
Fast-DENSER++: Evolving Fully-Trained
Deep Artificial Neural Networks

Filipe Assunção, Nuno Lourenço, Penousal Machado, and Bernardete Ribeiro
CISUC, Department of Informatics Engineering,

University of Coimbra, Coimbra, Portugal
{fga,naml,machado,bribeiro}@dei.uc.pt

ABSTRACT
This paper proposes a new extension to Deep Evolutionary Net-
work Structured Evolution (DENSER), called Fast-DENSER++ (F-
DENSER++). The vast majority of NeuroEvolution methods that
optimise Deep Artificial Neural Networks (DANNs) only evaluate
the candidate solutions for a fixed amount of epochs; this makes
it difficult to effectively assess the learning strategy, and requires
the best generated network to be further trained after evolution.
F-DENSER++ enables the training time of the candidate solutions
to grow continuously as necessary, i.e., in the initial generations
the candidate solutions are trained for shorter times, and as gen-
erations proceed it is expected that longer training cycles enable
better performances. Consequently, the models discovered by F-
DENSER++ are fully-trained DANNs, and are ready for deployment
after evolution, without the need for further training. The results
demonstrate the ability of F-DENSER++ to effectively generate
fully-trained DANNs; by the end of evolution, whilst the average
performance of the models generated by F-DENSER++ is of 88.73%,
the performance of the models generated by the previous version of
DENSER (Fast-DENSER) is 86.91% (statistically significant), which
increases to 87.76% when allowed to train for longer.

CCS CONCEPTS
• Computing methodologies → Neural networks; Supervised
learning by classification; Object recognition.

KEYWORDS
Convolutional Neural Networks, Deep Evolutionary Network Rep-
resentation, NeuroEvolution

1 INTRODUCTION
Automated Machine Learning (AutoML) seeks to model with lit-
tle or no human-intervention the application of Machine Learning
(ML) techniques to well defined problems, avoiding the user to man-
ually perform the data pre-processing, the design and extraction
of features, and/or the selection and parameterisation of the most
suit ML model. The current paper focuses on a branch of AutoML:
NeuroEvolution (NE) [3]. NE automatically searches for Artificial
Neural Networks (ANNs), enabling the optimisation of their struc-
ture (i.e.., number of neurons, layers, and/or connectivity), and/or
learning strategy (i.e., learning algorithm and its parameters: e.g.,
learning rate, momentum); in NE, Evolutionary Computation (EC)
is used to automate the search for ANNs.

Considering that NE is based on EC, a population of individu-
als is continuously evolved throughout generations; each single

<fully-connected> ::= layer:fc <activation> (1)

[num-units,int,1,128,2048 <bias> (2)

<dropout> ::=layer:dropput [rate,float,1,0,0.7] (3)

<activation> ::= act:linear | act:relu | act:sigmoid (4)

<bias> ::= bias:True | bias:False (5)

<softmax> ::= layer:fc act:softmax num-units:10 bias:True (6)

<learning> ::= <bp> [batch_size,int,1,50,500] (7)

| <rmsprop> [batch_size,int,1,50,500] (8)

| <adam> [batch_size,int,1,50,500] (9)

<bp> ::= learning:gradient-descent [lr,float,1,0.0001,0.1] (10)

[momentum,float,1,0.68,0.99] (11)

[decay,float,1,0.000001,0.001] <nesterov> (12)

<nesterov> ::= nesterov:True | nesterov:False (13)

<adam> ::= learning:adam [lr,float,1,0.0001,0.1] (14)

[beta1,float,1,0.5,1] [beta2,float,1,0.5,1] (15)

[decay,float,1,0.000001,0.001] (16)

<rmsprop> ::= learning:rmsprop [lr,float,1,0.0001,0.1] (17)

[rho,float,1,0.5,1] [decay,float,1,0.000001,0.001] (18)

Figure 1: Example of a grammar for encoding fully-
connected networks.

individual encodes an ANN. One of the main drawbacks relies on
the time that is required to evaluate the population, which is even
higher if we consider deep networks. To overcome this issue the
vast majority of NE methods constraint the evaluation of the net-
works to a fixed (low) number of epochs, or grant the networks
a limited amount of Graphic Processing Unit (GPU) training time.
However, these evaluation strategies cannot assure that the candi-
date solutions are being trained for the required time, and make
it difficult to assess the quality of the evolved learning strategy,
i.e., that the generated learning strategy works beyond the limited
number of epochs / GPU training time.

To overcome the previous limitation, in this paper we propose
a new version of Deep Evolutionary Network Structure Repre-
sentation (DENSER), called Fast-DENSER++ that enables the eval-
uation time to grow continuously as the complexity of the net-
works increases throughout the generations. Fast-DENSER++ (F-
DENSER++) is an extension to Fast-DENSER (F-DENSER): a pre-
vious version of DENSER that generates networks with the same
performance of DENSER, but 20x faster. The results demonstrate
that F-DENSER++ is statistically superior to and F-DENSER in evo-
lutionary performance; further, when the F-DENSER networks are
trained for longer they achieve, on average, lower performances
than those reported by F-DENSER++. That is, F-DENSER++ is able

ar
X

iv
:1

90
5.

02
96

9v
1

 [
cs

.N
E

]
 8

 M
ay

 2
01

9

F. Assunção et al.

<fully-connected>

<fully-connected> <activation> <bias>

[{DSGE: 1,
 {}
]

[{DSGE: 0,
 {num-units: 256}
]

[{DSGE: 0,
 {}
]

outer-level:

inner-level:

<dropout> <fully-connected> <softmax> <learning>

<droput>

[{DSGE: 0,
 {rate: 0.17}
]

[{DSGE: 0,
 {}
]

... ...

Layer type: fully-connected
Num. Units: 256
Activation: ReLU
Bias: False

Layer type: dropout
Rate: 0.17... ...

Figure 2: DENSERgenotype (top), and respective phenotype (bottom). The example is based on the outer-level structure [((fully-
connected, dropout), 1, 10), (softmax, 1, 1), (learning, 1, 1)], and on the grammar of Figure 1.

to effectively generate models that are ready for deployment after
the end of evolution, without the need for additional training.

The remainder of the paper is organised as follows. Section 2
briefly surveysNeuroEvolutionworks 2. Section 3 presents DENSER,
and its extension F-DENSER. Section 4 details F-DENSER++, and
the experimental setup and results. Section 5 draws conclusions
and addresses future work.

2 NEUROEVOLUTION
NeuroEvolution (NE) approaches usually focus on the evolution of
the learning strategy [4, 13, 16, 20] or the topology [5, 10]. On the
optimisation of the learning strategy NE has been able to match
and even surpass the results attained by standard learning algo-
rithms [12]; on the other hand, the automatic optimisation of the
topology by NE is faster and finds better solutions than using grid
or random search [8]. Nonetheless, when designing a network from
the scratch it is hard to separate the learning from the topology, as
both are correlated in what regards the search for the most effective
model to solve a specific task. Examples of NE approaches that
have successfully addressed the simultaneous optimisation of the
learning and topology are [11, 17, 19].

Although the methods are commonly grouped as above, accord-
ing to the target of evolution, more recent efforts have been put
towards the development of methods that are capable of dealing
with Deep Artificial Neural Networks (DANNs), and thus we feel
that it is more intuitive to divide them into small-scale [17, 20] and
large-scale [1, 9, 15, 16, 18] NE. The current paper focuses on the
latter; more specifically we will extend F-DENSER [2] to enable the
generation of models that can be used right-off evolution, without
further training. F-DENSER is a general-purpose grammar-based
NE approach that can be easily adapted to deal with different prob-
lems and/or network types; there is just the need to change the
grammar that is feed to the system.

The problem of most of the methods that target the evolution
of DANNs is that, even aided by Graphic Processing Units (GPUs)

they tend to take a lot of time to find effective models. For example,
CoDeepNEAT [9] train on 100 GPUs, and Real et al. use 450 GPUs
for 7 days to perform each run [14]. F-DENSER takes approximately
55 hours (2.3 days) with a single GPU to perform each run, and that
is the reason why we have selected F-DENSER for the current paper.
There are methods that are computationally cheaper, e.g., Lorenzo
and Nalepa [7] take about 120 minutes to obtain results; however,
the speedup is obtained at the cost of the model performance.

3 DEEP EVOLUTIONARY NETWORK
STRUCTURED REPRESENTATION

Deep EvolutionaryNetwork Structured Representation (DENSER) [1]
is a grammar-based general purpose NE method: it enables the
automatic generation of the network topology (sequence, type, con-
nectivity, and parameterisation of the network layers), and learning
strategy (learning algorithm and parameterisation). To make this
possible DENSER has a two-level representation: (i) the outer-level
encodes an ordered sequence of evolutionary units1; and (ii) the
inner-level encodes the parameters of each evolutionary unit. In
simple words, each evolutionary unit points to a grammar start
symbol, and the grammar itself has every single parameter, and
the allowed values. The grammatical nature of DENSER makes the
adaption to different network structures and problems easy and
transparent, as the user only needs to change the grammar produc-
tion rules, which are in a text human-readable format. In addition
to the grammar, the user needs to define the outer-level structure,
which sets the allowed network structure using the following for-
mat: [(production-rules, min_evo_units, max_evo_units), ...]. An
example of an outer-level structure for encoding fully-connect net-
works is [((fully-connected, dropout), 1, 10), (softmax, 1, 1), (learn-
ing, 1, 1)], which defines fully-connected networks with between 2
and 11 layers, and a learning block.

1The evolutionary units can encode layers, learning strategies, or even data pre-
processing and/or augmentation strategies.

Fast-DENSER++: Evolving Fully-Trained Deep Artificial Neural Networks

parent← select_fittest(population)
if parent.train_time > DEFAULT_TIME then

tmp_parent← select_fittest(population-parent)
retrain(tmp_parent, parent.train_time)
if tmp_parent.fitness > parent.fitness then

return tmp_parent
else

return parent
end

else
return parent

end
Algorithm 1: Parent selection algorithm.

Evolution proceeds by a combination of a Genetic Algorithm
(GA) with Dynamic Structured Grammatical Evolution (DSGE). The
typical mutation operators of GAs are applied to the outer-level (add,
remove, duplicate), and DSGE mutations are applied to the inner-
level, i.e., change the expansion possibility, and parameters values.
DSGE is chosen over standard Grammatical Evolution (GE) for its
ability to deal with the locality and redundancy issues present in GE.
To enhance locality the method introduces a one-to-one mapping
between the genotype and the non-terminal symbols: there is a list
of integers for each non-terminal symbol, and when decoding the
genotype the expansion possibility is read from the corresponding
list; because each non-terminal symbol has a list associated to it,
there is no need for the modulus mathematical operation to select
the expansion possibility, and thus redundancy is reduced.

An example of a grammar for encoding fully-connected net-
works is shown in Figure 1. The grammar encodes the parameters
needed for each evolutionary unit, and are encoded according to the
structure: [variable-name, variable-type, num_values, min_value,
max_value]. The parameter type can be integer, or float; closed
choice parameters are enabled using the grammatical expansion
possibilities (e.g., line 5 of the grammar). Figure 2 represents an
example of the genotype and phenotype of an individual using the
above outer-level structure, and the grammar of Figure 1.

To speedup search, Fast-DENSER (F-DENSER) [2] was intro-
duced: a representation with the same outer and inner-levels is
used, and another level is created to encode the connectivity of
each layer; this level is referred to as the connectivity-level. There-
fore, F-DENSER can evolve not only feed-forward networks but
also topologies where any given layer can receive multiple pre-
vious layers as input. The same mutation operators are applied
to promote evolution, but additionally there are two new opera-
tors related to the connectivity-level, that add/remove inputs to
layers. In F-DENSER the evolutionary engine is replaced by a (1+λ)-
Evolutionary Strategy (ES). Therefore whilst in DENSER a typically
large population of individuals needs to be evaluated, in F-DENSER
there is just the need to evaluate (1+λ) individuals. The results have
proved that, without sacrificing performance, F-DENSERwith λ = 4
is 20x faster than the original DENSER implementation with a pop-
ulation size of 100 individuals. The previous results are achieved
with the same evaluation method, i.e., each individual is trained
for a fixed number of 10 epochs. In addition, with the rationale to
grant all individuals the same computational resources evolution
is conducted with the individuals being trained for a maximum

Table 1: Experimental parameters.

Evolutionary Parameter Value
Number of runs 10

Number of generations 150
Population size 5
Add layer rate 25%

Remove layer rate 25%
DSGE-level rate 15%

Dataset Parameter Value
Train set 42500 instances

Validation set 7500 instances
Test set 10000 instances

Train Parameter Value
Default train time 10 min.

Loss Categorical Cross-entropy

Data Augmentation Parameter Value
Padding 4

Random crop 4
Horizontal flipping 50%

GPU time of 10 minutes; this evaluation stop criteria leads to an
improvement of the results.

4 FAST-DENSER++
Fast-DENSER++ is an extension to F-DENSER that enables the
method to generate networks that are ready for deployment, i.e.,
the evolutionary result requires no further training to be used. To
achieve this we introduce a new mutation operator that does not
change any of the layer structure and/or learning parameters, and
increases the train time of the individual. Whilst in F-DENSER
the maximum train time is set the same for all individuals, in F-
DENSER++ the maximum train time is set independently for each
individual: in the initial population all individuals are trained for
the same amount of time, and the mutation operator changes the
maximum train time; any of the other mutation operators reset the
evaluation time to the default value, so that the offspring solutions
are not evaluated for longer than necessary.

The proposed mutation operator enables the train time to grow
continuously as needed, i.e., during the initial generations the net-
works are simple and thus their train time is reduced, and as time
passes more complex solutions require longer evaluations. On the
other hand, the new operator makes it possible for individuals
within the same population to have different evaluation times. This
indirectly implies that the parent selection mechanism has to be
changed, so that the comparison between the individuals in the
population is fair. In case the fittest individual has been trained
for the default train time, the selection is the same as before, i.e.,
the fittest individual seeds the next generation; otherwise, if the
fittest individual is trained for longer than the default train time,
the fittest individual of those that were trained for the default train
time is re-trained, and the fittest among the two seeds the next gen-
eration. That is, the variations of the parent are initially evaluated

F. Assunção et al.

<features> ::= <convolution> | <convolution> (1)

| <pooling> | <pooling> (2)

| <dropout> | <batch-norm> (3)

<convolution> ::= layer:conv [num-filters,int,1,32,256] [filter-shape,int,1,2,5] (4)

[stride,int,1,1,3] <padding> <activation> <bias> (5)

<batch-norm> ::=layer:batch-norm (6)

<pooling> ::= <pool-type> [kernel-size,int,1,2,5] (7)

[stride,int,1,1,3] <padding> (8)

<pool-type> ::= layer:pool-avg | layer:pool-max (9)

<padding> ::= padding:same | padding:valid (10)

<classification> ::= <fully-connected> | <dropout> (11)

<fully-connected> ::= layer:fc <activation> (12)

[num-units,int,1,128,2048 <bias> (13)

<dropout> ::=layer:dropput [rate,float,1,0,0.7] (14)

<activation> ::= act:linear | act:relu | act:sigmoid (15)

<bias> ::= bias:True | bias:False (16)

<softmax> ::= layer:fc act:softmax num-units:10 bias:True (17)

<learning> ::= <bp> <early-stop> [batch_size,int,1,50,500] (18)

| <rmsprop> <early-stop> [batch_size,int,1,50,500] (19)

| <adam> <early-stop> [batch_size,int,1,50,500] (20)

<bp> ::= learning:gradient-descent [lr,float,1,0.0001,0.1] (21)

[momentum,float,1,0.68,0.99] [decay,float,1,0.000001,0.001] (22)

<nesterov> (23)

<nesterov> ::= nesterov:True | nesterov:False (24)

<adam> ::= learning:adam [lr,float,1,0.0001,0.1] [beta1,float,1,0.5,1] (25)

[beta2,float,1,0.5,1] [decay,float,1,0.000001,0.001] (26)

<rmsprop> ::= learning:rmsprop [lr,float,1,0.0001,0.1] (27)

[rho,float,1,0.5,1] [decay,float,1,0.000001,0.001] (28)

<early-stop> ::= [early_stop,int,1,5,20] (29)

Figure 3: Grammar used by F-DENSER++, and F-DENSER for
the evolution of CNNs for the CIFAR-10.

for the default time, and if in the population there is an individual
evaluated for longer, the fittest individual is also granted the same
time. The parent selection mechanism is clarified in Algorithm 1.
Indirectly we are evolving solutions that have to train fast, but that
given more time must improve performance.

To assess the ability of F-DENSER++ to generate ready to deploy
DANNs we compare it to the F-DENSER implementation. There-
fore we address the generation of Convolutional Neural Networks
(CNNs) for the CIFAR-10 dataset. Section 4.1 details the experimen-
tal setup, and Section 4.2 the experimental results.

4.1 Experimental Setup
The experimental parameters are detailed in Table 1, and are di-
vided into 4 sections: (i) evolutionary – (1+λ)-ES parameters; (ii)
dataset – number of instances of each of the partitions of the dataset;
the dataset is divided into three independent sets: (ii.i) the train
set is used for training the individual during evolution; (ii.ii) the
validation set is used to perform early stopping, and to assess the
fitness of the candidate solution, and (ii.iii) the test is kept out of
evolution and used only for assessing the performance of the indi-
viduals on unseen data; (iii) train – fixed training parameters; and
(iv) parameters needed for data augmentation.

F−DENSER
(evo)

F−DENSER
(longer)

F−DENSER++
(evo)

0.82

0.84

0.86

0.88

0.90

0.92

Ac
cu

ra
cy

Figure 4: Box-plot of the test accuracies of F-DENSER (evo
and longer), and F-DENSER++ (evo).

The reported parameters are the same for F-DENSER++ and F-
DENSER, but additionally F-DENSER++ has another mutation rate,
that defines the likelihood of an individual to be trained for longer,
which is set to 20%.

The experiments contained in this section are conducted over the
CIFAR-10 [6]: a dataset of 32 × 32 real-world images of objects. The
CIFAR-10 is composed by 50000 train, and 10000 test instances. We
search for CNNs for the CIFAR-10 using the grammar of Figure 3,
that defines the search space for the topology, and learning strategy.

4.2 Experimental Results
The results of the evolution of CNNs for the CIFAR-10 with F-
DENSER++, and F-DENSER are reported in Table 2. The evolution-
ary performance, i.e., fitness (validation), and on unseen data during
evolution (test) are summarised; the values are the average of the 10
highest performing networks (according to fitness), one from each
run. The analysis of the results makes it clear that F-DENSER++
generates higher performing CNNs than F-DENSER; the variation
from the validation to the test set is small, and thus the networks
generalise well.

The significance of the results is tested resorting to statistics. To
understand if the samples follow a normal distribution we apply the
Kolmogorov-Smirnov and Shapiro-Wilk tests (α = 0.05). For all the
collected data, these tests show that the data does not follow any
distribution, and consequently to perform the pairwise comparison
we use the Mann-Whitney U test (α = 0.05). In addition, we measure
the effect size: low (0.1 ≤ r < 0.3), medium (0.3 ≤ r < 0.5) and large
(r ≥ 0.5). The statistical tests show that the difference between F-
DENSER++ and F-DENSER is statistically significant, with large
effect sizes; the p-values are reported in Table 2.

In F-DENSER during evolution the networks are evaluated up to
a maximum fixed time (10 minutes in the conducted experiments),
and thus after evolution the best networks may benefit from re-
training for longer. This is not required in F-DENSER++, because
during evolution the time allocated for the training of each network
can increase. The last row of Table 2 shows the results of F-DENSER,
when the networks are re-trained until convergence (determined by
early stopping). Even when re-trained the results of F-DENSER++

Fast-DENSER++: Evolving Fully-Trained Deep Artificial Neural Networks

Table 2: Comparison of the results obtained on the evolution
of the topology and learning strategywith F-DENSER++, and
F-DENSER on the CIFAR-10. The results report the valida-
tion accuracy (fitness), and the test accuracy, and are mea-
sured with the generated networks right off evolution (evo),
and when trained for longer (longer); the longer training
is not applicable to F-DENSER++. The test (longer) results
of F-DENSER are compared to the test (evo) results of F-
DENSER++. Bold highlights statistically significant results.

F-DENSER++ F-DENSER p-value
Validation 89.44% 87.56% 0.03752
Test (evo) 88.73% 86.91% 0.03156

Test (longer) n/a 87.76% 0.30772

are slightly superior to those of F-DENSER; however, the difference
is not statistically significant.

To better analyse the results we use a box-plot (see Figure 4). The
plot shows, as above stated, that F-DENSER++ evolutionary results
are with no doubts superior to those of F-DENSER. On the other
hand, it provides new insights on the comparison (over the test
set) of F-DENSER++ with the re-trained networks of F-DENSER:
despite not statistically different, the results of F-DENSER++ tend
to be superior to the ones reported by F-DENSER – there are no
outliers (despite the slightly larger dispersion), and the median of
F-DENSER++ is above the median of F-DENSER; the difference in
the median is of approximately 1%, which translates into about 100
more correctly labeled test instances.

From the above, it is demonstrated that F-DENSER++ can effec-
tively generate networks that are ready to be deployed right-off
evolution, i.e., there is no need for further training. This helps in the
testing of the evolved training policy, as it is used until convergence;
the training policies that are generated for F-DENSER despite pro-
viding good results when applied for longer training cycles may not
be the most adequate ones. Most importantly, the above results are
achieved without a major increase in the time required to search
for the networks: from an average of 0.73 hours/generation to an
average of 1.13 hours/generation, which is still fairly bellow the
average of 10.83 hours/generation of DENSER2. From this point
onward we focus on the use of F-DENSER++.

5 CONCLUSIONS
The current work introduces F-DENSER++: an extension to F-
DENSER that enables it to generate fully-trainedmodels, i.e., models
that can be deployed right-off evolution. The results demonstrate
that the evolutionary results of F-DENSER++ are statistically supe-
rior to those of F-DENSER. The results of F-DENSER still need to
be trained for longer after evolution; nonetheless, the performance
of the longer trains is still bellow the evolutionary performance
of F-DENSER++. In addition, we can state that the new method is
superior to the standard DENSER implementation; the evolutionary
results of F-DENSER are statistically superior to DENSER, and F-
DENSER++ is statistically superior to F-DENSER, and consequently
superior to DENSER.
2All the times are measure in machines with the same specifications: 1080 Ti GPUs, 64
GB of RAM, and an Intel Core i7-6850K CPU.

Future work will be guided into two separate directions: (i) per-
form experiments with a wider set of datasets, and (ii) investigate
transfer and multi-task learning with F-DENSER++. The common
approach to NE seeks to generate a network for a specific task,
without using any of the information gathered when addressing
previous tasks. In the future, it is our objective to evolve DENSER
to a point where learning is incremental and cumulative, using
past knowledge, and avoiding catastrophic forgetting. That is, we
want a system that grows with time, and learns new tasks without
stopping being able to solve the previous ones.

ACKNOWLEDGMENTS
The work is partially supported by the Portuguese Foundation for
Science and Technology under Grant No.: SFRH/BD/114865/2016.

REFERENCES
[1] Filipe Assunção, Nuno Lourenço, Penousal Machado, and Bernardete Ribeiro.

2018. DENSER: deep evolutionary network structured representation. Genetic
Programming and Evolvable Machines (27 Sep 2018). https://doi.org/10.1007/
s10710-018-9339-y

[2] Filipe Assunção, Nuno Lourenço, Penousal Machado, and Bernardete Ribeiro.
2019. Fast DENSER: Efficient Deep NeuroEvolution. In European Conference on
Genetic Programming. Springer, 197–212.

[3] Dario Floreano, Peter Dürr, and Claudio Mattiussi. 2008. Neuroevolution: from
architectures to learning. Evolutionary Intelligence 1, 1 (01 Mar 2008), 47–62.
https://doi.org/10.1007/s12065-007-0002-4

[4] Faustino J. Gomez, Jürgen Schmidhuber, and Risto Miikkulainen. 2008. Acceler-
ated Neural Evolution through Cooperatively Coevolved Synapses. Journal of
Machine Learning Research 9 (2008), 937–965.

[5] Frédéric Gruau, Darrell Whitley, and Larry Pyeatt. 1996. A Comparison Between
Cellular Encoding and Direct Encoding for Genetic Neural Networks. In Proceed-
ings of the 1st Annual Conference on Genetic Programming. MIT Press, Cambridge,
MA, USA, 81–89. http://dl.acm.org/citation.cfm?id=1595536.1595547

[6] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features
from tiny images. Technical Report. Citeseer.

[7] Pablo Ribalta Lorenzo and Jakub Nalepa. 2018. Memetic evolution of deep neural
networks. In GECCO. ACM, 505–512.

[8] Pablo Ribalta Lorenzo, Jakub Nalepa, Michal Kawulok, Luciano Sánchez Ramos,
and José Ranilla Pastor. 2017. Particle swarm optimization for hyper-parameter
selection in deep neural networks. In GECCO. ACM, 481–488.

[9] Risto Miikkulainen, Jason Zhi Liang, Elliot Meyerson, Aditya Rawal, Daniel Fink,
Olivier Francon, Bala Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy,
and Babak Hodjat. 2017. Evolving Deep Neural Networks. CoRR abs/1703.00548
(2017).

[10] Geoffrey F. Miller, Peter M. Todd, and Shailesh U. Hegde. 1989. Designing Neural
Networks using Genetic Algorithms. In ICGA. Morgan Kaufmann, 379–384.

[11] David E Moriarty and Risto Miikkulainen. 2001. Learning sequential decision
tasks through symbiotic evolution of neural networks. Advances in the Evolu-
tionary Synthesis of Intelligent Agents (2001), 367.

[12] Gregory Morse and Kenneth O. Stanley. 2016. Simple Evolutionary Optimization
Can Rival Stochastic Gradient Descent in Neural Networks. In GECCO. ACM,
477–484.

[13] José Parra, Leonardo Trujillo, and Patricia Melin. 2014. Hybrid back-propagation
training with evolutionary strategies. Soft Computing 18, 8 (01 Aug 2014), 1603–
1614. https://doi.org/10.1007/s00500-013-1166-8

[14] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. 2018. Regularized
evolution for image classifier architecture search. arXiv preprint arXiv:1802.01548
(2018).

[15] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Sue-
matsu, Jie Tan, Quoc V. Le, and Alexey Kurakin. 2017. Large-Scale Evolution of
Image Classifiers. In ICML (Proceedings of Machine Learning Research), Vol. 70.
PMLR, 2902–2911.

[16] Kenneth O. Stanley, David B. D’Ambrosio, and Jason Gauci. 2009. A Hypercube-
Based Encoding for Evolving Large-Scale Neural Networks. Artificial Life 15, 2
(2009), 185–212.

[17] Kenneth O. Stanley and Risto Miikkulainen. 2002. Evolving Neural Networks
Through Augmenting Topologies. Evol. Comput. 10, 2 (June 2002), 99–127. https:
//doi.org/10.1162/106365602320169811

[18] Masanori Suganuma, Shinichi Shirakawa, and Tomoharu Nagao. 2017. A genetic
programming approach to designing convolutional neural network architectures.
In GECCO. ACM, 497–504.

https://doi.org/10.1007/s10710-018-9339-y
https://doi.org/10.1007/s10710-018-9339-y
https://doi.org/10.1007/s12065-007-0002-4
http://dl.acm.org/citation.cfm?id=1595536.1595547
https://doi.org/10.1007/s00500-013-1166-8
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1162/106365602320169811

F. Assunção et al.

[19] Andrew James Turner and Julian Francis Miller. 2013. Cartesian genetic program-
ming encoded artificial neural networks: a comparison using three benchmarks.
In GECCO. ACM, 1005–1012.

[20] Darrell Whitley. 1989. Applying genetic algorithms to neural network learning.
In Proceedings of the Seventh Conference (AISB89) on Artificial Intelligence and
Simulation of Behaviour. Morgan Kaufmann Publishers Inc., 137–144.

	Abstract
	1 Introduction
	2 NeuroEvolution
	3 Deep Evolutionary Network Structured Representation
	4 Fast-DENSER++
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Conclusions
	Acknowledgments
	References

