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Abstract

In drug discovery, deep learning algorithms have emerged to be an effec-
tive method to generate novel chemical structures. They can speed up this
process and decrease expenditure. We propose a computational model
for molecular de novo drug design that is able to produce new drug com-
pounds. This computational model based on the recurrent neural network
(RNN) can learn the syntax of molecular representation in terms of Sim-
plified Molecular Input Line Entry Specification (SMILES) strings. The
model and its generated SMILES are evaluated using MolVS tool syn-
tactically and biochemically. We analyze the best recurrent network and
the parameters. The network that reaches the best result, 98% of valid
SMILES, was an RNN containing long short term memory(LSTM) cells.

1 Introduction

Creating novel drugs is a remarkably hard and complex problem. Drug
design can be considered as a sampling problem. One of the main chal-
lenges in drug design is the cardinality of the search space for novel
molecules. It has been estimated that over 1060 drug-like molecules could
be synthetically accessible [1]. Researchers have to select and analyze
molecules from this vast space to find molecules that are active towards a
biological target. This process is prohibitively expensive. It is desirable
to have computational tools to narrow down the search space.

Searching can be carried out using similarity-based metrics, which
provides a quantifiable statistical indicator of closeness between molecules.
Heuristics and modern virtual screening techniques can help to narrow
the space of possibilities, but the task remains daunting. In contrast, in de
novo drug design, the practitioners try to directly design novel molecules
that are active towards the desired biological target [2].

Machine Learning techniques are lately applied to generate molecule
libraries for drug discovery [3]. Here, we present generative deep learn-
ing networks based on Recurrent Neural Networks (RNNs) for molec-
ular drug design. These models capture the syntax of molecular rep-
resentation in terms of SMILES string. In particular, we train different
RNNs model architecture in order to obtain the maximum possible valid
SMILES. Moreover, a comprehensive study on the network’s parameters
is done in order to optimize the results.

2 Methods

We explored four different types of Recurrent Neural Networks(RNN)
for the structure of our model. Simple RNN, Long Short-Term Memory
(LSTM), Gated Recurrent Units (GRU) and finally, Bidirectional LSTM
(BLSTM) are applied with different parameters. Figure 1 describes the
general schema of the proposed model in order to generate valid drugs.

2.1 Recurrent Neural Networks

RNN models [4] can be used to generate sequences one token at a time, as
these models can output a probability distribution over all possible tokens
at each time step. Typically, the RNN generator aims to predict the next
token based on the all the tokens seen so far. In particular, RNNs process
a sequence of data S = s1s2 . . .s` by taking as input each item si in the
sequence. The RNN passes the input through a series of gates and returns
some hidden state hi and an output vector τ = τ1τ2 . . .τn. The hidden state
hi is passed from cell to cell and reflects which information the RNN has
seen previously. Additional recurrent connections allow RNNs to learn
complex temporal dependencies. The target vector ti is an array of one-
hot encoded vectors, where each vector represents one token. The output
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Figure 1: The General schema of the proposed model

vector τi is a probability distribution over the possible tokens in one hot
encoding. The model aims to maximize the probability assigned to the
correct token for every vector in the array. The methodology used to
generate SMILES divided into three main parts: encoding data, training
model and the output generation.

• Encoding Data

The SMILES generation components consist of three primary steps:
mapping symbols, padding and one-hot encoding. Mapping symbols
rely on a dictionary of all possible characters included in SMILES.
Each SMILES in the dataset is kept in a string format, and each differ-
ent symbol is tokenized into a char type. The second step is to padding
the SMILES. Character ’G’,” meaning “go is added at the start of each
SMILES, and character ’E’ is added to the end, meaning “end”. Each
SMILES is padded to the length of the longest SMILE string. Padding
denoted by the character ’A’. The third step is one-hot encoding. In
this step, each character in each SMILES is transformed into a one-hot
encoded array. In one-hot encoding, only one bit of a zero vector of the
length of the number of tokens in the dataset is set(HOT).

• Training Models

We analysed eight different model structure consist of simple RNN,
LSTM, GRU and BLSTM. Each of them is considered with 1 and 2
layers. Figure 2 shows the main structure of LSTM model with 2 lay-
ers. In this example, there are 2 LSTM layers followed by a dense layer
and a neuron unit with a softmax activation function. A dense layer is
a linear operation which every input is connected to every output by
weight. The other models are implemented in the same way, with dif-
ferent numbers of layer, 1 or 2 and different types of neural network.

• Output Generation

RNN models can be used to generate sequences one token at a time,
as these models can output a probability distribution over all possible
tokens at each time step. Typically, the RNN aims to predict the next
token of a given input. It is worth noting that the input can be one or
more tokens in length; if the input has x tokens, then the model predicts
the x+1st token.
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Figure 2: Model of LSTM producing SMILES strings symbol by symbol

2.2 Validation and Datasets

The SMILES generated by the proposed model are syntactically and bio-
chemically validated in RDkit (www.rdkit.org).

For training the RNN models, we compiled a dataset of 481,194
SMILES strings with annotated nanomolar activities as Kd/i/B, IC/EC50
from PubChem (https://pubchem.ncbi.nlm.nih.gov/). The dataset was then
pre-processed to remove duplicates, salts and stereochemical information.
In addition, pre-processing filtered out nucleic acids and long peptides
which lay outside of the chemical space from which we sought to sample.

3 Experimental Results and Discussion

The primary purpose of these tests was to evaluate the set of parameters of
the networks that reaches the higher ratio of valid SMILES. Table 1 shows
the preliminary results for the 8 proposed models. It contains the percent-
age of valid and unique generated SMILES. The “valid” SMILES are the
ones that passed through the validation process (see Section 2.2), and the
“unique” are the ones that are not repeated. After training for twenty-two
epochs, the Model 4 produced the maximum average of 71.03% valid and
71.02% unique SMILES strings. This model consists of two LSTM lay-
ers, each with a hidden state vector of size 256, regularized with dropout
0.3. At this stage, we consider the ADAM optimizer and softmax function
with the temperature equal to 1.0.

Model Description Valid(%) Unique(%)
Model 1 RNN - 1 Layer 1.55% 1.53%
Model 2 RNN - 2 Layer 2.5% 2.23%
Model 3 LSTM - 1 Layer 60.99% 60.98%
Model 4 LSTM - 2 Layer 71.03% 71.02%
Model 5 GRU - 1 Layer 60.79% 60.79%
Model 6 GRU - 2 Layer 67.75% 67.74%
Model 7 BLSTM - 1 Layer 70.97% 0.19%
Model 8 BLSTM - 2 Layer 1.54% 0.04%

Table 1: The percentage of valid and unique SMILES generated with 8 different
models

We analyzed the effect of the different number of epochs. The num-
bers 4, 8, 12, 16, 20, 24 and 28 are examined for all eight models. Figure
3 shows the models 3,4,5 and 6 and the percentages of valid and unique
molecules generated by considering the different number of epochs. The
1st and 2nd models reached 3.24% and 2.32% of valid SMILES in epoch
eight.

We tested the batch size of 64, 128, 256 and 512 for the models using
LSTM and GRU. It is observed that the best result obtained by using the
model 4, and the 2nd best was model 6 with the size 128. Thus these two
models were selected for the rest of the experiment. The next parameter
to test during this study was the optimizer. Figure 4 shows the results
obtained for different optimizer for models 4 and 6. The two optimizers
that presented similar results, 78.14% and 78.69% of valid SMILES were
Adam and RMSprop, respectively.

Softmax function normalizes, at each iteration, the candidates by es-
tablishing that the network’s outputs should all be between one and zero.
Temperature is a variable of this function used to control the randomness
of predictions. We consider the values of temperature as 0.3, 0.5, 0.8, 1
and 1.5. Using Model 6, at T = 0.5 95.46% of the SMILES were valid.
Based on the results of our experiment, we exclusively relied on LSTM
Model with 2 layers with Adam optimizer, and dropout equals to 0.3 for
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Figure 3: Traning epoches and percentage of valid and unique molecules
for Models 3, 4,5 and 6
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Figure 4: The percentage of valid and unique SMILES for Models 4 and
6 with different optimizer

the production runs. After analyzing all the tests, it is possible to conclude
that the best recurrent network to achieve the main goal is an LSTM with
two layers, using Adam optimizer. The best percentage of valid SMILES
obtained was 98.04%, with 97.5%±0.31% of valid SMILES. The param-
eter that influenced more the results is softmax temperature.

4 Conclusions

Deep learning adoption on biomedicine has been slow, and this work in-
tends to contradict this resistance by showing its potential in the field of
drug discovery. Furthermore, big data investments in the pharmaceuti-
cal industry will reach 4.7 Billion in 2018, which reinforces the need for
study and development of novel and better approaches for this field. Ev-
erything indicates that the future of computer-aided drug discovery will be
promising. The strategy applied in this study gave rise to 97.5% of valid
SMILES, on average. The obtained results prove that this deep model
can be further used to generate new molecules using the SMILES format.
The choice of the dataset and the validation of the model are fundamental
for the triumph of the model. It is necessary to continue exploring these
techniques possibilities and how they could be applied to drug discovery.
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