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Abstract—Software systems based on Artificial Intelligence
(AI) and Machine Learning (ML) are being widely adopted in
various scenarios, from online shopping to medical applications.
When developing these systems, one needs to take into account
that they should be verifiable to make sure that they are in
accordance with their requirements. In this work we propose a
framework to perform online verification of ML models, through
the use of model checking. In order to validate the proposal, we
apply it to the medical domain to help qualify medical risk.
The results reveal that we can efficiently use the framework to
determine if a patient is close to the multidimensional decision
boundary of a risk score model. This is particularly relevant
since patients in these circumstances are the ones more likely to
be misclassified. As such, our framework can be used to help
medical teams make better informed decisions.

Index Terms—critical systems, intelligent systems, verification,
model checking, medical risk scores

I. INTRODUCTION

Software systems are increasingly relying on Artificial

Intelligence (AI) in general and Machine Learning (ML) in

particular, in some cases applied to critical domains. Ex-

amples include the health and transportation domains, with

applications ranging from diagnosis tools [14] to self-driving

vehicles [9]. In such domains, verification, certification and

explanation are fundamental.

One of the crucial steps in the development process of crit-

ical systems is verification, with the goal of assuring that the

design and implementation of a system fulfill its requirements.

Formal methods are a complementary approach to software

engineering methodologies and development processes, suit-

able for rigorously describing and reasoning about complex

systems [16]. Based on formal logic and mathematical notions,

techniques such as formal proofs [15] and model checking [2]

can be used to verify properties of critical systems.

A key challenge of AI and ML components is that often

one cannot extract a specification directly from the machine

learned models, nor is their training performed according to a

verifiable specification. Some research efforts focus on logic-

based algorithms that learn reasoning models from data, since

their representation is suitable for extracting a specification

[12]. Provided a specification, we are therefore able to apply

formal methods to perform verification.

Along the several existing approaches that include per-

ceptron techniques, instance based learning, support vector

machines, probabilistic and logic-based models, the last two

are among the favored choices in the medical field. Decision

trees and sets of rules, which are examples of logic-based

models, are preferred over other representations as these are

regarded as explainable and interpretable [8]. Models for

computing risk scores, used in medical risk assessment, are

a good example and an interesting case-study, given their

acceptance and validation within the medical community [1].

This paper addresses the usage of model checking, at

runtime, to qualify medical risk scores with information con-

cerning the proximity of a patient to the multidimensional

decision boundaries. The proposed framework provides the

medical staff with an evaluation of the risk score, as the classic

approach, along with a binary indicator of proximity to a de-

cision boundary, based on specific medical input features and

ranges. In other words, our frameworks explicitly identifies

whether a patient’s risk assessment could be different upon

small changes to some of the input risk factors variables. This

feature increases trust on the calculated risk scores, because

the framework brings to the user’s attention the cases in which

the categorical risk assessment should be questioned.

Next, Section II addresses relevant existing contributions

within the scope of our work, Section III provides a detailed

explanation of the proposed framework, Section IV and V

lay the experimentation, results and discussion done to the

framework and Section VI presents the main conclusions.
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II. RELATED WORK

In this section we present relevant work already conducted

in medical software certification, risk scores, verification

strategies of intelligent systems and model checking. All these

research fields lay bed to our proposed framework.

A. Medical software

Critical medical software must follow safety standards

concerning lifecycle management (IEC 62304), risk assess-

ment (ISO 14971) and usability (IEC 62366). However, those

standards are based on assumptions that are typically not

verified by AI. One of such assumptions is that software is

implemented manually by human programmers, specifying at

design-time the whole control and data flows of the software.

Another one is that this implementation can be tested exten-

sively by running test sets also manually programmed and that

verify properties of these control and data flows.

An AI component, in contrast, is often implemented by

a persistent declarative knowledge base, that is specific to

the medical software to be developed, but it is interpreted

by a generic inference that is completely independent of

the medical software at hand. It is the run-time interaction

between (a) the volatile input data given to the AI to reason

about, (b) its declarative persistent knowledge base and (c) its

application-independent inference engine that defines control

and data flow. Also, the inference engine often performs

heuristic and/or non-deterministic approximate search of a

very large combinatorial space. This makes extensive design-

time and manual writing of tests for such AI unpractical.

This difficulty is made worse by the fact that nowadays

part if not all the knowledge base is acquired from data by

machine learning instead of manually declared. This learning

process includes steps of data selection, transformation, choice

of learning algorithms, parameter tuning of these algorithms,

learning hypothesis, search space a priori pruning, all of which

introduce biases that can completely change the resulting

knowledge base and hence the reasoning of the AI component.

All these questions are only starting to be explored by the

ISO/IEC task force JTC-1/SC-42.

B. Medical automated assessment of admitted patients (Risk
scores)

Medical Condition Risk Scores (MCRS) were introduced in

medical emergencies as tools to help prioritise and differentiate

patients treatment, providing the needed balance between

saving people’s lives while saving on health costs through

application of the right treatment.

The MCRS are based on large scale longitudinal medical

research studies. They are, however, easy to implement as

decision-support software since they generally apply simple

weighted combinations of indicators such as blood pressure

or known history of a condition. The output is the sum of the

weighted values which falls under a risk category.

The various limitations of state-of-the-art MCRS were stud-

ied together with attempts to overcome them in two ways [13]:

(a) composing several of them or (b) selecting the best of

several for a given target population which phenotype may

differ significantly from the cohorts used in the studies from

which each of the considered MCRS was derived.

C. Verification strategies for intelligent systems

One might achieve verification through explanation. That

is why [11] identifies logic-based models as interpretable and

therefore verifiable through inspection. Model complexity is

an attribute that puts not only manual inspection in check, but

also challenges both manual inspection and global automated

verification. [10] is an example of the efforts put into making a

complex black-box model locally explainable. Our work falls

within this trend, applying a formal method to locally check

the vicinity of the risk factors space for a given patient.

D. Model checking

Model Checking (MC) is a formal method used to verify

hardware and software systems [4]. It consists in building

a formal model of what the system should do and then

automatically verify properties of the model by state-space

search techniques detecting the reachability of an error state.

MC has historical relevance in critical systems development

typically following a waterfall process, meaning that it was

a verification step before implementation. Nowadays, with

new development processes, one can see source code as a

specification itself [4]. The argument is that code is a static

representation that has yet to be compiled, converted into

binary and executed, so it is actually valid to see it as a

requirements specification.

Model properties are often specified in a temporal logic

language [3], with primitives like eventually and always, and

can be used to avoid for instance deadlocks, contradictions or

confirm correctness of the system output.

Many model checkers are composed of two main compo-

nents [17]: (a) an executor that, for a model and entry-states,

outputs reachable states and (b) a verifier that, for a given

specification and state along the state exploration, checks if

the specification is satisfied, returning the state and explored

path as a counter-example when the specification fails.

III. METHODOLOGY

We propose a framework for verifying the evaluation made

by an intelligent MCRS. It determines whether a risk assess-

ment falls within a gray area of the decision space. As shown

in Fig. 1, our approach feeds a model checker with both

the patient data passed as input to the MCRS and the risk

assessment output by the MCRS. This output is used as an

assertion property to be verified by the model checker, which

will search in the vicinity of the patient input risk factors

space for different assessment outputs. If the model checker

does not identify counter examples to the baseline assertion,

the framework outputs a confident classification indication.

To implement our approach we started by programming

the MCRS in Python for fast prototyping. We then manually

translated the logic of the Python program together with

assumptions and search ranges into a semantically equivalent
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Fig. 1: High level overview of the proposed framework

Promela modeling language accepted as input by the popular

model checker SPIN. We are then able to perform online

verification through the model checker, for each new patient

data, completing the framework pipeline. We explain each of

the steps in detail in the following subsections.

A. Implementation

Listing 1 shows the implementation of a MCRS assessment

function, considering a single risk factor. We can add further

risk factors, following a similar approach. The risk assessment

rules are implemented by conditional expressions and state-

ments. Age is a common risk factor among risk scores and

often includes several ranges of discrimination of the risk, so

it is a good example that we shall use across the explanation of

our approach. For a given patient, if the accrued risk sum falls

above a pre-determined threshold, it outputs that the patient is

in risk.

Listing 1: Implementation of a risk score in Python

1 def grace(patient_data, risk_threshold):
2
3 risk=0
4
5 age = patient_data[’Age’]
6 if age >= 40 and age <= 49:
7 risk += 15
8 elif age >= 50 and age <= 59:
9 risk += 29

10 #Other age ranges...
11 elif age >= 90:
12 risk += 80
13
14 #Other risk factors...
15
16 if risk >= risk_threshold:
17 patient_in_risk=True
18 else:
19 patient_in_risk=False
20
21 return patient_in_risk

B. Translation

At this stage we have an executable MCRS assessment func-

tion. We now need to translate the code onto a specification

language.

A few considerations must be taken into account for this

step. Since Python has no assigned types, one needs to decide

the necessary allocation space for the variables used in the

code. Usually, type int is suitable for the majority of the

risk factors, since it can both store categorical and numerical

variables. Also, conditional statements are blocking-state in

Promela, so one needs to add an else dummy state for each

conditional statement in the specification model.

Listing 2 presents the specification for the implemented risk

score in the previous subsection. Besides the straight forward

translation, where we just added the assigned types and else
states, the specification considers three extra elements: (a)

AGE and RISK are constants that specify the input parameters

concerning the patient risk assessment, (b) the assert statement

set the property we want to verify and (c) a select command

specifies the search space for the risk factor.

Listing 2: Specification of a risk score using Promela

1 #define AGE
2 #define RISK
3
4 active proctype Grace() {
5 int age, risk;
6 bool patient_in_risk;
7
8 select(age : (AGE-3) .. (AGE+3) );
9 risk=0;

10
11 if
12 :: age >= 40 && age <= 49 -> risk = risk +

15
13 :: age >= 50 && age <= 59 -> risk = risk +

29
14 //other age ranges...
15 :: age >= 90 -> risk = risk + 80
16 :: else -> skip
17 fi;
18
19 //other risk factors...
20
21 if
22 :: risk >= 145 -> patient_in_risk = true
23 :: else -> patient_in_risk = false
24 fi;
25
26 assert(patient_in_risk == RISK)
27 }
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C. Search space parameters

One needs to specify the bounds on which each input

variable (risk factor) is going to be verified for the assumption

of falling within the same risk assessment. As in Listing 2, by

using constants to specify risk factors like AGE, we can limit

the verification space through the select command, creating an

upper and lower interval around the patient risk factor.

An important consideration is related to which risk factors

we want to vary in our verification process. We do not perform

ranging for the risk factors that are categorical since different

values for those features represent patients that are too far

apart, considering the notion of vicinity of medical risk factors

search space.

D. Online verification

Each time a risk assessment is performed, one uses the

implemented MCRS assessment function to obtain a classi-

fication. We then provide the model checking tool with the

specification, previously translated, which is set according the

input data of the patient and the risk assessment output. We

use Spin as our model checking tool. Through the execution

of the tool we check for counter examples of the expected risk

assessment output within the risk factors search space bounded

by the range parameters. If no counter example is found, we

provide the user with an indication of confidence on the risk

assessment.

IV. EXPERIMENTAL EVALUATION

In this section we present relevant experimentation of our

framework. We focused on implementing the GRACE risk

score, translating it into a specification and applying the

framework to a pool of patients, extracting relevant metrics.

A. GRACE

Global Registry of Acute Coronary Events (GRACE) is an

international database that allowed for the supervised learning

of a risk score model [6], [7], based on eight risk factors listed

in Fig. 2. GRACE risk model was built for short term assess-

ment, based on events of death or myocardial infarction (heart

attack) on patients with coronary artery disease. GRACE risk

score is widely accepted and was subject to many validation

studies, identifying strengths and weaknesses [1], [5].

The novelty of our work arises from locally identifying

regions where the risk assessment may vary for small patient

risk factors changes.

B. Data

A collaboration with a medical team which applies the

GRACE risk score allowed us to gather medical records from

patients data and test and validate our framework.

The dataset used is composed of 460 patients admitted at

Santa Cruz Hospital (Oeiras, Portugal) between March 1999

and July 2001, with the specific condition of acute coronary

syndrome with non-ST segment elevation - ACS-NSTEMI

[13].

TABLE I: Range variation parameters used in the GRACE

model specification

Risk factor Range variation
Age +/- 4 (years)
Heart rate +/- 5 (beats/min)
Systolic blood pressure +/- 3 (mm Hg)
Creatinine +/- 0.1 (mg/dL)

Within the dataset we have a positive event rate of 7.2%,

comprising 33 events of death or myocardial infarction after

30 days of admission. We directly map those events with our

target class, the risk indication.

C. Range parameters

Table I details the considered ranges for each of the varied

risk factors. For a given patient (data entry),the model checker

will verify the vicinity of the risk factors space, according to

the defined bounds.

Since the remaining risk factors are categorical, we decide

not to vary them through the model checker analysis as that

could lead to generating a verification space too far apart from

each patient data. We recognise that this choice might limit the

application of the proposed framework to simpler risk scores

that only use categorical risk factors. Nevertheless, the idea

of our framework is to provide local verification of complex

models, meaning that for the simpler ones we can use an

approach of global verification.

V. RESULTS AND DISCUSSION

Experimental evaluation of the framework was done on

a Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz machine.

Relevant results are presented in Table II and Spin execution

statistics are shown in Table III.

Our framework considers the patients in two groups. The

first one (Group 1 - G1) contains the patients that were

identified as being far from the decision boundary. The second

one (Group 2 - G2) contains the patients that are very close

to the decision boundary, which are the ones that are prone

to misclassification. This division allows for our confidence

metric to be a binary output for each patient, as depicted in

Fig.2.

The majority of the patients fall within G1, i.e., the risk

assessment falls within an unambiguous classification, given

our set of proximity parameters. This is an important result that

confirms the relevance of the proposed framework. If G2 was

to have more patients than Group 1, medical teams could easily

disregard the application of the risk score and our framework.

The risk assessment accuracy is improved for G1 and

degrades G2, when comparing with the GRACE overall ap-

plication. This justifies the relevance of our framework, as

patients that fall close to the decision boundaries tend to be

misclassified. Results under the F1 measure, the weighted

average of precision and recall, provide further evidence of

the clear distinction within both groups.

Looking at the sensitivity and specificity metrics it is

possible to see that the GRACE model tends to classify as high
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Fig. 2: Characterisation of data entries and our framework outputs.

TABLE II: Results from the overall GRACE risk score and for the presented framework.

GRACE overall
Accuracy 0.5522 F1 Measure 0.2077 Sensitivity 0.7941 Specificity 0.5329 Patients 460

GRACE with online verification
Group 1 - Confident assessed
Accuracy 0.5730 F1 Measure 0.2336 Sensitivity 0.8065 Specificity 0.5524 Patients 384
Group 2 - Not confident assessed
Accuracy 0.4605 F1 Measure 0.0889 Sensitivity 1.0000 Specificity 0.4459 Patients 76

TABLE III: Spin execution statistics: number of states stored,

memory usage and execution time.

States
Average 61036 Max 73012

Memory (Megabytes)
Average 131.50 Max 132.05

Time (seconds)
Average 0.03 Max 0.05

risk (positive event) in the vicinity of the decision boundary.

This will increase the value of the sensitivity to its maximum,

but will ruin the specificity score. This is interesting evidence

that can be taken into account when setting the thresholds of

risk discrimination.

The model checker execution time, memory used and states

explored show that the framework can be used together with

a medical software tool. We know that time is an important

factor for medical teams, since they need to make decisions

and analysis in a timely manner. Thus, and taking into account

the results presented in Table. III, it is possible to see that the

usage of a model checker does not increase significantly the

execution time. Another important result is concerned with the

fact that we only explore a small portion of the state space,

which allows for the application of the framework to larger

and more complex models.

These results also help validate why the GRACE risk score

is widely used.

VI. CONCLUSION

This paper applies the formal verification technique of

model checking at runtime to increase the confidence in the

application of Medical Condition Risk Scores. The proposed

technique consists in verifying whether an input to the MCRS

model is in proximity to its multidimensional decision bound-

ary. This principle increases trust in the risk score tool and

identifies cases in which categorical risk assessment should

be further examined.

With our approach we perform a tailored analysis of the

decision space. Common approaches disregard problem infor-

mation that is relevant for that analysis. For instance, medics

are not interested on a distance verification that is based on all

the features (risk factors), because some of them are binary or

categorical and patients with different values for those features

are not considered ”close” from a medical perspective.

The verification complexity of the model checker is suf-

ficiently small to allow for online verification results to be

produced efficiently. This is, in part, a consequence of the

model checking technique itself, which expands the graph

of reachable states and is therefore more efficient than both

testing and sensitivity analysis.

The paper describes the practical implementation of the

proposed framework, starting with a Python model for risk

score computation that is translated into the Promela language.

The Promela model examines input values in close proximity

to the input point (the actual patient case) and the verifier

generated by Spin may be executed during runtime, providing

a form of online verification. Using this principle it is possible

to determine if a case is close to a boundary and, to some

extent, explain for which reason that occurs. The expected

impact for practice is a greater ability to achieve online

verification of machine learning models.

Looking forward, it might be pertinent to partially automate

the specification translation step, for instance by adding a

compiler component to the framework, in order to deal with

scalability challenges that may arise in more complex models.
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