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Abstract—As communications evolve to give space to new
applications, such as augmented reality and virtual reality, new
paradigms arise to provide essential characteristics like lower
latency levels, mobility support, and location awareness. Such is
the case of Fog computing, which extends from the well-known
Cloud computing paradigm by bringing processing, communi-
cations, and storage capabilities to the edge of the network. By
offering these novel features, also new challenges emerge that call
for the design and implementation of orchestration mechanisms
to deal with resource management. One of these mechanisms is
related to the service placement, which consists in the selection of
the appropriate execution node for the applications according to
a specific optimization objective. In this paper, an Integer Linear
Programming model for service placement aimed at latency
reduction of popular applications is proposed. Furthermore, a
heuristic based on the PageRank algorithm, called Popularity
Ranked Placement, is also introduced. Simulation results show
that the heuristic has lower execution times and is able to better
balance the load in the network nodes, while being close to the
ILP-based solution latency levels.

I. INTRODUCTION

The global IP traffic is expected to triple by 2022 [1], and
82% of this traffic will correspond to IP video traffic. Virtual
Reality and Augmented Reality are predicted to increase their
traffic 12 times, and Internet video-to-TV will increase three
times [1]. With this massive amount of data, a rapid exhaustion
of the infrastructure resources, and, therefore, a decrease in
the quality of the communications is foreseeable. Given the
predominance of streaming video in the predictions of the IP
traffic, latency becomes one key aspect to consider to meet
delivery constraints of applications.

To improve latency levels it is necessary to design and
implement smart service placement mechanisms that select the
optimal location among the different possibilities in order to
enhance the QoS (Quality of Service).

The decentralization of the Cloud, by bringing the services
and applications towards the end-user IoT (Internet of Things)
devices and near-user edge devices in order to provide lower
latency levels, mobility support, and location awareness, led to
the advances in newer paradigms such as Fog computing [2].
Fog computing extends the Cloud paradigm, being located
between the dense IoT environment and the Cloud. The Fog

This manuscript is a preprint of the final one that will appear on IEEE
digital library.

nodes (e.g., gateways, switches, servers) can be organized into
clusters/communities, supporting federation [3], providing a
higher level of organization in a complex and dense environ-
ment.

Given its distributed and heterogeneous nature, the Fog
requires new mechanisms to automate the management of
the resources. The design of a hierarchical architecture that
incorporates a Cloud-based repository for the services and a
Fog-based deployment was already proposed [4][5]. In such
solutions, an orchestrator is assigned with the task of managing
the resources of the network efficiently. Nevertheless, in more
decentralized scenarios, like the Fog, more complex managing
approaches are required. Within the many tasks of the orches-
trator, there is a set of Planning Mechanisms that must be
implemented, including those related to Service Placement.

Only bringing the service instances to the edge of the
network is not enough, since the perimeter of the Cloud can be
broad, and in a dense environment such as the Fog, there could
be multiple choices to place the service instances. Thus, it is
relevant to select a metric that allows to guide the placement
process. The popularity of the applications (and ultimately, of
the services) seems to be a good option since it would lead
the placement of the most popular applications towards the
locations where the most data and service-hungry users are
stationed, i.e., at the edge of the network. The popularity can
be measured by the number of requests for a given application.

On the other hand, popularity as a metric is not enough
to guarantee the QoS requirements for the applications at
the communication infrastructure level, since it does not take
into consideration the current status of the network. Thus,
combining the popularity of the applications with a network
metric, such as the propagation delay, will lead to a context-
aware orchestrator regarding the service placement.

This paper presents an ILP (Integer Linear Programming)
formulation to find the optimal solution for service placement
based on popularity aimed at the reduction of latency in Fog
environments. Furthermore, a heuristic called PRP (Popularity
Ranked Placement) based on the PageRank algorithm [14] is
proposed to offer an option close in quality to the optimal
solution, while being significantly less time-consuming. Both
approaches are evaluated via simulation.

The paper is structured as follows. Section II presents a



TABLE I
CHARACTERISTICS FROM RELATED WORK

Work Optimization Goal Approach Environment Simulator

Skarlat et al. [6] Maximize resource usage ILP Fog iFogSim

Skarlat et al. [7] Maximize resource usage ILP + Genetic algorithm Fog iFogSim

Wang et al. [8] Minimize cost Linear programming + Heuristic Mobile micro-clouds Unspecified

Taneja and Davy [9] Maximize resource utilization Module mapping algorithm Cloud/Fog iFogSim

Lera et al. [10] Maximize availability 2-phase placement / communities Fog YAFS

Guerrero et al. [11] Minimize distance Decentralized placement Fog iFogSim

Mahmud et al. [12] Maximize QoE Fuzzy logic Fog iFogSim

Brogi and Forti [13] Maximize QoS Mathematical model Fog FogTorch

selection of related work on service placement. Section III
depicts the ILP model regarding service placement for latency
reduction. Section IV defines a heuristic based on the PageR-
ank algorithm. Section V depicts the evaluation process and
setup, while Section VI presents the results and their respective
analysis. Finally, Section VII concludes the paper and shows
the road-map for future work.

II. RELATED WORK

Although the placement problem has been vastly addressed
in the past for Cloud environments [15][16][17][18], new
strategies are required for the Cloud/Fog continuum [19].

Skarlat et al. [6] analyze the placement of IoT services in
the Fog, according to their QoS requirements. They define an
ILP model aimed at maximizing the utilization of the Fog
landscape, while also keeping the resource usage constraints.
Evaluation is carried out using iFogSim [20]. On another
work, Skarlat et al. [7] present a heuristic based on a genetic
algorithm to solve the service placement problem. The main
purpose of this work is to maximize the number of services
placed, and the usage of Fog devices. Once again, iFogSim is
used as an evaluation tool. The proposed solutions are com-
pared with a First Fit greedy approach. The genetic algorithm
provided lower deployment delay by exploiting more Cloud
resources.

Wang et al. [8] introduce an optimization approach and a
heuristic for online scenarios. Both approaches are evaluated
using simulations. Their proposal is O(1) competitive for a
broad family of cost functions, meaning its competitive ratio
is given by a constant. Taneja and Davy [9] describe a Module
Mapping algorithm aimed at the optimization of resource
utilization for Cloud/Fog scenarios. The solution is compared
with placing the applications entirely in the Cloud, and it is
carried out by simulation using iFogSim. Response times and
network usage are reduced when using the Fog compared with
a Cloud-only approach.

Lera et al. [10] present a solution for service placement
aimed at improving the availability by placing as many inter-
related services as possible within the proximity of the user.
The proposal is compared with an ILP approach by means
of simulation using YAFS [21], and showed improved QoS
and availability. Guerrero et al. [11] propose to place popular

services closer (according to the hop-count) to the users. The
decision is made in a decentralized fashion by each of the
devices. Simulation (using iFogSim) showed that more popular
applications had lower latency while less popular applications
were affected by a larger delay.

Mahmud et al. [12] use fuzzy logic to place applications in
the Fog, with the objective of maximizing the QoE (Quality
of Experience). Experimental evaluation is performed using
iFogSim. Results show a reduced deployment time and im-
proved QoE. Brogi and Forti [13] propose a model for the
deployment of IoT applications in the Fog. Authors also
introduce a tool, FogTorch, in which the model is prototyped.

The works reviewed in this section are summarized in
Table I. It is noticeable that all works use simulation for the
validation, varying the tool used (mostly iFogSim, but also
YAFS and FogTorch). It is also relevant to notice the use of
mathematical programming techniques, like ILP, in the design
of models to find the optimal location for services.

The work presented in this paper uses two metrics to guide
the service placement process: (1) the number of requests
of the applications, as an upper-level metric to measure the
popularity of the applications, and (2) the propagation delay
as a network-level indicator of the status of the communication
links. Both metrics can change during time, adjusting them-
selves to reflect the current conditions of the network and the
users’ demands, unlike other metrics used in related works,
such as hop count. Thus, the proposed mechanisms can be
executed in different time windows to re-adjust the placement
of the existing services and to satisfy the new users’ demands.
The service placement mechanisms proposed are described in
the following sections.

III. AN ILP MODEL FOR SERVICE PLACEMENT

This section introduces an ILP model to maximize the place-
ment of popular applications while minimizing the latency for
final users in Fog environments.

A lexicographic formulation of the optimization problem is
considered in this article. First, with the goal of serving the
largest number of users, the problem consists of maximizing
the selection of accepted requests, given the popularity of the
applications. Then, the second problem consists of placing the
services that belong to an application in the Fog nodes that



minimize latency, given the selection of the requests obtained
in the first problem. The constraints from the first problem
are kept for the second in order to ensure feasibility. The goal
is to improve the QoS; hence the overall solution of solving
both problems should provide a better QoS to the maximum
amount of users.

A. Parameters and Variables

Table II summarizes the parameters and variables for the
model. Regarding the parameters, the set of entry points
from where requests are generated is labeled as GW ; these
correspond to the gateways from where clients access the
Fog environment. The instance matrix I reflects the micro-
services that compose the applications. This means that an
application can be built by the combination of a set of services.
Ia,s = 1 if service s ∈ S belongs to application a ∈ A,
and 0 otherwise. The cost matrix C contains the propagation
delay (as a component of latency) from the shortest path that
connects each pair of nodes n ∈ N and gateways gw ∈ GW .

Concerning the variables, the acceptance matrix, K is a
binary matrix that indicates which requests are accepted for
each application. Ka,r = 1 if the r-th request for application
a ∈ A is accepted, and 0 otherwise. P represents the
placement matrix, indicating the final location for the services.
The matrix relates the request per applications, and the nodes
where the services belonging to those applications are finally
placed; P a,r

s,n = 1 indicates that service s ∈ S is executed on
node n ∈ N to satisfy request r ∈ R for application a ∈ A,
and P a,r

s,n = 0 otherwise.

B. Maximizing the Placement of Popular Applications

The first step in the optimization solution is to select the
applications with the highest amount of requests, which are
considered as the most popular. Eq. (1) depicts the main
objective function of the ILP model. Since the main objective
is to maximize the selection of popular applications, the
set of requests per application is used to determine which
applications have higher priority in the selection.

max
∑
a∈A

Qa ×
∑
r∈R

Ka,r (1)

The first constraint in the model, shown in Equation (2),
is meant to ensure that the selection of applications is only
carried out when the request can be fulfilled entirely. The
constraint in Eq. (3) guarantees that the services that belong to
an application selected are executed in only one server. Eq. (4)
forces that all the services belonging to an application can be
executed before selecting it.

P a,r
s,n ≤ Ka,r ∀a ∈ A, r ∈ R, s ∈ S, n ∈ N (2)

∑
n∈N

P a,r
s,n ≤ 1 ∀a ∈ A, r ∈ R, s ∈ S (3)

TABLE II
PARAMETERS AND VARIABLES FOR THE ILP MODEL

Parameters

Parameter Description

S Set of services to be placed

N Set of nodes where the service can be executed

GW Set of gateways at the edge of the Fog

A Set of applications. An application is composed by a set of services

R Set of requests for all the applications

Qa Sum of requests for a ∈ A
Ωn CPU capacity for n ∈ N (GHz)

Φn Memory capacity for n ∈ N (GB)

ωs CPU requirement for s ∈ S (GHz)

ϕs Memory requirement for s ∈ S (GB)

I Instance matrix. An |A| × |S| matrix

C Cost matrix. An |N | × |GW | matrix

Variables

Variable Description

K Acceptance matrix. An |A| × |R| matrix

P Placement matrix. An |A| × |R| × |S| × |N | matrix

Ka,r × Ia,s =
∑
n∈N

P a,r
s,n ∀a ∈ A, r ∈ R, s ∈ S (4)

Memory and CPU restrictions are also imposed as con-
straints to the model, to enforce resource limits in the execu-
tion nodes. Eq. (5) describes the CPU constraint and Eq. (6)
does the same for the memory constraint. For both equations,
the sum of processing requirements from all services can not
surpass the available resources in the nodes.

∑
a∈A

∑
r∈R

∑
s∈S

P a,r
s,n × ωs ≤ Ωn ∀n ∈ N (5)

∑
a∈A

∑
r∈R

∑
s∈S

P a,r
s,n × ϕs ≤ Φn ∀n ∈ N (6)

While the resources of the nodes are usually fixed and well
known, an estimate is used for the resource requirements of
the services (i.e., CPU and memory). Service profiles can be
created by gathering information from previous executions. In
this work, the services profiles are generated using a bounded
random approach (see Section V).

C. Minimizing the Latency

The second optimization goal is to reduce the latency of the
most popular applications, selected on the first optimization
problem. Eq. (7) depicts the formulation. The main idea is
to minimize cost, represented by the propagation delay of the
links towards a node (Cn,gw). The cost can be changed to
another gauge, e.g., energy consumption, to model a different
requirement.

min
∑
a∈A

∑
r∈R

∑
n∈N

∑
s∈S

∑
gw∈GW

P a,r
s,n × Cn,gw (7)



In order to guarantee that the popular applications are
still selected (i.e., maintaining the results from the first op-
timization), the acceptance matrix resulting from the first
optimization problem is now a parameter matrix and used as
input for the placement process in the second optimization
problem. Therefore, during this step of the optimization, the
services are placed in the most convenient nodes in the Fog,
aiming at the reduction of the latency of the services; see
Eq. (8).

∑
s∈S

Ka,r × Ia,s =
∑
s∈S

P a,r
s,n ∀a ∈ A, r ∈ R,n ∈ N (8)

Constraints from the first optimization problem (i.e., Eq. (2)
through (6)) are kept in this step to guarantee feasibility. In
the following section, an alternative heuristic based on the
PageRank algorithm is proposed.

IV. A HEURISTIC BASED ON PAGERANK

Although optimization solutions are often used for offline
environments and as a theoretical threshold, they are not
usually applied in online or more realistic scenarios given their
lack of adaptability and also their high response times [22].
Furthermore, by optimizing the selection of requests that come
from the gateways, the procedure will most likely place the
majority of the applications in the same Fog nodes, thus
potentially creating an overload in the same nodes and links in
case of heavy load. To overcome these issues, an alternative
heuristic, based on the PageRank algorithm, is presented in
this section.

First, the original PageRank algorithm is introduced to, later
on, describe how it is adapted for the PRP (Popularity Ranked
Placement) heuristic.

A. The PageRank Algorithm

The PageRank algorithm was first introduced to rank web
pages in a search engine, and it was based on a summa-
tion derived from bibliometrics research (i.e., the analysis
of the citation structure among academic papers) [14]. The
idea behind the PageRank algorithm is to rank the nodes
in a graph via probability propagation. To understand how
it works, an example is provided in Fig. 1. Consider the
graph G = (V,E), where V = {A,B,C,D} and E =
{(A,B), (A,C), (B,D), (C,A), (C,B), (C,D), (D,C)}. At
the beginning of the algorithm, it is assumed that all the nodes
in set V have the same rank r = 1

n , where n denotes the
cardinality of set V .

Nodes are ranked following an iterative approach, according
to Eq. (9) where Bni is the set of nodes pointing into node ni
and deg+(nj) is the number of out-links from node nj . Let
rk+1(ni) be the rank of node ni at iteration k+1. The ranking
process begins with r0(ni) = 1

n for all nodes and is repeated
until the PageRank scores converge to final stable values [23].
The values obtained after applying the first three iterations of
Eq. (9) to the graph depicted in Fig. 1 are shown in Table III.

A B

DC

Fig. 1. A graph example to illustrate the PageRank algorithm

rk+1 (ni) =
∑

nj∈Bni

rk
(
nj
)

deg+
(
nj
) (9)

The implementation of the PageRank algorithm could be
sped-up using matrices [23]. The idea is to use an N × N
matrix H in combination with a 1 × N row vector πT ,
which holds the PageRank value of all nodes in each iteration.
The matrix H is a row normalized hyperlink matrix with
Hij = 1

deg+(nj)
if there is a link from node ni to node

nj , and 0, otherwise. Thus, nonzero elements in H represent
the transition probability from one node to another. The
corresponding H matrix for the graph depicted in Fig. 1 is
shown in Eq. (10).

H =


0 0 1

3 0
1
2 0 1

3 0
1
2 0 0 1
0 1 1

3 0

 (10)

The nonzero elements of row i in H correspond to the out-
link nodes of node i; meanwhile, the nonzero elements of
column i denote the in-link nodes of node i. Regarding the
rank of the nodes, the row vector π(k)T represents the PageR-
ank vector at the k-th iteration of the algorithm. Consequently,
Eq. (9) can be written using a matrix notation as shown in
Eq. (11).

π(k+1)T = π(k)TH (11)

From Eq. (11), the following observations arise [23]: (1)
each iteration requires one vector-matrix multiplication, con-
sidering that H is a very sparse matrix, the vector-matrix
operation is reduced to O(n) computational effort; (2) the
iterative method used is a linear stationary process performed
applying the power method to matrix H; and (3) H could be
seen as a stochastic transition probability for a Markov chain,
where the dangling nodes of the graph create 0 rows in the
matrix and the other rows belong to the non-dangling node
keeping stochastic values. Consequently, H is considered a
sub-stochastic matrix.

In this work, the PageRank algorithm described above is
adapted to rank the nodes in a network topology using the
PD (Propagation Delay) of the links to weight the probability
transition between nodes. A heuristic based on this ranking
process is described below.



TABLE III
PAGERANK VALUES PER ITERATIONS

Iteration 0 Iteration 1 Iteration 2 PageRank

r0(A) = 1
4

r1(A) = 1
12

r2(A) = 1.5
12

1

r0(B) = 1
4

r1(B) = 2.5
12

r2(B) = 2
12

2

r0(C) = 1
4

r1(C) = 4.5
12

r2(A) = 4.5
12

4

r0(D) = 1
4

r1(D) = 4
12

r2(A) = 4
12

3

B. Ranking nodes to create Communities

To avoid the potential issue concerning the overload of the
nodes close to the gateways and the gateways themselves, an
alternative is to create communities that can share the load
of the gateways while keeping the applications deployed in
their proximity, as explored in other works [7][10]. However,
only selecting neighboring nodes to share the load could be
restrictive since there is a chance that a non-neighbor is better
qualified than the neighbors (e.g., has lower latency connec-
tivity). Thus, ranking the nodes according to the probability
in which they would communicate (e.g., be chosen in the
shortest path) represents a better selection criterion to build
these sharing groups or communities. In this work, the ranking
process described above is used to create those communities.

The heuristic takes advantage of the low latency levels in
the Fog, by deploying applications’ modules through the Fog
infrastructure and near to the final users whenever possible.
When the Fog runs out of resources, deployment in the Cloud
will be carried out. The ranking of the nodes is created
according to the procedure described in Subsection IV-A. For
a weighted graph, the probability of moving from one node
to the next will not only depend on the presence of a link but
on a metric based on the weights of the edges. In this work,
the PD is used as a metric of the link latency. Thus, nodes
connected through a link with a lower propagation delay will
have a higher probability to connect since they will be part of
the shortest path towards the destination node.

The community-building process is described in Algo-
rithm 1. The first step is to get the topology graph (line 1),
and to remove the Cloud node since it will not be part of any
community (i.e., only being used when there are no resources
available in the Fog), and also transforming it as a complete
directed graph. Following this, the nodes are ranked using
the process described in Subsection IV-A. The PD is used
to weight the transition probability from one node to another
in the graph (line 2).

The communities are built by selecting all the nodes with
a transition probability higher than a threshold (line 7). For
this work, the threshold was defined in 0.1, to create bigger
communities, but the value could be adapted following a
different criterion. After this, a community is created by
combining this initial community with all the communities
of its initial members (line 14).

All the Fog nodes that were not assigned to any community
during this process are grouped in the final step, as shown in
line 16. The results of this process include: (1) a structure with
the communities for all nodes; (2) a structure with the nodes

Algorithm 1: Build Communities
Result: Communities for all nodes in the infrastructure

1 topology ← getTopology()
2 prank ← PageRank(topology, weight=PD)
3 communities ← ∅
4 non communities ← ∅
5 foreach node in topology do
6 foreach element in prank do
7 if prank[element] > threshold then
8 Add element to communities[node];
9 end

10 end
11 end

12 avg size ← getCommunitySize(communities)

13 foreach node in topology do
14 mergeCommunities(node, communities);
15 end

16 non communities← prank − communities;

17 return communities, non communities, avg size

that do not belong to any community; and (3) the average size
of the initial communities (see line 17).

Once the communities are built, the deployment process
begins, as explained in the following subsection.

C. Popularity Ranked Placement

The heuristic proposed, called PRP (Popularity Ranked
Placement) uses the communities described in the previous
subsection for the placement process, and is presented in
Algorithm 2. After creating the communities (line 3), the
applications to deploy are ranked according to their requests
(i.e., to prioritize popular applications, as in the ILP model
described in Section III), as shown in line 5. Also, the nodes
in each community are ranked according to the probabilities
calculated in the previous step.

The first option is to deploy the applications’ modules
within the community of the GW from which the application’s
request was launched. The search space inside the community
is limited by an expanding window, which size is set according
to the average size of the initial communities (line 6). The
expanding window technique allows to minimize the internal
fragmentation of resources inside of the nodes while allowing
to place a less demanding application’s module in the already
explored nodes of the community. The searching process
within the windows follows a RR (Round Robin) approach
until no more resources are available to host the application’s
module. In the case that the deployment succeeds, the RR
pointer is updated accordingly.

When the community window runs out of resources to
deploy the application’s module, the size of the expanding
window is augmented by the average size of the initial
communities, until the size of the community is reached, and
a new search process to find the hosting node is carried out



Algorithm 2: Popularity Ranked Placement
Result: Placement of applications’ modules

1 placement matrix ← ∅
2 topology ← getTopology();
3 community, non community ← Build Communities()
4 reqs ← getRequests();
5 apps ← rankApps();
6 expWin ← getAvgCommunitySize();

7 foreach req in reqs do
8 while req > max(WindowNodeCapacity) ∧
9 ¬ ReachCommunitySize do

10 Expand expWin;
11 end

12 if req ≤ max(WindowNodeCapacity) then
13 deploy(placement matrix, community);
14 else
15 if req ≤ max(NonComNodeCapacity) then
16 deploy(placement matrix, non community);
17 else
18 deploy(placement matrix, Cloud);
19 end
20 end
21 end

22 return placement matrix

(lines 8 - 11). The process is also illustrated in Fig. 2. The
community for node A is shown in Fig. 2(a). The initial
window size in this example is 3 (i.e., the average size of
the initial communities). Once the subset contained inside the
expanded window runs out of resources (there is no node that
can host the application’s module to deploy), the window’s size
is augmented by its original size, 3 in this case, as depicted in
Fig. 2(b). This process is repeated until finding a node with
enough resources to fit the application’s module to deploy, or
until the community size is reached, as seen in Fig. 2(c).

If the expanding window reaches its maximum size (i.e.,
the community size) and there are not enough resources to
satisfy the request, a new search process is initiated in the non-
community nodes (also a resulting structure from the previous
step, see Subsection IV-B) following a First Fit approach (lines
15 - 16). Thus, Fog nodes are prioritized for placement before
trying to deploy the application’s modules in the Cloud. If all
previous attempts fail, the application’s module is deployed in
the Cloud (line 18).

Simulation experiments were performed to validate this
proposal. The evaluation setup is described in the next section.

V. EVALUATION

The validation was performed using the YAFS simula-
tor [21] because of its strong support of Fog critical features
and high granularity of reported results [24]. The experiments
were conducted on a PC with 32GB 2400MHz DDR4 RAM
and 2.80GHz Intel Core i7-7700HQ with 4 cores and 8 threads
(2 threads per core) processor. The PC was running Microsoft

A B C D E F G H

A B C D E F G H

A B C D E F G H

(a) Extended Community with initial expanding window (size = 3)

(b) Extended Community with augmented  expanding window (size = 6)

(c) Reaching the Extended Community Size (size = 8)

Fig. 2. Expanding Window

Windows 10 Pro (Build 18363) operating system. Python
2.7.16 was used for YAFS. For the ILP model, the IBM
CPLEX Optimizer version 12.9 was used [25].

Regarding the network topology, a graph was generated
according to the complex network theory, following a random
Barabasi-Albert network [26]. 50 Fog nodes comprise the
network, and an additional node was added to represent the
centralized Cloud. This node is connected to the Fog nodes
with the highest betweenness centrality in the graph. The
nodes with lowest betweenness centrality were appointed as
GWs, representing the nodes at the edge of the network.

Applications were randomly generated following a Growing
Network graph structure. This means a vertice is added one at
a time with an edge to the last added vertice. After the graph
is complete, two vertices are randomly selected (excluding
the source) to generate an information flow to the source
vertice. This allows simulating typical Fog/IoT delay-sensitive
applications that can be deployed at Cloud/Fog environments.
For instance, an augmented reality application that can capture
location-related information, process it, and send a reply to the
user; or an eHealth application where some medical values are
captured from the patient, processed and/or stored for later
analysis, and sent to the health specialist for evaluation, or to
regulate a patient’s medication.

TABLE IV
PARAMETERS VALUES FOR EXPERIMENTS

Parameter Value
(min - max)

Network Propagation Delay (ms) 2 - 10
Bandwidth (bytes/ms) 75000

Fog Resources (units) 10 - 25
Speed (instr/ms) 500 - 1000

GW Request rate (1/ms) 1/1000 - 1/200
Popularity (prob) 0.25

Application

Services (number) 2 - 8
Resources (units) 1 - 5
Execution (instr/req) 20000 - 60000
Message size (bytes) 1500000 - 4500000

The parameters were set according to the values displayed
in Table IV, for each network link, Fog node, GW, and
application. Similar values have been previously used in re-



lated work [10]. The application demands are measured using
the YAFS’ resources unit, defined as a vector containing the
capacity of different computational resources (e.g., number of
cores for CPU, GB for memory, or TB for the hard disk).

The network load was varied to evaluate the performance
of the proposals under different conditions. Four scenarios
were defined: (1) tiny: 5 different applications, (2) small: 10
applications, (3) medium: 15 applications, and (4) large: 20
applications. Each of the applications has at least one request.
To simulate the popularity of the applications, the number of
requests was determined using a uniform distribution. All the
scenario setup, as well as the source code, is available via a
GitLab repository [27].

The ILP solution and the proposed heuristic (PRP) are
compared with the well known FF (First Fit) algorithm, as
it was used in other works for evaluation purposes [6][7]. For
the FF algorithm, the nodes were organized according to their
resources, from lowest to highest, to prioritize nodes with less
resources that usually are deployed at the edge of the network,
closer to the users. All solutions were executed once before the
simulations, i.e., a static service placement is considered, and
30 simulations were executed using these static placements
to mitigate the statistical error. 95% confidence intervals are
included in the plots.

VI. RESULTS AND ANALYSIS

The performance of each placement method (ILP model,
PRP, and FF) is presented in this section. The first metric to
evaluate is the latency. The latency is calculated as the sum of
the transmission times among the application’s modules [21].
Fig. 3 shows the results, grouped by scenario and displayed
in seconds.
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Fig. 3. Total Latency by Scenarios

From Fig. 3, it is possible to note that the best results
correspond to the ILP optimization model, as expected. As
the load grows, the latency increases, which is also expected.
For the smallest load (i.e., tiny scenario), PRP shows an
exceeding latency of about 3 times the values obtained with

the ILP placement, while FF shows an extra of about 5 times
regarding the ILP latency. These discrepancies are reduced
in higher load scenarios. Nevertheless, while the breach is
reduced between ILP and PRP, it is more prominent for FF.
For instance, in the medium scenario, FF shows an increase of
3 times respecting the ILP approach, while PRP only shows
1.5 times more latency. Grouping the nodes in communities
(PRP) showed better results than performing a linear search
(FF). As the scenario got more complex, the improvement is
more noticeable; in general, the results of PRP are closer to
the optimal than FF.

Fig. 4 depicts the network transmission, including the ap-
plication messages forwarded and the average network buffer
occupancy (i.e., the average amount of messages kept in
node’s network buffers waiting for link availability). From
these results, it is important to point out that the ILP method
forwarded the lowest amount of messages, thus generating less
traffic and, ultimately, less congestion. PRP values remained
close to the theoretical optimum (ILP), especially for the
smaller scenarios. As the load increases, so does the number
of messages forwarded. FF showed to be the least efficient
method; the nodes with the lower amount of resources are se-
lected first, saturating the network buffers as the load increases.
For the application messages, since FF does not take into
consideration the interaction between nodes, modules from the
same application can be placed in distant nodes (i.e., several
hops); thus, the amount of messages forwarded is larger.
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Fig. 4. Network Transmission

Fig. 5 illustrates the number of nodes used by each method.
This means the number of nodes where applications’ modules
were placed; the figure also portraits the number of modules
placed on the busiest node; this is the node where more
modules were deployed. Since the placement was statically
performed before the simulations, there are no variations in
the results and thus no confidence intervals shown.

The ILP model led to the concentration of the placement
of modules in the nodes closer to the request points (i.e., the
GWs), saturating these nodes, and therefore creating a new
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Fig. 5. Module Placement Metrics

issue in the form of congestion of the nodes and the links
connected to said nodes. As the load increases, the advantages
of the optimization are missed by the congestion created. On
the other hand, PRP uses more nodes for the two smallest
scenarios, thus having impact on the energy consumption. For
the two larger scenarios, the number of nodes used tends to
stabilize in all the placement approaches.

Fig. 6 depicts a comparison of the latency obtained by
each application considering the amount of requests it has.
For space constraints, only the results corresponding to the
large scenario are displayed; similar results were obtained for
the other scenarios.
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Fig. 6. Latency by Application - Large Scenario

Overall, the ILP model obtained the best results, while FF
got the worst. It is noteworthy that as the application has more
requests (i.e., more popularity), it shows lower latency for
ILP and PRP. Furthermore, ILP and PRP results are relatively
close, with ILP showing the lowest latency values. It is clear
that there are three tiers regarding the latency response per

application, being the lowest the one corresponding to the ILP
model, the following to PRP, and the highest to FF.

Finally, Table V shows the execution time, in seconds, for
the placement methods, by scenario. Since FF has the most
straightforward logic, it has also the lowest execution times,
followed closely by PRP. The times for ILP are significantly
higher since this method evaluates all possible solutions in
order to find the optimal result. The times obtained by the
ILP model could not be suited for more complex and dense
realistic scenarios.

TABLE V
EXECUTION TIME (IN SECONDS)

Scenario ILP PRP FF

Tiny 19.191 0.017 0.005

Small 47.382 0.019 0.007

Medium 104.983 0.022 0.011

Large 313.588 0.031 0.0019

In general, the ILP approach got the best results regarding
latency, but the worst on execution time and in node overload.
The latency values obtained with PRP are close to the ones
reported by ILP while getting significantly lower execution
times. Furthermore, since the PageRank can be calculated
dynamically, it is possible to apply this solution in case of
variations in the network infrastructure. Finally, by creating
communities, the load is spread among different nodes, which
could lead to other issues such as higher energy consumption,
that are not being considered in this work. This spread also
means lower congestion levels in both the Fog nodes and
communication links for PRP.

VII. CONCLUSIONS

Applications like augmented reality and virtual reality, as
well as video over IP, constitute the more significant portion of
IP traffic for the upcoming years. These types of applications
have special requirements, including low latency. The Fog
computing paradigm arises to overcome some of the new
requirements, but also brings new challenges in the form of the
need to design and develop novel orchestration mechanisms to
take the full advantages that the Fog has to offer; for instance,
new provisioning mechanisms, including service placement,
have to be developed.

An ILP model for service placement, aimed at maximiz-
ing the placement of popular applications, while minimizing
their latency is proposed. Moreover, a heuristic based on the
PageRank algorithm, called Popularity Ranked Placement, is
also introduced. PRP ranks the applications according to their
requests as a measure of their popularity, and also ranks the
nodes in the network topology to create communities with
the nodes with the highest transition probability; this way,
the placement load is divided among the nodes within the
community, avoiding congestion while also maintaining low
latency levels. An expanding window controls the placement
among the nodes in the community.



The performance of both the ILP model and the PRP
solution were tested using YAFS, and are also compared
with the well known FF approach. Simulation results show
that while the ILP model had the lowest latency for all the
scenarios, it also had the highest concentration of placement in
the same nodes, thus generating congestion in the processing
nodes and for the communication links. PRP kept the latency at
low levels, close to the ILP results, but the load was balanced
between the nodes in the communities. Moreover, PRP showed
significantly lower execution times than the ILP model, which
makes it more suitable for more complex and dense scenarios,
and is the option that should be deployed in practical realistic
situations.

Future work includes studying the impact of the size of
the expanding window and the size of the communities for
different scenarios; analyzing its behavior under non-static
environments; and combining different optimization objectives
besides latency, for instance, applications’ availability require-
ments.
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