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Abstract—Measuring the capacity and modeling the response
to load of a real distributed system and its components requires
painstaking instrumentation. Even though it greatly improves
observability, instrumentation may not be desirable, due to cost,
or possible due to legacy constraints.

To model how a component responds to load and estimate its
maximum capacity, and in turn act in time to preserve quality
of service, we need a way to measure component occupation.
Hence, recovering the occupation of internal non-instrumented
components is extremely useful for system operators, as they
need to ensure responsiveness of each one of these components
and ways to plan resource provisioning. Unfortunately, complex
systems will often exhibit non-linear responses that resist any
simple closed-form decomposition.

To achieve this decomposition in small subsets of non-
instrumented components, we propose training a neural network
that computes their respective occupations. We consider a subsys-
tem comprised of two simple sequential components and resort
to simulation, to evaluate the neural network against an optimal
baseline solution.

Results show that our approach can indeed infer the occupa-
tion of the layers with high accuracy, thus showing that the sam-
pled distribution preserves enough information about the com-
ponents. Hence, neural networks can improve the observability
of online distributed systems in parts that lack instrumentation.

Index Terms—Monitoring, Observability, Black-Box, Analyt-
ics, Neural Networks, Deep Learning, Performance Modeling

I. INTRODUCTION

Observability — a metric of how well the internal state a
sytem can be determined from its external outputs [1] — is
key to ensure responsiveness of large-scale online systems,
comprised of fine-grained distributed components, like mi-
croservices. Perfect observability would require extensive in-
strumentation of source code with agents dedicated to software
and hardware resources. Additionally heavyweight systems,
would be required to gather, store, process and display data in
dashboards.

Unfortunately, an intrusive monitoring solution may not be
desirable or possible due to technical constraints. This can
happen due to resources in third-party providers (e.g., Content
Delivery Networks), or lack of instrumentation, as this might
be too complex or too expensive to cover the entire system.

Hence, inferring occupation of individual components with-
out help from instrumentation or external agents can bring con-
crete benefits for the observability of the system. A clear use
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case, would be extracting information at sub-instrumentation
granularity as well as improving the visibility over legacy parts
of a system that are not or cannot be adequately instrumented.
Given this goal, we aim to determine whether we can perform
such separation using a neural network.

To evaluate this possibility, we created a laboratory exper-
iment, where we use a system with two sequential M/M/1
queues. We opted for Markovian queue systems since request
rates for modern use cases are known to be well modeled
by Poisson processes for large numbers of clients [2]. Fur-
thermore, as it has been shown that any system can be
decomposed into an arbitrary number of queues as a result
of the properties of sums of Markovian processes [3], this is
relatively representative of software components. The intuition
behind this property, is that computers, as discrete systems, can
be thought of as a network of buffers.

We ran a set of several combinations for layer occupations,
from lightly occupied to heavily busy. For each combination,
we collected the response time, for a batch of client requests.
Using this data, we trained a neural network, which we
eventually set to three hidden layers of 100 neurons each,
with two outputs representing the level of occupation of each
component of the system. The point is to understand if the
neural network could predict the occupation of each layer
without expert understanding of the system. We evaluated
our trained neural network against a baseline optimization
method. To extract the occupation, this method explicitly uses
underlying knowledge of the components, to fit the observed
data with a tandem queue model. The aforementioned premises
will be clarified in the following Sections.

Our experiments show that the neural network can accu-
rately infer the occupation of each layer. With the exception
of the case where one of the layers is extremely busy and
dominates the response time of the system, both methods,
the neural network and the tandem queue model, achieve
satisfactory results. These results show the feasibility of using
machine learning to do black-box monitoring of parts of
the system with little or no observability. Furthermore, it
reinforces that the measurements contain enough information
to reason about the structure of the system that generated it.

The rest of the paper is organized as follows. Section II
describes the methods we used for the problem we tackle in
this paper. Section III describes the settings for our experiment.



In Section IV we show and evaluate the meaning of the results,
the strengths of this approach and its limitations for both
methods. Section V presents the related work. Section VI
concludes the paper and describes future directions.

II. SYSTEM AND MACHINE LEARNING APPROACH

In this Section, we describe our approach to infer the
occupation of each component in the system of two queues

depicted in Figure 1.

Fig. 1: Tandem M/M/1 queues.
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Using a sample of response times, we determine the oc-
cupation of each component (which we refer to as layer),
both with model fitting and a deep neural network. While the
model fitting algorithm explores the underlying structure of
the system and serves to prove that it is indeed possible to do
the black-box prediction, our goal is to create a neural network
that precludes the need for any assumption or knowledge about
the system.

A. Tandem Queue Model Fitting

To determine the occupation of each layer of a tandem,
two-component system, we first need to model their response
to load. In a generic way, this response function is defined
by the time it takes to service each request and the level of
parallelism. Since we know the response time is the sum of the
two random processes representing the service time portions
happening at each layer, as a naive approach, we could attempt
to model the data, by fitting the sum of two random variables
(exponential for example). This would shed light on the time
spent on each layer, and indirectly their capacity. However,
this approach fails to capture the variation in response time in
response to load/occupation, as a result of not considering the
time spent waiting for the service.

Queuing theory gives us a theoretical framework to predict
response time variation in function of occupation. As such,
we modelled the system as a network of two tandem single-
server queues (M/M/1), shown in Figure 1. This model
assumes Markovian properties for both inter-arrival times as
well as service times. It further assumes no parallelism. We
forewent more general models, for which approximate or
numerical solutions are known, as the objective is not generally
solving the problem, but to prove its feasibility and establish a
performance baseline for a relatively simple case. Each queue
is defined by its arrival rate A and service time y, and the
occupation p is % The probability density function (PDF)
for the response time distribution is given in Equation 1 by
r(A, i, x) for all values z in its support.

The model resulting of the composition of two tandem
M/M/1 queues is defined by the arrival rate (\), and the
service rate of each queue (u1,pe), and has a response

time distribution given in Equation 2 as t(\, py, po, ) and
a respective cumulative distribution function (CDF) given
in Equation 3 as T'(\, p1,u2,x). Note that due to space
restrictions, the numerator on 7(\, i1, o, ) is split in two
lines.

As we want to find the occupations p of each layer, and
p € ]0,1], we rewrite the model in terms of occupation, as
shown in Equation 5.

To fit it to the data, we use optimization to find the values
p1, p2 that minimize the mean square error (MSE) between
© and the empirical cumulative distribution function (eCDF)
of the samples. We assume )\ is known for the time interval
when the samples where taken. Figure 2 shows an example
of how the model © fits the eCDF after the optmization
step. This particular sample was generated from a system
with a (0.2,0.7) occupation, and the optimization determined
parameters (0.16,0.73).
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Fig. 2: Empirical and predicted Cumulative Distribution Func-
tions (CDF).

B. Machine Learning Approach

We used a neural network that predicts each system layer’s
occupation from raw response times, as clients or components
upstream observe them. Since we wanted to predict the output
of a continuous value, our neural network would have to solve
a regression problem, i.e., we want to predict our output value
as accurately as possible — contrasting with a classification
problem.

We made several tests with distinct algorithms and opted
for a deep neural network. The rational being that we wanted
to correlate both layers’ occupation, since the output visible
to the client is associated with both layers and has a complex
non-linear relation. Furthermore, current software frameworks
make deployment and use simple, as well as production-ready.
In addition, we experimented several setups for the neural
network — distinct number of layers, nodes (neurons), and
activation functions. Our final configuration for the neural
network consisted of one input layer with 2000 nodes, three
hidden layers, each with 100 nodes, with the activation func-
tion being the relu function [4] and, in the final layer, a
linear activation function. Since the network is shared by both
outputs, we were able to have a multi-output regression model
to predict each layer’s occupation. Hence, both occupations are
correlated and influence the hidden layers, having an impact
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Fig. 3: Representation of the network for the two components

on the outcome. Figure 3 illustrates our model. The network
receives z input values, which are the response times seen by z
client requests, and outputs, /; corresponding to the occupation
of the ¢th layer.

We provide to our network around 10,000 lines of raw
data from our experiment. Since we are training our neural
network, and therefore using a supervised machine learning
approach, we need labeled data. Each line has 2,002 values:
2,000 response times as seen by clients and the labels: the
2,001°¢ value is the occupation of one layer, the 2, 002" value

output is not available, serving only to validate the accuracy
of the prediction.

III. EVALUATION

To validate the tandem queue model fitting method and
the neural network, we used response time data generated
with a simulated two-component system. We modeled a two
component system as two sequential single server queueing
components since it elegantly expresses the variation of re-
sponse time with occupation. The simulation was made using
the gcomputer [5] package written in R.

The occupation levels were defined as all the combinations
of 0.1 increments in the range [0.1,0.9] - e.g., Layer 1 at 0.1
and Layer 2 at 0.5. The arrival rate was fixed at 30 requests per
unit of time and the service rate of each layer varied to express
the desired occupation. For each combination of occupations,
we collected 150 samples. Since we had 9 occupation levels
per component, we collected 92 * 150 = 12150 samples of
2,000 request observations each. These observations corre-
spond to overall response times of each request.

To evaluate and create the neural network model, we used
Tensorflow with Keras [4]. This framework, allowed us
to rapidly generate and save our model and is a common
standard for the generation of complex networks in the in-
dustry and academy. Of the 150 samples, 80%, or 120 per
occupation combination, were used to train the neural network,
and the remaining (30 per combination) for the validation of



both methods — test set. Furthermore, of the portion allocated
to the neural network training, 30% (30% of the 80% portion)
were used for model validation in Tensorflow.

The neural network treated the 2,000 request observations
as its input features and outputted the two occupation values.
We used a Sequential model and the Mean Absolute Error
— for the optimization score function —, and a total of 100
iterations over the dataset — i.e., “epochs”.

For validation and comparison of the two approaches (neural
network and model fitting), we calculated the following error
metrics: Mean Square Error (MSE), Mean Absolute Error
(MAE), as well as the mean Euclidean distance, because
we wanted to understand the distance between the two-
dimensional predictions. These metrics were calculated for the
whole set of predictions, by range for each layer occupation
as well as for each combination of occupations (Euclidean
distance). MSE is particularly useful to compare our current
results with the results of the methods that inspired this
work [6].

IV. RESULTS

Having generated predictions for a test set of 2,430 samples
(30 samples for each of the 81 combinations of occupations),
we calculated their respective errors. Besides the global and
per range error for each individual layer predictor, for which
we used MSE and MAE, we calculated the error as the
Euclidean distance for the prediction pair. This latter metric
gives an absolute error value that more intuitively shows the
quality of the prediction and better exposes issues such as the
prediction regressing to the mean of the two occupation values.

We focus on the MAE and mean Euclidean distance since
they have the same unit. Table I shows the MAE and MSE
for each layer, as well as the respective standard deviations.
The Mean Euclidean distances for the Tandem Queue Model
Fitting and the Deep Neural Network are 0.09 4+ 0.10 and
0.15 £ 0.12, respectively. Euclidean distances are further
detailed in Figures 4c and 4d.

The best method in our previous work [6], has a MSE of
0.05£0.04 and 0.0540.03, for layer 1 and 2 respectively. The
new methods both show significant improvement over those
same metrics, as shown on Table I. Moreover, both methods
show improvement over all ranges of occupation. Table II
shows error metrics for each method and layer, grouped by
range. For example p = 0.1 shows the results for the pairs
(0.1, %) and (%,0.1), where the asterisk stands for all values.
As neither model could distinguish the order of the occupation
values — (0.1, 0.5) is indistinguishable from (0.5,0.1) — the
errors were calculated after sorting the layer values. The results
are much more consistent over the whole range, compared
to our previous work [6], where there was clear degradation,
especially on the model fitting approach.

However, the error of each individual layer does not convey
an important aspect of the prediction quality. We wish to
preserve the relationship between the two occupation values,

meaning that (0.1,0.5) should be predicted as such, instead
of averaging the values to (0.3,0.3). To understand if this
relationships exists, we measure the error as the Euclidean
distance between the target and prediction pairs. Figure 4
shows the error in a way that preserves that relation. We
present two visualizations for each method.

Firstly, we show the predictions as a cloud of points color
coded by expected occupation pair (Figures 4a and 4b). The
true occupations have a black circumference; predictions are
dots with the same color as the disk inside the circumference.
For example, in Figure 4a, we see that for occupations
(0.1,0.1) all the predictions are clustered around the real
value. As occupation increases, they get more disperse. Due
to the optimization method used, we observe some values
getting clamped creating a line in the diagonal. On Figure 4b,
representing the neural network results, we see there is a
particular pattern of dispersion for the extremes. On high
occupations, predictions are shifted along one of the axes. This
means that the neural network is able to accurately predict the
higher occupation value, but the second one will tend towards
central values. This is expected, since the highest occupied
component dominates the overall response time experimented
by the client.

Secondly, we show bubble charts, where the radius of each
bubble is the mean Euclidean distance of the predictions from
the real value. Here it is visible that the queue model, in
Figure 4c, shows stability along the range, except on the
highest occupation values. Figure 4d, relative to the Neural
Network, presents a different pattern, having lower accuracy
when the difference in occupations is highest ((0.1,0.9)) or
as it get closer to (0.9,0.9).

Results show that we can estimate the internal occupations
from the system’s response time with small error. When at
least one of the components is very busy, only one of the high
occupations is correctly approximated. We do not regard this
as problematic, because a very busy component will dominate
the response time anyway.

V. RELATED WORK

We divide previous related work into three parts: monitoring
tools and methods to gather server-side data, tracing frame-
works, and modeling of computational machines. Traditional
monitoring and tracing were studied as the standard alterna-
tives to the approach we propose.

A. Monitoring tools

Traditional monitoring tools, like Nagios [7] or Zabbix [8],
use probes or agents to collect infrastructure and application
metrics, such as response time, load, and other sorts of num-
bers and status. Application Performance Monitoring (APM)
solutions, like New Relic [9] or Dynatrace [10], go a little
bit deeper and can use specific agents to automatically extract
information about the internal components of distributed appli-
cations, e.g., a database. Other approaches, take advantage of
architectural patterns and extract data at the platform level,



TABLE I: Global results for both methods.

Layer 1 Layer 2
Method MAE [ MSE MAE [ MSE
Queue Model 0.05£0.07 | 0.01 £0.03 0.05£0.08 | 0.01£0.03
Neural Network | 0.09 +0.11 | 0.02 + 0.04 0.08 £0.10 | 0.02£0.04

TABLE II: Error metrics for each method and layer, grouped by range.

Queue model Neural network
Layer 1 Layer 2 Layer 1 Layer 2

[ o] MAE [ MSE MAE | MSE MAE [ MSE MAE | MSE
0.1 .05+£.09 | .01 +.04 05£.09 | .01+£.04 12+ .14 | .04+ .06 A1+£.13 | .03+£.05
0.2 .05+.08 | .01 £.03 .06 £.11 | .02+£.05 d+1 .02 £.04 A1+£.11 | .02+£.04
0.3 .06 £.09 | .01 +.03 .06 £.09 | .01+£.04 .14.08 .02 £.02 .08 £.07 | .01+£.02
0.4 .06 £.08 | .01 +£.03 .07+£.09 | .01+£.03 .09+£.08 | .02+ .02 .08 £.07 | .01+£.02
0.5 .06 £.07 | .01 £.02 .06 £.08 | .01+£.03 .09+.09 | .02+.03 .08 £.08 | .01+£.03
0.6 .06 +.07 | .01+.03 .05+.07 | .01+.03 .09+.1 .02 4+ .04 09+.1 .02 £.04
0.7 .054+.05 | .01+.02 .05+.06 | .01+.03 d+.1 .02 4+ .04 09+ .1 .02 4+ .05
0.8 .04 £+ .05 0+ .03 .04 + .05 0+ .2 1+£.13 .03 £+ .06 .08+ .11 | .02+ .05
0.9 .04 £+ .04 0+ .01 .04 4+ .03 0+0 .06+ .13 | .02+ .06 .01 4+ .02 0+0

such as Pina er al. [11]. Eventually, all this data ends up
in dashboards for the system administrators. Cloud providers
are also an interesting case to cover here, as they have their
own monitoring tools, like Amazon CloudWatch [12] or Azure
Monitor [13].

B. Tracing methodologies

Some of the previous tools can even support distributed
tracing. Tracing, unlike standard monitoring solutions, exposes
causality relationships in the logs, allowing users to make
inferences concerning critical paths and relations, e.g., among
microservices. Regarding tracing, there are two major fields-
of-work: black-box and non-black-box approaches. Concern-
ing black-box methodologies, Aguilera et al. [14] used a tool
that tracks message-level traces of the system, to debug the
overall distributed system (not performing overall performance
diagnosis). Tak ef al. [15] use threads and network activities,
as a middleware to detect request paths.

Relative to non-black-box, Sigelman et al. [16] created a
tracing infrastructure for infrastructure and distributed appli-
cations. Sambasivan et al. [17] use the approach to gain insight
at the application level, in particular workflow-based tracing,
concerning the tracing of individual requests.

Linkedin [18] has a distributed tracing system built upon
Apache Samza [19], to detect performance issues and root
cause analysis. The system uses the call paths aggregation of
every 15 minutes. Netflix [20] has also created several moni-
toring tools with distributed tracing as well as failure injection
features, to improve resilience of the overall infrastructure.

OpenTracing [21] gives developers tracing clients in multi-
ple languages and brings integration with the state-of-the-art
tracing back-end tools. Google recently published a competing
standard, OpenCensus [22], supporting a partially overlapping
set of the same back-end tracing tools.

C. Performance modeling techniques

In [23], authors present a survey concerning microservice
monitoring design and possible implementations, to promote

monitoring standards. We have worked on performance model-
ing and monitoring before as well, e.g., in [24] or [6]. In [24],
we used a black-box technique to detect internal and external
bottlenecks of the system, using only client-side data and
machine learning techniques. In [6] we also used a black-box
approach for multi-component servers, but we now improve
those results.

In the literature we can find plenty of approaches to model
and analyze system performance. Bahl et al. [25] create an
inference Graph model from network traffic to check service
degradation and failures. However, their work is strongly tied
to the enterprise network topology. Urgaonkar er al. [26],
propose an analytical model based on multi-tier queues for
multi-tier Internet services. Despite being related to our own
work, Urgaonkar ef al. model a multi-tier server, while we
aim to do black-box monitoring. Other works, like [27]-[29]
use networks or layered queues. However they do manual
modeling at design time or modeling from expert knowledge
of the system, instead of trying to extract the model from an
existing system in a data driven fashion. Other approaches
try to model the service performance and response times.
This is the case of Cao et al. [30], who model classic web
servers as M/G/1/K x PS queues. However, models like
M/G/1, G/G /e, with no assumption of processing time, are
not amenable to closed-form solutions and cannot be easily
composed.

Heinrich et al. [31] explore microservice-based systems and
point out that the modeling approaches available do not fit
modern microservice-based systems.

VI. CONCLUSION

Monitoring of highly distributed, dynamic, elastic systems
is a herculean task for administrators, operators and even
for developers. New software releases, agents, tracing, and a
plethora of system monitoring tools and dashboards creates a
complex environment for administrators to ensure correctness
and proper quality-of-service.
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Fig. 4: Tandem queue and neural network regression models
component.

In this paper we explored the possibility of inferring system
occupation from the client point-of-view — a scenario ideal
for legacy systems or where it is too complex or infeasible to
instrument a small subset of components. Once occupation
can be predicted, the system can react and leverage the
elasticity of the supporting cloud platform to maintain the
desired throughput and quality of service. This may be feasible
even for more current state-of-the-art methodologies, such as
microservices, where a module may be responsible to create
new containers reacting to a lower quality-of-service.

Our objective was to identify occupation for a two-layer
subsystem. More specifically, we wanted to compare two

(d) Neural network mean Euclidean distance

error visualizations. Axes represent the occupation of each

distinct methods: first, an optimized algorithm specifically
designed to our scenario, and secondly, a neural network
trained with the data collected from our experiment. Our
results show that it is viable to infer the load of each layer
collecting only the overall response time. Hence, these two
methodologies — neural network and tandem queue model —
are able to improve current monitoring tools, and ensure a
more fine-grained knowledge about the system.

For future work, we intend to study and categorize real
world response time data, using that knowledge to extend
this methodology for more generic topological inference. In
particular, we are interested in the number of components,



parallelism and occupation.
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