
A Stealth Monitoring Mechanism for Cyber-Physical

Systems

Vitor Gravetoa,∗, Lúıs Rosaa, Tiago Cruza, Paulo Simõesa

DEI-CISUC University of Coimbra Coimbra, Portugal

aDepartamento de Eng. Informática
Polo II da Universidade de Coimbra

3030-290 Coimbra, Portugal

Abstract

Supervisory Control and Data Acquisition (SCADA) systems, which are of-

ten used in several types of Essential Systems and Critical Infrastructures,

depend on control devices such as Programmable Logic Controllers, Remote

Terminal Units and Intelligent Electronic Devices. Such devices, which are

deployed at the edge of the SCADA infrastructure, directly interface with the

physical processes under control. They are often based on embedded systems

with limited capabilities and exposed to significant security and safety-related

risks, as demonstrated by past incidents such as Stuxnet. However, despite

the recognized relevance of those edge devices, they usually lack monitoring

mechanisms able to detect device anomalies and/or cyber-physical threats.

In this paper we propose a novel approach for stealth monitoring of those

control devices, for purposes of security and safety management. This ap-

proach builds on cost-effective probes, which we designate as Shadow Security

Units (SSU), directly attached to the monitored control devices. This privi-

∗Corresponding author
Email address: vgraveto@dei.uc.pt (Vitor Graveto)

Preprint submitted to International Journal of Critical Infrastruture Protection July 19, 2018

leged positioning enables the direct and fine-grained observation of both phys-

ical inputs/outputs (i.e. the physical processes under control) and network

communication flows – allowing the exploitation of various novel monitor-

ing approaches able to address sophisticated security threats not noticeable

otherwise. Moreover, the SSU approach is not limited to SCADA scenarios,

being also applicable to similar domains such as the Internet of Things (IoT),

Avionics and Self-Driving systems.

Keywords: Safety and Security Monitoring, SCADA, Anomaly

Detection, Industrial Automation and Control Systems

1. Introduction

In the scope of Industrial and Automation Control Systems (IACS), the

need for monitoring the proper operation of physical devices is an old concern,

especially for the purpose of fault and anomaly detection. Its main goal is to

detect and/or anticipate possible problems, in order to detect malfunctioning5

devices and to prevent or mitigate their negative impact on the processes they

are part of.

That need applies not just to process sensors and actuators (e.g. an

engine, a car brake, an electric switch, a temperature sensor), but also to

process control devices, such as SCADA’s Programmable Logic Controllers10

(PLC), Remote Terminal Units (RTU) and Intelligent Electronic Devices

(IED). These control devices are connected both to the physical systems

they are intended to control and to the SCADA process control servers.

Due to their positioning and role, any vulnerability on these devices –

due to malfunction or malicious attacks – might compromise the whole pro-15

2

cess under control, leading to considerable economic losses and/or hazardous

situations.

The industry has acknowledged this problem long ago, and niche applica-

tion fields where the implicit safety risks are not acceptable, such as avionics

and nuclear plants, regularly adopt fault-tolerance solutions such as redun-20

dant (and possibly dissimilar) systems and Byzantine fault-tolerance mech-

anisms [1]. However, such designs remain too expensive and not practical

enough for generalized adoption by mainstream IACS.

Moreover, the recent awareness of risks introduced by cyber-threats fur-

ther increases the concerns with those control devices. They are exposed25

not only to the risk of failure, but also to malicious cyberattacks specifi-

cally targeting their vulnerabilities and using them to compromise the whole

critical infrastructures they control. A compromised RTU or PLC might be

undetectable using traditional Intrusion Detection Systems (IDS) but still

jeopardize critical assets, by damaging the equipment or process they con-30

trol and/or by reporting erroneous information back to the control platforms

– as demonstrated by incidents such as Stuxnet [2].

This threat is further amplified by the fact that those devices are in-

trinsically more exposed to direct physical access (as they are deployed in

the edge of the field network) and have significant capacity and design con-35

straints that often prevent the use of adequate security mechanisms. This

applies even more in the case of legacy equipment, which might be difficult to

replace in the short/medium term – due to technical, operational or financial

constraints.

In order to mitigate this situation, in this paper we explore the concept of40

3

the Shadow Security Unit (SSU). The SSU is a monitoring probe capable of

directly observing all the inputs and outputs of control devices such as RTUs

or PLCs, including aspects such as: network communications (e.g. SCADA

messages to/from control servers, firmware upgrade operations); analog and

digital physical inputs (e.g. temperature, voltage, gas readers, all other types45

of sensors related with the controlled physical process); and analog and digital

outputs (e.g. the actuation of an engine, control of a light, activation of

a brake system). This concept, whose early form was first described in a

short position paper [3], constituted one of the innovative building blocks

of a broader strategy to create an IACS-oriented cyber-security solution,50

documented in [4].

When compared with classic probes, the SSU stands out due to its capac-

ity of fully observing the interaction of the monitored control device with the

outside world. Not just network communications with the SCADA process

control servers but also the whole set of physical inputs and outputs of the55

monitored device.

In order to become successful, the SSU concept needs to address two

major challenges. First, its implementation needs to be simple and cost-

effective – in order not to fall into the economic and practical constraints

that limit the widespread adoption of more complex Byzantine fault tolerance60

systems. Second, it needs anomaly detection mechanisms able to fully exploit

the potential enabled by the different type of monitoring data collected by

the SSU.

In this paper we address both challenges. First, we provide an overview of

SCADA-based IACS systems (Section 2), followed by the discussion of pro-65

4

cess safety and SCADA security mechanisms for IACS systems (Section 3).

Next, we propose the SSU, discussing its reference architecture and imple-

mentation aspects (Section 4). Potential applications of the SSU, including

possible anomaly detection techniques, are discussed in Section 5. Prelimi-

nary validation work is presented in Section 6, and related work is discussed70

in Section 7. Finally, Section 8 concludes the paper.

2. SCADA-Based IACS Systems

Figure 1 illustrates a generic SCADA-based IACS, such as those used on

power plants, power grids, gas and water supply networks, industrial facil-

ities, traffic management systems and water dams. In this scope, the Cor-75

porate LAN represents the mainstream Information and Communications

Technology (ICT) infrastructure of the organization, interconnected to the

IACS infrastructure using a firewall. On the IACS side, SCADA servers su-

pervise the whole industrial process, while Human-Machine Interface (HMI)

nodes – based on workstations or local, on-site terminals – interface with80

human operators. Finally, RTU, PLC and IED devices directly interconnect

with process sensors and actuators.

Figure 2 provides a more process-centric look at a SCADA system – based

on a simple example of controlling the water level of a tank. This system

includes the following components:85

• Master stations, which are deployed on the process network and su-

pervise processes, controlling and monitoring Slaves and often provid-

ing support for HMI consoles. They are also frequently connected to

other applications, such as historian databases for logging process data.

5

Figure 1: Typical SCADA-based IACS[5]

• Slave devices such as RTUs, PLCs and IEDs, deployed on the con-90

trol network. These devices are typically embedded systems connected

to one or more Master Stations, as well as to sensors and actuators.

They are responsible for most of the process monitoring and control ac-

tivities. RTUs have limited control capabilities, connecting to sensors

that monitor the controlled process and sending data to master sta-95

tions, while IEDs and PLCs are more sophisticated, supporting several

programming languages and complex control scenarios. Due to their

superior capability/cost ratio, IEDs and PLCs frequently replace RTUs

in more recent deployments.

• Field devices, deployed on the field network and constituting the100

physical interface with the process under control, providing information

about it (sensors) and enabling the execution of actions affecting its

behavior (actuators).

As discussed later, devices such as RTUs, PLCs and IEDs are the main

target of the stealth monitoring mechanisms proposed in this paper. Those105

6

Flow
%rea

ding

Pum
p%co

ntro
l

Water
%leve

l%sen
sor

Valv
e%co

ntro
l

%%%%%Slave%1

Slave%2

Master
BD

Water%
pump

Water%flow%
sensor

Water%tank

Valve

HMI

Figure 2: Architecture of a simple SCADA system (adapted from[6])

devices are interconnected using technologies such as RS-485 [7], CAN [8] or

forms of Industrial Ethernet technologies such as EtherCAT [9] and Profinet [10],

among others, according to the nature of the specific IACS infrastructure they

integrate. The control flow between the Master station and the RTU/PLC/IED

allows exchanging process-related data or executing actions by modifying pro-110

cess control parameters mapped on device registers. This process involves

SCADA specific protocols, such as Modbus (in RTU, ASCII or TCP/IP vari-

ants) [11] [12], IEC 60870-5-104 (IEC 104) [13] or DNP3 [14], among others.

The extensive reliance on RTUs and IEDs/PLCs, within SCADA sys-

tems, means that overall reliability of the process under control is largely115

dependent on those devices. Depending on specific models and range, RTU,

IED and PLCs may incorporate different features, going from watchdogs

and basic on-board self-diagnostic and recovery features to more sophisti-

cated techniques such as the inclusion of redundant hot-standby modules

7

for reinforcing the control loop or doubled execution units (sometimes using120

independent memory bocks), supporting double code generation and execu-

tion. However such mechanisms are only concerned with device-level safety

and health of the CPU, RAM, I/O and communication modules, and cannot

even be taken for granted in all models, as several features are only available

in high-end product lines – ultimately, they do not ensure safety or security125

at the process or control infrastructure levels.

3. Process Safety and SCADA Security

Originally, the IACS industry mindset traditionally relied on isolation

(the ”airgap principle”) and/or on the ”black box” approaches, based on

obscurity and use of proprietary and insufficiently documented technologies130

to ensure security. With convenience and cost pushing for the introduction

of commodity technologies from the ICT world in IACS, such as TCP/IP

networking, the ”airgap” started to close. This process has been matched by

a significant effort from equipment manufacturers, operators, standardization

organisms and security communities in order to improve the overall security135

of SCADA systems. As a result, today’s best practices already address the

most obvious security weaknesses and attack vectors, such as the use of clear-

text communications, lack of Authentication, Authorization and Accounting

(AAA) capabilities or the absence of integrity checking mechanisms.

However, in parallel with this evolution, IACS became increasingly ex-140

posed to a range of more sophisticated threats that were unconceivable be-

fore on this ecosystem, such as stealthy Advanced Persistent Threats (APTs)

running over a long time frame as part of a cyber-warfare strategy to gather

8

intelligence and later cripple public and/or military Critical Infrastructures

(CIs). The Stuxnet worm [2, 15] is a prominent example that has raised145

significant awareness to the problem of Critical Infrastructure Protection

(CIP). By exploiting a series of zero-day flaws, Stuxnet was able to attack

the PLCs for a series of nuclear fuel processing centrifuges, damaging them

by increasing their rotational speed, while concealing its actions.

3.1. Process Safety and Security150

Incidents such as Stuxnet demonstrated that safety and security are in-

terdependent characteristics, as the first may become compromised due to

problems with the latter. Safety is defined as ”freedom from unacceptable

risk of harm” [16], being concerned with the avoidance of unintended acci-

dents involving human or environmental harm. This is different from process155

security, which relates to protecting from intentional harm, targeting the spe-

cific implementation of the control process, managed by the in-band devices

which implement and supervise the control discipline.

Outside the scope of the process loop, extra monitoring may be imple-

mented using sources such as historian databases or OLE for Process Control160

(OPC) [17] servers, which can provide a detailed log of the system operation,

for analysis and knowledge extraction. For instance, a server supporting the

OPC-HDA (for Historical Data Access) may provide historian database logs,

while real-time information may be acquired via OPC-DA (for Data Access)

or OPC-AE (for Alarms and Events), if such profiles are supported – the165

newer OPC-UA (for Unified Architecture) integrates the DA, AE and HDA

functionality within a common updated framework. Yet, this information

is not useful without knowledge about the particular characteristics of the

9

controlled process and its specific details: if it uses a closed or open-loop

(therefore requiring feedback), the type of control process (discrete, continu-170

ous), I/O sensors, actuators and respective electrical interface characteristics.

Also, information about device operation, such as its programming, the PLC

scan cycle or the type of I/O modules (discrete, analog) may also be impor-

tant, for purposes of formal validation.

Moreover, there are shortcomings related to the use of middleware compo-175

nents for safety and security monitoring: the communications chain (Device-

Server-Client) means that there is a latency overhead whose impact may vary

according to the nature of the process. Furthermore, the OPC or historian

servers constitute potential targets that can be potentially compromised, us-

ing Man-In-The-Middle attacks (to feed wrong information to the servers) or180

Denial-of-Service techniques (inducing a loss of visibility regarding controlled

process). Without reliable information about the variables of the process, it

is impossible to implement some sort of parallel, formal validation process.

This latter example also gives a strong hint about the importance of security

monitoring in SCADA, discussed next.185

3.2. SCADA Security

Having become a cornerstone of many IACS and CIs, SCADA systems

constitute a potential target for malicious activity, having shown a poor se-

curity record in recent years by succumbing to several successful attacks.

This is due to several reasons. As they were originally restricted to isolated190

environments, SCADA systems were considered relatively safe from exter-

nal intrusion. However, as architectures evolved, these systems started to

assimilate technologies from the ICT world, such as TCP/IP and Ethernet

10

networking, encouraging the interconnection of the IACS with organizational

ICT network infrastructures and even with the exterior (e.g., for remote man-195

agement). This trend, together with the increasing adoption of open, docu-

mented protocols, exposed serious weaknesses in SCADA architectures and

brought a new wave of security problems that were not conceivable when such

systems were first designed, prompting a significant increase in the number

of externally initiated attacks on IACS systems, especially when compared200

with internal attacks [18].

This meant that several issues that were familiar only to the ICT con-

text suddenly became a source of concern for IACS operators – until them,

IACS and ICT infrastructures were clearly differentiated (and even sepa-

rated), mainly because of the considerable degree of independence among205

them, but also due to their fundamental governing principles. As noted by

ISA-99 [19] (later updated by IEC 62443 [20]), the priorities for IACS and

ICT systems are reversed: for IACS, availability comes first, even if at the

cost of integrity and confidentiality – just the opposite of the ICT philosophy.

To a certain extent, the focus on availability influenced the IACS mind-210

set to progressively regard technology and platform maturity as an implicit

recognition of value and reliability. As an example, communication protocols

such as Modbus [11], originally developed by Modicon in 1979, are still very

popular in production systems, due to their simplicity and ease of use, de-

spite suffering from security problems such as the lack of encryption or any215

other protection measures [21]. Eventually, these and other similar vulnera-

bilities became the root cause of many IACS security issues that have been

successfully exploited in recent times, such as those mentioned next.

11

3.3. Attacks on IACS and SCADA Systems

The growing interest in critical infrastructures, the interconnection be-220

tween the ICT network and the control network, the growing knowledge

about the processes and protocols used, and in particular the amplitude of

the possible damage in these infrastructures, have led to an increasing num-

ber of attacks. In this subsection, we present an overview of three well-known

attacks which directly involved PLCs, RTUs or IEDs and could have been225

detected earlier with SSU-like devices (Stuxnet [2, 15], Black energy [22] and

Maroochy Water Breach [23]), followed by the presentation of a simplified

taxonomy of attacks on SCADA/IACS systems.

Stuxnet: At the Natanz Fuel Enrichment Plant in Iran at middle 2010, a

number of problems were identified, the causes of which could be attributed230

to malfunctioning of uranium enrichment centrifuges. However, the analysis

of existing forensic data shows that it was an attack, aimed at delaying the

Iranian nuclear program, called Stuxnet.

The development and implementation of a cyber physical attack goes

far beyond the code and the use of unknown vulnerabilities. It implies the235

knowledge and understanding of the architecture, the existing devices and

the parameters of the SCADA system. This type of attack is based on actions

at three distinct levels: the ICT network used to propagate malicious soft-

ware; the control network used to manipulate the process; and the physical

level, which in this case allowed to change the speed of rotation of the cen-240

trifuges (Siemens S7-315 controller) and / or their pressures (Siemens S7-417

controller) causing irreparable physical damage.

The malicious code used a Man in The Middle strategy, in the control net-

12

work, allowing input/output signals to be passed between peripherals, PLCs

and SCADA control servers during normal operation. After the implementa-245

tion of the attack, some previously recorded data (period of 21 seconds) were

retransmitted in a cycle, allowing the display of a normal operating scenario

in the SCADA monitors in the control room.

The spread of Stuxnet happened through local networks, USB sticks or

through the laptops of contractors, with access to these local networks. That250

is, the global internet network was not used for the proliferation of Stuxnet

neither to reach the final target — the attackers assumed the existence of an

air gap between the facility and the global networks. The use of Zero Day

exploits and valid certificates, illegally obtained, allowed Stuxnet to survive

as a non-detectable system driver by antivirus or other security software,255

even with Windows operating system updates.

All facilities, either industrial or military, rely on their contractors, so at

a certain instant a support team will have access to the ground zero, and

deploy the worm, with no need to break firewalls, air gaps, data diodes or

any other security system, as they have physical access to the control system.260

When Stuxnet reached the Iran facility it identified the known architecture

and waked up and started its malicious purpose.

Black Energy: This attack was able to outage the power distribution of

27 substations, affecting at least 225,000 customers. It was named after the

Trojan BlackEnergy 3 (Industroyer [24]), used by the attackers on an early265

stage to get access the ICT systems. The attack was developed in two stages:

the intrusion – that started about nine months before – and the IACS attack

– that occurred on December 23, 2015.

13

During the intrusion stage, several steps where taken. First, e-mails were

sent to authorised users, as a phishing tool, to deploy the BackEnergy 3270

Trojan through Microsoft Office documents. Afterwards, using macros from

Office documents (Word, Excel) to deploy a Trojan that enables a foothold

into the system. This happened for about 6 months before the outage attack.

Next, when inside the system, attackers collected users credentials to access

the ICT and control networks (using tools such as keystroke loggers). After-275

wards, they established new connections to the control and/or field networks,

using VPN connections. Then, they scanned the whole system to identify

and recognize the existing control devices (RTUs and PLCs) and how they

operated. At this stage, the UPS network of the offices and data-center was

also identified and latter used to outage the power supply to those systems,280

after the attack. Afterwards, attackers uploaded the malicious firmware to

the control devices and installed and customized KillDisk, to remove some

external access points (used by remote managers of the system), to remove

bootloaders from some workstations and servers, and to swipe logs.

The second step corresponds to the IACS attack. Attackers used their way285

in, previously obtained credentials and the existing HMIs to trigger an out-

age, in a very synchronized move, through three different electric providers.

At this same time, a DoS against the electric provides call centers was

also performed – customers were not able to report the outage situation –

and other substations where forced to operate in manual (human supported)290

mode.

Maroochy Water Breach: This 2000 security incident, in Queensland,

Australia, was also a SCADA incident. Mr. Vitek Boden, as a revenge

14

for not being able to maintain his job, used a laptop to control 150 sewage

pumping stations. He caused the release of millions of liters of sewage to295

the final local waterways (rivers, streams or lakes), polluting the existing

ecosystem. He was then arrested and judged for these actions. The SCADA

system was hijacked in order to bypass the treatment process, using the

storm water drains. The attack included: (i) accessing the control SCADA

network; (ii) reconfiguration of the pump stations software; (iii) DoS attacks300

of radio communications; (iv) lockup of computer communications without

any logging; and finally, (v) malicious operation of pumps, changing the

normal process flows.

From a taxonomy standpoint, attacks on SCADA/IACS systems can be

classified as show on Table 1. This table classifies attacks into three main305

categories: layer 2 and 3 attacks, based on frame or stream manipulation

for layer 2 or layer 3 protocol frames; protocol-level attacks, which relate to

higher level protocols, both SCADA-related (such as Modbus) and general

purpose (such as FTP or SNMP), implemented by abusing specifications

or service vulnerabilities; and process-level attacks, which take place at the310

semantic process level, taking advantage of this knowledge to disrupt specific

aspects of its operation. While the first two types of attacks can be detected

through network and system-level monitoring mechanisms, the third type

constitutes the most demanding kind in terms of detection – moreover if

considering that these attacks constitute the ones with the highest potential315

of negative impact on operational safety and security.

15

Table 1: Simplified Taxonomy of SCADA/IACS attacks

Level Class Impact Attack examples

Layer 2/3
Scanning/
Scouting

Getting
information

about network
topology and

devices

ARP or LLDP queries can be used to track
devices; Probe for available services and

protocols using a FIN or SYN scan

Attack on data
integrity

Unstable and/or
unpredictable

behaviour

Corrupt inflight data through packet
manipulation

Denial-of-
Service and/or

service
degradation

Loss of visibility
and/or control

Overwhelm or crash device, via SYN or
ICMP flooding; Employment of CAM table

overflow to disrupt communications

Protocol/
service level

Scanning/
Scouting

Getting
information

about service
and device
capabilities

Function Code scan attacks for device
profiling; Use of MITM to analyse used

services and protocols

Integrity
Unstable and/or

unpredictable
behaviour

Abuse of protocol specifications and features,
such as the Modbus Invalid Read Payload
Size or the Negative Sensor Measurement

attacks

Denial-of-
Service and/or

service
degradation

Loss of visibility
and/or control

Exploit vulnerability to crash or disable
service or device (such as a FTP buffer

overflow); Introduce latency or
communications failures through MITM
attack; Use of administrative modes to

start/stop PLC; Modbus Invalid CRC attack

Process level/
semantic

Scanning/
Scouting

Reveal details
about the nature

of the process

MITM attack for scouting purposes or
preparation of replay attack; Use of of

Modbus FC 90 to download ladder logic;
Structural analysis of memory map thorugh

probing and exception interception

Direct
manipulation

Manipulation of
process variables

Manipulation of process variables to alter
behaviour, through direct device access

Interception and
fuzzing

Interception and
manipulation of
process values

Manipulation of process variables to alter
behaviour, through command injection or
protocol fuzzing, using a MITM (via ARP

poisoning or CAM table) attack to intercept
communications and conceal the intruder;
Process-aware response injection or replay

attacks

Reprogramming

Process
behaviour is

modified and/or
hijacked

Use of of Modbus FC 90 to upload ladder
logic rogue code

16

3.4. The Need for Domain-Specific Monitoring

While both the IACS community and cyber-security experts are actively

working towards identifying and solving cyber-security issues, the differences

between the ICT and IACS contexts mean that there is no ”one size fits320

all” solution when it comes to choosing and deploying security mechanisms.

While importing solutions from the ICT world is often a necessity, it might

lead to undesirable side effects. The fundamental premises for ICT security

tools and commonplace lifecycle management procedures, such as patching

and updating a system, can become troublesome in an IACS when faced with325

situations such as the impossibility, the high cost of stopping production

or even the explicit prohibition by the system’s manufacturer, as it may

happen with operating system updates or patches not previously certified

by the equipment provider. Moreover, mature systems are often kept in

operation, sometimes far beyond their projected lifetime, constraining the330

implementation of some security measures, as existing equipment may lack

the necessary requisites [25].

Altogether, this situation requires the development of domain-specific

safety and security mechanisms for IACS, such as the Shadow Security Unit

for stealth monitoring of RTUs, PLCs, IEDs and similar devices, which is335

the main subject of this paper and will be presented in the next section.

4. The Shadow Security Unit

As already discussed, many successful attacks on SCADA systems have

used intrinsic vulnerabilities of RTUs, PLCs and IEDs which traditional se-

curity monitoring frameworks failed to timely detect. This state of affairs is340

17

the main driver for our proposal of a specialized monitoring probe focused

on such devices: the Shadow Security Unit (SSU).

4.1. The SSU concept

The role of the SSU on a IACS security management framework is de-

picted in Figure 3. The SSU is essentially a probe that is attached in parallel345

to the RTU/PLC/IED device, passively monitoring the network communi-

cation flows and the physical process interfaces, in order to detect anomalies

with potential impact on system safety and security. The SSU is managed by

and reports to the global IACS Security Management Platform – preferably

using out-of-band communications for increased stealthiness and resilience.350

Depending on the adopted strategies, collected monitoring data is processed

at local and/or global level.

Intercepted

Communications

Flow

I/O Channel

Operational

Information

SSU Analog

Front-end

ADC

SSU Analog

Front-end

ADC

Intercepted

Communications

Flow

I/O Channel

Operational

Information

SSU Analog

Front-end

ADC

Process

Control

Network

PLC

Physical I/O

Channels

IACS Security Management Platform

Security

Events

Process

Sensors/Actuators

Process

Sensors/Actuators

Comunications

flow

TAP

Managment

Events

Shadow

Security Unit

Figure 3: Deployment of the Shadow Security Unit

The SSU concept builds on the following key principles and requirements:

18

• Passive Monitoring – by design, the SSU should not be able to inter-

fere in the normal systems operation, thus avoiding the introduction of355

additional points of failure from the viewpoints of security or resilience.

• Stealthiness – the SSU should not be visible to outside attackers,

which in addition to the fore mentioned passive monitoring implicates

the possibility of using off-band communication channels with the IACS

security management platforms.360

• Cost-effectiveness – The SSU must be cost-effective when compared

with traditional resilience mechanisms of mission-critical systems, such

as byzantine voting mechanisms (even if it is not directly competing

with those systems).

• Close coupling – each SSU focuses on the monitoring of a single365

device, to which it is physically coupled (especially to simplify the

deployment process and the monitoring of physical I/O).

• Complementarity with existing solutions – the SSU is intended to

complement and integrate with, rather then replace, existing security

monitoring platforms.370

In addition to these design principles, the SSU is expected to support the

following functionalities:

• Semantic Command Stream Processing – the SSU should be able

to transparently capture and decode the SCADA protocols that pro-

vide data and control synchronization between devices and supervi-375

sory/master stations, whether polling-based (e.g. Modbus, IEC-104)

19

or event-based/hybrid (e.g. DNP3). The SSU passively captures data

at the lowest level to provide a copy of the communications feed for

semantic analysis purposes, but also allowing the detection of issues

such as various types of communication errors.380

• Continuous Network Flow Monitoring – once configured or trained

with thresholds for typical bandwidth usage and traffic patterns on cer-

tain control channels (such as Ethernet), the SSU should be able to

detect when some of these parameters change significantly (e.g. packet

rates, inter-message arrival times). Such changes may be related with385

malware infection, Distributed Denial-of-Service attack (DDoS), flood-

ing, brute-force attacks or equipment failures. Additionally, it is also

an useful mechanism for detection of zero-day threats.

• Message Integrity/Trust Checks – the SSU must provide the means

to detect and report scouting attempts, spoofing attacks or the send-390

ing of unauthorized commands (from potential attackers) from a rogue

host (a typical attack scenario for many SCADA protocols that ac-

cept multi-master operations). Communication flow monitoring pro-

vides the means to detect: the presence of rogue hosts not involved

in process awareness or control interactions; attacks against protocol395

integrity; and situations where certain commands not used on a daily

basis are issued (e.g. administrative commands). Moreover, with the

support of an external service, the SSU should be able to detect incon-

sistencies in process control flow messages exchanged with other hosts

– therefore performing tampering checks by verifying if commands have400

20

not been changed in transit – or creating a closed loop for communica-

tion flow checking at the endpoints.

• I/O sampling and processing – the SSU should able to acquire in-

formation about the status of the I/O device lines attached to the phys-

ical process, for integration into its local analysis or simple reporting405

for the upper security components. The integration of this information

is a distinctive feature of the SSU concept, since it enables detecting

situations where the monitored device is not operating as expected –

due to failure or malicious behavior.

• Continuous Behavior Analysis – a Man-in-the-Middle attack or a410

direct attack to an HMI or Master Station may provide the means to

inject malicious code into the RTU/PLC [26] or to send commands to

disturb operation. To address this, the SSU should support correlation

of communication stream analysis and anomaly detection on physical

I/O interface channels (that interface with sensors and actuators on the415

field), in order to perform continuous behavior audits of the monitored

device. This information can also be used to assess the operational and

health status of the device, from a safety point of view.

When integrated into larger IACS security management frameworks, the

SSU (i) enlarges the traditional monitoring perimeter – by focusing not only420

on ICT security but also on process monitoring – and (ii) adds some re-

dundancy to traditional Network IDS. While a conventional signature-based

Network IDS may share some of the SSU capabilities (particularly those re-

lated to Layer2/3 analysis), there are limitations: when deployed in-line,

21

a NIDS constitutes an undesirable point-of-failure that might also degrade425

latency (a sensitive issue in real-time control scenarios); when deployed in

passive mode, its effectiveness may be hampered by contention, especially

in large scale scenarios – when the monitoring interface capacity of a switch

is insufficient to handle the aggregated traffic from the source ports, over-

flow packets are dropped. Eventually, using a NIDS might not be feasible at430

all if the RTU/PLC/IED is deployed on a remote location served by a low

bandwidth connection (such as VHF links used for telemetry). Moreover, a

traditional NIDS lacks the semantic processing and physical interface anal-

ysis capabilities that are provided by the SSU, together with its behavior

analysis mechanisms.435

Once the information is collected (and optionally locally processed), the

SSU may feed a Security Information and Event Management (SIEM) plat-

form and/or the Security or SCADA Control Rooms.

4.2. Architecture

The SSU architecture is presented in Figure 4. This architecture is a neu-440

tral concept that supports the majority of SCADA protocols (e.g. Modbus,

IEC-104, Profinet/(I)RT, DNP3), communications technologies (e.g. Ether-

net, RS-485, Profinet, Ethernet/IP) and deployment scenarios. Nevertheless,

for sake of readability, some of the technical details discussed in the next sec-

tions directly relate with a proof-of-concept built for a SCADA system using445

Modbus/TCP and IEC-104 – since certain features, such as the communica-

tion interception methods, depend on the nature of the physical medium and

communications technology being used (for instance, Ethernet-based, star

and industrial ring topologies require different approaches than serial buses).

22

Next, we discuss the main building blocks of the SSU architecture: com-450

munication stream analysis, physical I/O probing, automated learning, event-

ing and reporting, management, and watchdog.

Shadow Security Unit

Communications

stream analysis
Automated Learning Management

Capture

module

Eventing and Reporting

Decoding and

integrity checking

Physical I/O

probing

Data

acquisition

module

Software

signal

conditioning and

checking

Processing/Testing

Models

database

 Event

database

MQTT

client

Management

adaptor

interface

Event

publisher

Temporary

event

database

Configuration

status database

Control

loop message

feed

Message

generation

Management

adaptor

Management

adaptor

Management

adaptor

Management

adaptor

Software module

package

management

Device management

adaptor

Watchdog

Figure 4: Shadow Security Unit architecture

4.2.1. Communications Stream Analysis

This module is responsible for passively capturing and processing the

command flow between the master station and the RTU/PLC/IED. For455

Ethernet-based systems, for instance, a low-cost TAP module may be de-

ployed between the monitored device and the upstream link of the commu-

nications infrastructure, providing a copy of all network traffic to the SSU,

while requiring little change to the existing setup.

The SSU network interface connected to the TAP is devoid of IP config-460

uration and does not reply to ARP requests (a requisite for transparency),

working in promiscuous mode to capture all the network traffic, redirecting

it to an internal software module. Next, a rule-based mechanism filters net-

work events of interest, so that they can be stored and processed afterwards.

23

Once captured, the protocol stream will be analyzed, looking for inconsis-465

tencies in frames and protocol data units – for Modbus/TCP, a protocol

decoder allows the SSU to extract and decode the semantics of each Proto-

col Data Unit (PDU), also enabling tracking the messages exchanged with

the monitored device. Moreover, the analysis process calculates bandwidth,

packet rate/size and inter-arrival latency metrics for further processing by470

the Automated Learning module.

4.2.2. Physical I/O Probing

Physical I/O probing is the capability of assessing in soft-realtime the

state of the physical (discrete and/or continuous) inputs and outputs of the

RTU/PLC/IED. This allows the SSU to sense the state of those channels,475

in order to directly get information about the process. For such purpose,

the SSU bundles data acquisition capabilities – for instance a signal pre-

conditioning stage coupled to a precision differential voltage probe using

operational amplifier technology feeding an 8 channel, 10-bit, successive ap-

proximation (SAR) ADC (Analog to Digital Converter) capable of an overall480

conversion rate of 200K samples per second (with an effective sampling rate

of 6KSps per channel on the prototype described later in this paper, corre-

sponding to a 0.1ms latency – compatible with the scan cycle latency of most

RTU/PLC/IED devices), adequate for discrete and most continuous/analog

control I/O modules. For more precise acquisition, the increased sensitivity485

may require a 12 or 16-bit ADC.

Afterwards, a software module uses routines that are executed within

the scope of a real-time OS process context to capture the physical I/O

data stream at a fixed sampling rate, using time-stamping to label the cap-

24

tured data for later correlation with the information from the communications490

stream analysis module. In order to properly interpret the captured data,

the software requires information about the characteristics of each physical

interface such as the direction (input/output), type (discrete/analog) and

voltage ranges, which are configured using the SSU management interface.

A software signal conditioning and checking module applies a set of process-495

ing techniques for anomaly detection on the captured signal feeds, whose

output is fed to the Automated Learning module.

Due to its nature, the physical I/O probing module also provides the

means to remotely diagnose the health of the components of the physical

process interface. For instance, a floating input might be a symptom of500

sensor failure.

4.2.3. Automated Learning

The information from the communications and I/O probing modules is

fed to a local processing module, performed by an embedded correlator com-

ponent. This correlator assesses the status of the monitored device, checking505

if commands arrive from a legitimate source, if they are coherent with the

expected control interface flow, and if I/O information is in-line with ex-

pected values. For discrete control scenarios, the correlator also incorporates

a series of logical state maps (extracted from the ladder logic programming

diagrams of the RTU/PLC/IED or manually provided by the operator) that510

are used to check the behavior of the monitored unit. It also provides pre-

processing capabilities, for event reduction and aggregation within predefined

time windows. Correlation rules can be customized and managed using the

management interface.

25

Thanks to these capabilities, combined with the communications analysis515

and physical I/O preprocessing stages, the SSU incorporates behavior-based

and behavior-specification based monitoring features, which are often judged

to be the most effective in terms of zero-day and rogue threat detection. For

discrete control scenarios, the correlator can also relate command interac-

tions with physical I/O behavior, as the protocol decoder module updates520

a memory map replica of the RTU/PLC/IED device that is kept updated

accordingly with the intercepted communication interactions – it must be

clarified, however, that this does not guarantee that such a memory map

will be completely synchronized with the one on the monitored device. This

replica is used to provide a way of storing semantic information about inter-525

actions that can be encoded into a correlator rule, using a register reference,

therefore making it possible to avoid generating false positives in situations

where a legitimate command or process state update was issued, affecting

the process behavior.

In the cases where the SSU is implemented using a low-cost Single Board530

Computer (SBC) system, there is a limitation in terms of processing capa-

bilities that restrict the ability to perform deeper analysis of the information

that is captured. For this reason, the SSU is able to operate in a flexible

way, either in standalone or as part of a security assessment loop, integrated

within a distributed architecture, fully leveraging its capabilities.535

4.2.4. Eventing and Reporting

The SSU processing module generates events that are sent to Security

Management Platforms such as a SIEM. Generated events are encoded using

Apache Avro [27] with a proper data model – its format is flexible enough to

26

be customized for sending safety-related information or even raw data, when540

needed. Event transmission uses a publish-subscribe messaging pattern, in

which the SSU publishes events into a Message Queue (MQ) system that

feeds one or more consumers (subscribers), such as a SIEM. The use of a

MQ system provides scalability and reliability for the message stream, with

message ordering guarantees.545

Moreover, as the SSU can be used to create command flow control loops

(using an optional external component), the event and reporting module is

also able to replicate copies of communication control flows and physical I/O

data to a separate queue, for consumption by an external message checking

system or a high-level analysis mechanism (such as an anomaly detection550

component).

4.2.5. Management

The SSU should be seen as one of the components of a wider security man-

agement platform – therefore requiring appropriate management capabilities

for the purposes of deployment, monitoring and configuration management.555

The SSU management module exposes the configurations properties and the

device status to the integrated security management platform (preferably

using out-of-band communications, for the already aforementioned reasons).

Some of the functionalities provided by this module include: remotely start-

ing/stopping the component; checking the status of component modules; and560

read/changing configuration parameters. The specific details of this manage-

ment module – which uses MQTT [28] – fall outside the scope of this paper.

27

4.2.6. Watchdog

A watchdog module provides in-device monitoring of component and ser-

vice operation. This component works at two levels. First, it implements a565

series of software routines that periodically check component operation and

attempt recovery or restart in case of stalled operation. Second, it provides

system-level checks through a kernel module working together with a watch-

dog service that provides a regular feedback to the hardware watchdog timer

of the SBC. Using the hardware watchdog allows the possibility of rebooting570

the entire SSU platform in case of a critical failure, after a predefined number

of missed timer events.

4.3. Proof-of-Concept Prototype

In this section we overview a proof-of-concept implementation of the SSU,

which has been built for demonstration and testing purposes.575

Several SBC alternatives were evaluated, in order to strike a balance be-

tween cost, size and capabilities. Eventually, the Raspberry Pi (RPi) [29]

was selected due to its wide availability, ease of development, expandability

and price/performance ratio. The RPi provides reasonable processing capa-

bilities and can accommodate a second network interface (for the out-of-band580

connectivity), using an USB-Ethernet adapter. Moreover, a hardware watch-

dog is already available, thanks to the native CPU watchdog driver for the

RPi [30].

The SSU Operating System (OS) is based on a customized Linux distribu-

tion, using the Xenomai [31] extensions for providing soft real-time scheduling585

capabilities. An MCP3008 [32] 10-bit ADC coupled to a set of differential

voltage probes provides physical data acquisition, feeding the soft real-time

28

data processing routines implemented using the Xenomai API. The embed-

ded correlator engine used for local correlation rules is based on the Simple

Event Correlator [33]. Packet capture is implemented using libpcap [34],590

together with pcap-filter for packet filtering. Protocol stream decoding was

implemented using the pymodbus [35] library.

Figure 5 shows the external look of the proof-of-concept. An IP65 en-

closure guarantees protection against dust. External connections use XLR

type connectors as specified by IEC 61076-2-203 [36], providing easy assem-595

blage, simple use and reliable and robust connections. A two-line dot matrix

display reports the device operational status for on-site interventions. The

whole prototype was built using commercial of-the-shelf hardware compo-

nents and with no special care for packaging or space optimization, and

therefore a mass-produced SSU only requires a fraction of the footprint of600

this prototype.

Figure 5: SSU Hardware Prototype

Overall, this proof-of-concept shows it is possible to achieve the main

29

requirements identified for the SSU:

• The device does not interfere with the normal control process, resorting

to fully passive acquisition of data communications and physical I/O.605

• The device has enough computing power for meeting the processing

requirements of most usage scenarios, despite using a widely available

low-cost SBC.

• The overall bill-of-materials is within reasonable boundaries. The proof-

of-concept has cost less than 120 EUR, using commercial of-the-shelf610

components, and a mass produced system could easily cost a fraction

of this value (less than 50 EUR, for the most common types of physical

I/O tapping scenarios).

5. Leveraging the SSU as an Intelligent Edge Probe

The SSU is a generic device that can assume multiple roles within the615

scope of an Intrusion and Anomaly Detection Systems (IADS), providing

the means to extend its reach towards the edge of the IACS infrastructure.

Considering its unique location and capability for combined monitoring of

network communications and the physical process, the SSU can add new

capabilities to traditional IADS systems, including:620

• Fine grained analysis of local process/device, with fast response times.

• Detection of on-site intrusion by means of physical tampering.

• Detection of compromised firmware at the RTU/PLC/IED.

30

• Enrichment of the knowledge of the detection system, with the moni-

toring of process I/O.625

• Avoidance of propagation of local anomalies.

• Feeding of global/centralized level IADS with enriched local level knowl-

edge.

Next, we identify some of those possible roles, as an overview of the SSU

potential capabilities. It should be noted, also, that the criteria for choosing630

which application profiles may be suitable for SSU deployment is also affected

by the amount of prior knowledge regarding the specific characteristics of the

process under control. In some cases, a black-box approach may be adequate,

using a two-stage deployment strategy encompassing a preliminary analysis

process, for collection and characterization of the nominal physical and ICT635

inputs/outputs status, followed by a detection stage. In other situations,

pursuing a white-box approach may be preferable, using partial knowledge

about the controlled process to predetermine the expected behavior of the

system.

5.1. Shadow replicator640

The simplest way of using the SSU is to feed the information collected by

the SSU (control network and/or physical I/O) to an upper processing unit.

This approach allows a reliable feed of the global level IADS for mapping,

correlating or performing any other processing analysis incorporating local

level knowledge. Man-in-the-middle attacks, for instance, are immediately645

detected by comparing commands issued by SCADA servers and correspond-

ing responses from the PLC at both ends of the communication.

31

5.2. Protocol inspector

The SSU can host an on-line anomaly detection system that relies on

time-series analysis of residual prediction errors to provide semi-supervised650

anomaly detection. Due to the nature of the SCADA process and field net-

work environments, there is a considerable degree of stability and homo-

geneity (especially in comparison with ICT networks), regarding the mix of

involved protocols, hosts, network traffic flows and physical I/O — making

this approach particularly appropriate, not only for cyber-security monitor-655

ing but also for safety monitoring and diagnostics, since some detected pat-

terns (such as an unusual number of TCP RST messages, for instance) may

be symptomatic of communications issues or equipment malfunction.

Moreover, this technique may be complemented with an authorized IP/MAC

address monitor (using a MAC/IP address list for authorized hosts and in-660

dividual associations). Scanning patterns may be detected with the help of

a Portscan Attack Detector suite (e.g. the psad module [37]), fed by packet

information — generated for instance by a set of Netfilter iptables rules [38]

that receive the feed via an internal bridge, created using ebtables [39]. The

iptables rules log communications transactions directly to a file on a small665

ramdisk (for performance reasons this file may be trimmed at regular inter-

vals, in order to implement a moving window for analysis). Therefore, the

SSU is able to detect TCP SYN, NULL and XMAS scans, UDP scans and

OS fingerprinting attempts.

5.3. Automated Learning Module670

The proximity to data sources, which translates to the richness of these

data, guarantees the implementation of classification algorithms to detect

32

anomalies in the process that can later be considered malfunctions of the

equipment or attacks with malicious intentions.

The range of anomaly detection techniques that can be applied in this675

scenarios is not much different from the techniques used in classic set-ups —

the main difference being the already mentioned richness of available data.

For instance, the following types of anomaly detection approaches (as sum-

marized by [40]) can be applied: classification based approaches(including

neural networks, Bayesian networks, support vector machines and rule-based680

techniques), nearest neighbour-based techniques, clustering approaches, sta-

tistical analysis and spectral analysis.

Hardware limitations, however, may impose specific adjustments to the

adopted learning techniques (e.g., models may need to be trained outside the

SSU, with the SSU device hosting only the classification phase).685

5.4. Logging System

The close proximity of the SSU regarding the physical process provides

the means to improve the existing security and/or monitoring systems with

enhanced and fine-grained logging capabilities, which can be context sensi-

tive and adjusted to the operator needs. This could be especially useful for690

forensics and security compliance analysis, due to the potential usefulness

of the SSU as an evidence collection mechanism deployed at the edge of the

IACS, next to the cyber-physical domain perimeter.

5.5. Data/feature Extraction for Machine Learning Mechanisms

The SSU can also be used for feature extraction to feed external processing695

units. The proximity to the network and physical IO data is a good reason

33

to deploy at the edge this feature extraction mechanism providing a reacher

feature set to the processing units.

6. Validation

In this section we discuss the validation of the SSU concept. First, we700

introduce some of the most typical attacks and discuss how the SSU can help

detecting them. Second, we present the results of an experimental evalua-

tion work based on the aforementioned proof-of-concept implementation and

addressing the SSU functionality, performance and reliability.

6.1. Functional Evaluation705

This subsection will discuss the functional evaluation of the SSU, con-

sidering a set of attack use cases representative of the categories previously

introduced in Table 1. In order to ease the description of the SSU features

that provide the detection capabilities for each use case, the corresponding

attacks will be also described in detail.710

6.1.1. Layer2/3 Device Probing Attack: Network FIN/SYN Scan

A typical first step for an attacker is to perform a scouting survey of the

infrastructure. In this perspective, network scan procedures are a valuable

tool to get an overview of the network elements and its topology. There are

several techniques to perform this on a TCP network, such as SYN or FIN715

scans [41] — the latter being also known as stealth scans, as some firewalls

may log SYN (half-open) attempts to restricted ports. Moreover, a FIN

packet sent to a closed port on certain hosts (mostly UNIX-based platforms

34

and most RTU/PLC/IED devices) will pass undetected, generating a RST

response or being ignored for an open port.

Switch

FIN Port State Port State1 2 2

Destination:
172.27.224.0/24

HMI
IP: 172.27.224.32

FIN 1

1 FIN
Port State 2

Port State2

FIN 1

Attacker
IP: 172.27.224.33

PLC
IP: 172.27.224.3

OPC Server
IP: 172.27.224.35

SSU

TAP

Security event
is generated

Figure 6: FIN Scan on a network address range

720

Figure 6 illustrates such a scenario where an attacker continuously sends

FIN probes to devices on a network scope and waits for the responses. While

a Network Intrusion Detection System (NIDS) may detect such an attack, it

must be configured in monitoring mode, receiving the traffic for the relevant

hosts — eventually, this might not be feasible if the RTU/PLC/IED is de-725

ployed on a remote location, served by a low bandwidth connection (such as

VHF links used for telemetry), whereas the SSU will be able to operate.

In these scenarios, two mechanisms allow the SSU to detect suspicious

activity. First, the internal authorized device IP/MAC list provides the cor-

relator with information about the devices that are supposed to interact730

with the monitored device. Second, the psad services of the communications

stream analysis module are able to detect inconsistencies such as SYN, FIN,

35

or even fragmentation scans.

6.1.2. Layer2/3 DoS Flooding Attack: SYN flood

Denial-of-Service attacks can be implemented using flooding techniques735

such as Smurf or SYN flooding [42]. SYN flood attacks, illustrated in Fig-

ure 7, explore the nature of TCP connections by sending a series of SYN

packets (signaling the start of a TCP connection) to the RTU/PLC/IED,

which responds with a SYN-ACK, never acknowledged (ACK) by the sender.

Switch

SYN
SYN-ACKSYN 1

23

Can’t connect
to the PLC

HMI
IP: 172.27.224.32

MAC: 00:0c:29:bc:64:12

Attacker
IP: 172.27.224.33

MAC: 00:0c:29:9a:5f:84

PLC
IP: 172.27.224.3

MAC: 00:80:f4:09:51:3b

SSU

TAP

Security event
is generated

Figure 7: SYN flood attack

740

A SYN flood creates large numbers of half-open connections on the at-

tacked device (waiting for an ACK or a timeout) that might eventually lead

to resource exhaustion, with the device ceasing to answer new requests. A

variation of this attack forges raw packets with a false sender, so that the

SYN-ACK replies also flood a target, via backscatter (a Smurf attack uses745

ICMP packets for the same purpose).

36

In such flooding scenarios, the SSU is able to detect suspicious activity

thanks to the internal authorized device IP/MAC list and the communica-

tions stream analysis module, which is able to detect the SYN flood pattern

over a time window. In the event that the SYN packets are forged with a de-750

vice with a legitimate sender IP address (to create a backscatter situation),

the SSU is able to detect the attack because of the flow pattern analysis

features (using behaviour signatures and packet rate analysis).

While a conventional NIDS may deal with some of these threats, there are

two limitations that make them unsuitable for large-scale scenarios. First,755

when deployed in inline mode, it constitutes an undesirable point-of-failure

that might also degrade latency (something considered critical, especially in

systems dealing with strict, real-time, control). Second, when deployed in

passive mode, its effectiveness may be hampered by contention - when the

monitoring interface capacity is insufficient to handle the aggregated traffic760

from the source ports, overflow packets are dropped.

6.1.3. Man-in-the-Middle with ARP Poisoning

A Man-in-the-Middle (MITM) attack corresponds to a situation where

a third-party becomes involved in the middle of the communication stream

while remaining unnoticed. For instance, an attacker may fool an HMI by765

directly interacting with it and providing apparently normal process data

(e.g. obtained from a previous survey of device interactions and later re-

played) while attacking the PLC in the background. MITM attacks can be

implemented using several techniques, ranging from ARP poisoning [43] to

routing redirection [44]. Figure 8 illustrates the first scenario.770

In the first stage of the ARP poisoning MITM, the attacker generates a

37

HMI
IP: 172.27.224.32

MAC: 00:0c:29:bc:64:12

PLC
IP: 172.27.224.3

MAC: 00:80:f4:09:51:3b

1 5

4

8

2

3

6

7

Switch
R/W Coils
Request

R/W Coils
Reply

Attacker
MAC: 00:0c:29:9a:5f:84

HMI
IP: 172.27.224.32

MAC: 00:0c:29:bc:64:12

PLC
IP: 172.27.224.3

MAC: 00:80:f4:09:51:3b

Switch

172.27.224.3
↕

 00:0c:29:9a:5f:84

172.27.224.32
↕

 00:0c:29:9a:5f:84

ARP Reply ARP Reply

1 1

2 2

Attacker
MAC: 00:0c:29:9a:5f:84

Stage 1:
ARP

poisoning

Stage 2:
MITM

ARP Cache Table:
172.27.224.3 ➔ 00:80:f4:09:51:3b

ARP Cache Table:
172.27.224.32 ➔ 00:0c:29:bc:64:12

(Spoofed) ARP Cache Table:
172.27.224.3 ➔ 00:0c:29:9a:5f:84

(Spoofed) ARP Cache Table:
172.27.224.32 ➔ 00:0c:29:9a:5f:84

Figure 8: MITM attack using ARP poisoning (adapted from [45])

series of unrequested ARP replies for both the HMI and the PLC (Figure 8,

upper half), poisoning the local ARP caches in such a way that the MAC

address of the attacker system becomes associated with the IP of the HMI for

the PLC and the IP of the PLC for the HMI, respectively. Further interaction775

attempts from the HMI to the PLC will be redirected to the attacker system,

and vice-versa.

In the second stage, the attacker intercepts connections in real-time using

a packet manipulation tool (such as SCAPY [46]) to perform session hijacking

on the TCP connection (Figure 8, lower half). In alternative, the attacker780

might provide a fake device for the HMI to interact with, using a Mod-

38

bus/TCP simulator programmed with information obtained from a previous

survey or a script that replies with protocol interactions previously recorded,

corresponding to an apparently normal operation scenario – Figure 9 depicts

such an attack, including the SSU MITM detection capabilities.

HMI
IP: 172.27.224.32

MAC: 00:0c:29:bc:64:12

PLC
IP: 172.27.224.3

MAC: 00:80:f4:09:51:3b

1 3

2

4

2

3

4

1

Switch

(Spoofed) ARP Cache Table:
172.27.224.3 ➔ 00:0c:29:9a:5f:84

(Spoofed) ARP Cache Table:
172.27.224.32 ➔ 00:0c:29:9a:5f:84

PLC Simulator

2

3

Attacker
IP: 172.27.224.33

MAC: 00:0c:29:9a:5f:84

TAP

SSU

1

2

2

 IF Master message != Shadow message
 Trigger Alert!

Message
Checker

Figure 9: SMU/Message Checker operation against MITM attack (adapted from [4])

785

After the ARP poisoning is successfully implemented, the attacker system

runs a PLC simulator to keep the HMI unaware of the real PLC status. The

SSU can be effective against this attack as it is configured with the IP/MAC

addresses of the systems that are authorized to interact with the monitored

device — this same strategy is equally effective for the real-time protocol790

manipulation scenario.

However, ARP poisoning attacks can be avoided by using static ARP

lists or managed switches featuring port security or dynamic ARP inspection

mechanisms (which a large number of SCADA operators do not use, what-

soever). However, despite such security mechanisms, the SSU remains an795

39

effective proposition as it is capable of detecting other kinds of MITM attack

techniques. For instance, Spanning Tree Protocol [47] or routing redirection

attacks, when used together with MAC address spoofing, may overcome the

detection capabilities provided by MAC/IP lists. To deal with these situa-

tions, the already mentioned shadow replicator mechanism enabled by the800

SSU (cf. Section 5.1) can report issued and received commands to a message

checker system (cf. Figure 9), therefore providing a closed loop for verifica-

tion of the integrity of the control flow in an end-to-end basis, overcoming

the most sophisticated MITM scenarios.

6.1.4. IED/PLC Reprogramming805

The SSU can be effective against a IED/PLC reprogramming attack (or

even a successful direct attack against the IED/PLC that is not otherwise

detected) due to three features: authorized IP/MAC system lists (already

discussed, being used to detect unauthorized device access), communications

stream analysis and behaviour checking.810

The communications stream analysis module can provide information for

the correlator about the semantics of a specific operation. Particularly, as

code maintenance on a IED/PLC is not a frequent procedure, it makes sense

to track such operations at the protocol level – as an example, the Schnei-

der Modicon PLC series use the Modbus function code 90 (0x5a) [48] to815

exchange ladder logic using unauthenticated transfers, which can be used by

an attacker to retrieve or upload the PLC logic programming. The SSU is

able to detect such operations and generate security events accordingly.

Behaviour checking includes several techniques, such as those already

discussed in Section 5. These behaviour analysis capabilities are effective820

40

Stuxnet-like scenarios, providing the means to detect and report the ab-

normal behaviour of a reprogrammed PLC – even if the reprogramming is

provided by a legitimate, yet compromised, Master Station or HMI.

6.2. Experimental Measurements

For the purpose of testing the SSU, a small scale 100 Mb/s Ethernet LAN825

testbed was created, reproducing the minimum components of a SCADA

system (see Figure 10). Experiments focused on three aspects: functionality,

reliability and performance.

HMI
IP: 172.27.224.32

PLC
IP: 172.27.224.3

Fast Ethernet Switch

Message Checker
IP: 172.27.224.36

NIDS
IP: 172.27.224.35

Attacker
IP: 172.27.224.33

TAP

Process Sensors/
Actuators

Physical I/O
Channels

SSU Analog
Front-end

ADC

SSU

Figure 10: SCADA testbed for SSU evaluation

Functional tests validated the SSU capabilities according to the use cases

from Section 6.1, with the SSU behaving as expected.830

Reliability tests were conducted using both CPU and storage (SD card)

stress tests. These consisted, for the CPU, in using the Livermore Loops

Stability Test [49, 50] with a default clock speed of 700MHz, continuously

running over a 4-day period in a room with an ambient temperature between

41

23◦C and 18◦C, reaching a maximum temperature of 58◦C – despite this, a835

passive heatsink was added to reinforce the thermal operation margin.

Storage stress tests (including continuous write loops and unattended

power cycling) revealed a considerable probability of flash memory wearout

or filesystem corruption to occur within a short time interval (from days

to weeks). To avoid such issues, the SSU firmware image operates from a840

filesystem in read-only mode, avoiding write cycle wearout, using a USB flash

drive for scratch, database and log storage.

Performance validation was focused on analysing the capabilities of the

RPi as a packet capture device, using Iperf [51] to execute 15 rounds (120s

each) of unidirectional UDP stream-tests between two computers in the845

testbed, using a 500-byte packet size (a Modbus message has a maximum

size of 300 bytes [52]), with different bandwidths (see Table 2).

Table 2: Average results for network overhead tests (STDEV in parenthesis)

Test rate
(Mb/s)

10 20 30 40 50 60 70 80 90

Jitter (ms)
0.17
(0.02)

0.27
(0.01)

0.35
(0.02)

0.48
(0.01)

0.53
(0.03)

0.67
(0.01)

0.80
(0.01)

0.91
(0.01)

1.16
(0.13)

Captured
packets (%)

100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.1

System
load(%)

8.1
(0.4)

20.8
(0.5)

34.5
(2.4)

46.4
(2.1)

57.9
(4.3)

70.0
(1.9)

83.6
(1.7)

91
(3.4)

99.8
(2.1)

Capture
overhead

(%)

71.1
(0.8)

98.5
(3.2)

98.3
(3.3)

99.1
(3.6)

99.4
(2.1)

98.7
(3.69)

96.8
(4.2)

99.2
(5.2)

99.4
(4.4)

The SSU was deployed to monitor one of the testbed PCs (instead of a

PLC/RTU, for test purposes), using tcpdump [34] for packet capture and

42

mpstat and pidstat [53] to collect system statistics. The SSU was configured850

with a minimum service set, using a ramdrive to store test data – data

collection overhead was also accounted for, constituting 0.6% to 1% of the

total load, on average.

Tests demonstrated the SSU to be capable of capturing network streams

with no packet loss, in most cases. However, above a 60 Mb/s threshold,855

the packet capture overwhelms the CPU, leaving little room for other tasks.

In extreme cases, (90 Mb/s) CPU starvation causes packet drops. Further

analysis (see Figure 11) revealed a considerable overhead for soft IRQ pro-

cessing, consuming over 50% of the available CPU capacity, for high UDP

rates. This was traced back to the Ethernet interface implementation of the860

RPi that uses a USB device (instead of a dedicated or PCI bus), which is

prone to performance and overhead issues.

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

100"

10"Mb/s" 20"Mb/s" 30"Mb/s" 40"Mb/s" 50"Mb/s" 60"Mb/s" 70"Mb/s" 80"Mb/s" 90"Mb/s"

Sy
st
em

'lo
ad

'a
ve
ra
ge
'%
''

Bandwidth'

HardIRQ"processing"
So?IRQ"processing"
Syscalls/kernel"mode"(except"IRQ"and"So?"IRQ)"
User"Mode"

Figure 11: Average CPU overhead for network tests

As typical Modbus/TCP traffic patterns do not exhaust the capacity of

a Fast Ethernet link, the problem of network processing overhead does not

affect the SSU in typical deployment scenarios, as it only becomes critical865

for higher packet rates – nevertheless, the next interactions of the prototype

43

will address this issue.

7. Related Work

To the best of our knowledge, the SSU is the first proposal for adding

an external watchdog mechanism to mainstream PLC/RTU/IED devices,870

capable of observing both network communications and the interactions with

the physical process under control (physical I/O tapping). Nevertheless, a

few other works have focused on somehow integrating direct and indirect

physical process monitoring into IDS frameworks.

Hadziosmanovi et al. [54] presented a detector that continuously monitors875

the variables of a process and then creates specific prediction models for these

variables, allowing to estimate the future activity. The traffic of the control

network of two water treatment plants, which serve a total of about one

million consumers, was used as reference scenario. The use of a network tap

allowed a passive redirection of the PLCs traffic to an implemented IDS. This880

IDS implements a time series approach for each variable (extracted from the

Modbus/TCP messages), to infer its expected activity and to detect attacks.

Modeling and detection used auto regression and control limits, as the main

goals were techniques that are relevant to the context and do not pose strong

assumptions on the monitored time series.885

A work addressing semantic attacks that change the way PLCs operate

is presented in [55]. These attacks may compromise the firmware of tar-

get PLCs, and manifest themselves by changing the normal behaviour of

the physical process under control. The authors used an Arduino (embed-

ded micro-controller) to create a non-intrusive device for runtime monitoring890

44

using interval temporal logic, a formal language, for safety and security mon-

itoring.

Hidden Markov Models (HMM) are used by [56] to infer the network

protocols from the existing traffic in that same network. This approach

uses ε-machine reconstruction to infer the minimal deterministic HMM of a895

protocol. The parameters are obtained directly from the data overcoming

the problems of feature selection.

Sequence-based event attacks are covered by [57]. This approach shows

that a sequence of events (individually considered normal) goes unnoticed

by traditional intrusion detection systems, yet represents a threat to the900

system. It proposes a Sequence-aware Intrusion Detection System (S-IDS)

and a possible architecture to overcome this issue.

8. Conclusion

In this paper we proposed the SSU as a cost-effective solution for moni-

toring process control devices such as PLCs, RTUs and IEDs. The SSU rep-905

resents an attractive addition to current mainstream monitoring approaches

(which lack the capability to detect sophisticated attacks such as Stuxnet),

when compared with the costly and complex redundancy solutions adopted

in avionics and similar mission-critical systems.

Overall, the SSU represents an important contribution to enlarge the910

scope of cyber-detection capabilities to the physical processes under control

– helping to bridge the current gap between ICT security and critical infras-

tructure protection as whole.

In this paper we introduced the SSU concept, together with a reference

45

architecture and a proof-of-concept implementation. We also discussed some915

of the possible approaches for exploiting the cyber-detection capabilities en-

abled by the SSU device.

Acknowledgement

This work was partially funded by the ATENA H2020 Project (H2020-

DS-2015-1 Project 700581).920

References

[1] M. Castro, B. Liskov, Practical byzantine fault tolerance and proactive

recovery, ACM Transactions on Computer Systems 20 (4) (2002) 398–

461. arXiv:arXiv:1203.6049v1, doi:10.1145/571637.571640.

URL http://portal.acm.org/citation.cfm?doid=571637.571640925

[2] R. Langner, To kill a centrifuge: A technical analysis of what stuxnet’s

creators tried to achieve.

URL https://www.langner.com/wp-content/uploads/2017/03/

to-kill-a-centrifuge.pdf

[3] T. Cruz, J. Barrigas, J. Proenca, A. Graziano, S. Panzieri,930

L. Lev, P. Simoes, Improving network security monitoring for

industrial control systems, 2015 IFIP/IEEE International Sym-

posium on Integrated Network Management (IM) (2015) 878–

881doi:10.1109/INM.2015.7140399.

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?935

arnumber=7140399

46

http://portal.acm.org/citation.cfm?doid=571637.571640
http://portal.acm.org/citation.cfm?doid=571637.571640
http://portal.acm.org/citation.cfm?doid=571637.571640
http://arxiv.org/abs/arXiv:1203.6049v1
http://dx.doi.org/10.1145/571637.571640
http://portal.acm.org/citation.cfm?doid=571637.571640
https://www.langner.com/wp-content/uploads/2017/03/to-kill-a-centrifuge.pdf
https://www.langner.com/wp-content/uploads/2017/03/to-kill-a-centrifuge.pdf
https://www.langner.com/wp-content/uploads/2017/03/to-kill-a-centrifuge.pdf
https://www.langner.com/wp-content/uploads/2017/03/to-kill-a-centrifuge.pdf
https://www.langner.com/wp-content/uploads/2017/03/to-kill-a-centrifuge.pdf
https://www.langner.com/wp-content/uploads/2017/03/to-kill-a-centrifuge.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7140399
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7140399
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7140399
http://dx.doi.org/10.1109/INM.2015.7140399
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7140399
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7140399
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7140399

[4] T. Cruz, L. Rosa, J. Proença, L. Maglaras, M. Aubigny, L. Lev, J. Jiang,

P. Simões, A Cybersecurity Detection Framework for Supervisory Con-

trol and Data Acquisition Systems, IEEE Transactions on Industrial

Informatics 12 (6) (2016) 2236–2246. doi:10.1109/TII.2016.2599841.940

[5] P. Laboratory, Northwest National, The Role of Authenticated Com-

munications for Electric Power Distribution, National Workshop Be-

yond SCADA: Networked Embedded Control for Cyber Physical Sys-

tems (HCSS-NEC4CPS).

[6] D. Baily, E. W. Nipenz, Practical SCADA for Industry (IDC Technol-945

ogy)(Paperback), Newnes Publishers, Oxford UK. ISBN 7506 (2003)

58053.

[7] Electronic Industries Association, Standard for Electrical Characteris-

tics of Generators and Receivers For Use In Balanced Multipoint Sys-

tems (EIA-485) (1983).950

[8] ISO, 11898-1–Road vehicles–Controller area network (CAN)–Part 1:

Data link layer and physical signalling, International Organization for

Standardization.

[9] IEC, PAS 62407: Real-time ethernet control automation technology

(EtherCAT), FR USA: EtherCAT Technology Group.955

[10] J. Feld, PROFINET-scalable factory communication for all applications,

in: Factory Communication Systems, 2004. Proceedings. 2004 IEEE

International Workshop on, IEEE, 2004, pp. 33–38.

47

http://dx.doi.org/10.1109/TII.2016.2599841

[11] Modicon Inc., Modicon Modbus Protocol Reference Guide-PI-MBUS-

300, Rev. J.960

[12] Modbus-IDA, Modbus Application Protocol V1.1b., December 2006.

[13] IEC, Equipment, Telecontrol Systems—Part 5-104: Transmission

Protocols—Network Access for IEC 60870-5-101 Using Standard Trans-

port Profiles, IEC Standard 60870.

[14] IEEE Standard for Electric Power Systems Communications-Distributed965

Network Protocol (DNP3), IEEE Std 1815-2012 (Revision of IEEE Std

1815-2010) (2012) 1–821doi:10.1109/IEEESTD.2012.6327578.

[15] N. Falliere, L. O. Murchu, E. Chien, W32. stuxnet dossier, White paper,

Symantec Corp., Security Response 5.

[16] IEC, ISO/IEC 61508-1:2010 Functional safety of electri-970

cal/electronic/programmable electronic safety-related systems -

Part 1: General requirements, IEC Standard.

[17] OPC Foundation, OPC Classic Specifications.

URL https://opcfoundation.org/about/opc-technologies/

opc-classic/975

[18] D. J. Kang, J. J. Lee, B. H. Kim, D. Hur, Proposal strategies of

key management for data encryption in {SCADA} network of electric

power systems, International Journal of Electrical Power & Energy Sys-

tems 33 (9) (2011) 1521–1526. doi:http://dx.doi.org/10.1016/j.

ijepes.2009.03.004.980

48

http://dx.doi.org/10.1109/IEEESTD.2012.6327578
https://opcfoundation.org/about/opc-technologies/opc-classic/
https://opcfoundation.org/about/opc-technologies/opc-classic/
https://opcfoundation.org/about/opc-technologies/opc-classic/
https://opcfoundation.org/about/opc-technologies/opc-classic/
http://dx.doi.org/http://dx.doi.org/10.1016/j.ijepes.2009.03.004
http://dx.doi.org/http://dx.doi.org/10.1016/j.ijepes.2009.03.004
http://dx.doi.org/http://dx.doi.org/10.1016/j.ijepes.2009.03.004

[19] ISA, ANSI, ISA–99.00. 01–2007 Security for Industrial Automation and

Control Systems Part 1: Terminology, Concepts, and Models, Interna-

tional Society for Automation.

[20] IEC, ISO/IEC 62443-3-1:2009 Industrial communication networks - Net-

work and system security - Part 3-1: Security technologies for industrial985

automation and control systems, IEC Standard.

[21] Triangle MicroWorks, Inc., DNP3 overview, Raleigh, North Carolina

(www. trianglemicroworks. com/documents/DNP3 Overview. pdf).

[22] R. M. Lee, M. J. Assante, T. Conway, Analysis of the Cyber Attack on

the Ukrainian Power Grid, Sans (2016) 23.990

URL https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.

pdf

[23] J. Slay, M. Miller, Lessons learned from the maroochy water breach,

IFIP International Federation for Information Processing 253 (2007) 73–

82. doi:10.1007/978-0-387-75462-8_6.995

[24] D. Cohen-Sason, Industroyer / CrashOverride IT to OT Malware That

Changes Industrial Security Paradigms (2017).

[25] V. M. Igure, S. A. Laughter, R. D. Williams, Security issues in {SCADA}

networks, Computers & Security 25 (7) (2006) 498–506. doi:http:

//dx.doi.org/10.1016/j.cose.2006.03.001.1000

[26] Y. Yang, K. McLaughlin, T. Littler, S. Sezer, E. G. Im, Z. Q. Yao,

B. Pranggono, H. F. Wang, Man-in-the-middle attack test-bed investi-

gating cyber-security vulnerabilities in Smart Grid SCADA systems, in:

49

https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
http://dx.doi.org/10.1007/978-0-387-75462-8_6
http://dx.doi.org/http://dx.doi.org/10.1016/j.cose.2006.03.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.cose.2006.03.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.cose.2006.03.001

Sustainable Power Generation and Supply (SUPERGEN 2012), Inter-

national Conference on, 2012, pp. 1–8. doi:10.1049/cp.2012.1831.1005

[27] The Apache Software Foundation, Apche Avro.

URL https://avro.apache.org/

[28] N. A. Dr Stanford-Clark Andy, MQTT (1999).

URL http://mqtt.org/

[29] E. Upton, G. Halfacree, Meet the Raspberry Pi, John Wiley & Sons,1010

2012.

[30] H. Philip, Who Watches the Watcher? (aug 2012).

URL http://pi.gadgetoid.com/article/

who-watches-the-watcher

[31] J. H. Brown, B. Martin, How fast is fast enough? Choosing between1015

Xenomai and Linux for real-time applications, in: proc. of the 12th

Real-Time Linux Workshop (RTLWS’12), 2010, pp. 1–17.

[32] Microchip, Inc., MCP3004/3008: 2.7V 4-Channel/8-Channel 10-Bit

A/D Converters with SPI Serial Interface (2008).

URL http://ww1.microchip.com/downloads/en/DeviceDoc/1020

21295d.pdf

[33] R. Vaarandi, SEC, Simple Event Correlator (2006).

[34] M. G. Luis, TCPDUMP/LIBPCAP public repository, Online document.

50

http://dx.doi.org/10.1049/cp.2012.1831
https://avro.apache.org/
https://avro.apache.org/
http://mqtt.org/
http://mqtt.org/
http://pi.gadgetoid.com/article/who-watches-the-watcher
http://pi.gadgetoid.com/article/who-watches-the-watcher
http://pi.gadgetoid.com/article/who-watches-the-watcher
http://pi.gadgetoid.com/article/who-watches-the-watcher
http://ww1.microchip.com/downloads/en/DeviceDoc/21295d.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/21295d.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/21295d.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/21295d.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/21295d.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/21295d.pdf

[35] Pymodbus Project, pymodbus - A full modbus protocol written in

python.1025

URL https://github.com/bashwork/pymodbus

[36] C. Prix, P. Code, INTERNATIONALE INTERNATIONAL STAN-

DARD.

[37] R. Michael, Portscan Attack Detector Suite.

URL http://www.cipherdyne.org/psad/1030

[38] H. Harnisch, Netfilter / IP-Tables (2007).

URL https://www.netfilter.org/

[39] ebtables - linux ethernet bridge firewalling.

URL http://ebtables.netfilter.org/

[40] V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: A survey,1035

ACM computing surveys (CSUR) 41 (3) (2009) 15.

[41] R. Christopher, Port Scanning Techniques and the Defense Against

Them, SANS Institute.

[42] R. K. C. Chang, Defending against flooding-based distributed denial-

of-service attacks: a tutorial, Communications Magazine, IEEE 40 (10)1040

(2002) 42–51. doi:10.1109/MCOM.2002.1039856.

[43] R. Siles, Real world ARP spoofing, GIAC Certified Incident Handler

(GCIH) Practical, Version 2.

[44] A. Ornaghi, M. Valleri, Man in the middle attacks, in: Blackhat Con-

ference Europe, 2003.1045

51

https://github.com/bashwork/pymodbus
https://github.com/bashwork/pymodbus
https://github.com/bashwork/pymodbus
https://github.com/bashwork/pymodbus
http://www.cipherdyne.org/psad/
http://www.cipherdyne.org/psad/
https://www.netfilter.org/
https://www.netfilter.org/
http://ebtables.netfilter.org/
http://ebtables.netfilter.org/
http://dx.doi.org/10.1109/MCOM.2002.1039856

[45] C. Foglietta, D. Masucci, C. Palazzo, R. Santini, S. Panzieri, L. Rosa,

T. Cruz, L. Lev, From Detecting Cyber Attacks to Mitigating Risk

Within a Hybrid Environment (2018) 1–12.doi:10.1109/JSYST.2018.

2824252.

[46] P. Biondi, Scapy, a powerful interactive packet manipulation program1050

(2010).

[47] E. Vyncke, C. Paggen, LAN switch security: What hackers know about

your switches, Cisco Press, 2007.

[48] Digital Bond, Inc., Metasploit Modules.

URL http://www.digitalbond.com/tools/basecamp/1055

metasploit-modules

[49] F. H. McMahon, Tech. rep., Lawrence Livermore National Lab., CA,

(USA), month = dec, number = UCRL-53745, title = The Livermore

FORTRAN Kernels: A computer test of the numerical performance

range, year = 1986.1060

[50] R. Longbottom, Raspberry Pi Benchmarks.

URL http://www.roylongbottom.org.uk/RaspberryPiBenchmarks.

htm

[51] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, K. Gibbs, Iperf:

The TCP/UDP bandwidth measurement tool, htt p://dast. nlanr.1065

net/Projects.

[52] Modbus, Modbus messaging on TCP/IP implementation guide v1. 0b,

North Grafton, Massachusetts.

52

http://dx.doi.org/10.1109/JSYST.2018.2824252
http://dx.doi.org/10.1109/JSYST.2018.2824252
http://dx.doi.org/10.1109/JSYST.2018.2824252
http://www.digitalbond.com/tools/basecamp/metasploit-modules
http://www.digitalbond.com/tools/basecamp/metasploit-modules
http://www.digitalbond.com/tools/basecamp/metasploit-modules
http://www.digitalbond.com/tools/basecamp/metasploit-modules
http://www.roylong bottom.org.uk/Raspberry Pi Benchmarks.htm
http://www.roylong bottom.org.uk/Raspberry Pi Benchmarks.htm
http://www.roylong bottom.org.uk/Raspberry Pi Benchmarks.htm
http://www.roylong bottom.org.uk/Raspberry Pi Benchmarks.htm

[53] S. Godard, SYSSTAT utilities home page (2010).

URL http://sebastien.godard.pagesperso-orange.fr1070

[54] D. Hadžiosmanovi, R. Sommer, P. H. Hartel, Through the Eye of the

PLC : Semantic Security Monitoring for Industrial Processes.

[55] H. Janicke, A. Nicholson, S. Webber, A. Cau, Runtime-Monitoring for

Industrial Control Systems, Electronics 4 (4) (2015) 995–1017. doi:

10.3390/electronics4040995.1075

[56] S. Whalen, M. Bishop, J. P. Crutchfield, Hidden Markov Models for

Automated Protocol Inference, Computer 1–8.

[57] M. Caselli, E. Zambon, F. Kargl, Sequence-aware intrusion detection in

industrial control systems, Proceedings of the 1st ACM Workshop on

Cyber-Physical System Security (2015) 13–24.doi:10.1145/2732198.1080

2732200.

53

http://sebastien.godard.pages perso-orange.fr
http://sebastien.godard.pages perso-orange.fr
http://dx.doi.org/10.3390/electronics4040995
http://dx.doi.org/10.3390/electronics4040995
http://dx.doi.org/10.3390/electronics4040995
http://dx.doi.org/10.1145/2732198.2732200
http://dx.doi.org/10.1145/2732198.2732200
http://dx.doi.org/10.1145/2732198.2732200

	Introduction
	SCADA-Based IACS Systems
	Process Safety and SCADA Security
	Process Safety and Security
	SCADA Security
	Attacks on IACS and SCADA Systems
	The Need for Domain-Specific Monitoring

	The Shadow Security Unit
	The SSU concept
	Architecture
	Communications Stream Analysis
	Physical I/O Probing
	Automated Learning
	Eventing and Reporting
	Management
	Watchdog

	Proof-of-Concept Prototype

	Leveraging the SSU as an Intelligent Edge Probe
	Shadow replicator
	Protocol inspector
	Automated Learning Module
	Logging System
	Data/feature Extraction for Machine Learning Mechanisms

	Validation
	Functional Evaluation
	Layer2/3 Device Probing Attack: Network FIN/SYN Scan
	Layer2/3 DoS Flooding Attack: SYN flood
	Man-in-the-Middle with ARP Poisoning
	IED/PLC Reprogramming

	Experimental Measurements

	Related Work
	Conclusion

