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Abstract—In contrast to many other technological areas that
benefit from open and flexible tools and platforms, existing
smart railway maintenance systems typically rely on closed,
tailor-made, non-standard solutions that are a major obstacle
to service integration, software components reuse, compatibility
between different system modules potentially from different
vendors, resource orchestration, and overall programmability. In
this paper we propose an evolution of current smart railway
maintenance systems, which can be the basis for all of the
mentioned features. We then explore the proposed concept in a
proof-of-concept implementation over a cloud environment and
obtain some preliminary results that point to the adequateness
of the proposal.

Index Terms—Smart Railway Maintenance, Context-Aware
Internet-of-Things, Railway Communications, Software-Defined
Railway Monitorization

I. INTRODUCTION

Over the last century, rail transport has evolved from steam,
low-velocity trains to electric, high-speed, and high-tech trains.
In parallel with trains, which carry more people and freight,
infrastructures also evolved to provide safety, comfort, and
robustness. Nowadays, trains can be used for traveling between
cities and in urban areas, for delivering freights between two
or more different points, or even for connecting different
countries. Railway systems are now crucial to modern society,
with a general, sustained, overall increase in passengers and
freight, and, consequently, added pressure on both trains and
infrastructures not to decrease the quality of service. In this
scenario, continuous railway systems operation with stringent
quality requirements turns inspection and maintenance into
critical activities, for which procedures, tools, and technologies
must be developed and put in place. For this, both vehicles
and infrastructure monitoring and maintenance activities are
unavoidable and should be continuously performed, taking
advantage of all technological advances for simultaneously
delivering the needed functionality and reducing costs. In
this respect, technologies such as Internet of Things (IoT)
and Industry 4.0, Big Data, and, last but not least, 5G [1]
are coming into play and must continue to be explored to
their fullest potential, leading to what is now envisioned as
Smart Railway Maintenance (SRM). Nevertheless, one very
important aspect that is lacking in all of the existing railway
maintenance systems is flexibility. In general, the construction
of railway maintenance systems uses a vertical approach, in

which every piece of the system is specially built for the
specific application at hand. This is a paradigm similar to
the one existing in computer systems and networking systems
several decades ago.

In this context, the main goals of the present paper are to
provide answers to the following questions:

• How can we make railway maintenance more flexible, ex-
ploring the advantages of programmability, virtualization,
modularization, and scalability?

• Can components of flexible SRM systems reside in the
Cloud and operate normally without significant impact on
communication and event triggering capability?

The main contributions of this paper are the following:
• We propose a novel SRM architecture that potentiates

programmability, service integration, dynamic scaling,
orchestration, virtualization, and openness of railway
maintenance;

• We provide an insight on a proof-of-concept (PoC) imple-
mentation of such architecture, through some preliminary
experiments that address the behavior of key components
of the proposed SRM architecture.

The paper is organized as follows. Section II briefly iden-
tifies relevant work in the area of smart railway maintenance.
In Section III, we describe the proposed SRM architecture.
Experimental results arising from a PoC implementation and
respective discussion are presented in Section IV. We provide
concluding remarks and guidelines for further research in
Section V.

II. RELATED WORK

Current work on Smart Railway Maintenance explores
technologies such as 5G communications, edge and cloud
computing, Internet-of-Things (IoT), and Big Data analysis.

Rikhotso et al. [2], Vijaykumar et al. [3], Feng et al. [4],
and Gan et al. [5] proposed visual inspection of tracks and
components to detect superficial defects. The main idea of
these studies was to collect images (using cameras) to assess
the information of certain parts of the infrastructure (e.g., rails
or sleepers). Regarding railway vehicles, Lu et al. [6], Ulianov
et al. [7], and Liu et al. [8] developed systems to monitor
and get information about the train. By using a variety of
techniques, especially with image capturing, the authors were



able to capture defects and anomalies on components of the
vehicles. One option that is currently being explored is the use
of railway vehicles to assess information on the infrastructure
or the vehicle itself. Lederman et al. [9] and [10], Bocciolone
et al. [11], Pau et al. [12], and Goodman et al. [13] all provided
systems and insights on how a vehicle can be used to collect
information from the infrastructure, to detect defects either in
the tracks or vehicles.

All the previous cases were focused on anomaly detection,
which is the core objective of Smart Railway Maintenance.
Nonetheless, systems such as these can generate large amounts
of data, that must be somehow transmitted over the network.
Thus, work in the communication area, with emphasis on 5G,
are especially useful and important to improve the current state
of railway maintenance systems. For example, Jamaly et al.
[14] and Talvitie et al. [15] studied how the 5G technology can
have a positive impact on modern railway systems. He et al.
[16] studied millimeter-Wave (mmWave) communication and
how to use it to improve train-to-infrastructure (T2I) com-
munication in the current smart rail mobility era. Concerning
high-speed trains (HST), Liu et al. [17] and Wu et al. [18]
used 5G communication technologies, especially mmWave, to
enhance railway communications.

Despite the fact that existing as well as proposed systems
are getting technologically more advanced, they have some
common limiting features, namely the fact that they mostly
consist of vertical solutions that are closed (i.e., tailored
for specific equipment/systems), technology-specific, and not
modular. This prevents integration and reuse of services,
modules, and components, and is an obstacle to the benefits of
abstraction, virtualization, and orchestration of large numbers
of devices/resources.

III. PROPOSED SRM ARCHITECTURE

The proposed architecture explores benefits that come from
software-defined approaches, similarly to what is now be-
ing used in Software-Defined Networking (SDN). With this
approach we intend to allow for some key features, which
include:

• Virtualization – ability to deal with monitoring and main-
tenance resources independently of their physical details;

• Programmability – ability to change the monitoring be-
havior of the system on the fly;

• Performance – ability to optimize the use of resources
(physical resources can be shared by several monitoring
applications);

• Service integration – modular approach allows code and
service reuse, for ease of development;

• Openness – compatibility between different system mod-
ules, potentially from different vendors;

• Orchestration – ability to manage large numbers of de-
vices, with full visibility over them;

• Dynamic scaling – ability to scale the system according
to the application needs, through resource virtualization
and cloud operation;

• Automation – ability to automate parts of the system
monitoring application, leading to better performance and
lower operation costs.

The architecture, presented in Figure 1, considers three
planes, namely: (1) Data Plane, dealing with data collection
from trains and/or infrastructure; (2) Control Plane, where
the bulk of control decisions and processing occurs; and (3)
Application Plane, that deals with global SRM management
decisions, as well as with different SRM applications, po-
tentially from different SRM entities. The proposed architec-
ture establishes two important interfaces between the referred
planes: the southbound interface, that connects the Data and
Control Planes, and the northbound interface, that connects
the Control and Application Planes. It should be noted that
this architecture allows for the decoupling of the various
planes, i.e., it allows for modules belonging to different planes
to reside in different systems, possibly at diverse locations.
Moreover, as modules in different planes interact through
well-defined interfaces, this means that these interfaces can
potentially be standardized and the modules can be developed
by different manufacturers.

Fig. 1: Proposed SRM architecture.

Figure 2 provides an example of some interactions between
entities belonging to different planes. In this example, the Con-
trol Plane (comprising a server, a database, and a processing
module) receives and processes the data, with the possibility of
sending it to an external processing module, which, then, uses
and stores information in the database. Finally, the Application
Plane acts as an interface to applications that want to access
the data. This plane can also receive triggered events from the
Control Plane.

The purpose and scope of local controllers (Data Plane)
and main controllers (Control Plane) are quite different. While
the former deal with local data gathering from multiple



Fig. 2: Example of sequence diagram for data exchanges
between the various planes.

sensors, possibly with some simple processing and/or tem-
porary storage, the latter can perform extensive processing
of data from multiple local controllers, and typically consist
of unconstrained machines residing in the Cloud. Examples
of interactions sent from local controllers to main controllers
are data messages containing sensor readings with timestamps,
or update messages informing the main controller of changes
in the sensors, sampling rate, or communication rate. In the
opposite direction, the main controller can instruct a local
controller to perform specific sensor readings with specific
sensing rates, obtain a list of available sensors, or consult its
status. In the case of the northbound interface, applications
can interact with a main controller in order to establish high-
level control objectives (e.g., perform readings on all trains
passing a given railway section in a given period). Unlike
the southbound interface, this interface does not need to have
a specific semantic. Instead, it can work over an API (e.g.,
RESTful API) allowing quick implementations of third-party
applications.

JSON encoding is used to exchange information between
each plane. At the time of writing, several types of messages
have been defined, but the set is not limited and may grow as
new functionality is developed. As a way of example, Table I
provides information on the parameters contained in a message
carrying sensor readings from a temperature sensor. Each local
controller gets a unique ID (provided by the main controller)
at registration time. Moreover, each sensor is identified by
a sensor ID unique within the scope of the respective local
controller.

With the possibility of having multiple local controllers
scattered around various locations (e.g., multiple railway lines,
sidings), with ability to collect data on a variety of aspects

TABLE I: Mandatory parameters for sending a message from
the local controller to the main controller.

Parameter Key Sub-keys Example
Identification lc id - 75b6aa28-0c31-321a-afc7-b832eb5ae042

Sensor ID sensor id - [’p temp 1’]
Sensor Name sensor name - [’Temperature’]

Unit unit - [’Celsius’, ’C’]

Payload payload value
timestamp {’value’: 30, ’timestamp’: 1576005605}

(e.g., engine’s temperature, train’s velocity), the information
needs to be organized into different topics. This information
may be read by Central Controllers at any given time, using
appropriate status request messages. It is up to the Central
Controllers to keep track of the capabilities of each local
controller and of which information is being gathered from
each local controller and for what purpose.

Whenever information arrives at the Control Plane, the
main controller will process it according to the requirements
set by the Application Plane. The gathered data/results can
be compared with historical data to determine trends, de-
tect significant events (e.g., an anomaly, a malfunctioning
or inoperative sensor), and trigger further actions if needed.
Actions may include changes to the sampling rate and/or
communication rate, collecting data from other sensors, or
triggering alarms, among others.

IV. EXPERIMENTAL RESULTS

A proof-of-concept implementation of the proposed archi-
tecture was done, in order to support some initial assessment
of the proposal. The first two sets of experiments targeted the
behavior of a local controller and a main controller, according
to the scenario represented in Figure 3.

Fig. 3: Test scenario.

In the test scenario, communication was performed using the
Message Queuing Telemetry Transport (MQTT) protocol, with
the local controller located in Porto, Portugal, and the Main
controller in Amsterdam, Netherlands. The main controller
was a container-based virtualization (OpenVZ) server, running
Ubuntu 16.04 and with a shared 1x3.5GhZ core, 256 Mb
DDR3 RAM and 30 GB of SSD storage. A MongoDB
database and MQTT Mosquitto broker were used to store and
manage data, respectively. For the local controller, a Raspberry
Pi 2 Model B, with a 900MHz quad-core ARM Cortex-A7,
1Gb of Ram and an 8Gb Micro SD Card, with NOOBS



version 3.2.1. The used sensor was the SunFounder BMP180,
which contains a barometer and a temperature sensor, with
an accuracy of 0.12hPa and 0.5C, respectively. According to
the documentation1, it can go up to 128 samples per second,
although this highly depends on the used software/library.
In both systems, Python scripts were written, making use of
Eclipse-Paho and Pymongo to send/receive information from
the MQTT broker and database, respectively, which decreased
the number of samples per second, reaching a maximum of
10, for the temperature sensor, and 5, for the pressure sensor.

A. Local Controller Measurements

The first set of experiments had the objective of assessing
the behavior of the local controller while it was collecting and
sending data to the remote main controller over the Internet. In
these experiments, one sensor was used, with sampling rates
of 1, 2, 5, and 10 samples per second. A message with the
collected data was sent to the main controller after collecting
50 temperature readings. A total of 20 runs were performed
for each sampling rate.

Figure 4 presents the obtained results, for the various
sampling rates, concerning the total time to send the collected
50 sensor readings, the CPU usage, and the RAM usage,
measured in the local controller. As explained, the highest
sampling rate was 10 due to limitations on the sensor. The
figure shows the average of the 20 runs, along with the
standard deviation.

In order to determine if there was any significant difference
between the results obtained for each of the four sampling
rates, an analysis of variance (ANOVA) test was performed.
We considered a single factor, with an alternative right-tail
probability (alpha) of 0.05 with the following hypothesis:

• Null Hypothesis (H0) - the average of the groups is the
same.

• Alternative Hypothesis (H1) - the average is not the same
for all the groups.

For the case of the time to send (Figure 4a), the ANOVA test
returned an F-test of 1.58, which was less than the critical F
value (which is 2.866). This indicates that H0 is accepted and,
thus, there are no significant differences between the groups.
Regarding CPU usage (Figure 4b), the same statistical test was
performed, and it returned 0.71, which is also lower than the
critical value, thus accepting H0. Finally, concerning RAM
usage, the result of the F-test is 8.14, which is greater than
the critical value. This indicates that H0 is rejected and, thus,
H1 is accepted. Although all the tests were performed under
the same conditions, there are operating system processes that
cannot be stopped, which can occupy memory on the device.
Moreover, it is difficult to control how RAM is used in these
devices, especially when they automatically free the memory.
By looking at Figure 4, there is a difference between the
test with 1 sample per second and the other 3 tests (in what
concerns both the average and the standard deviation). This is

1https://cdn-shop.adafruit.com/datasheets/BST-BMP180-DS000-09.pdf -
last consulted on January 9th, 2020

due to the fact that, during the test, the device freed memory,
resulting in a decrease from around 77% to 58%. However,
by looking at the values in Figures 4a and 4b, it is possible
observe that the higher variance on the RAM usage did not
affect the performance of the local controller.

B. Main Controller Event Triggering

Having received data from a local controller, the main
controller must process in order to extract some information
and/or trigger actions. The second set of tests had the objective
of demonstrating the ability of the main controller to contin-
uously analyze received data and trigger events based on it.
At this point in time, we were not concerned with what to do
once an event was triggered, as this is highly dependent on
the policies and objectives defined at the Application Plane.

As in the previous case, in this set of experiments the
temperature sensor was considered, with 50 values per run
and a total of 20 runs. We considered a sampling rate of 1
sample per second only, as this was enough to demonstrate the
operation of the event triggering functionality. For the analysis,
the average temperature of a certain run (Tr) was compared
with the average temperature of the previous run (Tr−1) and, if
the absolute value of the difference exceeded 0.5 a trigger was
generated, either positive or negative, depending on the sign
of the difference. Figure 5 presents the measured temperature
and the generated triggers, showing that the system operated
as expected.

V. CONCLUSION AND FUTURE WORK

In this paper we proposed a new smart railway maintenance
architecture that builds on concepts similar to the ones that
underlie software-defined networking. With this approach, we
open the way to developing SRM systems that are pro-
grammable, scalable, and open, and that are able to orchestrate
large numbers of devices, independently of their physical
details, in an efficient way. The proposal was subsequently
subject to prototyping, with the objective of assessing not
only its feasibility, but also some of its characteristics. To
this effect, results on the performance of a local controller
when communicating with a remote main controller over a
cloud environment, and on the ability for triggering events,
were obtained, showing that the approach is both feasible
and effective. Naturally, these were only preliminary results
that will be complemented in the near-to-mid-term future with
functionally rich implementations, exploring failure prediction
techniques and real-time anomaly detection. Moreover, future
work will continue to explore the proposed approach by further
specifying the southbound and northbound interfaces, and by
detailing the general architectures of local controllers and main
controllers.
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(a) Time to send results. (b) CPU usage results. (c) Ram usage results.

Fig. 4: Results obtained in the local controller, for 1, 2, 5 and 10 samples per second, for a) time to send, b) CPU usage, and
c) RAM usage.

Fig. 5: Temperature-based event triggering at the main controller.
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