
Deep Reinforcement Learning for Optimized Drug Design

Vision

Deep learning (DL) has been an increasingly explored tool in the development of new drugs. These methods

efficiently handle huge amounts of data and, therefore, DL models can learn the syntax of the SMILES notation and

generate novel SMILES representing valid compounds. Our purpose is to explore deep learning methods to

generate valid molecules, with desired physicochemical and biological characteristics, to be used as viable drugs. To

do this, we use two interdependent neural networks, one that acts as a generator of new compounds and the

other acting as its evaluator.

Hence, these two models need to learn hidden rules of forming sequences of letters that correspond to legitimate

SMILES strings. Therefore, both models use Recurrent Neural Networks (RNN). For the Generator, we use a Long

Short-Term Memory (LSTM) architecture with two layers that are trained to generate valid molecules. Afterward, a

Quantitative Structure-Activity Relationship model (QSAR) is explored to predict the properties we want to

optimize. Typically, the approach is to relate a set of descriptor variables to the response variable. In our case, the

only descriptor is the SMILES string and the response is the desired property. Subsequently, a Deep Reinforcement

Learning framework is employed, through a policy gradient method, to make the model produce fine-tuned

molecules towards the desired biological purpose.

Objectives

• To inter-connect the Generator and the Predictor models, by exploring a reinforcement learning strategy to

optimize the generation of candidate drugs.

• To use a QSAR model to predict the desired property of the new generated SMILES and then assign a numerical

reward that will be used to update the Generator according to a policy gradient algorithm.

• To optimize the compound's aqueous solubility, by searching for a specific range of the logarithm of the partition

coefficient (logP) of each molecule.

• To minimize the half-maximal inhibitory concentration (pIC50) for a cytosolic tyrosine kinase (JAK2). JAK2 is

required for cell proliferation, survival, and myeloid development. However, mutations in this kinase are related

to breast cancers, B-cell leukemias, and lymphomas. The goal is to minimize the pIC50 of the generated

molecules which means to minimize the necessary concentration to inhibit JAK2

• To analyze different deep learning architectures and optimize the hyperparameters of both models.

Datasets

For training the Generator model, we compiled a dataset of 481,194 SMILES strings from PubChem

(https://pubchem.ncbi.nlm.nih.gov/).

The octanol/water partition coefficient was extracted of PHYSPROP database (https://www.srcinc.com).

Experimental IC50 data tested against JAK2 was extracted from ChEMBL, PubChem and Eidogen-Sertanty KKB.
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Generator
As described in figure 2, the two LSTM layers are followed by a dense layer
and a neuron unit with a SoftMax activation function. A dense layer is a
linear operation in which every input is connected to every output by
weight.

To feed this architecture, it’s necessary to encode data in the right format.
We perform the tokenization of each SMILES in the dataset is tokenized into
a char type. Each SMILES starts with a ‘G’ and ends with an ‘E’. The padding
is performed in the molecules that are smaller than the longest SMILE
string so that all the input data has the same size. Then, each character in
each SMILES is transformed into a one-hot encoded array. In one-hot
encoding, only one bit of a zero vector of the length of the number of
tokens in the dataset is set (HOT).

Predictor
It’s a QSAR model that predicts properties of chemical compounds, such as
the partition coefficient and affinity for a specific target. The particularity of
this approach is that it doesn’t need any descriptors besides the SMILES
strings. Hence, we perform the tokenization and padding of each SMILE
before doing the 5-fold Cross-Validation and data splitting for training,
testing and validating.
For the encoding of SMILES, we use an embedding layer transforming the
SMILES molecules into a vector of 256 continuous numbers. The model was
tested with LSTM layers and Gated Recurrent Units (GRU) with different
parameters. After the recurrent layers, there is a two dense layer with 128
units and another with 1 unit, which is the output layer.
The model’s performance was evaluated with the metrics described in
figure 3 and it shows that we achieve the best result with 128 units LSTM
architecture.

Reinforcement Learning
We explore an RL approach to bias the Generator to produce molecules
towards the desired target properties. The reward function’s design
depends on if the goal is to minimize, maximize or optimize a specific range
of the generated molecule’s property. This function accepts the property
computed by the Predictor and, for each SMILES string, outputs a higher
reward as better the property fits our goal. The RL framework increases the
probability of molecules with higher rewards and avoids generating those
molecules with lower rewards. To do that, it is necessary to maximize the
objective function.

The SMILES generated by the proposed model are syntactically and
biochemically validated in RDkit (www.rdkit.org), showing that 70% of the
generated SMILES were valid.
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Furthermore, we update the weights of the Generator model with the
following rule to maximize the expected reward, i.e., applying the policy
gradient algorithm:

𝜃 = 𝜃 + α
ƌ

ƌƟ
J(Ɵ)

We tested different parameters such as:
• Discount factor (𝛾) - to give more importance to the recent rewards;
• Learning rate (α);
• Several types of reward functions to optimize the model;
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LogP:

>5: Molecules 
have poor 
aqueous solubility

<0: Molecules 
have poor lipid 
bilayer 
permeability.

The goal is to 
minimize the 
IC50 for JAK2 of 
the generated 
molecules, to 
increase 
inhibition 
power. 

Metrics Mean square 
error

Root mean 
square error

R-Squared
error (%)

LSTM / 128 
units 8.889  × 10−3 6.828 × 10−2 90.46

GRU / 128 
units 9.730  × 10−3 7.048 × 10−2 87.22

LSTM / 256 
units 4.596  × 10−2 0.153 46.27

GRU / 256 
units 4.455  × 10−2 0.154 52.36

Unbiased Biased

Log P JAK2 Log P JAK2

% inside 
drug-like 

region

% Valid p𝐼𝐶50
median 
value

% Valid % inside 
drug-like

% Valid 𝑝𝐼𝐶50
mean 
value

% Valid

77.78 70.00 6.68 70.00 89.58 72.50 6.25 71.00

Fig 1: General pipeline of training procedure using Reinforcement Learning

Fig 3: Summary table with its performance for the logP prediction. Fig 4: Generator’s results for both properties, before and after applying RL, producing new 200 SMILES. 
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Figure 2: The LSTM model producing SMILES strings symbol by symbol 
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