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Abstract

Railway maintenance is crucial for the operation of current railway systems, as

these are subject to strict requirements in terms of efficiency, cost-effectiveness,

quality of service and scalability. Existing solutions for railway maintenance are,

traditionally, either reactive or periodical, which is far from optimal. Moreover,

they tend to use expensive, specialized approaches, and do not take advantage

of emerging technologic tools and techniques, such as 5G systems, cloud-based

operation, and intelligent data processing and information extraction/inference

for achieving predictive maintenance. In fact, predictive maintenance is the

core paradigm of what is now called Smart Railway Maintenance. This pa-

per provides an insight on Smart Railway Maintenance, by overviewing existing

approaches to railway maintenance systems, identifying their limitations with

respect to current requirements, presenting technologies with potential for sup-

porting future Smart Railway Maintenance systems, and offering new research

directions. Moreover, in line with the suggested research directions, the paper

also proposes a novel architecture to address the encountered issues/limitations.

Keywords: Smart Railway Maintenance, Internet of Things Context-Aware,

Software-Defined Railway Monitorization, Railway-Oriented Architecture

1. Introduction

Over the last century, rail transport has evolved from steam, low-velocity

trains to electric, high-speed, and high-tech trains. In parallel with trains, which
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carry more people and freight, infrastructures also evolved in order to provide

safety, comfort and robustness. Nowadays, trains can be used for travelling

between cities and in urban areas (e.g., London Suburban Area), for delivering

freights between two or more different points (e.g., between a seaport and an

in-land industrial facility), or even for connecting different countries (e.g., the

Thello train, which connects France to Italy). On November 2017, the Rail

Statistics Compendium released a document with the numbers of passengers

traveling in England. It stated that, from 1995 to 2017, that number increased

136%, with 5.1% growth between 2015 and 2017. On the other hand, freight rail

usage only increased 2% since 1995, mainly due to the steep decline in the use of

coal. Deutsche Bahn’s (German Train’s Company) Integrated Report for 20171,

states an increase of 8.4% in voyages from 2016 to 2017, roughly corresponding

to 200 million more passengers. In line with this, in their 2017 Annual Report,

CP - Comboios de Portugal (Portugal’s train company) reported a passenger

increase of 6.3% in relation to the previous year, with expectations of continued

traffic growth over the next coming years2. These numbers are typical of what

is happening not only in Europe but also around the world, with general overall

increase in passengers and freight, and, consequently, added pressure on both

trains and infrastructures not to decrease the quality of service. Naturally,

continuous operation with stringent quality requirements turns inspection and

maintenance into critical activities, for which procedures, tools, and technologies

must be developed and put in place. Moreover, constant monitorization of both

vehicles and infrastructure is crucial.

Thus railway (meaning both vehicles and infrastructure) monitoring and

maintenance activities are unavoidable. On the other hand, these must be

done in a cost-effective way, taking advantage of all technological advances for

simultaneously delivering the needed functionality and reducing costs. In this

1Available here: https://www.deutschebahn.com/resource/blob/1262924/

d73cde1ca54b69f595e4bb5800ad011b/cms9-2016_duf_en-data.pdf
2Available here: http://web3.cmvm.pt/sdi/emitentes/docs/PC68257.pdf
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respect, several emerging technologies are coming into play and must continue

to be explored to their fullest potential, leading to what is now envisioned as

‘Smart Railway Maintenance’ (SRM). These are the Internet of Things (IoT)

and Industry 4.0, Big Data, and, last but not least, 5G [1]. IoT can provide

a large variety of sensors and tools for effective railway monitoring. Big Data

techniques can and, in fact, must be used for processing the huge amounts of

data that can and will be collected. 5G can provide the means for transferring

massive amounts of data for subsequent processing, as well as for transferring

real-time data with very low latency. In addition, software-defined approaches

can bring much needed flexibility, interoperability, and ease the development

of SRM systems and applications. Jointly, these technologies may lead to a

reduction in repair costs and may increase the reliability of the overall railway

system.

Some recent papers provided information on the potential and importance

of IoT and Big Data for SRM. Bernal et al. [2] and Hodge et al. [3] proposed

several sensor-based monitorization techniques to detect defects on both railway

vehicles and infrastructure. In the same line, Fraga-Lamas et al. [4] presented

a survey of communication technologies and IoT services that can be used for

monitoring train components (i.e., coach temperature, door controls, brakes,

etc). The current paper builds on the mentioned papers, as well on a variety of

other relevant sources, in order to provide a clear, comprehensive view of current

SRM, and to identify challenges and research directions for cost-effective, timely,

functionally-rich, and robust monitoring and maintenance of railway systems.

Given the above, the contributions of this paper are the following:

• Identification of the requirements of SRM;

• Overview of the state-of-the-art on train and infrastructure anomaly de-

tection, together with an analysis on how the existing approaches address

the identified requirements of SRM;

• Identification of tools and technologies with high potential for SRM;
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• Identification of open issues and research directions for SRM, given the

identified tools and technologies;

• Proposal of a high-level architecture for software-defined SRM.

In order to reach the objectives set out for this paper, Section II provides

a detailed problem description, which includes an overview of approaches to

SRM, a presentation of supporting technologies, and the identification of system

requirements. The state-of-the-art is extensively presented in Section III from

the perspectives of both infrastructure and vehicles. Section III includes an

overview of existing, potential tools and technologies for future SRM. Section

IV identifies open issues and proposes some research directions. Conclusions

and guidelines for further work are presented in Section V.

2. Problem Description

Smart Railway Maintenance can be performed using one of several ap-

proaches, each of them having different consequences in terms of reliability,

safety, downtime, human resources, and cost. Subsection 2.1 summarizes these

approaches. In subsection 2.2, SRM supporting technologies are presented, com-

prising: (1) sensors, and the differences between them, (2) communication sys-

tems, with focus on 5G, and (3) data processing, more specifically, offline and

online processing. Subsection 2.3 categorizes and explains the requirements of

SRM systems.

2.1. Approaches to Smart Railway Maintenance

Smart Railway Maintenance (SRM) is an area inside the broader area of the

Internet of Smart Trains [4], that poses considerable challenges due to the com-

plexity and criticality of railway systems. When dealing with SRM, two comple-

mentary perspectives can be used: vehicle maintenance and/or infrastructure

maintenance. Regardless of the concerned perspective, several approaches to

SRM can be adopted, namely reactive maintenance, preventive maintenance,

4



proactive maintenance, reliability-centered maintenance, and predictive main-

tenance. These will be explained in the current subsection. Complementary to

the text, Table 1 summarizes the main features of each strategy and provides

usage scenarios.

2.1.1. Reactive Maintenance

In this case, maintenance occurs only when a component fails completely.

Despite being one the most used strategies (in combination with preventive

maintenance [2] [5]), reactive maintenance has high repair costs. On the other

hand, maintenance costs are low or even null because the vehicle simply runs-

to-failure. This approach may raise safety concerns, and, in practice, is always

combined with other types of approaches, like preventive maintenance. For

example, a fractured wheel is a critical defect that needs to be taken care of as

soon as it is detected. Continuing to operate until the fissure reaches a critical

stage compromises safety. On the infrastructure side, similar problems can

occur, leading to safety issues and accidents with potentially serious results.

Moreover, this strategy requires more backup equipment or vehicles, because

downtimes are typically higher in these cases.

2.1.2. Preventive Maintenance

Unlike reactive maintenance, this strategy makes use of scheduled mainte-

nance, at specified intervals. It can be looked at as a compromise between

reactive and predictive maintenance, with lower maintenance and repair costs

when compared to reactive maintenance. Vehicles have less probability of having

critical failures, and both maintenance and repair costs are stabilized in a lower

landing. However, failures are only detected during the scheduled revisions and,

although the risk of failure is low (when compared to reactive maintenance),

there is a chance that this strategy still leads to critical problems.
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2.1.3. Proactive Maintenance

Is this case, maintenance is performed using the best possible resources,

tools, components and materials. By maximizing the quality of maintenance

interventions, the probability of failures is drastically reduced, leading to longer

operational periods. Naturally, this strategy can be – and normally is – com-

bined with other strategies. Usage history and experience of repair teams dictate

the time between proactive maintenance instances.

2.1.4. Reliability-Centered Maintenance

In this case, the focus is not only on the detection of problems, but also on

determining if the problem is serious enough to compromise a given reliability

target. Put in another way, if detected problems do not threaten the overall

safety and are unlikely to cause failures, then repairing them is not needed and,

in fact, would represent an unnecessary cost. This type of problems should be

dealt with in preventive, scheduled maintenance operations. On the other hand,

problems that may affect the system’s reliability should be dealt with as soon as

possible, in order to prevent failure costs that, in general, are always higher than

maintenance costs. Reliability-centered maintenance uses Root Cause Analysis

(RCA) to study the problems, using techniques such as Ishikawa diagrams or

Five Whys [6].

2.1.5. Predictive Maintenance

With predictive maintenance, constant monitorization is performed in order

to detect problems before they turn into failures. This maintenance strategy

makes use of past and current data collected from the monitored system [5]. As

it requires constant monitorization, there are higher upfront costs. These costs,

although higher, are compensated whenever the system needs to be repaired

because repair time and the risk of total failure are minimal [5]. Using a variety

of sensors (e.g., accelerometers and sound sensors), it is possible to collect data

that, for example, can then be used to assess the conditions of wheels, tracks,

or track bed. In addition, by using historical data, the evolution of the tar-
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get elements or system can be tracked and, consequently, this can be used for

improving fault prediction.

Nowadays, companies focus on preventive and reactive maintenance, to min-

imize maintenance costs. Nevertheless, although these strategies can lead to

controlled maintenance costs, they do not preclude high repair costs, as it is

always costlier to repair vehicles or systems that have run to failure, not to

mention the costs of dealing with potential disasters. This is the reason why

interest in predictive maintenance is growing considerably, especially because

this type of maintenance can explore the use of emerging technologies such as

Internet of Things, Big Data analysis, and very low latency networks such as

5G. Moreover, being able to predict failures can help companies reduce both

maintenance and repair costs. This, of course, does not preclude preventive

maintenance, as vehicles and systems have a given lifespan and scheduled main-

tenance. Preventive maintenance is and will always be needed, but providing

insights on the components can reduce critical failures and, at the same time,

reduce repair costs and downtimes.

2.2. Supporting Technologies

Current technology allows collecting, transferring, and processing consider-

able amounts of data. This is so in smart cities, industry 4.0 systems, smart

transportation, and connected vehicles. Thus, it is also important to understand

how the technologies that make this possible can be used for SRM systems. This

is, in fact, the purpose of the current subsection. We start by addressing the

types of sensors that can be used for the problem at hand. Then, we proceed

to analyze and discuss the role of communication technologies, of which the

emerging 5G technology is the most promising one. Last but not least, we con-

centrate on the problem of processing the collected data, identifying alternative

data processing strategies.
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2.2.1. Sensors

Prior to developing any anomaly detection system, it is important to define

which defects are going to be targeted [2] [3]. For example, if we are targeting

wheel problems, several types of sensors can be used. On the other hand, there

is no single sensor that can detect every possible defect that may exist in a

wheel or track. For instance, in order to analyze fissures and cracks, the most

common sensors are cameras (visual inspections). These are, normally, high-

speed, high-cost cameras, able to work under adverse conditions (e.g., low light,

unstable weather). On the other hand, low-cost sensors are increasingly being

used, such as accelerometers, gyroscopes or ultrasonic sensors, with the objective

of replacing or complementing other, more expensive devices. When compared

to cameras, these sensors alone do not allow for 3D modeling of a wheel or

track, making them more suitable for external defects detection (e.g., abnormal

vibrations, sound variations, among others). However, Light Detection and

Ranging (LIDAR) sensors are interesting for 3D scanning and, nowadays, they

are affordable. In general, using this type of sensors is still novel and their

potential has not been fully explored yet. To summarize:

• High-speed cameras are used to detect cracks and fissures in several ele-

ments of trains and/or infrastructure, and are capable of working under

severe conditions. Due to their characteristics, they have high cost. High-

speed cameras can be used for both train and infrastructure anomaly

detection.

• Smaller, low-cost sensors are now increasingly being used to replace high-

cost cameras. However, they are not capable of detecting the same types of

problems as the cameras and, thus, should be looked at as complementary

tools. These sensors collect data such as sound and vibrations in order to

detect anomalies.

The use of inexpensive sensors opens up a whole range of possibilities, such

as having a higher number of failure detection systems and installing them in

9



all types of trains, not only in selected trains or in special, dedicated anomaly

detection vehicles. Moreover, a large set of problems can be detected. For in-

stance, using accelerometer sensors it is possible to gather data pertaining to

the stability of the train and, consequently, use that data to detect problems

in tracks. Similarly, the use of sound sensors can contribute to the analysis of

the track-bed. To analyze the wheels, it is possible to use ultrasonic or LIDAR

sensors (pointing to the wheel) to provide information in the external wheel

layer. Despite the focus on infrastructure sensors only, Hodge et al. [3] show

a variety of sensors that can be used for multiple purposes. This approach can

help not only to reduce the amount of equipment needed to develop a reliable

system, but also to ensure that the used sensors cover a wide variety of defects

(for example, an accelerometer can detect vibrations on bridge and tracks, and

detect dynamic acceleration and movement on the track bed. On the other

hand, an acoustic sensor can detect cracks, fatigue, and stress).

2.2.2. Communication Systems

Currently, communication between trains and other systems, such as con-

trol and/or monitoring systems, resorts to Global System for Mobile - Railway

(GSM-R) [4]. Nevertheless, as mentioned previously, SRM may generate con-

siderable amounts of data and will require data rates and bandwidth that are

much higher than the ones provided by GSM-R.

5G technology is currently being developed and it is expected that the first

products will be available in the market by 2020. The main key features of these

systems from the user perspective are very high bandwidth and extremely small

latency. Nonetheless, current 4G technology can also provide sufficient features

to be used within the railway area, with higher bandwidths and transfer speeds,

when compared to the previous generation. These features can be crucial to

improve SRM data transfer.

The opportunities offered by these new communication technologies can

now be explored by the railway industry, leading to the replacement of older,
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bandwidth-limited GSM-R solutions and to added functionality, lower latency,

and higher reliability of SRM systems.

2.2.3. Data Processing

As already mentioned, IoT, Industry 4.0, and 5G will allow collecting large

amounts of monitoring data. This data will then be processed in order to

support all kinds of maintenance activities, most notably for predictive main-

tenance. Regarding data processing, two options exist: online or offline. In the

former case, collected data is immediately sent over the network to a processing

site (typically in the Cloud) and it is processed as soon as it is received. In the

latter case, processing is executed at a later point in time. This may resort to

temporarily storing the data in a local device (such as an SD card), or to sending

the collected data over the network to the cloud for subsequent processing, or

both. Offline data processing typically occurs at regular intervals, such as every

minute, every hour, or every day, for instance.

The computational power typically resides in the Cloud (possibly involving

multiple servers, and exploring techniques such as neural networks). Processing

results can then be sent to other systems, such as management workstations,

smartphones, actuators, among other types of equipment. The choice of which

processing approach to take – online or offline – depends on the scenarios and,

in fact, a mixture of both approaches may be used at the same time in order to

provide different views of the monitored systems. For instance:

• Offline processing can be used in situations where results are not needed

in real time, e.g., when long-term behavior data of components is being

collected. It may also be used whenever the circumstances require tem-

porary storage of data, such as whenever there is some kind of congestion

in the network or whenever the Cloud environment lacks resources, thus

saving computational power for more important data.

• On the other hand, online processing can be used in critical situations. For

example, if there is a known issue in a certain part of the railway track
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or if a vehicle has been down with recurring wheel problems, constant

monitoring needs to be performed in order to understand changes over

time. Naturally, this will require considerable bandwidth as well as low

communication latency.

Data processing is a critical part of any SRM system, as it provides the in-

formation on which to decide what to do and how to act, in what maintenance

is concerned. For this, all of the mentioned supporting technologies must be in

place: sensors, communications, and processing power. For critical situations,

online processing is desirable, as it is the basis for real-time monitoring and for

efficient anomaly detection. Offline processing may be used in a complemen-

tary way, in order to support long to mid-term views of the system behavior.

The adequate combination of all of these factors is crucial for constructing an

effective SRM system.

2.3. Requirements

The previous subsections provided information on existing maintenance ap-

proaches and on the way new or emerging technologies can be used for the

construction of future smart railway maintenance systems. It is now time to

address the requirements of such systems, so that we can subsequently fully

assess the existing approaches to SRM and the resulting challenges. Table 2

summarizes the list of SRM requirements, and can be used as guidance for the

text in the body of this subsection.

SRM requirements can be organized into four areas – namely, data pro-

cessing, anomaly detection, predictive maintenance, and scalability – the latter

being orthogonal to the other three areas.

In what concerns data processing, an SRM system should be able to operate

locally or remotely. In the case of remote data processing, one or more servers

typically located in the Cloud process the data. The advantage of this approach

is that storage and processing resources are elastic, i.e., they adapt to the needs

of the system. Nevertheless, this approach requires adequate connectivity be-

tween the target system and the Cloud, in terms of bandwidth, reliability, and

12
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availability. Data sent to the Cloud is (mostly) raw, and filtering and noise

reduction techniques are needed to ‘clean’ the data. As the available process-

ing resources are virtually unlimited, processing time is usually low. Moreover,

the distributed nature of the process enhances overall reliability. On the other

hand, it may also be important to locally process the collected data, with the

objective of reducing the amount of data that needs to be stored and/or sent

over the network. Although local processing resources are, typically, limited,

existing solutions such as specially built printed circuit boards (PCB) can com-

bine effective processing and sensing hardware that can be used for collecting

and immediately process sensed data.

Regarding anomaly detection, the focus is on two major components of the

railway system: train (wheels) and infrastructure. In the former case, detection

can address superficial problems, such as bumps or small deformations. Using

specific, inexpensive sensors placed in the bogie structure, such as accelerom-

eters and gyroscopes, these and other superficial problems can be efficiently

detected. To detect internal wheel problems, expensive sensors (e.g., cameras)

must be used. Although expensive, these sensors can provide information that

can be useful to understand the behavior and structural condition of wheels.

For infrastructure anomaly detection, the target systems are tracks and track

bed. Monitorization of both tracks and track bed can be performed by sensors

similar to the ones used for monitoring the wheels. However, to detect track

bed problems, sound sensors can be used to listen to sound variations, instead

of using accelerometers. Moreover, ultrasonic and LIDAR sensors can provide

a 3D view of the head of the rail, to detect squats and small deformations.

Predictive maintenance strategies can play a crucial role in railway infras-

tructure and vehicles maintenance, leading to the optimisation of maintenance

interventions, reduced costs, and higher reliability. The price to pay for this is

that continuous monitoring must be performed in order to detect problems at

an early stage and decide on appropriate actions. In combination with historical

information, predictive maintenance strategies can be quite effective in infering

the health of railways systems, assessing the criticality of defects, and planning
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maintenance interventions. With such strategies, breakdowns can be virtually

eliminated, and downtimes can be minimised.

Last but not least, scalability is one of the most important features of an

SRM system, as it provides system growth capability. As mentioned in the

Introduction, railway traffic is growing at a fast pace, and it is expected to con-

tinue growing in the coming years. This means that more vehicles will have to

be monitored, infrastructures will be subject to higher pressure and will even-

tually grow. Monitoring such systems will require more sensors, more sensed

data, added communication needs, and increased data processing. SRM systems

must be able to cope with new sensors and more data without modifications,

i.e., they should be constructed in order to be scalable.

Meeting these requirements is essential for increased reliability of railway

systems. Railway companies must rely on systems that are not only scalable,

but also able to deliver precise and real-time information regarding their trains.

Having described the main SRM system requirements, it is now important to

look at the current state-of-the-art in order to identify specificities and limita-

tions of existing systems.

3. State-of-the-Art

In the transportation area and, especially, in railway systems, considerable

work has been done, mostly with the objective of equipping railway vehicles with

a variety of sensors, in order to not only improve passengers’ safety and comfort

(Passenger Information Systems - PIS), but also to interconnect train vehicles

with external operators [4], by using new communication technologies such as

LoRa and LTE. Squats, rail deformation, wheel fractures, among others, can

cause derailments, with significant consequences. It is necessary to monitor both

tracks and wheels to detect problems and assess the degree of criticality of any

fault. This section presents the state-of-art on infrastructure maintenance, rail-

way vehicles maintenance, and the interaction between both infrastructure and
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railway vehicles. The work described in this section will be analyzed according

to different characteristics: (1) sensors used to detect problems, (2) approach

taken after a problem is detected, and (3) communication between sensors and

processing equipment. Sections 3.1, 3.2, and 3.3 describe the state-of-the-art

for infrastructure maintenance, railway vehicles maintenance, and railway sys-

tems (i.e., vehicles and/or infrastructure) maintenance, respectively. Section 3.4

identifies tools and techniques with potential for being used in the context of

the problem at hand. Whenever appropriate, techniques presented in sections

3.1, 3.2 and 3.3 will be evaluated according to the requirements presented in

section 2.3.

3.1. Infrastructure Maintenance

Some of the work found in the literature specifically addresses infrastructure

anomaly detection. As shown in Figure 1, railway tracks are composed of several

elements. Detecting anomalies on some of the individual components (e.g., rail

or ballast) or combinations of components (e.g., track bed) can provide insights

on the conditions of the track and, depending on the found anomalies, trigger

notifications for subsequent maintenance/repair actions. There are two types of

data that can be used for this purpose: (1) video data, collected from high-speed

cameras capable of working under adverse conditions (e.g., rainy or sunny days,

dusty tracks, low light), and (2) plain data (i.e., text), collected from a variety

of sensors (e.g., accelerometers, gyroscopes, ultrasonic sensors).

Figure 1: Characteristics of the track, from the rails to the subsoil. Image adapted from

https://en.wikipedia.org/wiki/Track bed

For instance, Rikhotso et al. [7] proposed the use of 3D image acquisition

and modeling for assessing the condition of rails and detecting surface defects.
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The authors used a structured light technique to analyze light patterns. Using

triangulation between the camera, the projector/laser, and the object, the depth

of the rail was calculated. They made use of MatLab to calibrate the camera

and filter the image for the red light projected by the laser. The tests were

performed in a laboratory.

Tastimur et al. [8] proposed a mathematical morphology-based method to

detect deformities in rail track surfaces. The authors used two cameras (pointed

to the left and right rails) to take images of the tracks. They used the Canny

Edge algorithm that (1) converts the images to gray format, (2) smooths the

image with a Gaussian filter, (3) extracts edges on the X and Y directions, (4)

calculates the angle and gradient size, and (5) erases outliers. The authors used

MatLab to process the data.

Liu et al. [9] proposed a method for automatically detecting faults in strands

of the isoelectric line. Unlike the previous papers, they focused the detection

on loose strands in the catenary. The authors divided the method into three

stages, where (1) a convolutional neural network was used to extract the line

features, (2) image segmentation was carried out based on Markov models, and

(3) analysis of the results was performed by comparing the quantity of the

independent connection regions and the pixel’s standard deviation. They used a

camera mounted on a catenary inspection vehicle (CIV) and the collected images

were used for isoelectric line location, isoelectric line segmentation, and fault

diagnosis. The used algorithm was an adaptation of VGG-16 image recognition

algorithm [10] (Isoelectric Line Network - ILNET) for anomaly detection in

catenary images.

Espinho et al. [11] proposed an algorithm for detecting tracks and turnouts,

using edge detection, RANSAC algorithm, Histogram of Oriented Gradient,

Template Matching and Support Vector Machines. The algorithm does not

address anomalies detection, and uses a methodology that is different from the

previously mentioned papers. Instead of relying on empirical thresholds and

fine-tuned parameters, the authors developed a generic method to detect edges.

First, they filter the images, then only parallel gradients are kept and, finally,
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the image is filtered with a mask and reduced.

Using a different technique, Vijaykumar et al. [12] developed a method to

detect surface defects on railheads, using the Binary Image Based Rail Extrac-

tion algorithm. The authors used a 12Mp camera, from two different stations,

and performed image enhancement to increase contrast.

Zeng et al. [13] developed a vehicle and associated sensors to detect height

changes. This vehicle was able to detect failures and proceed with repair tasks.

A Neural Network (NN) was used to process the collected data.

By also using an NN, Faghih et al. [14] were able to analyze images and detect

surface defects. Using a Deep Convolutional NN, the raw image was used and

there was no extra processing in the learning process. They used a mini-batch

gradient descent method to optimize the network.

Feng et al. [15] proposed an automatic visual inspection system to detect

missing fasteners, using a probabilistic model. The images were collected from

two cameras (that were placed under the train) and sent to an onboard com-

puter. The authors first detect the track and sleepers to, then, detect the

fasteners. They used a variation of the Latent Dirichlet Allocation algorithm

(LDA) [16], called Structure Topic Model (STM).

Parvathy et al. [17] developed a microcontroller-based system to replace

manual fault detection. The sensing modules (temperature, accelerometer and

ultrasonic sensors) are placed on the outer surfaces of the tracks, alternatingly

and equidistantly. The modules can be powered by solar panels or piezoelectric

energy methods.

Gan et al. [18] proposed a method to visually inspect railway surfaces,

using background-oriented defect inspection. The inspection occurs in three

phases: (1) pre-processing, by standardizing the values, regarding lighting and

other variations, (2) background representation and defect determination, by

modeling the background according to randomly selected samples, and (3) post-

processing, by discarding false positive defects. The authors used a Dalsa Spyder

camera, placed inside an inspection vehicle, with an onboard computer.

Ho et al. [19] evaluated track conditions by collecting the signature of the

18



signals resulting from the interaction between the wheel and the track. The

authors placed a Fibre Bragg Grating (FBG) sensor in the tracks and measured

the same train over 2 months. The main idea was to study the track, every

time a train passed by. The authors used one sensor and a database to detect

outliers in the collected data.

Most of the presented papers have some issues/limitations, such as being

limited to laboratory tests, lacking important information (e.g., used process-

ing techniques), or requiring the use of very expensive sensors (especially the

cameras), among others. Table 3 shows how the presented papers address some

of the requirements listed in Table 2, namely requirements 5, track anomaly

detection, and 7, predictive infrastructure maintenance. Table 3 is limited to

requirements 5 and 7 only, as the remaining requirements are not addressed

by the papers under consideration. Although the papers propose and present

several techniques for detecting defects, they do not use a fully predictive main-

tenance strategy, as they do not consider historical data over specific periods

in time, simply relying on current data. For this reason, the check signs in the

requirement 7 column are followed by an asterisk.

3.2. Railway Vehicles Maintenance

In this section, papers related to vehicle inspection (and, specifically, to bogie

inspection) are going to be presented. Bogies are the only part of trains that are

in contact with the rails. Thus, evaluating their health is critical. Any crack or

fault in bogies can cause derailments or long downtimes for maintenance. There

are two types of bogies:

• Free Bogie - this type of bogie does not contain a motor and the wheels

spin as a result of the train’s movement. Coaches and freight wagons have

this king of bogie.

• Motor Bogie - this type of bogie contains the motors that cause the train

to move. Motor bogies are heavier than free bogies because they contain

19



Paper
Requirements

5 7

Rikhotso et al. [7] 3 3*

Tastimur et al. [8] 3 3*

Liu et al. [9] 3 3*

Espinho et al. [11] 7 7

Vijaykumar et al. [12] 3 3*

Zeng et al. [13] 3 3*

Faghih et al. [14] 3 3*

Feng et al. [15] 3 3*

Parvathy et al. [17] 3 3*

Gan et al. [18] 3 3*

Ho et al. [19] 3 7

Table 3: Infrastructure maintenance requirements addressed in the papers.

at least one motor. Higher weight provides better adherence to the tracks

and prevents wheels from slipping.

Bogies are complex systems, made of several components, including suspen-

sions. Normally, bogies include two different types of suspensions. Primary

suspensions take care of the main vibrations and oscillations resulting from the

interaction between the wheels and track. They have a spring format, as can

be seen in Figure 2. Secondary suspensions have the objective of increasing

passenger comfort, and are similar to airbags. Usually, secondary suspensions

exist in passenger cars only. In this subsection, the approaches presented in

the various papers do not target any specific type of suspension, and so we will

consider that they are applicable to both types.

Lu et al. [21] proposed an automatic fault detection system, for multiple

components in the vehicle, using time-scale normalization. The authors de-

ployed eleven cameras near the rails (to cover almost 270 degrees (bottom and

sides). The anomalies were detected using image subtraction (target localiza-

20



Figure 2: Bogie constitution [20].

tion).

Li et al. [22] investigated parameter estimation for railway vehicle suspen-

sions, to provide support for condition-based maintenance. The main objective

was to replace a calendar-based maintenance by a condition-based one (i.e.,

predictive). The authors ran simulations, with the objective of obtaining pa-

rameter values for different sensor configurations. Then, by using five sensors

(four accelerometers and one gyroscope), simulations were matched against real

data.

Ulianov et al. [23] developed a low-cost and portable system to predict

how the track-wheel interaction would affect the running gear. The used freight

vehicles (wagons) had a modified track-friendly suspension, and four sensors (ac-

celerometers and gyroscopes) where attached to the vehicle in order to capture

data from the vehicle dynamics. The authors used a Raspberry Pi to connect

to the sensors and Wi-Fi hubs to start and stop the system and store the data

into an SD card.
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Ashwin et al. [24] developed a system, using MatLab, to detect and recognize

patterns on captured images (e.g., primary suspension images). The authors

analyzed cracks in the primary suspension because these are one of the major

causes of derailment. The developed system targeted the prevention of over-

excessive maintenance, thus reducing costs.

Liu et al. [25] developed a system, using Wheel Impact Load Detector

(WILD), to detect wheel defects on high-speed trains. The main approach

was to deploy twenty Fibre Bragg Grating (FBG) sensors along a 3-meter rail

section, with 0.15 meters spacing between them, with the objective of collecting

data whenever a train passed the section.

In a recent study, Bernal et al. [2] reviewed techniques for monitoring freight

railway vehicles. Unlike the previously mentioned papers, the authors did not

perform any experiment, but presented interesting conclusions regarding power

consumption for several vehicle subsystems (i.e., carbody, coupler, wheelset).

They concluded that, nowadays, it is a challenge to power an onboard system,

for real-time monitoring. On the other hand, the authors also concluded that

data processing algorithms are well established for detection of different vehicle

components, and that current technology (i.e., microprocessors and sensors) is

widely accessible. The work was based on the possibility of using real-time

monitoring for predictive maintenance, along with IoT networks and solutions.

In the final part of the paper, the authors present a table (Page 17, Table III)

with a detailed review of different systems, including monitored anomalies, used

sensors, sampling rate, data transmission method, power consumption, power

source, and stage of development.

As it is possible to see in Table 4, the presented papers fulfill several but not

all of the requirements identified in Table 2, especially 2, local data processing, 3,

wheels anomaly detection (superficial), 4, wheels anomaly detection (internal),

8, predictive vehicle maintenance, and 9, scalable system. As with the previous

section, the requirements that were not addressed by any of the papers were

omitted. However, in several cases the papers lack specific information on several

aspects, for instance on how data processing is performed. Moreover, although
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the authors claim they use predictive maintenance, by monitoring conditions

of certain parts of the vehicles, only one paper explores the use of historical

data. On other hand, the use of inexpensive sensors is explored in the work

reported in some of the papers, in order to allow for low-cost solutions, which

also opens the door to scalability and reliability. In addition, [2] also addresses

the problem of energy expenditure for different types of sensors and components.

It should be noted that, in Table IV, an asterisk indicates that the authors used

predictive maintenance without considering historical data. The minus sign, in

the last row, indicates that the authors address the topic by reviewing different

solutions, but do not put them to practice.

Paper
Requirements

2 3 4 8 9

Lu et al. [21] 3 3 7 3* 7

Li et al. [22] 7 3 7 3* 7

Ulianov et al. [23] 7 3 7 3* 3

Ashwin et al. [24] 3 3 3 3* 7

Liu et al. [25] 7 3 7 3* 7

Bernal et al. [2] - - - - -

Table 4: Railway vehicle maintenance requirements addressed in the papers.

3.3. Railway Systems Maintenance

In the previous sections, the discussion was focused on analyzing the infras-

tructure (mainly by using sensors that were placed in dedicated maintenance

vehicles) or vehicles. In this section, we will focus on solutions that target the

infrastructure, the vehicles, or both. Typically, these solutions do not rely on

special-purpose maintenance vehicles but, rather, on data acquisition equipment

that is mounted on ordinary vehicles.

Yin et al. [26] proposed a method to detect squats using bogie acceleration

(BA). The tests were performed using a SIMPACK simulation. The main ob-
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jective was to understand and study how the bogie reacted to different squats’

length and depth.

Lederman et al. [27] proposed a method for examining the tracks using an

operational passenger train (light-rail vehicle). By using accelerometers placed

on the train, they could gather data on the tracks’ roughness. The sensors were

deployed inside the cabin, central bogie, and roof. This low-cost approach also

allowed to detect changes in the tracks.

Similarly to the previous paper, Bocciolone [28] proposed a technique for

track condition inspection using accelerometers on operating bogies of Milan

subway trains. With the data provided by the sensors, they were able to address

three different rail structures: ballast, direct fastening, and rail track. The

authors concluded that the structure over which the train travels has a strong

influence on the vibration levels.

Chen et al. [29] proposed a technique for gathering information from mul-

tiple vehicles with multiple sensors. The idea was to combine data to have a

more continuous and reliable track monitoring. This approach was validated

using the data collected from the light-rail network in Pittsburgh. Their ap-

proach is computationally efficient and was able to detect track irregularities by

comparing data being collected in real time with historical or baseline data.

Pau et al. [30] studied irregularities in the wheel-track contact. The authors

used ultrasonic sensors to analyze the contact between wheels and track. This

technique helped to detect grooves and imperfections (on the wheels), drills (on

the track), and misaligned wheel-rail systems.

Goodmand et al. [31] developed a system to analyze track conditions using

a wheelset of a boxcar. The system makes use of a MEMS device, with an

accelerometer and wireless connectivity, to collect data from the wagon. The

data collection lasted for 4 days and the test track contained 14 locations with

several defects (e.g., lubricator, repair welds, bridges, turnouts, among others).

The developed system detected ten out of fourteen possible features.

Table 5 presents a summary of the requirements addressed by the described

papers, especially: 3, wheels anomaly detection (superficial), 4, wheels anomaly
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Paper
Requirements

3 4 5 6 7 8 9

Yin et al. [26] 7 7 3 7 7 3 7

Lederman et al. [27] 7 7 3 3 7 3 3

Bocciolone et al. [28] 7 7 3 3 7 3 3

Chen et al. [29] 7 7 3 3 7 3 3

Pau et al. [30] 3 3* 3 7 3* 3* 7

Goodmand et al. [31] 7 7 3 3 7 3 3*

Table 5: Railway systems maintenance requirements addressed in the papers.

detection (internal), 5, tracks anomaly detection, 6, trackbed anomaly detection,

7, predictive infrastructure maintenance, 8, predictive vehicle maintenance, and

9, scalable system. The omission of the remaining requirements indicates that

none of the papers address them. With the exception of paper [30] by Pau et al.,

all the others only used railway vehicles to detect problems inside the vehicle.

The only paper that achieved anomaly detection on both track and wheels was

paper [30], and it performed an analysis of the wheel-track contact. Most of the

papers used different approaches, and considered the possibility of deploying

monitoring equipment in some of the components of railway vehicles in order to

monitor both tracks and wheels at the same time, so as to improve the efficiency

of the approach and help reducing inherent costs.

3.4. Tools and Techniques

The previous sections provided information on existing solutions and ap-

proaches to infrastructure and railway maintenance. Nevertheless, one of the

major problems of the overviewed papers is the lack of details on the algo-

rithms and methods used for data processing. On the other hand, nowadays,

the increase in sensing options, communication networks capability, and com-

putational power, allows the use of powerful and efficient algorithms, tools, and

techniques in various areas (e.g., agriculture, smart cities, among others), that

can and should also be explored for the purpose of data processing and infor-
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mation extraction in Smart Railway Maintenance. As stated by Parkinson et

al. [32], advanced algorithms can be used to reduce safety risks and also provide

critical information on the day-to-day life of railway vehicles and infrastructure.

This section provides a very brief overview of some of these tools/technologies,

namely Neural Networks, Clustering and Pattern Recognition, and Adaptive

and Multi-objective Algorithms.

3.4.1. Neural Networks

Neural Networks (NN) are inspired in the operation of the brain, namely on

how neurons interconnect and interact in order to allow us to take decisions.

Based on this type of operation, several machine learning algorithms were de-

veloped and, nowadays, they are used in a large variety of areas, such as social

networks, video games, mobility, among others.

Sun et al. [33] developed a multi-task learning approach (MTL) to make

accurate and context-aware delay estimations in bus transportation networks.

By using MTL for transit short-term delay prediction, the authors reduced the

possibility of having limited historical datasets. The authors consider static and

real-time bus operations, weather conditions and scheduled events, to provide

information regarding delays and service alerts. The data is divided into several

JSON and GTFS files and processed using the developed multi-task neural

network, with eight layers. The authors concluded that severe delays could be

identified days ahead, providing critical information for commuters.

Ene et al. [34] demonstrated the possibility of using a feed-forward neural

network (FFNN) for failure rate prediction. The authors used a Java application

to simulate the FFNN network, and used real data stored in a text file. Using

seven input neurons and seven hidden neurons, the authors achieved a 3% error

in training, and a prediction error lower than 1.8%.

Smith et al, [35] developed and tested a prototype system for anticipat-

ing failures in airport ground transportation vehicle doors, that can support

condition-based maintenance. The authors used a combination of statistical and
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neural networks (NN) approach. They compared three different NNs: backprop-

agation network (five hidden layers), cascade correlation network (sixteen hidden

layers), and radial basis function network (fifteen hidden layers). Twenty-eight

input variables were considered, such as closing energy, opening energy, closing

time, opening time. The backpropagation network provided the best results

(regarding training and testing root mean squared error), and after the normal

parameters were known the algorithm was adjusted to be able to correctly pre-

dict vehicle door conditions. The authors were able to monitor doors operation,

although online learning was not applied in this case (as the authors state, the

normal behavior for a door depends on the system).

Zhi-Gang et al. [36] studied the use of backpropagation techniques (BPNN)

to monitor the daily operation of a subway system, and a possible trend to

failure, with the objective of applying them to predictive maintenance. This

study was performed because subways normally adopt a preventive strategy

and, most of the times, humans and resources are wasted. By using a BPNN

to diagnose faulty pieces of equipment (e.g., brake shoes), they were able to

provide useful information for maintenance, therefore reducing costs and saving

resources.

3.4.2. Clustering and Pattern Recognition

Clustering and pattern recognition algorithms and techniques are very useful

for data mining and data reduction, and are used in a large variety of fields, such

as image analysis, market analysis, recommendation systems, among others.

This subsection provides some use case examples, as a way to assist in assessing

the potential of such tools for future SRM systems.

A. Kannan et al. [37] developed a gesture recognition system, for identifying

static gestures, using a Microelectromechanical (MEMS) accelerometer (named

ADXL335) and an ATMega 2560 microcontroller. The data was stored into

several arrays: (1) feature set array, final set of features that define a gesture, (2)

reference set, the average of the feature array, and (3) look-up table, that stores

the reference set for all the gestures. In addition, gesture recognition used a
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lightweight approach to find the suitable reference in the look-up table, by using

the Manhattan Distance algorithm. The higher the number of accelerometers,

the higher the efficiency, with higher costs. The best trade-off for cost and

efficiency was to use three accelerometers. This would allow having almost the

maximum efficiency, with a smaller cost.

Mamun et al. [38] developed a k-means clustering method for detecting road

anomalies or accidents in a certain area. The authors used an IoT-Fog server

to process data in real-time, so end users could have the information in their

smartphones. The authors clustered the collected data into two different cate-

gories: speed and accelerometer (z-axis). After defining thresholds, the authors

evaluated the algorithm with respect to the speed over time, accelerometer over

time, and a merge of the two. With this evaluation, it was possible to detect

whether a certain variation was a pothole or a bump. On the other hand, if the

speed over time was constant and suddenly the car slowed down, an accident

had been detected. The authors developed a system that could fully work with

a smartphone, without having to add any external sensor to the system. By

using a k-means clustering algorithm, they were able to detect various problems

that the driver faced (potholes, bumps or accidents).

3.4.3. Adaptive and Multi-objective Algorithms

In this section, two different algorithms are addressed. The first one is an

adaptive algorithm that changes its behavior according to the retrieved data

and the initial status. It is used in radar systems, to adjust the rate of false

alarms. The second algorithm is a multi-objective optimization algorithm, ap-

plicable when it is necessary to achieve a trade-off between two or more objective

functions, frequently used in the fields of engineering and logistics.

R. Kannan et al. [39] developed an algorithm that removes motion sensor

bias. It can also successfully identify the duration of the motion. The authors

modeled the noise in an accelerometer sensor in order to estimate linear motion

coordinates. Using adaptive recalibration, the authors successfully detected

and tracked all of the proposed scenarios, on multiple devices (Gear S3, Galaxy
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A5, and Tizen Z3). They also performed rotational motion tracking, with a

gyroscope and a magnetometer fused with an accelerometer, achieving good

overall results.

A. Nunez et al. [40] proposed a system based on multi-objective optimization

for condition-based maintenance in infrastructures. The authors used a Hilbert

Spectrum approach to detect anomalies in the axle box acceleration measure-

ment. The main focus of the authors was to optimise two distinct objective

functions, in order to provide information on where the infrastructure company

should focus in order to increase performance at controlled costs.

Summing up, there are several computational tools and techniques that have

large potential for applicability in SRM systems. In section 3.4, examples of

three such tools/techniques were presented, all of them exploring text-based

data only. Image-based solutions exist as well, such as [15] and [41], but the cost

to develop visual systems is high. Using accelerometers, microphones and/or

gyroscopes, it is possible to provide text-based data that achieves similar results

at a fraction of cost. This is the case of solutions [13], [14] and [27], that

used a variety of techniques to find patterns or segments where the signals had

abnormal behavior. The next steps are to fully explore the use of the mentioned

tools and techniques in the Smart Railway Maintenance area.

4. Challenges

In light of the presented state-of-the-art, several open issues and research

directions can be identified. These are addressed in the current section.

4.1. Open Issues

Despite the fact that railway maintenance is a universal need, the mate-

rialization of the Smart Railway Maintenance vision is still in its infancy, as

many challenges must still be addressed before stable, widely-accepted, globally-

applicable solutions for SRM are in place. These challenges mainly pertain to
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the requirements identified in Section 2.C, which fall into the following four cat-

egories: (1) data processing, (2) anomaly detection, (3) predictive maintenance,

and (4) scalability, with the latter being orthogonal to the other three.

In what data processing is concerned, most of the papers that address it do

not provide enough detail to reproduce the obtained results. In short, their focus

is on the results and how they are useful for railway/infrastructure maintenance,

and not on how the approach works and how it can be replicated in real, working

systems. The tools and techniques presented in 3.4 can be of great help for data

processing, as there is considerable knowledge on how they work, there are

numerous, well-understood applications, and they provide the ability to extract

useful information from large sets of heterogeneous data coming from a variety

of sources.

Regarding anomaly detection, most of the work performed either light or

deep inspections, mostly resorting to expensive sensors placed in the surround-

ings of the rails or in inspection vehicles. On one side, this approach can provide

more detailed insights on the tracks and/or bogies, but, on the other side, inspec-

tion vehicles do not operate very often. In the future, the use of low-cost sensors

(such as accelerometers) will help to improve monitorization and anomaly pre-

diction. As stated in [3], several types of sensors are available for gathering data

on a variety of parameters, with most of these sensors being low-cost. In light

of this, it will be important to develop systems that will not only make use of

such sensors, but also monitor infrastructure and vehicles (passenger or freight

trains). Making use of regular services can help reducing costs, while constantly

monitoring both trains (bogies) and infrastructure (rails or tracks). Moreover,

this approach should be used for predictive maintenance also.

Last but not least, scalability is a crucial requirement and should always

be a concern. With low-cost sensors, efficient data collection and processing

algorithms, new IoT-related enabling technologies (e.g., cloud-based systems,

custom PCB manufactures, among others) and large numbers of trains and

infrastructure companies, building scalable systems is essential. For instance,

deploying a new monitoring system or adding a new sensor to an existing system
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are two examples of frequently performed maintenance operations, with the

purpose of providing more input data. The performance of the system should

not be negatively affected by this and, in reality, it should become better, as

more data should imply a decrease in misdetections and better insights on the

behavior and status of overall railway system.

In addition to the referred requirement categories, other aspects equally

pertaining to all of them should also be considered, as they can play an im-

portant role in future, reliable, globally-applicable SRM systems. These are:

(1) standardization, (2) interoperability, (3) energy efficiency, and (4) security

[4][42][43]. Standardization is essential for device compatibility and systems

interoperability, thus fostering the development of widely used and scalable sys-

tems. On the other hand, emerging 5G solutions will not only provide resilient

and efficient communications, but also secure channels to transmit and receive

data [44]. According to the European Telecommunications Standards Institute

(ETSI), the Railway Industry will have an active role in 5G systems, along-

side with other application areas (Figure 3), due to the challenges that arise

from communications, reliability, interoperability, and security in Passenger and

Freight Information Systems (PIS and FIS), and Smart Railway Maintenance,

especially when high-speed trains are concerned [45].

To summarize, emerging technologies and solutions such as 5G, Big Data

analysis, and data processing approaches like neural networks, pattern recogni-

tion, and adaptive and multi-objective algorithms, have very high potential for

Smart Railway Maintenance. Most of these solutions have not been explored

in existing SRM systems and, thus, a whole range of opportunities open up for

research and development.

One very important aspect that is lacking in all of the existing railway main-

tenance systems is flexibility. In general, the construction of railway mainte-

nance systems uses a vertical approach, in which every piece of the system is

specially built for the specific application at hand. This is a paradigm similar to

the one existing in computer systems and networking systems several decades

ago. It is apparent that we need a revolution in SRM systems, one that drives
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Figure 3: Areas where 5G communications are more important. Rail Industry is consid-

ered, by the ETSI, one of the most interested in this new paradigm. Image adapted from

https://www.etsi.org/technologies-clusters/technologies/5g.

on the benefits that come from software-defined approaches, similarly to what

is now being used in Software-Defined Networking (SDN). Such an approach to

SRM system would bring several benefits, including:

• Virtualization – ability to deal with monitoring and maintenance resources

independently of their physical details;

• Programmability – ability to change the monitoring behaviour of the sys-

tem on the fly;

• Performance – ability to optimise the use of resources (physical resources

can be shared by several monitoring applications);

• Service integration – modular approach allows code and service reuse, for

ease of development;

32



• Openness – compatibility between different system modules, potentially

from different vendors;

• Orchestration – ability to manage large numbers of devices, with full vis-

ibility over them;

• Dynamic scaling – ability to scale the system according to the application

needs, through resource virtualization and cloud operation;

• Automation – ability to automate parts of the system monitoring appli-

cation, leading to better performance and lower operation costs.

4.2. Research Directions

From the analysis carried out in the previous sections, several specific re-

search directions can be identified. These include, but are not limited, to the

following:

• Approaches to flexible, effective, efficient, and low-cost data collection for

both railway vehicles and infrastructure monitoring, using regular trains;

• Data processing, reduction, and analysis in local controllers, and subse-

quent sending of that data to the cloud, for further processing;

• Online data processing systems, for real-time monitoring, using emerging

communication technologies;

• Evaluation of 5G solutions for bulk, real-time, low-latency, reliable, and

secure communications in SRM environments;

• Use of fog-based and/or cloud-based systems for data storing and data

processing;

• Information extraction and inference from large data sets, for railway sys-

tems preventive maintenance;

• Integrated, interoperable, and scalable solutions for railway systems pre-

ventive maintenance.
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With the above research directions/objectives in mind, we now propose a

novel architecture that can be the basis for future SRM systems, which we name:

Software-Defined Railway Monitorization (SDRm) architecture.

The proposed architecture is based on the paradigm of Software-Defined Net-

working (SDN) [46], and is depicted in Figure 4. According to it, SRM systems

are organised into three planes, namely data plane, control plane, and applica-

tion plane. The interface between the data plane and the control plane is called

southbound interface, whereas the interface between the control plane and the

application plane is called northbound interface. In the following paragraphs, a

description of each of these architectural components is given.

The control plane deals with real, physical equipment, e.g., sensing equip-

ment installed on railway vehicles and infrastructure. Moreover, this plane

comprises local controllers, which are local processing units that interact with

physical equipment for the purposes of configuration and data gathering. For

instance, a local controller can request a given sensor to perform some specific

readings over a given period of time at a given rate. Local controllers can also

perform local data processing and/or temporarily hold some data until con-

ditions for sending that data to a central controller are met. Typically, local

controllers reside in the infrastructure or in vehicles.

One extremely important aspect of local controllers is that they (should)

comply with a common, ideally standardised architecture, supporting a given

and well-known set of operations for data gathering and equipment management.

This is at the basis of features such as programmability, openness, virtualisation,

and service integration, among other.

In the control plane, a central controller is in charge of performing high-level

decisions with the objective of fulfilling application requirements. For instance,

the central controller may decide on which data should be gathered from which

railway vehicles or from which sections of the railway infrastructure, and instruct

the appropriate local controllers to collect that data. A central controller may

also want to know information on the features and sensing capabilities associated

with a given local controller, so as to decide on subsequent sensing actions.
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Communication between local controllers and the central controller is done

via the southbound interface, using an appropriate protocol. The protocol must

support actions such as feature collection, parameter configuration, read/write,

and status information. It should be noted that, together with a standard-

ised architecture for the local controllers, the southbound protocol will provide

extremely important features such as the already mentioned features of pro-

grammability, openness, virtualisation, and service integration.

Last but not least, the application plane deals with the SRM application as

a whole. In this plane, high level SRM decisions are made, such as guaranteeing

that all trains are monitored periodically, critical infrastructure sections are

subject to more specific attention, etc. At this level, resources are mostly high-

level and/or virtualised, as there is no need to deal with specific physical details.

Scaling and automation decisions may also be taken at this level.

The proposed SDRm architecture, presented in Figure 4, provides flexibility,

code and service reuse capability, and ability to develop SRM platforms that can

be used in a variety of contexts and by different railway companies, thus being

able to cope with all of the important features that are missing from current

railway maintenance systems.

5. Conclusions

Railway systems monitorization is essential for predictive maintenance. As

seen in this paper, considerable work exists on railway maintenance, but the

vast majority of it either addresses preventive maintenance or limited forms of

predictive maintenance, often resorting to special-purpose, dedicated vehicles

and/or specialized, high-cost devices, with little or no use of recent sensing,

communication, and data processing technologies and techniques.

Emerging IoT and Industry 4.0 solutions, 4G and soon-to-be-available 5G

communication solutions, cloud-based storage and processing, and, last but not

least, software-based techniques, open up the possibility for what is now called

Smart Railway Maintenance systems, for which massive data collection and
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Figure 4: First design of the architecture, for a SDRm.

processing, high-bandwidth secure and reliable communications, intelligent data

analysis and information extraction, and flexible development are crucial.

In this paper we have identified and described the key requirements and

approaches to SRM, from the points of view of infrastructure maintenance,

railway vehicles maintenance, and global system maintenance. The carried-

out analysis has clearly shown that existing approaches have limitations, either

by not addressing key requirements or by not exploring emerging technologies

and/or computational tools and techniques. These have also been identified in

this paper.

Given the above, we identified several open issues and research directions,

spanning approaches to data collection, offline and online data processing, 5G
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communications, use of fog-based and/or cloud-based systems, information ex-

traction and inference, and systems scalability and interoperability. Moreover,

we proposed a novel architecture that explores the paradigm of software defini-

tion, with the aim of providing, flexibility, modularity, compatibility, reusability,

scalability, and ease of development.

The identified research guidelines and proposal are the starting points for

work that clearly needs to be done in order to develop efficient and effective

Smart Railway Maintenance systems.
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A data fusion approach for track monitoring from multiple in-service

trains, Mechanical Systems and Signal Processing 95 (2017) 363–379.

doi:10.1016/j.ymssp.2017.03.023.

URL https://www.sciencedirect.com/science/article/pii/

S0888327017301516

[30] M. Pau, B. Leban, Experimental detection of wheel-rail contact irregulari-

ties, Proceedings of the 7th World Congress on Railway Research (WCRR)

(2006) 4–8doi:http://www.railway-research.org/IMG/pdf/133.pdf.

URL http://www.railway-research.org/IMG/pdf/133.pdf

[31] D. L. Goodman, J. Hofmeister, R. Wagoner, Advanced diagnostics and

anomaly detection for railroad safety applications: Using a wireless,

IoT-enabled measurement system, in: AUTOTESTCON (Proceedings),

Vol. 2015-Decem, IEEE, 2015, pp. 273–279. doi:10.1109/AUTEST.2015.

7356502.

URL http://ieeexplore.ieee.org/document/7356502/

[32] H. Parkinson, G. Bamford, B. Kandola, The Development of an Enhanced

Bowtie Railway Safety Assessment Tool using a Big Data Analytics Ap-

proach, International Conference on Railway Engineering (ICRE 2016)

42

https://www.sciencedirect.com/science/article/pii/S0888327016302230
https://www.sciencedirect.com/science/article/pii/S0888327016302230
http://dx.doi.org/10.1016/j.ymssp.2016.06.041
https://www.sciencedirect.com/science/article/pii/S0888327016302230
https://www.sciencedirect.com/science/article/pii/S0888327016302230
https://www.sciencedirect.com/science/article/pii/S0888327006000434
https://www.sciencedirect.com/science/article/pii/S0888327006000434
http://dx.doi.org/10.1016/j.ymssp.2006.02.007
https://www.sciencedirect.com/science/article/pii/S0888327006000434
https://www.sciencedirect.com/science/article/pii/S0888327006000434
https://www.sciencedirect.com/science/article/pii/S0888327017301516
https://www.sciencedirect.com/science/article/pii/S0888327017301516
http://dx.doi.org/10.1016/j.ymssp.2017.03.023
https://www.sciencedirect.com/science/article/pii/S0888327017301516
https://www.sciencedirect.com/science/article/pii/S0888327017301516
http://www.railway-research.org/IMG/pdf/133.pdf
http://www.railway-research.org/IMG/pdf/133.pdf
http://dx.doi.org/http://www.railway-research.org/IMG/pdf/133.pdf
http://www.railway-research.org/IMG/pdf/133.pdf
http://ieeexplore.ieee.org/document/7356502/
http://ieeexplore.ieee.org/document/7356502/
http://ieeexplore.ieee.org/document/7356502/
http://dx.doi.org/10.1109/AUTEST.2015.7356502
http://dx.doi.org/10.1109/AUTEST.2015.7356502
http://ieeexplore.ieee.org/document/7356502/
http://digital-library.theiet.org/content/conferences/10.1049/cp.2016.0510
http://digital-library.theiet.org/content/conferences/10.1049/cp.2016.0510
http://digital-library.theiet.org/content/conferences/10.1049/cp.2016.0510


(2016) 1 (9 .)–1 (9 .)doi:10.1049/cp.2016.0510.

URL http://digital-library.theiet.org/content/conferences/10.

1049/cp.2016.0510

[33] F. Sun, A. Dubey, C. Samal, H. Baroud, C. Kulkarni, Short-Term Transit

Decision Support System Using Multi-task Deep Neural Networks, in: 2018

IEEE International Conference on Smart Computing (SMARTCOMP),

IEEE, 2018, pp. 155–162. doi:10.1109/SMARTCOMP.2018.00086.

URL https://ieeexplore.ieee.org/document/8421344/

[34] A. Ene, C. Stirbu, A Java application for the failure rate prediction us-

ing feed forward neural networks, in: Electronics, Computers and Artifi-

cial Intelligence (ECAI), IEEE, 2016, pp. 1–4. doi:10.1109/ECAI.2016.

7861197.

URL http://ieeexplore.ieee.org/document/7861197/

[35] A. E. Smith, D. W. Coit, Y. C. Liang, Neural network models to anticipate

failures of airport ground transportation vehicle doors, IEEE Transactions

on Automation Science and Engineering 7 (1) (2010) 183–188. doi:10.

1109/TASE.2009.2020508.

URL http://ieeexplore.ieee.org/document/5159354/

[36] M. Zhi-Gang, L. Han-Bin, Study on the Maintenance of Subway Equipment

Based on Data Mining Techniques, in: Proceedings - 2nd International

Conference on Smart City and Systems Engineering, ICSCSE 2017, IEEE,

2017, pp. 209–215. doi:10.1109/ICSCSE.2017.59.

URL http://ieeexplore.ieee.org/document/8120546/

[37] A. Kannan, A. Ramesh, L. Srinivasan, V. Vijayaraghavan, Low-cost static

gesture recognition system using MEMS accelerometers, in: GIoTS 2017

- Global Internet of Things Summit, Proceedings, IEEE, 2017, pp. 1–6.

doi:10.1109/GIOTS.2017.8016217.

URL http://ieeexplore.ieee.org/document/8016217/

43

http://dx.doi.org/10.1049/cp.2016.0510
http://digital-library.theiet.org/content/conferences/10.1049/cp.2016.0510
http://digital-library.theiet.org/content/conferences/10.1049/cp.2016.0510
https://ieeexplore.ieee.org/document/8421344/
https://ieeexplore.ieee.org/document/8421344/
http://dx.doi.org/10.1109/SMARTCOMP.2018.00086
https://ieeexplore.ieee.org/document/8421344/
http://ieeexplore.ieee.org/document/7861197/
http://ieeexplore.ieee.org/document/7861197/
http://dx.doi.org/10.1109/ECAI.2016.7861197
http://dx.doi.org/10.1109/ECAI.2016.7861197
http://ieeexplore.ieee.org/document/7861197/
http://ieeexplore.ieee.org/document/5159354/
http://ieeexplore.ieee.org/document/5159354/
http://dx.doi.org/10.1109/TASE.2009.2020508
http://dx.doi.org/10.1109/TASE.2009.2020508
http://ieeexplore.ieee.org/document/5159354/
http://ieeexplore.ieee.org/document/8120546/
http://ieeexplore.ieee.org/document/8120546/
http://dx.doi.org/10.1109/ICSCSE.2017.59
http://ieeexplore.ieee.org/document/8120546/
http://ieeexplore.ieee.org/document/8016217/
http://ieeexplore.ieee.org/document/8016217/
http://dx.doi.org/10.1109/GIOTS.2017.8016217
http://ieeexplore.ieee.org/document/8016217/


[38] M. A. A. Mamun, J. A. Puspo, A. K. Das, An intelligent smartphone based

approach using IoT for ensuring safe driving, in: ICECOS 2017 - Proceeding

of 2017 International Conference on Electrical Engineering and Computer

Science: Sustaining the Cultural Heritage Toward the Smart Environment

for Better Future, IEEE, 2017, pp. 217–223. doi:10.1109/ICECOS.2017.

8167137.

URL http://ieeexplore.ieee.org/document/8167137/

[39] R. Kannan, S. Jain, Adaptive Recalibration Algorithm for Removing Sensor

Errors and Its Applications in Motion Tracking, IEEE Sensors Journal

18 (7) (2018) 2916–2924. doi:10.1109/JSEN.2018.2804941.

URL http://ieeexplore.ieee.org/document/8289379/

[40] A. Nunez, A. Jamshidi, H. Wang, J. Hendriks, I. Ramirez, J. Moraal,

R. Dollevoet, Z. Li, A Condition-Based Maintenance Methodology for Rails

in Regional Railway Networks Using Evolutionary Multiobjective Opti-

mization, in: 2018 IEEE Congress on Evolutionary Computation (CEC),

IEEE, 2018, pp. 1–7. doi:10.1109/CEC.2018.8477842.

URL https://ieeexplore.ieee.org/document/8477842/

[41] P. D. Ruvo, G. D. Ruvo, A. Distante, M. Nitti, E. Stella, F. Marino, A

Visual Inspection System for Rail Detection and Tracking in Real Time

Railway Maintenance, The Open Cybernetics & Systemics Journal 2 (1)

(2008) 57–67. doi:10.2174/1874110X00802010057.

URL http://benthamopen.com/ABSTRACT/TOCSJ-2-57

[42] L. Zhu, F. R. Yu, Y. Wang, B. Ning, T. Tang, Big Data Analytics in

Intelligent Transportation Systems: A Survey (2018). doi:10.1109/TITS.

2018.2815678.

URL http://ieeexplore.ieee.org/document/8344848/

[43] Q. Li, Z. Zhong, Z. Liang, Y. Liang, Rail inspection meets big data: Meth-

ods and trends, in: Proceedings - 2015 18th International Conference on

Network-Based Information Systems, NBiS 2015, IEEE, 2015, pp. 302–308.

44

http://ieeexplore.ieee.org/document/8167137/
http://ieeexplore.ieee.org/document/8167137/
http://dx.doi.org/10.1109/ICECOS.2017.8167137
http://dx.doi.org/10.1109/ICECOS.2017.8167137
http://ieeexplore.ieee.org/document/8167137/
http://ieeexplore.ieee.org/document/8289379/
http://ieeexplore.ieee.org/document/8289379/
http://dx.doi.org/10.1109/JSEN.2018.2804941
http://ieeexplore.ieee.org/document/8289379/
https://ieeexplore.ieee.org/document/8477842/
https://ieeexplore.ieee.org/document/8477842/
https://ieeexplore.ieee.org/document/8477842/
http://dx.doi.org/10.1109/CEC.2018.8477842
https://ieeexplore.ieee.org/document/8477842/
http://benthamopen.com/ABSTRACT/TOCSJ-2-57
http://benthamopen.com/ABSTRACT/TOCSJ-2-57
http://benthamopen.com/ABSTRACT/TOCSJ-2-57
http://dx.doi.org/10.2174/1874110X00802010057
http://benthamopen.com/ABSTRACT/TOCSJ-2-57
http://ieeexplore.ieee.org/document/8344848/
http://ieeexplore.ieee.org/document/8344848/
http://dx.doi.org/10.1109/TITS.2018.2815678
http://dx.doi.org/10.1109/TITS.2018.2815678
http://ieeexplore.ieee.org/document/8344848/
http://ieeexplore.ieee.org/document/7350636/
http://ieeexplore.ieee.org/document/7350636/


doi:10.1109/NBiS.2015.47.

URL http://ieeexplore.ieee.org/document/7350636/

[44] M. Liyanage, I. Ahmad, A. B. Abro, A. Gurtov, M. Ylianttila, Regulatory

Impact on 5G Security and Privacy.

[45] M. P. Papaelias, C. Roberts, C. L. Davis, A review on non-destructive

evaluation of rails: State-of-the-art and future development (Jul. 2008).

doi:10.1243/09544097JRRT209.

URL http://journals.sagepub.com/doi/10.1243/09544097JRRT209

[46] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-

molky, S. Uhlig, Software-defined networking: A comprehensive survey,

Proceedings of the IEEE 103 (1) (2015) 14–76. doi:10.1109/JPROC.2014.

2371999.

URL http://ieeexplore.ieee.org/document/6994333/

45

http://dx.doi.org/10.1109/NBiS.2015.47
http://ieeexplore.ieee.org/document/7350636/
http://journals.sagepub.com/doi/10.1243/09544097JRRT209
http://journals.sagepub.com/doi/10.1243/09544097JRRT209
http://dx.doi.org/10.1243/09544097JRRT209
http://journals.sagepub.com/doi/10.1243/09544097JRRT209
http://ieeexplore.ieee.org/document/6994333/
http://dx.doi.org/10.1109/JPROC.2014.2371999
http://dx.doi.org/10.1109/JPROC.2014.2371999
http://ieeexplore.ieee.org/document/6994333/

	Introduction
	Problem Description
	Approaches to Smart Railway Maintenance
	Reactive Maintenance
	Preventive Maintenance
	Proactive Maintenance
	Reliability-Centered Maintenance
	Predictive Maintenance

	Supporting Technologies
	Sensors
	Communication Systems
	Data Processing

	Requirements

	State-of-the-Art
	Infrastructure Maintenance
	Railway Vehicles Maintenance
	Railway Systems Maintenance
	Tools and Techniques
	Neural Networks
	Clustering and Pattern Recognition
	Adaptive and Multi-objective Algorithms


	Challenges
	Open Issues
	Research Directions

	Conclusions

