

On the Use of Ontology Data for Protecting Critical Infrastructures

J Henriques1,2, F Caldeira1,2, T Cruz1, P Simões1

1Department of Informatics Engineering

University of Coimbra

Coimbra, Portugal

Email: jpmh@dei.uc.pt; fmanuel@dei.uc.pt; tjcruz@dei.uc.pt; psimoes@dei.uc.pt

2Polytechnic Institute of Viseu

Viseu District, Portugal

Abstract: Modern societies increasingly depend on products and services provided by Critical

Infrastructures (CI). The Security Information and Event Management (SIEM) systems in

charge of protecting these CIs usually collect and process data from specialised sources.

However, they usually integrate only a small fraction of the whole data sources existing in the

CI. Valuable generic data sources are missing in this process, such as human resources

databases, staff check clocks, and outsourced service providers. To address this gap, the

authors propose a framework that takes a Semantic Web approach for automated collection

and processing of corporate data from multiple heterogeneous sources.

Keywords: Critical Infrastructure Protection (CIP), Security Information and Event

Management (SIEM), Industrial Automation and Control Systems (IACS), Semantic Web,

Ontologies

Introduction

Critical Infrastructures (CI) such as telecommunication networks and power grids are

becoming increasingly complex and interdependent on people, processes, technologies,

information, and other critical infrastructures. Operators in charge of Critical Infrastructure

Protection (CIP) are required to improve their security levels through the perspective of

compliance auditing and forensic analysis. Compliance auditing is related to applicable

security regulations, standards, and best practices. Forensic analysis has a broader scope,

beyond the specific operations of the CI industrial control systems, and also encompasses other

areas of the organisation.

The benefits of enlarging the scope of information sources for SIEM applications, forensic

analysis, and compliance audit operations are rather evident, since the result would enable more

powerful, all-inclusive approaches to cybersecurity awareness. For example, monitoring of

abnormal activity within the IACS specific domain might be leveraged by the correlation of

different data sources, such as mail filtering logs (monitoring phishing and malware attacks,

which target the employees of the CI) and information about employee functions residing in

Human Resources information systems. Another example would be the correlation of data from

physical access control systems and staff check clocks with activity logs of IACS operators. In

general, this strategy of associating core security information already fed into SIEM systems

with peripheral-awareness data would result in richer security analysis processes that enable

the detection of inconsistencies, malpractices, and intrusion clues, which would otherwise go

unnoticed.

However, achieving tight integration of all those peripheral data sources into the already-

existing SIEM frameworks is costly and often impractical. This would require considerable

investments in data conversion and adaptation to the SIEM data flows. Moreover, the

maintenance costs would also be considerable, since even minor adjustments on the corporate

information systems would require explicit adaptations on the SIEM side.

A more plausible option is, therefore, the adoption of loosely coupled integration strategies,

such as resorting to Semantic Web approaches for automating the processing and interpretation

of large amounts of information available from both local databases and Internet repositories.

This reasoning process, applied over a large quantity of available data with knowledge inferred

from a combination of axioms, properties, and rules (with different levels of hierarchies or

categorisations and deriving conclusions, for example) can be explicitly expressed by

ontologies.

It should be noted that most data are still not directly available in Semantic Web formats. This

is the case with data maintained in Relational Databases (RDBs). Nonetheless, mapping data

from RDB to Semantic-Web-enabled Resource Description Frameworks (RDFs) has been the

focus of a large body of previous research, leading to the implementation of many generic

mapping tools and their applications, on several specific domains. Those tools are natural

candidates to be adapted to the field of CIP so that security-related ontology data currently

stored in heterogeneous databases can be taken into consideration—despite the considerable

challenges involved, such as the migration from existent systems to the semantic level

(Sernadela, González-Castro & Oliveira 2017).

A detailed discussion of the main motivations and driving research efforts in mapping RDB to

RDF can be found in Sahoo et al. (2009). Although most models can perform inference from

native ontology data stores, data still reside mostly in RDBs, which are broadly used within

organisations. Moreover, the growing number of datasets published on the Web brings

opportunities for extensive data availability and challenges related to the process of querying

data in a semantically heterogeneous and distributed environment. The structured query

approach fails on the linked data because the Web’s scale makes it impractical for users to

know in advance the structure of datasets (Freitas, et al. 2012).

The authors have previously introduced an approach considering inference capabilities from

Semantic Web, supported by common schemas, for creating a set of independent databases,

each deployed with its own domain-specific schema (Henriques et al. 2018). This kind of

reasoning is suitable for application in the context of Critical Infrastructure Protection; and,

therefore, it can leverage current SIEM capabilities—mainly in what relates to forensic and

compliance audit processes, but also for intrusion detection purposes. This large amount of

living heterogeneous data that still resides in the organisational RDBs will, in this way, become

available to the Critical Infrastructure’s SIEM and enable new, valuable insights into available

configuration and monitoring data.

This paper refines and extends previous work (Henriques et al. 2018) by providing a more

detailed description of the proposed approach, adding a practical use-case scenario, and

discussing its future application to different data sources.

After discussing some of the key previous work and trends in the area, this paper takes a

practical approach by presenting the implementation of a federated query architecture for

retrieving a set of compliance auditing rules that might be useful, for instance, in assessing CI

security levels. To leverage inference capabilities, it maps the living data currently available

on RDBs into RDFs formats. In this way, it can substantially enlarge the data available to the

SIEM by taking advantage of the large amount of heterogeneous data of production-RDB

systems. Such an approach provides an abstraction mechanism for keeping data consumers

away from low-level details while leveraging the security concerns of the underlying

infrastructures by hiding the internal deployment aspects, such as the identification of the

involved machines and their RDB schemas.

The ontology-based approach of this work considers the available information currently stored

in RDB and, as its main goal, makes it accessible through simple interfaces that collect queried

data from multiple natively different data repositories within the organisation. Each available

RDB maintains different information instances, deployed on specific schemas and

technologies. Such an approach is suitable for combining data from two different worlds, such

as the case of RDB and Semantic Web data, which is natively maintained in RDF stores and

made available through an interface layer encapsulating the details of the gathering process to

retrieve the data from multiple RDBs.

The remainder of this paper is structured as follows. The next section discusses the background

for the domain problem and related work. Immediately following is an analysis of the

applicability of ontology data in the context of CIP. Next, a description of the proposed

architecture, which details its implementation, will be provided. Finally, the authors conclude

the paper with insights about future developments.

Background

This section briefly introduces the reader to the key concepts and tools used in the proposed

data integration approach: RDF; RDB, and RDF mapping; SPARQL; Direct Mapping of

Relational Data to RDF; and the D2RQ platform.

Resource Description Framework (RDF)

An ontology is a formal specification of concepts (Gruber 1993) in a domain of discourse,

which includes classes and properties. An ontology, together with a set of individual instances

of classes, constitutes a knowledge base (Noy & McGuinness 2001).

The Resource Description Framework (RDF) (Brickley & Guha 1999) is a language that can

be used to encode knowledge into web pages to make them understandable for electronic agents

searching for information. This is one of the main goals for using ontologies (Musen 1992;

Gruber 1993). RDF aims at representing information that may be used for inference purposes

over the Web. The RDF syntax core structure consists of a set of triples with a subject, a

predicate, and an object. A set of triples is called an RDF graph. An RDF graph may be

visualised as a directed-arc diagram, in which each triple is represented as a node-arc-node

link. RDF is a data format based on a Web-scalable architecture for identification and

interpretation of terms (RDF 2014).

Mapping from RDF to RDB

As already mentioned, the mapping of large amounts of data from RDB to RDF has been the

focus of intense research work in multiple domains and has led to the implementation of a set

of generic mapping tools, as well as domain specific applications. RDF has provided an

integration platform for data gathered from multiple sources, primarily from RDB. This is one

of the main motivations driving research efforts (using various approaches) on mapping RDB

to RDF (Seaborne, et al. 2013).

SPARQL (W3 2013) can be used to express queries across diverse data sources, whether for

data natively stored as RDF or for data viewed as RDF via some sort of middleware. SPARQL

is a World Wide Web Consortium (W3C) recommendation for querying multiple RDF graphs.

The SPARQL specifications define the syntax and semantics to proceed with queries across

diverse natively stored RDF data sources. Using the latest stable release (1.1), SPARQL

federated queries allow merging multiple results retrieved from multiple RDF sources. The

syntax and semantics of SPARQL 1.1 Federated Query extension allow distributed queries

over different SPARQL endpoints. Moreover, the SERVICE clause extends SPARQL 1.1 to

support queries that merge data distributed across the Web. A single query is, therefore, able

to return related data (for example, contacts to be applied to user John Doe) from multiple

distinct SPARQL endpoints.

An important feature of RDF and SPARQL is that they can use different datasets from different

locations, federating them together. They offer a middleware, which can use multiple data

sources as if they were one. Moreover, it is simple to add and remove data sources. This feature

significantly reduces the development costs as compared to typical data warehouse projects

(DuCharme 2013).

Figure 1 provides a query example through different SPARQL 1.1 endpoints. The query

returns John’s contacts from two distinct SPARQL endpoints, www.site1.com and

www.site2.com.

SELECT ?contact1
WHERE {
SERVICE <http://www.site1.com/sparql>
 {SELECT ?contact1
WHERE {

?me foaf:nick "John".
 ?me foaf:knows ?f .

?f foaf:name ?contact1
}

}
SERVICE <http://www. site2.com/sparql>
 {
SELECT ?contact2
WHERE {

?me foaf:nick " John ".
 ?me foaf:knows ?f .
 ?f foaf:name ?contact2 }}

FILTER (?contact1 = ?contact2)
}

}
}

Figure 1: Query example through different SPARQL 1.1 endpoints

Direct mapping of relational data to RDF

Relational databases allow the use of tools, such as Structured Query Language (SQL), for

accessing and managing the databases. Several strategies already exist to map relational data

to RDF. Typically, the goal is to describe the RDB contents using an RDF graph, allowing

queries submitted to the RDF schema to indirectly retrieve the data stored in relational

databases. A direct mapping process enables a simple transformation and can be used for

materialising RDF graphs or for defining virtual graphs, which can be queried via SPARQL or

traversed by an RDF graph Application Programming Interface (API). A mapping document

is an RDF document containing triples maps with instructions on how to convert relational

database content into RDF graphs.

The D2RQ platform

The D2RQ (Data to RDF Query) Platform allows users to access relational databases as virtual,

read-only RDF graphs while automatically producing the corresponding mappings. It is

available under the Apache open source license (D2RQ 2012), and it allows users to create

customised mappings from RDB through an integrated environment with multiple options for

accessing relational data, including RDF dumps, Jena and Sesame API based access, and

SPARQL endpoints on D2RQ Server (Bizer & Cyganiak 2007). It offers RDF-based access to

the content of RDB, without requiring its replication into RDF stores. D2RQ, therefore, allows

querying non-RDF databases using SPARQL or accessing contents of databases over the Web.

It also allows the creation of custom content dumps from relational databases into RDF stores.

The D2RQ Platform includes components such as a Mapping Language, an Engine, and a D2R

(Data to RDF) Server. The D2RQ Engine is a plug-in for the Jena Semantic Web toolkit, which

uses mappings for rewriting the Jena API calls to SQL queries against the database and for

redirecting query results up to the higher layers of the framework. The D2R Server is an HTTP

server which provides linked data views, HTML views for debugging, and a SPARQL protocol

endpoint providing an interface to query the database. The D2RQ platform supports databases

such as MySQL, SQL Server, Oracle, PostgreSQL, HSQLDB, and Interbase/Firebird. Some

limitations of D2RQ include the integration of multiple databases or other data sources and its

read-only nature: it lacks Create, Read, Update, and Delete (CRUD) operations. Finally, it does

not support inference mechanisms and does not include named graphs (D2RQ 2012).

The D2RQ Mapping Language enables defining relationships between RDB schemas and RDF

schema vocabularies (classes and properties) or Web Ontology Language (OWL) ontologies

written in Turtle syntax (W3 2014). The mapping properties define a virtual RDF graph, which

contains information from the database schema. The mapping process between D2RQ and

RDB entities includes the RDF class node to RDB tables and RDF predicates to RDB column

names (D2RQ 2012).

The same D2RQ server can be configured to access multiple databases. Therefore, a single

SPARQL query can request data from multiple databases at once, which is not possible with a

standard SQL query.

Applicability of Ontology Data in the Context of Critical Infrastructure

Protection

This section addresses the applicability of ontology data in the context of CIP. First, some of

the more pertinent related works are discussed. Afterwards, the H2020 ATENA module for

forensics and compliance auditing is presented. This module provides the framework on which

the proposed approach, described in the following section, was developed.

Related work

Current approaches on the use of ontologies in the context of CIP are mostly related to the

assessment of interdependencies between Critical Infrastructures, such as the works of

Castorini et al. (2010) and Blackwell et al. (2008). Similarly, a proposal for an ontology

providing vulnerabilities classification to be used in decision support tools can be found in

Chorás et al. (2010).

Other approaches worth mentioning include SPLENDID, DARQ, SemaPlorer, and FedX.

SPLENDID (Gorlitz & Staab 2011) is a query optimisation strategy for federating SPARQL

endpoints based on statistical data. DARQ (Quilitz 2008) provides transparent query access to

multiple SPARQL services using one single RDF graph, even when data has a distributed

nature and is spread over the Web. This approach includes a service description language that

enables a query engine to decompose a query into subqueries, where each of them can be

answered by an individual service. SemaPlorer (Schenk et al. 2009) also provides a federated

query architecture allowing it to interactively explore and visualise semantically heterogeneous

distributed semantic datasets in real time, through a conceptual layer on top of Amazon’s

Elastic Computing Cloud (EC2). FedX (Schwarte, et al. 2011) proposes novel joint processing

and grouping techniques for minimising the number of remote requests. It also develops a

practical framework that enables efficient SPARQL queries supported by federation layers for

efficient query processing on heterogeneous distributed Linked Open Data sources.

Beyond D2RQ, other RDF middleware applications exist, such as TopQuadrant’s TopBraid

Live, OpenLink Software’s Virtuoso Sponger, and Triplr project. These offer dynamic creation

and integration. They also allow users to merge several RDF triples in a single SPARQL

endpoint from sources such as relational databases, spreadsheets, HTML documents, and other

formats.

As already mentioned, one possible application of ontology data in this scope is the use of

heterogeneous sources available in organisational RDBs for leveraging inference capabilities.

This application is especially interesting in the specific areas of forensic analysis and

compliance audit processes, which, by nature, need to be supported by substantial amounts of

heterogeneous data. A possible practical application of this approach, in the scope of forensic

analysis and compliance audit processes, may consist of the collection and mapping to

Semantic Web of rules residing in the multiple and heterogeneous relational databases of the

CI organisation—so they can be combined with the knowledge already available at the SIEM

systems. This path has been explored in the scope of the H2020 ATENA research project

(ATENA 2018; Rosa et al. 2017), as discussed next.

Forensics and compliance auditing in the scope of the H2020 ATENA

framework

The H2020 ATENA project proposes an innovative logical framework, with design

improvements of role, operation, architecture, and security components for Industrial

Automation and Control Systems (IACS), while also exploiting novel security approaches

enabled by network virtualisation paradigms. The Forensics and Compliance Auditing (FCA)

module, integrated into the ATENA cyber-security architecture, addresses the gathering and

persistent storage of digital evidence retrieved from both the cyber-analysis layer (such as

SIEM) and peripheral sources (such as service logs, sessions, or physical access control

systems, among others) for forensics and compliance auditing purposes. Its forensics tools

provide the means to identify, extract, preserve, and highlight digital evidence for technical

investigation and legal purposes. Its compliance auditing tools support the audit procedures

associated with certification processes for applicable standards, policies, and regulations—for

example, verifying the authorisation procedures for physical installation access, such as access

to doors (Rosa et al. 2017).

Moreover, the FCA module provides a set of analysis capabilities for interactively exploring,

searching, extracting, pinpointing, and combining insights from available data. The core FCA

functions encompass collecting heterogeneous data from internal and external sources,

producing structured and unstructured data to be combined and gathered into a unified view

for compliance auditing—throughout a set of rules—and also providing forensic investigation

functionalities for retrieving evidence.

Figure 2, below, depicts the main blocks of the ATENA FCA module. Data collected from the

ATENA SIEM and intrusion detection systems feed a specific CI security data lake which

provides input to the FCA analytics components. Peripheral data sources, processed through

domain-specific business rules, also feed the analytics layer. Trust and repudiation indicators

are also used to assess the trustworthiness of each data source.

As previously discussed, specific ontologies need to be constructed for supporting the already

mentioned processes of compliance audit and forensics analysis. In the context of the FCA

module hereby presented, the targets for the use of those ontologies are the Analytics sub-

components ‘Audit Compliance’ and ‘Forensic Analysis’.

Figure 2: The Forensics and Compliance Auditing Module of the ATENA Project, adapted from Rosa, et al.

(2017)

Proposed Approach to the Use of Ontology Data for CIP

This section describes the proposed approach to the use of ontology data in the context of CIP

applications. First, the proposed reference architecture is introduced, followed by a discussion

of technical aspects and implementation details. In a simplified view, the proposed solution

consists of a web service that can receive several SPARQL requests from data consumers (such

as the forensics and compliance auditing tools mentioned in the previous sections). Afterwards,

each one of those requests is forwarded into different databases deployed using different

schemas.

Reference architecture

The proposed reference architecture, depicted in Figure 3, below, consists of a set of

components such as a federated layer, mapping brokers, and databases. Several data consumers

(clients) may send distinct sets of SPARQL queries to the federated interface layer, which

delivers each query to all the brokers. The broker’s main role is to transform the incoming

SPARQL queries into native relational database queries. Through an inverse flow, the broker

retrieves the data subset from the database to be gathered into a full data set at the federated

layer which is then forwarded to the involved client(s).

Although the reference architecture may suggest its applicability to the context of federated

database queries, it may be extended to use different kind of data sources, such as logs or

Lightweight Directory Access Protocol (LDAP) distributed directory information services

(among others) in order to provide compliance audit and forensic capabilities that can be

applied to the context of ATENA FCA module.

Figure 3: Proposed reference architecture

Use-case scenario

Next, a simple compliance audit scenario is presented, which demonstrates the applicability of

the reference architecture for evaluating unauthorised accesses to the assets of an international

company.

The challenge is to build a common schema for the management of human and asset resources

spread over different platforms, because of specific requirements imposed by national

governments. A single interface, capable of answering queries merging all the data in the

organisation in a single dataset, should be provided. Such an approach would help overcome

the barriers by approaching different native data sources spread across different locations in an

organisation.

Implementation aspects

This implementation starts by modelling a simple ontology for the forensic and compliance

audit processes, which encompasses the norms, policies, and legal or regulatory guidelines that

are being applied. The ontology will allow users to infer new knowledge, for example, to

identify possible unauthorised or incompatible access to the assets of a large organisation. This

example implements a federated query web service for evaluating whether employees have the

required roles when they access those assets. An intermediary layer translates the requests

arrived to the web service into queries for the internal schemas of the involved databases.

The interface layer is implemented as a web service, while the mapping brokers are

implemented as D2R Server endpoints. Each endpoint is assigned to different relational

database(s). Figure 4, below, provides a general overview of the implementation of the

described architecture, depicting how requests flow from a submitted query to the web service,

which implements a federated query solution to dispatch the incoming requests to the indexed

list of database servers—with each of them mapped by a specific D2RQ component. For

simplicity’s sake, the figure includes just two different databases with different schemas (one

Microsoft database—MSSQL—and one MySQL database), but there are no limits to the

number or type of involved databases.

The use case hereby described involves a client requesting the contents of the ‘Roles’ database

entity. The objective is to gather and combine—without requiring the end user to be aware of

low-level details—information dispersed across different tables and different databases which

use different schemas. After the request query to retrieve the existing contents from the ‘Rules’

entity has reached the database instances, each delivers its contents to a SPARQL endpoint

through a D2R server assigned to each involved database. The D2RQ Mapping Language is

used for the mapping process. This central web service allows clients to directly query existing

entities, to retrieve available content from each existing database, and to merge and deliver

them to the querying clients.

Figure 4: Architecture implementation

Required tools and technologies include Visual Studio as development environment, C# as

programming language, ASPX.NET for implementing the web service, classic RDBs such as

MSSQL and MySQL, and the RDF and SPARQL languages describing their semantics.

The following sections discuss some details for each step involved in the implementation and

deployment of this specific use case. First, a simple ontology is presented. Next, some relevant

implementation steps are discussed, such as deploying the database server, generating

mapping, configuring the mapping between the database server and the ontology, activating

D2R servers with the corresponding mappings, and describing the web service.

Create the Ontology: In this section, a simple ontology is explored in the domain of

compliance audit to support the previously presented use-case scenario, which has the main

purpose of answering the following question: ‘Who is able to access the assets, for maintenance

purposes, in a large company spread out through different countries and businesses?’

The ontology, built within Protégé, includes classes for ‘Asset’, ‘Employee’, ‘Organization’,

and ‘Role’. The corresponding instances are ‘Computer’, ‘John’ and ‘Francis’, ‘PowerPlantA’,

and ‘MaintainsIT’. The ontology does not include any hierarchy of concepts.

Table 1, below, summarises the relationship among class instances, their types and property

assertions.

Instance Type Property Assertions

John

Employee isEmployedBy:PowerPlantA

Number: ‘1002’

Name: ‘John’

Francis Employee isEmployedBy: PowerPlantA

hasRole:MaintainsIT

Number: ‘1001’

Name: ‘Francis’

MaintainsIT Role maintains:Computer

isMaintainedBy: Francis

Name: ‘Francis’

PowerPlantA Organization hasEmployees:John

hasEmployees: Francis

hasAssets: Computer

Name: ‘PowerPlantA’

Computer Asset isRoledBy: Francis

belongsTo:PowerPlantA

Number: ‘10000001’

Name: ‘DELL’

Table 1: Classes instances

‘John’ and ‘Francis’ are instances of ‘Employee’. Both have the property ‘isEmployedBy’

assigned with the value ‘PowerPlantA’. The employee is assigned roles granting the access to

the assets, enabling the building of a query to assess the regulatory rules and policies. It also

has as an inverse property ‘hasRole’ as ‘MaintainsIT’. Additionally, they have data properties

‘1’ and ‘2’ for the ‘Number’, and ‘Francis’ and ‘John’ for ‘Name’. Notwithstanding, the

difference between ‘Francis’ and ‘John’ instances is that the ‘Francis’ does not include the

property ‘hasRole’ as ‘MaintainsIT’. Therefore, they will be considered two employees for the

organisation, but just one of them is able to maintain the assets.

‘PowerPlantA’ is an instance of the ‘Organization’ type and includes the property

‘hasEmployees’ for ‘Francis’ and ‘John’ instances. Therefore, this organisation has two

employees. ‘Computer’ is an instance of the ‘Asset’ type and its properties are ‘isRoledBy’ of

the ‘MaintainsIT’ instance, whose value is ‘Francis’ and which includes a ‘Number’ and a

‘Name’.

Figure 5 provides the full contents of the above ontology, in turtle language, located at ‘data.ttl’

file:

#filename: data.ttl
@prefix FCA: <http://www.semanticweb.org/FCA#>
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
@prefix owl: <http://www.w3.org/2002/07/owl#>
@prefix rdfs: <http: //www.w3.org/2000/01/rdf-schema#>
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>

Object Properties

http://www.semanticweb.org/FCA#belongsTo
FCA:belongsTo rdf:type owl:ObjectProperty ;
owl:inverseOf FCA:hasAssets ;
rdfs:domain FCA:Asset ;
rdfs:range FCA:Organization .

http://www.semanticweb.org/FCA#hasAssets
FCA:hasAssets rdf:type owl:ObjectProperty ;
rdfs:domain FCA:Organization ;
rdfs:range FCA:Asset .

http://www.semanticweb.org/FCA#hasEmployees
FCA:hasEmployees rdf:type owl:ObjectProperty ;
owl:inverseOf FCA:isEmployedBy ;
rdfs:domain FCA:Organization ;
rdfs:range FCA:Employee .

http://www.semanticweb.org/FCA#hasRole
FCA:hasRole rdf:type owl:ObjectProperty ;
owl:inverseOf FCA:isRoledBy ;
rdfs:domain FCA:Employee ;
rdfs:range FCA:Role .

http://www.semanticweb.org/FCA#isEmployedBy
FCA:isEmployedBy rdf:type owl:ObjectProperty ;
rdfs:domain FCA:Employee .

http://www.semanticweb.org/FCA#isRoledBy
FCA:isRoledBy rdf:type owl:ObjectProperty ;
owl:inverseOf FCA:isRoledBy ;
rdfs:domain FCA:Role ;
rdfs:range FCA:Employee .

Data properties

http://www.semanticweb.org/FCA#Name

FCA:Name rdf:type owl:DatatypeProperty ;
rdfs:domain FCA:Asset ,
FCA:Employee ,
FCA:Organization ,
FCA:Role .

http://www.semanticweb.org/FCA#Number
FCA:Number rdf:type owl:DatatypeProperty ;
rdfs:domain FCA:Asset .

Classes

http://www.semanticweb.org/FCA#Asset
FCA:Asset rdf:type owl:Class .

http://www.semanticweb.org/FCA#Employee
FCA:Employee rdf:type owl:Class .

http://www.semanticweb.org/FCA#Organization
FCA:Organization rdf:type owl:Class .

http://www.semanticweb.org/FCA#Role
FCA:Role rdf:type owl:Class .

Individuals

http://www.semanticweb.org/FCA#Computer
FCA:Computer rdf:type owl:NamedIndividual ,
FCA:Asset ;
FCA:belongsTo FCA:PowerPlantA ;
FCA:Name "DELL"^^xsd:string ;
FCA:Number "10000001"^^xsd:int .

http://www.semanticweb.org/FCA#Francis
FCA:Francis rdf:type owl:NamedIndividual ,
FCA:Employee ;
FCA:hasRole FCA:MaintainsIT ;
FCA:isEmployedBy FCA:PowerPlantA ;
FCA:Name "Francis"^^xsd:string ;
FCA:Number "1001"^^xsd:int .

http://www.semanticweb.org/FCA#John
FCA:John rdf:type owl:NamedIndividual ,
FCA:Employee ;
FCA:isEmployedBy FCA:PowerPlantA ;
FCA:Name "John"^^xsd:string ;
FCA:Number "1002"^^xsd:int .

http://www.semanticweb.org/FCA#MaintainsIT
FCA:MaintainsIT rdf:type owl:NamedIndividual ,
FCA:Role ;
FCA:isRoledBy FCA:Francis ;
FCA:Name "MaintainsIT"^^xsd:string .

http://www.semanticweb.org/FCA#PowerPlantA

FCA:PowerPlantA rdf:type owl:NamedIndividual ,
FCA:Organization ;
FCA:hasAssets FCA:Computer ;
FCA:hasEmployees FCA:Francis ,
FCA:John ;
FCA:Name "PowerPlantA"^^xsd:string
.

Figure 5: Ontology definition

Deploying the database server: This step involves the creation of the table objects for MySQL

and MSSQL databases, as well as the commands for populating them. For the sake of

demonstration, the MSSQL database table schemas and contents are different from the ones

used in the MSSQL database. At the end, these two databases should maintain different data

over distinct schemas, which will become federated at the upper level of the web service. The

applied commands were the following:

generate-mapping -u root -p password01pt -o ssfile_MYSQL.ttl -d
com.microsoft. sqlserver.jdbc.SQLServerDriver
jdbc:sqlserver://host_mysql;databaseName=BD_mssqlDB

generate-mapping -u sa –p password02pt -o ssfile_SQLServer.ttl –d
com.microsoft. sqlserver.jdbc.SQLServerDriver
jdbc:sqlserver://host_mssql;databaseName=BD_mysqlDB

Prepare mapping: The mapping process between database and RDF schemas is mapped

through the ‘ssfile_SQLServer.ttl’, whose contents include the mapping between the MSSQL

server and RDF schemas—the ‘ssfile_MYSQL.ttl’ file plays the same role, but for the MySQL

schema. The initial section of these files includes a set of prefixes (several were removed from

the next listing for clarity), with the map:database component providing a way for retrieving

information from the database server. These files were manually updated to allow the correct

mapping between RDF and the database schemas. This mapping is supported by RDF

d2rq:ClassMap and d2rq:PropertyBridgefor classes and properties, respectively. Figure 6

includes the contents for mapping the class ‘Employee’ and table ‘Employee’ from the MSSQL

server:

@prefix map: <#> .
@prefix db: <> .
@prefix vocab: <vocab/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix d2rq: <http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/0.1#> .
@prefix jdbc: <http://d2rq.org/terms/jdbc/> .

map:database a d2rq:Database;
 d2rq:jdbcDriver
"com.microsoft.sqlserver.jdbc.SQLServerDriver";
 d2rq:jdbcDSN
"jdbc:sqlserver://localhost;databaseName=BD_joaohenriques";
 d2rq:username "joaohenriques";
 d2rq:password "password1";
 .

Table CREATE TABLE dbo.Employee (Number INT, Name VARCHAR(100))

map:dbo_Employee a d2rq:ClassMap;
 d2rq:dataStorage map:database;
 d2rq:uriPattern "dbo/Employee/@@dbo.Employee.Number@@";
 d2rq:class vocab:dbo_Employee;
 d2rq:classDefinitionLabel "dbo.Employee";
 .
map:dbo_Employee__label a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:dbo_Employee;
 d2rq:property rdfs:label;
 d2rq:pattern "Employee #@@dbo.Employee @@";
 .
map:dbo_Employee_Number a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:dbo_Employee;
 d2rq:property vocab:dbo_Employee_Number;
 d2rq:propertyDefinitionLabel "Employee Number";
 d2rq:column "dbo.Employee.Number";
 d2rq:datatype xsd:integer;
 .
map:dbo_Employee_Name a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:dbo_Employee;
 d2rq:property vocab:dbo_Employee_Name;
 d2rq:propertyDefinitionLabel "Employee Name";
 d2rq:column "dbo.Employee.Name";

d2rq:datatype xsd:string;

 Figure 6: Mapping between RDF and database schemas

Activate D2R servers: The next step deploys the D2R server, in order to map the contents from

RDB to RDF according to the mapping file. The following command activates the MSSQL and

MYSQL servers respectively:

d2r-server -p 2021 ssfile_SQLSERVER.ttl

d2r-server -p 2020 ssfile_MYSQL.ttl

Activate web service: The web service provides the main functions performing the federation

mechanism and retrieving the information from the SPARQL endpoints. The web service

provides an interface and a federated query layer and offers query services that allow end users

to perform the intended inference operations while remaining abstracted from low-level details.

Each submitted query is forwarded to multiple RDBs through a DR2Q component. The results

are later merged into a single result set. The endpoints are configured at server level, and take

into consideration the fact that the end user does not need to know the number or the location

of such existing endpoint servers. The web service endpoint is located at

http://host_webservice:17129/WebService1.asmx?op=SemanticWEB.

Query the ontology: The final step is to query the knowledge base. The SPARQL query in

Figure 7, below, requests the knowledge base for assessing which users are authorised to

execute the maintenance of the assets in a given organisation. This query is forwarded from the

Web service to all the federated SPARQL endpoints assigned to different databases and which

is finally translated into the internal schema of those databases. The query filters the

organisation ‘PowerPlantA’ for the asset ‘Computer’, where just some of the employees having

the role ‘MaintainIT’ are authorised to perform its maintenance:

PREFIX : <http://www.semanticweb.org/FCA#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT *
WHERE{
 ?employee rdf:type owl:NamedIndividual.
 ?employee :hasRole ?role.
 ?organization rdf:type :Organization.
 ?organization :hasEmployees ?employee.
 ?asset rdf:type owl:NamedIndividual.
 ?role :isRoledBy ?employee.
 FILTER(?organization = :PowerPlantA)
 FILTER(?asset = :Computer)
 FILTER(?role = :MaintainsIT)

 }

Figure 7: SPARQL query for assessing authorised users

Figure 8, below, demonstrates the use of the Apache Jena SPARQL command ‘sparql

--data=data.ttl --query query.rq’ and the corresponding output. The query contents are located

in the ‘query.rq’ file, which was used against data located at the ‘data.ttl’ file. According to the

knowledge base, just ‘Francis’ is able to execute the ‘Computer’ maintenance.

Figure 8: SPARQL command

Discussion and Conclusions

This paper proposes an approach for leveraging inference capabilities in the use of

heterogeneous data currently maintained in multiple, natively different RDB systems. This

approach aims at contributing to Critical Infrastructure Protection by supporting activities such

as forensic analysis and compliance audit procedures. It provides Semantic Web reasoning

capabilities through an interface able to answer to federated queries. The process of

interactively exploring, searching, extracting, pinpointing, and combining insights can use and

combine data sourced from disparate organisational RDBs. Thus, this approach avoids the

duplication of information in RDB and RDF stores, and overcomes the issues arising from the

use of static data integration (such as the lack of support for transformations of data and the

effort required for maintaining up-to-date synchronisation processes). The proposed web

service includes an abstraction layer that deals with inherent complexities of resorting to

different platforms, systems, technologies, and information schemas to retrieve and to combine

heterogeneous data. This abstraction layer also improves security by hiding the infrastructure’s

internal details.

Although the approach taken by the proposed federated architecture is similar to the one of

SPARQL 1.1, it does not require previous knowledge about the existence and location of

SPARQL endpoints. The benefits of this approach come from the inclusion of an abstraction

layer, which provides direct access to operational data that live in different organisational

RDBs. Details such as the involved database servers and differences between schemas can be

kept away from users. Moreover, it is flexible enough for leveraging the exploration of

additional data sources that might be easily added in the future. The proposed framework also

provides a data fusion solution for gathering multiple data items—representing the same real-

world object—into a single, consistent, and clean representation.

This work arises from the limited research on the use of ontology data for CIP applications,

and the need to improve and facilitate the usage of the huge amounts of data living in the RDBs

of Critical Infrastructure operators. This work also explored Semantic Web inference tools, and

is aimed at the practical objective of federating queries against a knowledge base containing

the ontology and data for assessing employee authorisations for asset maintenance in a large

organisation that uses multiple different RDBs. This practical approach suggests a future path

for the improvement of CIP by using inference capabilities for forensic and compliance audit

purposes and leveraging the use of heterogeneous ontology data living in RDBs and in other

heterogeneous kinds of data sources.

Acknowledgements

This work was partially funded by the ATENA H2020 Project (H2020-DS-2015-1 Project

700581).

References

ATENA 2018 ‘H2020 ATENA Project website’, viewed 24 May 2017, <https://www.atena-

h2020.eu/>.

Bizer, C & Cyganiak, R 2007, ‘D2RQ: Lessons learned’, Position paper for the W3C,

Workshop on RDF Access to Relational Databases, Cambridge, MA, US.

Blackwell, J, Tolone, WJ, Lee, SW, Xiang, WN & Marsh, L 2008, ‘An ontology-based

approach to blind spot revelation in critical infrastructure protection planning’, Proceedings of

the International Workshop on Critical Information Infrastructures Security, Springer, Berlin,

Heidelberg, DE, pp. 352-59.

Brickley, D & Guha, RV 1999, Resource Description Framework (RDF) Schema specification,

Proposed recommendation, World Wide Web Consortium, viewed 12 December 2017,

<http://www.w3.org/TR/PR-rdf-schema>.

Castorini, E, Palazzari, P, Tofani, A & Servillo, P 2010, ‘Ontological framework to model

Critical Infrastructures and their interdependencies’, Proceedings of Complexity in

Engineering, COMPENG’10, pp. 91-3.

Chorás, M, Kozik, R, Flizikowski, A & and Hołubowicz, W 2010, ‘Ontology applied in

decision support system for critical infrastructures protection’, Proceedings of the international

conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems

(IEA/AIE 2010): Trends in Applied Intelligent Systems, pp. 671-80.

D2RQ 2012, ‘D2RQ’, viewed 31 August 2017, <http://d2rq.org>.

DuCharme, B 2013, Learning SPARQL: Querying and updating with SPARQL 1.1, 2nd edn,

O'Reilly Media, Inc.

Freitas, A, Curry, E, Oliveira, JG, and O’Riain, S 2012, ‘Querying heterogeneous datasets on

the linked data Web: Challenges, approaches, and trends’, IEEE Internet Computing, vol. 16,

no. 1, pp. 24-33.

Gorlitz, O & Staab, S 2011, ‘SPLENDID: Sparql endpoint federation exploiting void

descriptions’, Proceedings of the second international conference on Consuming Linked Data,

vol. 782, pp. 13-24.

Gruber, TR 1993, ‘A translation approach to portable ontology specification’, Knowledge

Acquisition, vol. 5, pp. 199-220.

Henriques J, Caldeira F, Cruz T & Simões P 2018, ‘On the use of ontology data for protecting

critical infrastructures’, Proceedings of the 17th European Conference on Cyber Warfare and

Security (ECCWS), Oslo, NO.

Musen, MA 1992, ‘Dimensions of knowledge sharing and reuse’, Computers and Biomedical

Research, vol. 25, pp. 435-67.

Noy, NF & McGuinness, DL 2001, ‘Ontology development 101: A guide to creating your first

ontology’, Stanford knowledge systems laboratory technical report KSL-01-05, viewed 23

November 2017, <http://www.corais.org/sites/default/files/ontology_development_101_

aguide_to_creating_your_first_ontology.pdf>.

Quilitz B & Leser U 2008, ‘Querying distributed RDF data sources with SPARQL’, S

Bechhofer M Hauswirth, J Hoffmann, M Koubarakis (eds), The Semantic Web: Research and

applications, European Semantic Web Conference (ESWC) 2008, Lecture notes in computer

science, vol. 5021, Springer, Berlin, Heidelberg, DE, pp. 521-38.

RDF (Resource Description Framework) 2014, ‘W3C Resource Description Framework

(RDF)’, viewed 4 September 2017, <https://www.w3.org/RDF>.

Rosa L, Proença J, Henriques J, Graveto V, Cruz T, Simões P, Caldeira F & Monteiro E 2017,

‘An evolved security architecture for distributed industrial automation and control systems’,

Proceedings of the 16th European Conference on Cyber Warfare and Security (ECCWS).

Sahoo, S, Halb, W, Hellmann, S, Idehen, K, Thibodeau, T, Auer, S, Sequeda, J & Ezzat, A

2009, A survey of current approaches for mapping of relational databases to RDF, viewed 24

October 2017, <http://www.w3.org/2005/Incubator/rdb2rdf/RDB2RDFSurveyReport.pdf>.

Seaborne A, Polleres A, Feigenbaum L & Williams, G 2013, ‘SPARQL 1.1 Federated Query’,

position paper for the W3C Workshop on SPARQL 1.1 Federated Query, viewed 4 September

2017, <https://www.w3.org/TR/sparql11-federated-query/>.

Schenk, S, Saathoff, C, Staab, S & Scherp, A 2009, ‘SemaPlorer—Interactive semantic

exploration of data and media based on a federated cloud infrastructure’, Web Semantics:

Science, services and agents on the World Wide Web, vol. 7, no. 4, pp. 298-304, viewed 13

September 2017, <http://doi.org/10.1016/j.websem.2009.09.006>.

Sernadela, P, González-Castro, L & Oliveira, JL 2017, ‘SCALEUS: Semantic Web services

integration for biomedical applications’, Journal of Medical Systems, vol. 41, no. 4, p. 54.

Schwarte, A, Haase, P, Hose, K, Schenkel, R & Schmidt, M 2011, ‘FedX: Optimization

techniques for federated query processing on linked data’, L Aroyo, et al. (eds), The Semantic

Web – ISWC 2011, Lecture notes in computer science, vol. 7031, Springer, Berlin, Heidelberg,

DE, pp.601-16.

W3 2013, ‘SPARQL’, viewed 4 September 2017, <https://www.w3.org/TR/sparql11-query>.

——2014, ‘SPARQL’, viewed 4 September 2017, <https:// www.w3.org/TR/turtle>.

