenario s ∈ S. Then, if

f(T ) + LB ≥ f(UB), T can be discarded.

As shown for Bound 1, let s1, s2 ∈ S be the scenarios, f∗s1,s2 = (α, β) be the optimal

solutions for each scenario s, UB = (γ, ω) and T = (a, b). Also, let LB = (LBa, LBb).

By Equation 2.2, f(UB) = max(γ − α, ω − β) and f(T ) + LB = max(a + LBa −
α, b + LBb − β). Without loss of generality, lets assume that f(UB) = (γ − α) and

f(T )+LB = (b+LBb−β). Therefore, if (b+LBb−β) ≥ (γ−α), this solution will not

lead to an optimal solution, since the maximum regret of any extension of T is always

greater. Also, each MST obtained is the best solution for each scenario s individually,

therefore the actual weights are greater than or equal to the MST obtained.

Figure 3.2 illustrates an instance of the algorithm using Bound 2. The optimal

solution f∗s is obtained by MST1 and MST2, therefore, f∗s1,s2 = (1, 1). Also, the best

solution found so far is UB = (5, 6), f(UB) = max(5 − 1, 6 − 1) = 5. T1 can not

be discarded since it may lead to an optimal solution. This easy to observe since

f(T1) + LB1 = max(3 + 2 − 1, 2 + 1 − 1) = 4, therefore f(T1) + LB1 � f(UB).

T2 can be discarded, since f(T2) + LB2 = max(4 + 3 − 1, 5 + 3 − 1) = 7, therefore

f(T2)+LB2 > f(UB). The red dotted lines denote the solution obtained by LB with

the vertices in Nu for scenarios s1, s2.
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FIGURE 3.2: Bound 2 example

These two bounds are implemented in the branching algorithm. For each func-

tion call, it verifies Bound 1, and if it fails, it verifies Bound 2. This may be imple-

mented between lines 1 and 2 in Algorithm 3.1.

3.4 Initial Solution

To allow the algorithm to discard more partial solutions at the beginning, a proce-

dure that computes an initial solution has been implemented. This procedure con-

sists of finding a solution for a weighted sum problem with a single scenario where

the coefficients are computated as follows:

ci =

|S|∑
p=1

ωpc
p
i (3.1)

where p indicates the p-th scenario, p = 1, . . . , |S|, ωp indicates a previously defined

weight for each p-th scenario, such that (ω1 + . . .+ω|S|) = 1. By solving the problem

for different weights, different initial solutions can be provided. Prim algorithm can

be used to solve the weighted sum problem, since it contains only one scenario and

the initial solution is calculated using the maximum regret Equation 2.2. Note that this
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problem corresponds to an MST problem and becomes the initial solution of best in

Algorithm 3.1.

3.5 Multithreading

A multithreading version of the B&B framework is implemented as well. The threads

only share the optimal solution for each scenario f∗s , the best solution found so far

and the best initial solution found. Therefore, each thread has its own weight ωp to

obtain an initial solution independent from the other threads. This allows the al-

gorithm to obtain a better initial solution, since the best from all threads is used as

initial solution of best in Algorithm 3.1. Also, each thread has a different vertex r.





25

Chapter 4

Experimental analysis

In this chapter an experimental analysis of the Branch-and-Bound (B&B) framework

is described. As previously indicated, the graphs used in the experiments are com-

plete graphs. To generate these random complete graphs, a python (version 3.5.2)

script using NumPy [24] library was coded. Each graph instance is defined by: num-

ber of vertices, number of scenarios, minimum weight edge value, maximum weight

edge value and graph number. The minimum and maximum weight edge value indi-

cate the interval of the random values generated for each coefficient and scenario.

The graph number is used to indicate the graph generated, since these graphs are

generated only once and used for all the experiments.

The B&B framework is implemented in C++11, because of the need to use func-

tion std::thread to implement the multithreading, and compiled with g++ version

5.4.0. It was tested in an Operating System Ubuntu 16.04 with 4GB of memory RAM,

a single core CPU with 2 virtual threads and a clock rate of 2GHz. For compar-

ing the implementation of Prim algorithm, Boost version in C++ [11] is used. This

library provides a generic implementation for several algorithms, including graph

algorithms. It is implemented in C++98 in the same experimental setup as the B&B

framework. For comparing the B&B approach with the pseudo-polynomial algo-

rithm described in Section 2.4.1, the latter is implemented in C++98 and the deter-

minant matrix calculation has been made with the support of GiNaC C++ [7] library.

This algorithm has been tested in the same experimental setup. Finally, R (version

3.2.3) is used to analyze the obtained results. For the experimental analysis graphs

with 4 to 15 vertices, two scenarios, and minimum and maximum weight value from

50 to 1000 were considered. Also, 100 graphs for each combination of parameters are

generated. Note that the Time axis in all figures showing the average times are in log

scale. For each run, the CPU time was collected.

A linear regression on the time to solve the instances with respect to the instance

size is performed as well, which gives a further insight on how the algorithm scales.

After constructing the model, is useful to know how well the equation fits the data

and, therefore, there is an interest in knowing the determination coefficient, orR2. This

value is between 0 and 1, where 0 indicates that the data is not represented by the



26 Chapter 4. Experimental analysis

0 2000 4000 6000 8000

5e
−

04
5e

−
03

5e
−

02
5e

−
01

●

Prim
Boost Prim

Number of vertices

T
im

e 
(in

 s
ec

on
ds

)

FIGURE 4.1: Prim and Boost Prim average time (in seconds) per num-
ber of vertices

regression model and 1 shows that the data is perfectly represented by the regression

model. By using boxcox function in R, it is possible to derive a good transformation

in the dependent variable, i.e., the CPU time. lm function in R is used to apply the

linear regression model on the transformed data.

4.1 Prim Algorithm

Following the same order as the previous chapter, the performance of the implemen-

tation of Prim algorithm is analyzed. In Figure 4.1, the results of our implementa-

tion of Prim algorithm in the B&B framework and a Prim algorithm implemented in

the Boost C++ [11] library are shown. In this experiment, graphs from 300 to 8000

vertices are considered. All the average times for each number of vertices and its

standard deviation are in Tables A.4 and A.5. In this figure, is possible to observe

a slightly better performance of the Prim implementation with increasing instance

size.

Figure 4.2 shows the regression line according to a square root transformation of

the dependent variable. This transformation suggests a quadratic behaviour, which

makes sense since complete graphs are used. As is possible to observe, the regression

line (in orange) is very close to the data collected for both algorithms, R2 = 0.9996

for our Prim implementation and R2 = 0.9993 for the Boost implementation.
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FIGURE 4.2: Linear regression model from Prim algorithm, Figure 4.1

4.2 Bounding

In this section the results of the B&B implementation using only Bound 1 (blue), using

only Bound 2 (red) and using both bounds (green) are analyzed. Note that it is not

yet considered the effect of using an initial solution. For reference, the running time

of B&B without using any bound (black) is also shown. In Figure 4.3, is possible to

observe their behaviour. With few vertices, Bound 1 performed better than Bound

2. However, as instance size grows, Bound 2 presents better performance. When

both bounds are used, the results are slightly better overall, since some cases are

discarded first by Bound 1 and, therefore, the use of Bound 2 is avoided. Tables A.2

and A.3 show the average running time and standard deviation, respectively, of the

bounds separately and together. When is compared the average time of only the

B&B without and with bounds, is possible to observe a lot of improvement. For

example, with 11 vertices, the approach without bounds takes an average of 2640

seconds, whereas for Bound 1, Bound 2 and both bounds, the average is 4, 3 and 2

seconds, respectively.

Figure 4.4 shows the linear regression model obtained from the B&B. The best

transformation for the dependent variable is logarithmic, which suggest an expo-

nential behaviour as expected. Is possible to observe that the model still represents

the data very well. For all cases, an R2 larger than 0.96 was obtained.

4.3 Initial Solution

In the following, the effect of using an initial solution is considered, as explained in

Section 3.4. w1 = w2 = 0.5 are considered. Both bounds are used since they gave
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FIGURE 4.3: Branching only and bounds average time (in seconds)
per number of vertices

the best performance, as shown in the previous section. Figure 4.5 (A) shows the

execution times of the branching with both bounds, with and without the calculation

of an initial solution. The number of vertices used are from 4 to 14. When an initial

solution is used, the algorithm performs faster. Table A.2 shows the average running

time of both approaches. Is possible to observe that using an initial solution brings

an improvement of, approximately, 20%. For example, for 14 vertices, the running

time is, in average, 419 seconds when an initial solution is used and 536 seconds

when is not used. Table A.3 shows the standard deviation for both experiments.

When the number of vertices increases, the standard deviation increases as well.

Figure 4.5 (B) shows the linear regression model obtained to this initial solution

implementation. As before, the suggested dependent variable transformation is log-

arithmic. For this model, R2 value is 0.9461.

4.4 Multithreading

As described in Section 3.5, a multithreading approach has been implemented with

4 threads. Each thread has his own w1 and w2 values for the calculation of the initial

solution. For each thread, a different initial solution given by w1 = (0.8, 0.6, 0.4, 0.2)

and w2 = (0.2, 0.4, 0.6, 0.8) is considered, as they allow the algorithm to start from

distinct solutions. Figure 4.6 (A) shows the results of the experiments. As is possi-

ble to observe, there exist a performance increase on the multithreading approach

as the number of vertices increase. Tables A.2 and A.3 show the average times and
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FIGURE 4.4: Linear regression model from B&B, Figure 4.3

standard deviation of the multithreading implementation, respectively. When mul-

tithreading is implemented, there is approximately 10% of performance increase on

the B&B framework.

Figure 4.6 (B) shows the linear regression model obtained with logarithm trans-

formation of the dependent variable with R2 = 0.8961.

4.5 Comparison to Pseudo-Polynomial Algorithm

In the following, an experimental comparison of our best approach with the gen-

eral pseudo-polynomial algorithm described in Section 2.4.1 is shown. As described

in the previous section, the approach that shows the best results is the B&B imple-

mentation with both bounds, initial solution and multithreading. Figure 4.7 shows
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(B) Linear regression model from (A)

FIGURE 4.5: Bounds without and with initial solution (A) and its lin-
ear regression model (B)
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FIGURE 4.6: Initial solution and multithreading (A) and its linear re-
gression model (B)

the average time executions and the max value M , which denotes the maximum edge

weight to be generated in the random graphs. In these experiment, values between 2

and 8 were used. This means that each edge has values between 1 and M . Also, 15

vertices were used for all of the generated graphs for this experiment. Is possible to

observe that for someM values, the pseudo-polynomial algorithm performs slightly

better than the B&B framework. This happens because it depends on the position
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FIGURE 4.7: General pseudo-polynomial algorithm and B&B frame-
work average time (in seconds) per max value M in a graph of 15

vertices

of the best solution in the search space, while the pseudo-polynomial algorithm de-

pends on the value of the best solution itself, since it does an incremental search of

the possible values. By increasing M , the running time of the pseudo-polynomial

algorithm grows very fast, since it depends on the calculus of the determinant ma-

trix. Table A.1 shows the average and standard deviation for both approaches. It

is possible to observe a significant difference between both algorithms when M has

values 7 and 8.

4.6 Discussion

In this chapter, the experimental results obtained by the B&B framework were dis-

cussed. Through the process, performance increases were verified in all experi-

ments. The combination of the two bounds brings significantly better performance.

In addition, starting from a good initial solution improved the performance even

further, by approximately 20%. Finally, multithreading brought some improvement,

although not as much as expected. This final approach was compared to the general

pseudo-polynomial algorithm and presented significant better results as value M

increases.
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Chapter 5

Conclusion and Future Work

The goal of this dissertation is to implement a Branch-and-Bound (B&B) framework

to solve the Min-Max Regret (MMR) Minimum Spanning Tree (MST) problem in a

discrete scenario representation. For this, a B&B algorithm with two bounds, an

initial solution and multithreading was implemented.

In the last chapter, an experimental analysis was shown. The experimental anal-

ysis indicated that our implementation of Prim algorithm is faster than the one avail-

able at the Boost library. Also, it is possible to observe a huge performance increase,

when comparing the B&B with bounds and the B&B without bounds, i.e., only the

branching. When an initial solution is used, an approximately 20% of performance

is verified. Finally, when used multithreading with 4 threads, there is better average

time execution on the same graphs tested, but this performance increase is close to

10%.

Finally, for the future work, there are some improvements that can be done in this

algorithm to obtain better results. One possibility is the incremental calculation of

Bound 2, for example, by using an hash table. This way it is not necessary to always

run Prim algorithm to obtain the lower bound, since the value is already stored.

Another possibility is an algorithm restart. When the algorithm is stuck during a lot

of time without improving the best solution found, the algorithm may restart and

begin in a new position in the search space.
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Appendix A

Tables

General
pseudo

polynomial (x̄)

General
pseudo

polynomial (σ)
B&B Framework (x̄) B&B Framework (σ)

1 0.098 0.026 0.001 0.001
2 14.723 0.573 8.108 40.563
3 57.965 3.098 84.326 198.771
4 140.915 11.375 219.141 518.135
5 289.467 26.243 331.819 722.151
6 540.375 51.108 405.109 696.086
7 946.274 100.143 599.055 947.901
8 1452.317 162.189 657.392 995.465

TABLE A.1: General pseudo-polynomial and B&B Framework algo-
rithm executions. Rows indicate max value M .
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Prim (x̄) Prim (σ)
Boost

Prim (x̄)
Boost

Prim (σ)
300 0.001 1.510e-05 0.001 1.473e-05
400 0.001 1.586e-05 0.002 1.695e-05
500 0.002 0.001 0.003 3.751e-05
600 0.003 0.001 0.004 0.001
700 0.005 4.949e-05 0.006 4.734e-05
800 0.005 0.001 0.009 8.168e-05
900 0.007 0.001 0.011 8.807e-05
1000 0.008 5.981e-05 0.014 6.957e-05
1100 0.010 5.154e-05 0.017 9.012e-05
1200 0.012 5.256e-05 0.019 9.201e-05
1300 0.015 9.235e-05 0.023 0.001
1400 0.018 8.085e-05 0.026 0.001
1500 0.021 0.001 0.030 0.001
1600 0.024 6.262e-05 0.034 0.001
1700 0.027 0.001 0.039 0.001
1800 0.031 0.001 0.043 0.001
1900 0.035 0.001 0.048 0.001
2000 0.039 0.001 0.054 0.001
2100 0.044 0.001 0.060 0.001
2200 0.048 0.001 0.066 0.001
2300 0.052 0.001 0.072 0.001
2400 0.057 0.001 0.079 0.001
2500 0.063 0.001 0.085 0.001
2600 0.068 0.001 0.092 0.001
2700 0.073 0.001 0.099 0.001
2800 0.079 0.001 0.107 0.001
2900 0.085 0.001 0.115 0.001
3000 0.090 0.001 0.122 0.001
3100 0.098 0.001 0.131 0.001
3200 0.105 0.001 0.139 0.001
3300 0.113 0.001 0.148 0.001
3400 0.118 0.001 0.158 0.001
3500 0.125 0.001 0.167 0.001
3600 0.132 0.001 0.177 0.001
3700 0.140 0.001 0.187 0.001
3800 0.147 0.001 0.197 0.001
3900 0.156 0.001 0.208 0.001
4000 0.163 0.001 0.219 0.001

TABLE A.4: Prim and Boost Prim algorithm executions. Rows indi-
cate the number of vertices.
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Prim (x̄) Prim (σ)
Boost

Prim (x̄)
Boost

Prim (σ)
4100 0.173 0.001 0.231 0.001
4200 0.180 0.001 0.243 0.001
4300 0.190 0.001 0.255 0.001
4400 0.199 0.001 0.268 0.001
4500 0.209 0.001 0.281 0.001
4600 0.223 0.002 0.302 0.004
4700 0.239 0.005 0.325 0.007
4800 0.255 0.001 0.349 0.002
4900 0.263 0.004 0.357 0.007
5000 0.265 0.001 0.361 0.001
5100 0.275 0.001 0.375 0.001
5200 0.290 0.003 0.396 0.006
5300 0.305 0.001 0.417 0.001
5400 0.319 0.001 0.433 0.002
5500 0.334 0.001 0.449 0.002
5600 0.338 0.006 0.456 0.008
5700 0.342 0.005 0.456 0.006
5800 0.350 0.001 0.469 0.001
5900 0.369 0.004 0.489 0.006
6000 0.382 0.001 0.504 0.001
6100 0.395 0.001 0.519 0.001
6200 0.408 0.002 0.540 0.006
6300 0.428 0.004 0.573 0.010
6400 0.455 0.006 0.615 0.010
6500 0.470 0.001 0.635 0.004
6600 0.481 0.005 0.653 0.008
6700 0.474 0.001 0.640 0.002
6800 0.489 0.001 0.659 0.002
6900 0.507 0.001 0.678 0.002
7000 0.520 0.001 0.700 0.002
7100 0.532 0.001 0.722 0.002
7200 0.551 0.001 0.741 0.003
7300 0.568 0.001 0.762 0.003
7400 0.582 0.001 0.782 0.003
7500 0.600 0.001 0.805 0.003
7600 0.614 0.001 0.831 0.003
7700 0.632 0.001 0.857 0.003
7800 0.646 0.001 0.876 0.003
7900 0.664 0.001 0.894 0.003
8000 0.678 0.002 0.919 0.004

TABLE A.5: Prim and Boost Prim algorithm executions (cont.). Rows
indicate the number of vertices.
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