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Abstract—Despite the advantages of microservice and function-
oriented architectures, there is an increase in complexity to
monitor such highly dynamic systems. In this paper, we analyze
two distinct methods to tackle the monitoring problem in a system
with reduced instrumentation. Our goal is to understand the
feasibility of such approach with one specific driver: simplicity.
We aim to determine the extent to which it is possible to
characterize the state of two generic tandem processes, using
as little information as possible.

To answer this question, we resorted to a simulation approach.
Using a queue system, we simulated two services, that we could
manipulate with distinct operation sets for each module. We used
the total response time seen upstream of the system. Having this
setup and metric, we applied two distinct methods to analyze the
results. First, we used supervised machine learning algorithms
to identify where the bottleneck is happening. Secondly, we used
an exponential decomposition to identify the occupation in the
two components in a more black-box fashion.

Results show that both methodologies have their advantages
and limitations. The separation of the signal more accurately
identifies occupation in low occupied resources, but when a
service is totally dominating the overall time, it lacks precision.
The machine learning has a more stable error, but needs the
training set. This study suggest that a black-box occupation
approach with both techniques is possible and very useful.

Index Terms—Black-box monitoring, Observability, Simula-
tion, Analytics

I. INTRODUCTION

Microservice systems are a modern approach used by major
technological companies to create highly available, elastic and
dynamic systems. This kind of architecture enables teams to
work independently in different life-cycles and ensures that
modules are oblivious to changes in the surrounding system.
Despite the changes in the development methodology, there
are some challenges concerning monitoring and observability
of production systems, as these become more complex. Dy-
namic scalability, network distribution, third-party resources,
or dynamic architectures, are the sort of features that make
microservice systems so difficult to observe and control. When
compared to monolithic solutions, this increases the possible
points of failure and can severely decrease the quality-of-
service. We need better tools and methods to understand the
overall status of the system. More traditional approaches based
on filling the source code with instrumentation, or generic
metrics such as CPU or network occupation, agents, logging,

watch-dogs, dashboards, etc., have serious shortcomings for
modern distributed systems. Although they can indeed create
a very good image of the infrastructure, two problems subsist:
first, they only supply an extended set of tools to react to al-
ready in-place incidents, and secondly they lack “intelligence”,
if the system does not have observability, i.e., if we cannot
access metrics in precise spots that are hidden inside complex
black boxes.

Unfortunately, actual monitoring tools are built on the
premise of observable systems, with agents, instrumentation,
or some sort of module heartbeats. Furthermore, some re-
sources may elude administrators control, such as objects lo-
cated in third-party providers - e.g. content delivery networks.
While some frameworks aim to gather information from the
client-side point-of-view such as Pingdom [1], Bucky [2], or
enterprise solutions, such as Dynatrace [3], they are basically
aimed at creating simple dashboards and insights of the
platform to trigger alerts to administrators based on a set of
custom rules. We want to go beyond this, and automatically
infer service occupation, using as little data as possible from
the systems, possibly because such data is unavailable.

In [4], we gathered clients’ data — collected by JavaScript
snippets —, to improve monitoring using the client-side point-
of-view, as a complement to traditional monitoring applica-
tions. In [5], we used machine learning techniques to pinpoint
two sources of system bottlenecks — CPU and network —,
using only the raw data visible by clients.

In this paper we further extend our previous work with two
generic layers that simulate two components of a system, as
in [5], where internal observability may not apply. This system
could be a microservice that is complex and contains several
queues inside, or a couple of microservices, one after the other,
if intermediate timings of requests are not available, i.e., if we
cannot relate the times at which the first and second services
interact in response to an initial request to the first service.
To get insights about the two-layer system, we only used the
total time seen by the caller. This time aggregates the overall
invocation time that sums up the two services. Based on these
time, our goal is to determine the overall occupation of both
services. We created a simulation using a two queue system,
with one goal: understand the service occupation of each layer.
We ran a simulation with two queuing systems and collected
the response times. We then applied two methodologies to978-1-5386-7659-2/18/$31.00 c©2018 IEEE



extract occupation of each layer (component) and extract error
metrics: first, we used a similar approach as in [5], with
supervised machine learning algorithms to identify service
capability. Secondly, we used another method that tries to
decompose the overall response time into the components’
times to identify the occupation of each.

Our results demonstrate that a methodology that extrap-
olates information about a non-observable system of two
layers is feasible and can improve performance monitoring.
There is no overhead associated with these methodologies,
and both methods — machine learning and division of the
signal —, present advantages and complementary properties.
These methods can improve monitoring when instrumentation
or observability is difficult or unable to be achieved by
administrators of the system.

The rest of the paper is organized as follows. Section II
describes the monitoring problem we tackle in this paper as
well as the methods we propose. Section III analyze how we
made our experiment. In Section IV we present and evaluate
the meaning of the results, discussing the strengths of both
approaches and its limitations. In Section V we present the
related work and finally in Section VI concludes the paper
and describes future directions.

II. PROPOSED METHODOLOGY

In this section, we describe the problems and challenges
associated with observability of a system and the definition of
the metrics used.

With the increase of complexity of applications, and the
need to reduce time-to-market, monitoring becomes more
important than ever to ensure that component failures and bot-
tlenecks do not affect user’s quality-of-experience. Traditional
monitoring approaches use a large set of tools and methods,
such as tracing, logging, correlation identifiers between ser-
vices or system tools, such as Nagios [6] or Zabbix [7].
Although functional, these approaches require the system to be
prepared to give away information about its current internal
status. In legacy systems, or systems without some form of
instrumentation or agents, this might be difficult. Additionally,
the effort to create logging or tracing in a production system
may be too high.

In this paper, we present an approach that neither requires
instrumentation, nor disperse logging tools over the system.
In [5], we followed a similar approach to pinpoint bottle-
necks in two distinct layers: external network and internal
system. In this paper, we further evolve this methodology, by
modeling a system in two components, and determining each
component’s occupation, without using instrumentation in the
middle. Understanding each component’s occupation may give
a huge advantage for administrators, whenever monitoring is
impracticable, either because it is too costly or because the
internal details of the system are unknown, e.g., because the
source code is unavailable or too complex. The only metric
that we used was the total time observed by the entity that
evoked the system. The total time represents the time that the

request spent in the two components, from the beginning of
the request until the end. In fact, our method of decomposing
a system of two layers is very generic and can be used
in different scenarios, like a system with a database and
network, or two modules interconnected, or even a chain of
microservices.

In the next subsections, we present our methods to evaluate
a “black-box” approach of a two-layer system. First, we
present an approach based on a machine learning supervised
algorithm. Then, we describe our method based on the split
of the signal. Both methods use the data collected from our
experiment in Section III.

A. Machine Learning Algorithm

We followed a machine learning approach to predict each
layer’s occupation from the experiment input data. We used a
regression model — instead of a classifier — since our output
is a continuous value, instead of a set of class labels [8]. We
created a regression model for each layer, as illustrated in
Figure 1.

In addition to the regression models, we also wanted to
evaluate the possibility of having decision tree classifiers. This
is very appealing, since decision tree models are highly inter-
pretable, and therefore an advantage to system administrators
and operators.

We train our model with 3, 000 samples, or lines. Each
line has 2, 000 requests made to the system, meaning that our
classifier has 2, 000 features – e.g. inputs. There is a 2001st

value in each line, that corresponds to the layer 1 or layer
2 occupation (i.e., the real occupation of each layer). This
value is mandatory, since we are training a supervised machine
learning algorithm. However, this output is not available in the
test cases, because we want to predict the occupation level, as
illustrated in Figure 1.

Fig. 1: Representation of the regression models.

Among the wide range of supervision machine learning
methods available in the literature [9], we focused on two
models: Simple Linear Regression (SLR) and Support Vector
Machine (SVM). SLR assumes linearity between input and
output, and SVM allows a non-linearity between input-output,
to the kernel. This turns them into good choices to do the
regression. Since we can manipulate the SVR kernel, we can
use out-of-the-box a non-linear kernel, like a Radial Basis
Function (RBF) or a polynomial kernel.

The literature [9] also includes a wide range of decision tree
models, but since we wanted to predict a real value, we opted



for a decision tree regression model. This kind of model allows
us to have more insight about how it works, thus making it
more interpretable, a great advantage for sysops.

To run the algorithms, under our training set, we used
the scikit learn framework [10]. This framework, written
in python, is a common standard for data scientists and
people that want to generate models based on input data.
For SVR, we used RBF and a polynomial kernel to evaluate
the differences, with normalized data (input and output), in
the [0, 1] interval, to achieve better predictions. The decision
tree regression model was evaluated with default parameters
and data. Concerning the evaluation, all experiments were
performed using a 10-fold cross validation with 20 repetitions.

B. Exponential Variable Sum Algorithm

The problem of determining the occupation of two sequen-
tial components, which we call layers, be they resources or
distributed services, observing only global response times, can
be modeled as determining the two tandem random processes
responsible for generating an observed request time distribu-
tion. In other words, given a statistical distribution, since we
know a priori that the distribution is the sum of two factors,
what we want is to separate these factors. Particularly, in this
paper we explore this approach under the assumptions that the
service times are approximately exponentially distributed and
the service is under relatively low load (occupation ρ < 0.3),
at the time of observation. As long as the load and parallelism
of each layer is known, the results can be used to extrapolate
the total capacity of each layer. It should be noted however
that this does not reduce the generality of the solution. The
same approach could be applied under different distributions
and loads, as long as some conditions are met (the resulting
distribution having enough information to extrapolate the orig-
inal processes). Furthermore, the two processes under study do
not necessarily have to be tandem, they may, for example, be
interleaved, as long as the sum of the components follows the
previously described assumptions. A good example of where
interleaving is the more adequate model, would be resource
time-slicing.

To define it more precisely, given f(x) and g(y), which
are the density functions of the service times of two layers,
known to be approximately exponentially distributed, of rates
λ and µ, we know that the total service time will be described
by the sum of two random variables, h(z), obtained from the
convolution of the two, as shown in Equation 1.

h(z) = (f ∗ g)(z) =
∫ +∞

−∞
f(z − y)g(y) dy (1)

By substituting for the particular case of the exponential
distribution, we get the result for h(z) in Equation 2, which
we integrate in Equation 3 to obtain the cumulative distribution
function H(z).

h(λ, µ, z) =

∫ z
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Armed with the cumulative distribution function, and the
empirical cumulative distribution function, ecdf(x), from the
observed sample S of total service time, we made an R script
to determine the variables λ and µ, by solving the optimization
model in Equation 4. The objective is selecting the variables
to minimize the mean square error between the empirical
cumulative function of the sample and H(z), effectively fitting
it to the data.

Minimize
λ̂,µ̂

1

n

n∑
i=1

(ηi − εi)2

subject to τ = max(Si), ∀i

δ =
τ

1000

ηi = H(λ̂, µ̂, iδ), i = 1, ..., 1000

εi = ecdf(iδ), i = 1, ..., 1000

λ̂ > 0, λ̂ ∈ R
µ̂ > 0, µ̂ ∈ R

(4)

At the end of this step, we are left with a λ̂ and µ̂, which are
estimators of the service rate of Layers 1 and 2 respectively.
Given that the load under which the measurements were taken,
which we denote as W , as well as the parallelism levels,
denoted c1 and c2, the occupation of each layer, ρ1 and ρ2
can be determined as shown in Equation 5 where S denotes
the service rate of a layer (λ̂ or µ̂).

ρ =
W

c · S
(5)

The assumption that the parallelism level c is known might
seem limiting, however, in practice this parameter is easy
to monitor using classical tools, and even if not directly
measurable, heuristics can be used to estimate it. One such
example is exploiting the relationships between maximum
throughput T and parallelism given by Equation 6.

T = c · S (6)



III. EVALUATION

We validated and benchmarked the two methods with total
service time samples extracted from a simulated service with
two layers. The described system was simulated as two se-
quential single server queue systems (M/M/1) in R using the
qcomputer [11] package (shown in Figure 2).

L1 L2W

Fig. 2: Two sequential single server queue systems.

To simulate different occupation rates, we used a fixed
global request arrival rate W of 30 requests per unit of time
and varied the service rates S of each layer according to
Equation 5. A set of 30 samples of 2000 observations each
was then obtained for all the permutations of the two layers
with occupations in the range [0.1, 0.9] in 0.1 increments
(e.g. (0.1, 0.1), (0.1, 0.2), ...). Each sample, a line in a CSV,
contains 2000 features and the 2 targets, in this case the
occupation parameters.

Using cross-validation we trained the machine learn-
ing algorithms and evaluate the quality of the predictions.
For the exponential variable sum algorithm we used the
proposed optimization approach to predict the targets for each
sample.

To compare the two general approaches we calculated
the Mean Square Error (MSE) for each layer grouped by
occupation range in 0.1 increments. Additionally, as we tried
multiple machine learning approaches, these metrics were also
used to pick the best algorithm.

IV. RESULTS

As we referred in Section II, we collected a set of 2000
total response time for the clients invocations. We analyze the
results obtained with the machine learning algorithms and also
with the exponential decomposition.

TABLE I: Regression model results for Layer 1 and Layer 2
occupation

Method
Layer 1 Layer 2

MSE MSE
Decision Tree 0.12± 0.08 0.09± 0.06
SLR 0.81± 0.61 0.93± 0.44
SVR 0.05± 0.04 0.05± 0.03

The results obtained for the Layer 1 and 2 occupation
models are summarized in Table I, Table II and Table III.
We report average results for the mean square error (MSE),
between the predicted and actual values. Since we performed
20 repetitions of 10-fold cross-validation, we present average
and standard deviation results.

Table I presents the results for three distinct classifiers:
decision tree regressor, SLR and SVR algorithms. As expected,
SVR outperforms the others algorithms, since it uses a non-
linear kernel that fits better the raw data that is handled in this
use case scenario.

TABLE II: Machine Learning Decomposition

Range Layer 1 - MSE Layer 2 - MSE
0.1 0.12 0.12
0.2 0.07 0.08
0.3 0.04 0.03
0.4 0.03 0.02
0.5 0.02 0.02
0.6 0.03 0.02
0.7 0.03 0.03
0.8 0.03 0.03
0.9 0.03 0.03

TABLE III: Exponential Decomposition

Range Layer 1 - MSE Layer 2 - MSE
0.1 0.08 0.08
0.2 0.12 0.26
0.3 0.25 0.51
0.4 0.40 0.68
0.5 0.93 0.74
0.6 1.79 1.76
0.7 3.76 4.95
0.8 11.38 11.43
0.9 66.48 74.87

The SVR algorithm attained an average of 0.05 MSE (with
0.04 standard deviation) for Layer 1 and 0.05 (with 0.03
standard deviation) for Layer 2. On a [0, 1] range this is a
good result.

SVR algorithm outperforms SLR and Decision tree model,
for both layers. Therefore, we compared SVR algorithm with a
non-linear kernel with the exponential decomposition method.
To do this, we trained the same SVR algorithm for both Layer
1 and Layer 2. We submitted to the fitted model only values
for a specific range (e.g. 0.1, 0.2) and registered the MSE for
the predicted values. In Table II we can evaluate the machine
learning accuracy for distinct Layer levels. We can observe
that for low occupied layers the algorithm have a worst MSE,
compared with a more occupied Layer.

In Table III we can observe the algorithm to split the
two layers with the exponential decomposition method. We
evaluated the MSE for each Layer 1 and Layer 2 occupation
level. One could notice that this algorithm outperforms SVR
on lower occupations levels. However, for high occupation
levels, the exponential algorithm, does not predict correctly,
being outperformed by the machine learning approach.

Another difference is that the Machine Learning algorithm
requires supervised training and the exponential decomposition
does not. On the other hand, the latter can only be used when
the system load during the sampling period is known. Given
their complementary properties and ranges of effectiveness,
they are obvious candidates for hybrid application.

V. RELATED WORK

The monitoring research field is active with several contri-
butions in the academy as well as in the industry. Hence, we
present several works from both fields.

In the industry, companies such as New Relic [12], Dyna-
Trace [3] or distributed tracing system such as ZipKin [13],



aim to give frameworks or tools to administrators, to create
dashboards or notifications. Our work focus on increasing
trustworthiness and reliability of the overall system with
autonomous prediction of system occupation.

In academic research, [14] uses an approach with a ar-
chitecture where each microservice makes self-management
concerning monitoring and scaling. This approach may lead to
the discard of the importance of call paths, and the “waterfall”
effect that a microservice may have in others components.
In [15], a tool based in the global entropy of a distributed sys-
tem is presented to automatically detect anomalies. However,
due to the fact that do not rely on response time and other
performance metrics it may lead to false positives. In [16],
[17], Malkowski et al. studied bottlenecks in N-tier systems, to
analyze multi-bottlenecks, due to saturation. They managed to
conclude that lightly loaded resources may be responsible for
that phenomenon. In [18], authors try to discover bottlenecks
in data flow programs running in the cloud. They focus more
on CPU and I/O bottlenecks, and not predicting occupation.

In [19] the goal is to model web servers as single server
queues in terms of response time and overall system perfor-
mance. [20] uses a similar approach for an Apache Web Server.
In [21], layered queueing networks are used to model a system
with two layers – frontend and backend. [22] presents a model
for Multi-tiered Web Applications using queues for individual
components such as CPU, I/O or Network. However, there are
multiple points of observability, being this way a solution that
although functional is more intrusive than ours. Our premise
is simplicity. We aim to automatically determine the overall
occupation of the system layers from exterior observations,
meaning the method requires no additional instrumentation nor
complex measurements.

VI. CONCLUSIONS AND FUTURE WORK

Monitoring and observability of systems is a challenge
for administrators, due to increased application elasticity,
complexity, granularity and dynamics. The current tools put
the burden of analysis, such as detecting bottlenecks and
performance issues on the operators. As the number of services
and technologies in a system increases, so does the complexity
and time spent in operational tasks, such as root cause analysis.

Our goal is to identify the occupation of each component
on a two layer system. The evidence collected shows that it
is possible to identify the capacity and occupation of each
layer, solely from the overall response time, as measured by
a client. Since the proposed method is not coupled to any
infrastructure or language, it can be used in any kind of system
where observability is a major concern. The two methods –
supervised machine learning and exponential decomposition
– combined can complement each other’s shortcoming and
provide insight about overall system performance.

As future work, there are several directions we want to
explore. Since the total request time distribution carries enough
information to infer the capacity of each system component,
we want to generalize our model, to more than a two layer

system. Secondly, we want to test our method in more setups
to ensure its robustness. Finally, since our ultimate goal is
improving monitoring techniques and providing better insights
to administrators, we would like to implement this method in
a real world scenario.
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