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Abstract—Large online web sites are supported in the back-end
by a cluster of servers behind a load balancer. Ensuring proper
operation of the cluster with minimal monitoring efforts from
the load balancer is necessary to ensure performance. Previous
monitoring efforts require extensive data from the system and
fail to include the client perspective. We monitor the cluster
using machine learning techniques that process data collected
and uploaded by web clients, an approach that might complement
system-side information. To experiment our solution, we trained
the machine learning algorithms in a cluster of 10 machines with
a load balancer and evaluated the results of these algorithms
when one of the machines is overloaded. While a fine-grained
view of the state of the machines, may require much effort
to accomplish, given the compensation effect of the remaining
healthy machines, the results show that we can achieve a coarse
grained view of the entire system, to produce relevant insight
about the cluster.

Index Terms—Black-box monitoring; Client-side monitoring;
Analytics

I. INTRODUCTION

Web applications running over the Hypertext Transfer Pro-
tocol [1] (HTTP) are the common standard used worldwide, on
a daily basis, to navigate the Internet. To ensure success of ser-
vices and businesses, system administrators must ensure that
their users enjoy a good quality-of-experience (QoE). They
have to detect, mitigate and react to problems as quickly as
possible, using monitoring tools and applications, throughout
the system.

System monitoring tools, Application Performance Mon-
itoring (APM) or Real User monitoring (RUM) can help
with this goal. Basic system tools together with Nagios
or Zabbix may help system administrators to analyze a
large array of raw metrics, such as memory, bandwidth or
CPU occupation. Unlike these, APM suites, such as New
Relic [2] or AppDynamics [3] enable analysis of specific
applications, at the cost of being more intrusive. Normally,
these tools launch agents on systems, which can, under certain
conditions, decompose application running times by local or
event components, say database time, or service invocation.
The advantages of one approach are the disadvantages of the
other: system monitoring tools may lack application context,
but are less intrusive and need fewer resources.

White-box suites, such as the aforementioned approaches,
have two important disadvantages: they are closely coupled to
the infrastructure, and they ignore the fact that the client, not
the server, is the main entity of the business application. The
client has some specific conditions, such as network and third-
party resources that cannot be controlled (and monitored) by
the system itself.

Therefore, to gain a system-wide perspective, client-side
data should be integrated with white-box monitoring tools.
In [4], an approach focused on using JavaScript snippets to
gather client-side information with an approach similar to
Google Analytics [5] was used, to analyze the feasibility of a
black-box approach. This work inspired us, to create a more
complex and realistic scenario, considering a more realistic
setting with a cluster of server machines. Our goal is to
determine the conditions of operation of the cluster of servers
and the network operation conditions, using a limited amount
of information. We aim to evaluate experimentally whether
a client can tell when a specific machine of the cluster is
underperforming. This is simple, and brings the benefit of a
monitoring suite that is minimally tied to the architecture and
software used in the system.

There are applications that seem similar in behavior, namely
Real User Monitoring (RUM) applications, like Pingdom [7]
or the open source project Bucky [8]. However, they are
more focused on the presentation layer, with dashboards and
notification rules to warn system administrators. Our work
is different and more complex, because we try to infer the
internal state of the system from the metrics, we are not
interested in the metrics per se.

To get information from the server, we use a metric called
request time, the time between the beginning of the request and
the first byte of the response, from the client’s perspective. To
collect this time, we resorted to the Navigation Timing API
framework [9], available in the most common browsers.

Based on client data, we analyze the possible causes as-
sociated with that pattern, regardless of being an internal or
external bottleneck. Our experiment uses an open source video
service, named Mediadrop [10]. We ran several clients that
accessed the Mediadrop application, under a combinations of
different CPU and network operation conditions. For each



combination, we collected the request times, for the batch of
clients accessing the web page. The data was used to train two
distinct machine learning algorithms, a linear and a non-linear
one.

Our results demonstrate that it is possible to have CPU
and network bottleneck detection using client-side data for a
cluster of servers. Since data is gathered using a JavaScript
snippet, it would be easy to upload this information to a
central point, with the convenience of this approach being
operation system and platform independent. Other machines
of the cluster can compensate for problems in one of their
peers, however, we can identify in coarse terms the operating
conditions of each machine. Given the simplicity and the
complete scope of this form of monitoring, we argue that
this approach should be a complement to standard monitoring
solutions, with the goal to improve quality-of-experience to
clients.

The rest of the paper is organized as follows. Section II
describes the method we used in this paper. Section III
describes the experimental settings for the problem we tackle
in this paper. Section IV discusses distinct machine learning
techniques to solve our problem. In Section V we show the
results of our experiment, evaluate the meaning, the strengths
of this approach, and the limitations. Section VI presents the
related work. Section VII concludes the paper and describes
future paths.

II. PROBLEM DESCRIPTION
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Fig. 1: Representation of the considered infrastructure

In our experimental evaluation, as illustrated in Figure 1,
we consider an HTTP infrastructure comprised of 10 server
machines running a social media application. In the front of
the server machines we have a load balancer and a set of
clients requesting HTTP objects.
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Fig. 2: Request and response times [4]

We use a metric that is available in all modern web
browsers, via the framework Navigation Timing API: the

request time. Figure 2 depicts this metric, including the server
processing time and the network round-trip-time from the
beginning of the request, until the first byte of the response
has arrived. There is a complementary metric that we do not
need, the response time, which includes the time needed to get
all the response. Since we were always able to infer network
occupation, based on request time alone, we simply did not
use the response time.

Besides the request times observed by each client, we added
an indication of which back-end server sent the reply in the
response. Clients should then upload their data to a central
point, from where we aim to automatically infer two very
concrete metrics: 1) the level of occupation of the server’s CPU
and 2) the client-server network occupation. This information
will enable system administrators to know the real operating
conditions that clients experiment, and to react to bottlenecks
in parts they control.

We could directly use raw data collected by the clients
without any kind of processing. However, the order of arrival
of the clients’ responses had an impact in the method, i.e.,
having client A’s response before client B’s response was
not the same as having the responses in reverse order. The
reason for this is that we fed the request times to the machine
learning algorithms in some specific order. Therefore, we want
to avoid this dependency. Hence, we used the averages and
median times of all the clients’ raw data, in a rolling window
approach, as a pre-processing step in our machine learning
pipeline. These values were then mapped with the vacancy
of the resources in the interval [0, 1] (0 is entirely occupied,
while 1 is entirely vacant).

As we will analyze on Section V to achieve better results in
the machine learning algorithms, we also added information
of where the request was processed, having this way a more
fine grain information concerning the system. In a production
environment, to collect this information, an approach similar to
Google Analytics [5] could be made to collect and determine
the operation status of the server.

The server was run in different operation sets, knowing a
priori the vacancy of each resource. The clients for each set,
run several requests, and all the data was collected. Using
this data, we trained the machine learning algorithms, to
understand the feasibility of a black-box client-side monitoring
solution.

III. EXPERIMENTAL SETUP

In our experimental setup, we used an open source platform
for video contents, named Mediadrop [10], with features such
as video statistics, popularity, and integration with major social
networks, including Youtube. We opted for this software,
because it has been used before in other benchmarks, such
as BenchLab [11].

The Mediadrop software was installed in ten machines
running Ubuntu 16.04, running on a virtualized platform. Each
virtual machine has 2 single-core Intel Xeon CPU E5-2650 0
@ 2.00GHz virtual processors, and 1 GiB of RAM. We used
the Mediadrop default settings.



TABLE I. SOFTWARE USED AND DISTRIBUTION.

Component Observations Version
Mediadrop open source video platform 0.10.3
Selenium selenium-server-standalone jar 2.53.1
Firefox browser 45.4.0
JMeter performance application 3.0
Xvfb xorg-server 1.13.3
cpulimit binary 0.2
traffic control change network bandwidth 1.0.2
NGINX load balancing 1.10.3

To simulate the CPU and network loads, we used two
distinct tools. In one specific machine of the cluster, we
used the cpulimit tool [12]. This tool limits the CPU of the
process running Mediadrop. To limit the network, we used
the traffic control tool [13]. CPU vacancy for the Mediadrop
processes was limited from 10% (almost entirely occupied)
to 100% (entirely vacant) in steps of 10%. For the network,
we used 5 levels, as we did not notice much performance
differences in having additional levels. The network levels
used were 50, 100, 250, 500 and 1000 kbps. This gives a total
of 10× 5 = 50 different server conditions.

To control the actual effect produced on the servers,
we used standard tools, such as the information obtained
from /proc/stat or top , for the CPU utilization,
and bmw-ng [14] for the network usage.

The load balancer used to distribute requests among the
10 back-end servers was an NGINX proxy server. The load
balancing algorithm used was round-robin. It is relevant to
mention that the load balancer includes a health-check mech-
anism that cuts the load on heavily stressed machines, thus
having some interference on the experiments we are doing.

Client applications use a similar hardware configuration,
with two virtual CPUs. The operating system is CentOS 6.7
x64. Since we wanted to invoke the Mediadrop webpage,
we used a tool named Selenium [15], normally used to
create automated front-end tests, which emulates accesses to
web sites. In this scenario, we used this tool to access the
Mediadrop webpage in an autonomous way, and collected the
request times.

The Selenium framework allows us to use any kind of
browser, as long as the corresponding WebDriver exists. In
our setup we used the Firefox browser. To emulate real
screens, we used Xvfb [16]. To control the several clients that
access the infrastructure, with minimal effort, we integrate the
Selenium clients with Apache JMeter [17], which is a standard
performance tool. Hence, our experimental setup concerning
the clients, consisted of JMeter, invoking our clients emulated
by Selenium and Firefox, which collected the information from
the Navigation Timing API [9]. Table I summarizes the most
important components of our experimental setup.

We used a total of 4 browsers, each one of them associated
with a JMeter thread. We configured each thread (i.e. each
client) to invoke the entry page of Mediadrop application 50
times - for a total of 200 requests. To provide more data to the
machine learning algorithms, we made 20 iterations for each
combination of CPU and network occupations. This means that

for the initial 200 requests, we generated 4, 000 raw results,
for each of the 50 configurations — a grand total of 200, 000
requests of total raw data for all the experiment.

The 4000 requests of each setup were aggregated to produce
results independent of the order of invocations. For each of the
4, 000 requests concerning one configuration, we aggregated
request times by computing the following data: the number
of requests processed by the back-end server machine (as we
said, the server leaks the machine ID to the client), the minimal
request time, the maximum request time, the median of the
request time and the mean request time observed. With this
information, we added the CPU or network level, depending
on the regression case we are trying and fed the data to the
algorithms of Section IV.

IV. MACHINE LEARNING APPROACH
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Fig. 3. Example of Machine Learning regression models for CPU prediction
of availabilities

With the information collected in our experiment, we used
two machine learning algorithms to predict the CPU and net-
work occupation, based on the clients’ data. Since the output
takes a value instead of a class label, we used a regression
model for the network and CPU bottlenecks (in alternative to
a classification). We opted for regression, since we want to
predict a real value, either CPU or network occupation [18].
We aggregated the raw data for the several iterations, where
each line had the target value of the configuration of CPU or
network. Each line has the features represented in Figure 3 and
the output to be predict, which is the vacancy of the resource
(i.e., the actual output value, e.g., CPU in the figure). This
latter value is available in the test scenario, but unavailable in
the validation cases. The vacancy of resources is normalized
in the interval [0, 1], being 1 an entirely free, and 0 a totally
occupied resource.

There is a wide body of knowledge regarding regression
models, e.g. [19]. In this context, we opted for two distinct
algorithms: Simple Linear Regression (SLR) and Support
Vector Regression (SVR). SLR is simple, but linear. We also
wanted to analyze more complex nonlinear models, so we used
SVR, a particular case of Support Vector Machines, using a
non-linear kernel. We also used this algorithm, since SVR has
outperformed other regression models in distinct scenarios and
applications, e.g. [20]

Both algorithms were run using the Weka framework [21].
For the SVR, we used the normalized polynomial kernel, with
normalized data in the interval [0, 1], to achieve better behavior
in the training set. For SVR and SLR we used default values
for the remaining parameters. To analyze the data, we used
10-fold cross validations, with 20 repetitions.

V. RESULTS

The results obtained for CPU and network occupation for
the two distinct models are presented, respectively, in Table II



TABLE II. Regression results for CPU and network availabilities

Method CPU Network
MAE CC MAE CC

SLR 0.18± 0.03 0.43± 0.11 0.19± 0.01 0.56± 0.11
SVR 0.16± 0.06 0.45± 0.17 0.21± 0.13 0.51± 0.19

TABLE III. Regression results for CPU and network availabilities

Method CPU 3 levels Network 3 levels
MAE CC MAE CC

SLR 0.12± 0.03 0.70± 0.11 0.18± 0.08 0.71± 0.16
SVR 0.15± 0.10 0.85± 0.12 0.15± 0.13 0.76± 0.17

and in Table III. Table II presents the values for the 10 levels
of CPU and 5 levels of network, and in Table III we present the
values with a subset of the collected values. This subset was
chosen taking into consideration the small, medium and larger
value of the interval of both CPU and network mentioned
in Section III. The problem of having the complete range of
availabilities is that similar levels of CPU and network are
very difficult to separate due to the influence of the remaining
machines in the cluster. We thus wanted to check if the
methods can actually do a good job for the simpler goal of
telling the big picture regarding the resource state (resource
available, unavailable or halfway).

We show the mean absolute error (MAE) and the Pearson
correlation coefficient (CC). The MAE results show the dis-
tance between the estimated and the real value. Since we make
a 10-fold cross-validation, with 20 repetitions, we present the
values associated with the average and standard deviation of
the all the iterations.

While we get acceptable results in Table II, results in
Table III are much better. We can see that the former results
are only average, but if we only consider 3 ranges of vacancy
(small, medium, large), as in the latter table, the results are
very good. We get a particularly high correlation, as well as
low MAE, this meaning that both machine learning methods,
specially SVR can do an excellent regression.

Results are better for the CPU bottlenecks, because the
CPU bottleneck tends to dominate the overall request time.
Specially in lower CPU vacancy (10%) the overall request
time grows considerably (in the order of 10, 000 ms), whereas
a very occupied network bottleneck only produces a delay
of 400 ms. Therefore in the extreme case of low CPU and
network resources, the time is largely dominated by the CPU
starvation.

Since the infrastructure is complex, with a load balancer
and 10 servers, patterns in the request time become elaborate.
It is easy to see that the other 9 would compensate the
affected machine for any trouble, creating complex patterns.
Nevertheless, this was mitigated leaking to the client the
machine processing the response.

VI. RELATED WORK

We divided the related work in internal system-base mon-
itoring frameworks, and tools that resort to client-side infor-
mation.

Regarding internal monitoring solutions, we have the work
of Malkowski et al. [22] that aims to pinpoint the resources
responsible for the low performance. Although this works,
they collect more than two hundred metrics from the server
system. Additionally in [23], Malkowski et al. make an even
deeper study about bottlenecks and the phenomenon of multi-
bottlenecks, concluding that the chain-reaction may occur even
in low saturated systems. In [24], the goal is to understand
how transient bottlenecks work. To achieve this, authors used
a fine-grained analysis of the system components; but this is
tightly coupled to the system architecture.

In the industry, we can also find a plethora of white-box
approaches that collect several server metrics, with the overall
increase in the maintenance and operation of the system [25].
Additionally, there are some open-source projects, such as
IOVisor that can pinpoint the bottleneck in thousands of
VMs [26]. Compared to our work, these tools have a white-box
methodology, needing some sort of instrumentation, agents at
the virtual machine, or are very coupled to the system to be
monitored. Additionally, the purpose is normally the creation
of dashboards, resulting in more tools to the administrators to
look at when some issue occurs in the system.

Looking only to client-side applications in industry, we have
some applications that resort to techniques similar to ours,
such as in [27]. However, they aim to create rules, alerts or
dashboard to help administrators, thus being unable to enrich
monitoring with some “intelligence” to understand the area
where the system has low performance. On the other hand,
if we look for academic efforts, we have some articles that
create applets or plugins that collect information from distinct
clients, to detect network connectivity issues. As in our case,
information is processed in a central point [28–33]. It is
relevant to mention that all the aforementioned approaches
assume a volunteer perspective, where the clients allow the
plugin and the collection of raw data. [6], uses a similar
methodology to detect internal and external bottlenecks in the
system using only client-side data, but with a less complex
architecture.

Comparing to the previous work, we are not coupled to any
kind of system infrastructure or technology, and secondly, we
have little instrumentation on the server-side. To achieve this,
we resort to standard tools, such as the browser standard Nav-
igation Timing API, and other already proven methods, such
as Google Analytics, to collect the information. Additionally,



the fact that we have client metrics allows us to understand the
influence of the client-to-server network, and also to validate
the interaction of users with third party resources, thus getting
useful information to improve the quality-of-experience.

VII. DISCUSSION AND FUTURE WORK

Monitoring of web pages is a major challenge, due to
the complexity, third-party resources and the need to achieve
excellent quality-of-experience. The standard approach is to
rely on white-box tools that collect performance metrics from
the server. However, this tends to be intrinsically associated
with the architecture and software used, thus excluding the
clients’ point-of-view. Since the goal is to understand if the
quality-of-experience is good, it is important to collect metrics
from the client, especially due to the client-to-server network
and external resources that are out of the administrators’
control.

In this paper, we aim to perform black-box monitoring, by
using a realistic and powerful server infrastructure. As a result,
we have a good insight of the client-side point-of-view and a
solution that is almost entirely independent of the technology
and software used in the system.

The evidences presented in this paper show that it is possible
to separate some internal from external bottlenecks, using raw
data collected in the client. This approach might work best
to improve the results of standard white-box tools, instead of
being a simple alternative.

As future work, we want to mitigate some of the disad-
vantages of using a supervised machine learning technique. In
fact, using a trained data set may be unfeasible to do in large
production systems. We are now doing an attempt to build a
model of complex systems from the client’s observations, and
use that model to infer the internal state of the system.
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