
Drilling Knowledge Bases for Hidden

Frames

João Gonçalves, Pedro Martins and Amílcar Cardoso

CISUC, Department of Informatics Engineering, University of Coimbra
{jcgonc,pjmm,amilcar}@dei.uc.pt

Abstract. Sometimes we may wonder where we can obtain semantic
frames to be used in a computational model of Conceptual Blending.
The frames can be hand-made, adapted from existing frame libraries
or, as we suggest in this document, discovered by mining conceptual
graphs. The idea we summarise here depicts our proposed computational
mechanism to explore the knowledge base containing the conceptual
graphs for recurring semantic patterns representing potential frames.

Keywords. frames, conceptual graphs, data mining, conceptual blending

1. Introduction

A general issue in Computational Creativity (CC) arises from the need of having
data crucial to build models. With the ambition of going beyond simple toy
problems we are currently looking forward for the CC prototype system we have
been developing to be capable of handling larger amounts of data. That system is
comprised of various modules: a fast mapping module [1] and a blending module
[2] (the Blender) based on Conceptual Blending (CB) theory [3].

The mapping module is implemented as a Genetic Algorithm (GA) that ex-
tracts mappings from large-scale conceptual graphs such as ConceptNet [4] or
from the NELL [5]. These conceptual graphs are represented as semantic graphs
where vertices are concepts and the edges correspond to relations between con-
cepts, that is, a graph structure representing Subject-Verb-Object (or equivalent)
triples. The same data functions as representations of the input spaces in the
blending module. This module also requires a set of one-to-one mappings between
concepts (representing analogies) and frames to guide the blend towards having
speci�c aspects [6]. The source code for all the above modules (and new ones to
be researched in the future) is available at https://github.com/jcfgonc/phd.

2. Conceptual Blending

Fauconnier and Turner [3] proposed CB as a cognitive theory to explain cognitive-
linguistic phenomena such as analogy, metaphor, metonymy or counterfactual
reasoning [7]. In CB, the generation of new ideas is done through the integration

https://github.com/jcfgonc/phd


bird

wing

leg

horse

partOf

partOf

ability ability
fly run

purposepurpose

horse-bird

wing
partOf

ability

fly

purpose

input space 1 input space 2

blend space

mapping

projection

frame

bird

wing

leg

horse

partOf

partOf

ability ability
fly run

purposepurpose

input space 1 input space 2

Figure 1. The idea behind Conceptual Blending (CB). In the left an example of a mapping
of concepts between two domains, based on the same structure of edges (relations) connecting
the concepts - a graph isomorphism. In the right an example of a CB process using the same
mapping to create a new blend space containing the frame shown in cyan. Best seen in colour.

of existing ones. Various forces act to connect and blend di�erent parts of knowl-
edge present in two or more input spaces, including a generic space containing
elements common to both the input spaces and representing a shared conceptual
structure between them [8]. These spaces serve the purpose of being initial sources
of information. Many works in CC are focused on computational models which
explore CB as a way of creating new knowledge [9,10].

A CB framework as the one shown in Fig. 1 requires at least two input mental
spaces containing the source of information to be processed. These input spaces
could correspond to semantic networks comprised of relations between concepts,
i.e. Knowledge Bases (KBs). One of the steps CB does - named composition - is
using an alignment of concepts of each input mental space as a guide of which
concepts are to be used in the blend space. In the end, a new mental space emerges
from the CB process containing its �output�.

For the guiding alignment stated above, some CB implementations, including
our Blender, use a graph isomorphism between the input spaces to align concepts
with a similar structure (Left Fig. 1). Thanks to that alignment, part (or all)
of the structure present in the input spaces is also present in the blend space
(shown in the right Fig. 1). The structures describing the alignment of concepts
are termed mappings and are comprised of sets of concepts. Many tools have been
developed for that purpose, such as the Structure Mapping Engine [11], Sapper
[12] and a fast stochastic algorithm [1] capable of handling semantic networks in
the order of millions of relations.

In addition to the composition step, additional steps are executed to com-
plete and elaborate the blend, namely, completion and elaboration [3]. The lat-
ter involves executing additional logic (such as rules) present in the input spaces
or in the generic space, hence elaborating (inferring) into the blend space new
knowledge. In the completion step the structures stored in the blend space are
completed with background knowledge such as frames to generate consistent and
meaningful structures [8,7].

It is in this step that we observe the importance of frames - to give the blend
a recognisable meaning such as an event or an entity, e.g., the journey of someone
in the Buddhist Monk example [13]. In Fig. 1 the blend space contains a frame



drawn in cyan. That frame has speci�c meaning - giving an entity (horse-bird) an
ability (�ying) because the entity has a part with that purpose (wing). Although
the input spaces also contain the given frame, through composition the relations
can be brought from the input spaces and assembled into the frame structure that
emerges in the blend space.

3. Motivation

In this work we discuss our approach for solving some of the issues reported on
[2], mainly regarding obtaining the semantic frames. These structures represent a
pattern of relations between entities (concepts) and are rooted on previous lived
experiences [14,3]. They are required by CB to guide the blending process in order
to exhibit recognisable wholes, possibly multiple ones [7]. Frames can be seen
as shaping the emerging blend with one or more mental images and given the
probabilistic nature of the blending process, it is highly likely that the resulting
blend will contain multiple frames.

We have been using a large subset of ConceptNet V5 processed by us and
representing the conceptual spaces described above. We added various new facts
and removed what we found as irrelevant or controversial information including
biased relations as purposeOf(woman,cook). Some of these were also noted by [15],
including incomplete or erroneous relations such as isa(prion,prokaryote). Our
latest processed version of ConceptNet has 1229508 concepts, 1791604 relations
and an improved version will be made available publicly in the future. Although
there are KBs with frames such as FrameNet [16], MetaNet [17] and Framester
[18], we speculated whether ConceptNet or any other KB could be mined for
hidden patterns representing possible frames. For the moment we have focused
on the mining topic and that is the purpose of this paper.

4. Approach

The idea makes use of a GA to �nd repeating structures in the KB resembling
frames. Currently, these structures ignore speci�c concepts (such as bird or plant)
and are only based on the type of relation. They can be seen as depicting geometric
structures in the semantic graph. Based on our previous experience with handling
large-scale semantic graphs and the complexity of this problem, we think that
the best strategy to �nd acceptable solutions in a useful time is to use stochastic
algorithms such as GAs. Additionally, our GA is mostly concurrent, makes use of
multi-core processors and is able to search the KB for patterns almost in real-time.

Frames are stated as Prolog queries and are applied to the relations stored
in the KB. An example of a frame used by the CB module is the idea of some
entity A containing a part B whose purpose is to C, hence A gains the C ability.
If variable C = '�y' this frame could represent the idea of an entity with a part
granting it the ability to �y. This frame can be stated as the rule:

ability(A,C), purpose(B,C), partOf(B,A).



cat

catch

claw

bite

snake fang

entity

computer

enter_text

keyboard

eumetazoa

think

brain

display_video

monitor

electronic_device

kill

ability

partOf

purpose

ability purpose

partOf

ability

partOf

purpose

isa

isa

isa

ability

partOf

purpose

ability

partOf

purpose

isa

isa

purposeability

A

C

B

ability purpose

partOf

Figure 2. An example of a three relation pattern (bottom-left) as well as a small conceptual
space containing six occurrences of the same pattern (top). Best seen in colour.

This is equivalent to a three edge, three concept semantic graph in the form
of a closed triangle. With a querying engine (i.e., Prolog or Datalog based), the
KB can be searched for solutions for the above frame and thus if it is a prevalent
pattern or not. Solutions are counted as di�erent instantiations of variables. An
example of the depicted pattern and of a small semantic graph containing six
occurrences of the same pattern is shown in Fig. 2.

4.1. Genetic Algorithm details

As with all GAs, ours evolves a population of chromosomes during multiple
epochs. The idea is to examine, traverse and scale di�erent regions of the KB by
distributing this process amongst multiple individuals. In each epoch, a chromo-
some is mutated, has its �tness evaluated and possibly selected for inclusion in
the next epoch. The selection procedure is a simple binary tournament between
two members of the population of the same epoch.

A potential pattern (i.e. frame) is stored in an individual chromosome of the
population as a directed semantic graph. This graph is mapped to the corre-
sponding query by replacing each concept present in the chromosome's semantic
graph by a unique variable (e.g. bird → B). It is important to note that the graph
stored in the chromosome contains concepts and not variables, as concepts are



required to match the chromosome's graph to a region of the KB when applying
the mutation operator.

In the �rst epoch, the chromosomes are small regions extracted from the KB
with two-three connected relations (on average). The reason for this is that, in
our opinion, frames with one relation do not seem to be useful for the blending
process of the blender module. For a similar reason, there is no need to use such a
tool as this one to check for the most present relation in the KB if single relation
frames are allowed en masse.

The stochastic search of the GA is implemented with a mutation operator,
which adds or removes relations to the semantic graph stored in the chromosome.
New relations are copied from the KB according to common concepts between the
chromosome's graph and the KB. Hence, an addition chooses a random concept
in the pattern, checks its relations in the KB and adds one of these at random
to the pattern. Relation removal is simpler, they are randomly removed from the
pattern with no speci�c criteria and in the case the pattern gets fragmented, only
a single random component of the pattern's graph is maintained.

Given the stochastic nature of the mutation operator, each evolving pattern
may degenerate into multiple graph components, that is, it may transform into
various disconnected sets of relations. The mutation is always followed by a re-
pairing operation which guarantees that the pattern is composed of at most one
graph component. The repairing algorithm is simple, it remove all except one of
the graph components. This remaining component is randomly chosen in order
to maximise the randomness of the GA.

We use a fast querying tool named querykb provided by Aaron Bembenek
which at this moment is temporarily unavailable. It was developed to strictly
count all possible solutions to a given query and does not instantiate variables.
However, for its purpose of counting solutions, it is exceptionally fast and e�cient.
It is invoked whenever the GA evaluates a chromosome's �tness function. The
number of pattern matches can reach extremely high numbers and therefore are
returned by the tool as Java BigIntegers.

4.2. Fitness function

The score of each evolved pattern is calculated with the �tness function, applied
to every chromosome in the current GA population and thus, every pattern has
an individual score. As the GA is (currently) implemented as a single objective
optimisation task, we had to combine k multiple objectives in a single �tness func-
tion f using a weighted sum of individual components fi (a linear aggregation).
The weights are scalars and are manually chosen to �ne-tune the GA and its
results towards showing aspects we want the patterns to exhibit. At the moment,
we have the following four objectives (k = 4):

1. f1 is the logarithm to the base 10 of the number of matches of the pattern
in the KB;

2. f2 is the number of relations (edges) the pattern has;
3. f3 is the number of di�erent (unique) relation labels the pattern has;
4. f4 is the standard deviation of the histogram of relations the pattern has.



X2

X1X4

X3

X6X5

X0
b

aa

a

a
a

X1 X0 X2
a b

X2

X1X4

X3

X6X5

X0
b

ba

a

a
b

Figure 3. Example of pattern generalisation. The �rst two have six relations of two types: a
and b. The third pattern has the minimum amount (2) of relations with the same two types.
Best seen in colour.

The �rst objective, f1, drives the optimisation towards �nding the most re-
curring pattern within the KB, without any regard to the pattern's structure.
Because of the colossal amount of matches for many patterns, to include this
objective in the �tness function (stored as a double �oating number) the code
returns the logarithm to the base 10 of the total matches (a BigInteger number)
returned by the querykb tool. We decided on base 10 to be easier to deduce from
the logarithm the number of digits the pattern match count has.

In addition, we include structural information regarding the pattern as three
more objectives. Within those, objectives f2 and f3 guide the optimisation to-
wards �nding larger patterns. Objective f2 has more impact on that purpose
compared to f3 but does not guarantee that the pattern has a diverse amount of
relations, an aspect controlled by the latter objective.

Objective f4 re�ects the count of relations of each type (label) contained
in the pattern, i.e., four relations with the label partof, two relations with the
causes label, etc. Relations not existing in the pattern are not included in the
histogram calculation. The purpose of this objective is to force the pattern to have
a balanced amount of relations of di�erent labels (Fig. 3). Adjusting this weight
in the opposite sense will compel the pattern to have a majority of relations of the
same label. Hence, this objective controls the generalisation of patterns: generic
patterns are easily or more commonly instantiated. Using Fig. 3 as a reference,
structures matched by the pattern on the left are also matched by the pattern
on the right. The opposite is not true, as the left pattern requires six distinct
relations and seven distinct concepts when compared to two relations and three
concepts in the right pattern. Therefore, the leftmost pattern is a specialisation
of the rightmost pattern. Although objective f4 helps in this regard, it will only
drive the GA towards generic frames given a constant f3, that is, they must have
the same relation types (i.e. two in Fig. 3).

5. Current Results

We removed from ConceptNet V5 four relations that in our opinion will not be
very fruitful in the Conceptual Blending process: isa, derivedfrom, synonym and
similarto. These relations are very generic and the remaining 35 relations contain
more speci�c information regarding the concepts they are related to.



X8

X0

X1

X2

X3 X4

X5

X6

X7

atlocation

partof

hasproperty

hasprerequisite

usedfor

hassubevent

receivesaction

causes

X8X9

X0

X1

X2

X3

X4

X5

X6

X7
antonym

atlocation

usedfor

hasproperty

hasprerequisite

definedas

capableof

motivatedbygoal

receivesaction

X8

X0

X1

X2

X3

X4

X5

X6

X7

atlocation

hasproperty

hasprerequisite

capableof

usedfor

hassubevent

receivesaction

causes

X8

X9X10

X0

X1

X2

X3

X4

X6
antonym

receivesactioncapableof

atlocation

usedfor

hasprerequisite

hasproperty

definedas

X8

X9

X10

X0X11

X1 X2

X3X4

X5

X6

antonym

receivesaction

capableof

capableof

atlocation

hasproperty

usedfor

hasprerequisite

hasproperty

definedas

X8

X0

X1

X2

X3

X4

X5

X6

X7

atlocation

hasproperty

hasprerequisite

capableof

usedfor

hassubevent

receivesaction

causes

X0

X1X2 X3

motivatedbygoal

hasprerequisite
causes

X3 X4 X5
atlocation capableof

X0

X2

X4X5

capableof

receivesaction

usedfor

X8 X9

X0

X3

X5

X7
antonym

capableof

atlocation

definedas

receivesaction

X0 X1X3

X4

X5

hassubevent

hasprerequisite

motivatedbygoal

causes

usedfor

X1X2 X4
atlocation knownfor

Figure 4. Examples of patterns we found most interesting during the various executions of the
algorithm. They are ordered top to bottom according to their number of relations.

Problematic concepts with non-ASCII characters were also removed because
of incompatibilities with some Java libraries and the handling of Unicode char-
acters. Consequently, the complexity of the mining problem was reduced and the
working KB had 377719 relations and 278921 concepts.

The querykb tool allows the user to set a time limit to the query/pattern



match counting process, something we had to set at 30 minutes per pattern to
have results within an acceptable time limit. The tool by itself is concurrent and
forces our GA to be sequential when calculating the �tness function for all the
chromosomes. This sets a limit that in the worst case only one chromosome would
be evaluated per 30 minutes and hence, a maximum number of epochs to be
processed by the GA in a given time. Unless otherwise speci�ed, the weights used
in balancing the four objectives were the following:

weights w1 w2 w3 w4

values 0.1 0.1 1 1

We ran 10 experiments with an execution time of 48± 24 hours and 70± 30
epochs per experiment. The population size (number of chromosomes/patterns)
was constant per epoch at 64 elements. The GA used a binary selection tour-
nament with the winning probability of the strongest candidate being 75%. The
machine used in the experiments had two eight-core Xeon E5-2667 v2 processors
(total 16 cores) working at 3.6 GHz, 64 GB of RAM and the Microsoft Windows 7
SP1 operating system. The querykb tool used a block size of 256 and 32 threads.

Fig. 4 contains twelve of the patterns we found interesting. Changing the
weight of objective f2 had an in�uence on the number of relations in the patterns,
which can be seen by watching the top to bottom ordering of the patterns in Fig.
4. Objective f4 had the e�ect of lowering the presence of multiple relations of the
same type, although it does not guarantee the lowest amount as seen in the last
pattern containing two hasproperty relations.

We were not able to extract graph structures with cycles similar to the tri-
angle pattern shown in Fig. 2. The search algorithm does not have any reason to
�nd those types of structures and therefore they do not emerge during the GA's
execution. It is our opinion that this may be solved with some changes in the
mutation and with one or more additional objective function(s).

As we are currently lacking semantic quality measures to evaluate the pat-
terns, except for the four objectives stated before we can not �rmly conclude if
any one of the patterns is better or worse than the others either in the CB process
either for any other purpose.

6. Conclusion and Future Work

We presented a mechanism to mine for repeating patterns in a KB. The purpose is
to �nd potential frames in semantic graphs that are used by Conceptual Blending
modules. At the moment we have a working prototype that �nds recurring pat-
terns representing prototypes of frames. The prototype is ready to be evaluated
semantically and to see whether it matches the creative requirements expected to
arise ahead in our future work. We will also study other objectives to guide the
quality of the emerging patterns according to whatever requirements we think the
frames should have. This will require further understanding of frames and their
impact on the resulting blends of the CB module.



Acknowledgements. João Gonçalves is funded by Fundação para a Ciência e
Tecnologia (FCT), Portugal, under the PhD grant SFRH/BD/133107/2017. We
greatly acknowledge Aaron Bembenek for his impressive querykb tool and his
availability for matching the tool to the needs of our project. To a truly generous
person, a sincere thanks.

References

[1] João Gonçalves, Pedro Martins, and Amílcar Cardoso. A fast mapper as a foundation for
forthcoming conceptual blending experiments. Special Track Analogy - Proceedings from
The Twenty-Sixth International Conference on Case-Based Reasoning, 2018.

[2] João Gonçalves, Pedro Martins, and Amílcar Cardoso. Blend city, blendville. In Proceed-
ings of the Eighth International Conference on Computational Creativity, 2017.

[3] Gilles Fauconnier and Mark Turner. The Way We Think. New York: Basic Books, 2002.
[4] Robert Speer and Catherine Havasi. Representing general relational knowledge in con-

ceptnet 5. In LREC, pages 3679�3686, 2012.
[5] T. Mitchell et al. Never-ending learning. In Proceedings of the Twenty-Ninth AAAI

Conference on Arti�cial Intelligence (AAAI-15), 2015.
[6] Graeme Ritchie. Some empirical criteria for attributing creativity to a computer program.

Minds and Machines, 17(1):67�99, 2007.
[7] Francisco Câmara Pereira. Creativity and arti�cial intelligence: a conceptual blending

approach. Berlin: Mouton de Gruyter, 2007.
[8] Pedro Martins, Pereira Francisco, and Amílcar Cardoso. The Nuts and Bolts of of Con-

ceptual Blending: Multi-Domain Concept Creation with Divago. Springer, 2017.
[9] Martin �nidar²i£ et al. Computational creativity infrastructure for online software com-

position: A conceptual blending use case. In Proceedings of the Seventh International
Conference on Computational Creativity (ICCC 2016), Paris, France, 2016. Sony CSL,
Sony CSL.

[10] Marco Schorlemmer et al. Coinvent: Towards a computational concept invention theory. In
Proceedings of the 5th Int. Conference on Computational Creativity, ICCC-14, Ljubljana,
Slovenia, 2014.

[11] Brian Falkenhainer, Kenneth D. Forbus, and Dedre Gentner. The structure mapping
engine: Algorithm and examples. Arti�cial Intelligence, 41:1�63, 1989.

[12] Tony Veale and Mark Keane. The competence of sub-optimal structure mapping on hard
analogies. In Proceedings of the International Joint Conference on Arti�cial Intelligence.
IJCAI-97, 1997.

[13] Gilles Fauconnier and Mark Turner. Conceptual integration networks. Cognitive Science,
22(2):133�187, 1998.

[14] Charles J. Fillmore. Frames and the semantics of understanding. Quaderni di Semantica,
6(2):222�254, 1985.

[15] Atilim Günes Baydin, Ramon López de Mántaras, and Santiago Ontañón. Automated
generation of cross-domain analogies via evolutionary computation. CoRR, 2012.

[16] Josef Ruppenhofer, Michael Ellsworth, Miriam Petruck, Christopher R Johnson, and Jan
Sche�czyk. FrameNet II: Extended theory and practice. 2016.

[17] Oana David, Ellen Dodge, J Hong, ELISE Stickles, and E Sweetser. Building the metanet
metaphor repository: The natural symbiosis of metaphor analysis and construction gram-
mar. In The 8th International Conference on Construction Grammar (ICCG 8), Os-
nabrück, Germany, 2014.

[18] Aldo Gangemi, Mehwish Alam, Luigi Asprino, Valentina Presutti, and Diego Reforgiato
Recupero. Framester: a wide coverage linguistic linked data hub. In European Knowledge
Acquisition Workshop, pages 239�254. Springer, 2016.


