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A B S T R A C T

Edge Computing (EC) is a recent architectural paradigm that brings computation close to end-users with the
aim of reducing latency and bandwidth bottlenecks, which 5G technologies are committed to further reduce,
while also achieving higher reliability. EC enables computation offloading from end devices to edge nodes.
Deciding whether a task should be offloaded, or not, is not trivial. Moreover, deciding when and where to
offload a task makes things even harder and making inadequate or off-time decisions can undermine the
EC approach. Recently, Artificial Intelligence (AI) techniques, such as Machine Learning (ML), have been
used to help EC systems cope with this problem. AI promises accurate decisions, higher adaptability and
portability, thus diminishing the cost of decision-making and the probability of error. In this work, we perform
a literature review on computation offloading in EC systems with and without AI techniques. We analyze
several AI techniques, especially ML-based, that display promising results, overcoming the shortcomings of
current approaches for computing offloading coordination We sorted the ML algorithms into classes for better
analysis and provide an in-depth analysis on the use of AI for offloading, in particular, in the use case of
offloading in Vehicular Edge Computing Networks, actually one technology that gained more relevance in the
last years, enabling a vast amount of solutions for computation and data offloading. We also discuss the main
advantages and limitations of offloading, with and without the use of AI techniques.

1. Introduction

The main quality of end devices, such as smartphones, tablets, and
notebooks, is their mobility. These are increasingly omnipresent in our
daily lives as convenient tools for communication, entertainment, busi-
ness, social networking, among others. Furthermore, emerging mobile
applications typically require intensive computation and high energy
consumption, which end devices are not able to cope with (Cao and
Cai, 2018). However, Cloud systems mitigate this problem at the price
of higher latency and increased data communication.

To overcome this problem, Edge Computing (EC) presents itself as
a computing paradigm that brings Cloud resources closer to end-users,
to the edge of the network, in order to minimize some of the Cloud
Computing problems. EC was a term first coined by Akamai, in the
late 1990s, describing the architecture of content delivery networks (Li
et al., 2018a). Additionally, EC enables local data processing by taking
advantage of nearby devices.

There are four main architectures regarding the EC paradigm. A
brief definition of each will be provided next.

Multi-access Edge Computing (MEC), according to the European
Telecommunication Standards Institute (ETSI) (Patel et al., 2014),
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started to be named: ‘‘Mobile Edge Computing, and was defined as an
Information Technology service environment and Cloud Computing capa-
bilities at the edge of the mobile network, within the Radio Access Network
(RAN) and in proximity to mobile subscribers’’. However, since September
2016, the same Institute encompassed the non-mobile features of the
architecture, including Wi-Fi and fixed access technologies, Virtual
Network Functions and Software Defined Networking, as well as other
virtualization technologies apart from virtual machines, resulting in
the modification of name from ‘‘Mobile’’ to ‘‘Multi-access’’ (Mouradian
et al., 2018; Roman et al., 2018).

Fog Computing (FC) is defined by Cisco (Bonomi et al., 2012)
as ‘‘a highly virtualized platform that provides computation, storage, and
networking services between end devices and traditional Cloud Computing
data centers, typically, but not exclusively located at the edge of network’’.
Fog Computing arose in 2010 to cope with the vast amount of Internet
of Things devices and Big Data, as an extension of Cloud Computing
and designed for real-time low-latency applications.

The Cloudlet concept and architecture were proposed by Satya-
narayanan et al. (2009), and defined as ‘‘a trusted, resource-rich computer
or cluster of computers that are well-connected to the Internet and available
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for use by nearby end devices, offering computing and storage resources’’.
Cloudlets aim to endorse flexibility, mobility, scalability, and elasticity.
Thus, they are discoverable, generic, stateless servers located in single-
hop proximity of end devices, benefiting from virtual machines able to
operate disconnected (Dastjerdi et al., 2016). Acting as a data center in
a box and through a high-bandwidth network, Cloudlets resemble a set
of virtualized high-performance computers (Li et al., 2018a).

The term Mobile Cloud Computing (MCC) according to the Mobile
Cloud Computing Forum, referenced by Yi et al. (2015) is defined as,
‘‘an infrastructure where both the data storage and data processing happen
outside of the mobile device. Mobile Cloud applications move the computing
power and data storage away from mobile phones and into the Cloud,
bringing applications and Mobile Computing to not just smartphone users
but a much broader range of mobile subscribers’’.

One way to explore EC systems is for computation offloading
into the edge devices, which has already been successfully imple-
mented as an enabler of resource-intensive applications on end devices
(e.g. MAUI Cuervo et al., 2010 and Cuckoo Kemp et al., 2012).
Offloading is a solution to increase mobile systems’ capabilities by
migrating computation to more resourceful devices, located nearby,
such as edge nodes, fog nodes, Cloudlets, base stations or access points.
In addition, by remotely running applications, or parts of it, the end
devices’ battery lifetime will be longer (Huang et al., 2012). It is also
commonly used by single users to enhance the insufficient computation
resources of their processing device (Enzai and Tang, 2014). Khan
et al. (2014) defined computation offloading as the technique where
resource-intensive computations are migrated from a end device to the
resource-rich infrastructures, such as Cloud or nearby edge devices.
According to Kumar et al. (2013), ‘‘cyber foraging’’ and ‘‘surrogate
computing’’ are other terms by which computation offloading can also
be addressed.

To successfully achieve the benefits of processing power and energy-
saving which offloading aims, the following features must be available:
heavy computation resources, fast server, small data exchange, and
high bandwidth (Kumar et al., 2013). Fig. 1 depicts the computation
offloading process. The workflow begins with the execution of an ap-
plication: if the application supports offloading, its use is beneficial and
the resources needed are available at that moment, then offloading is
executed. Otherwise, the application is processed locally in the device.
If the application is able to find resources to perform offloading tasks
in EC systems, then it will continue to run on remote resources, instead
of on-device processing, thus achieving a successful offloading process.

The decision for offloading a task is not trivial, and the ques-
tions ‘‘why offload?’’, ‘‘what to offload?’’, ‘‘when should the task be
offloaded?’’, ‘‘how to manage the user mobility?’’, and ‘‘where to
offload the task?’’, makes the offloading decision even harder. Khan
et al. (2014) added to this complexity the different elements that are
involved in the computation offloading process, such as user, connectiv-
ity, smartphone, application model, application, and the resource-rich
infrastructure. La and Kim (2014) introduced five criteria for defining
the offloading schemes, however, Enzai and Tang (2014) discussed
six. The following criteria are a combination of these two offloading
proposals:

• Objectives: minimizing execution time and energy consumption;
• The granularity of components to offload: full or partial offloading

of the task, thread, application or program;
• Scheme: static or dynamic;
• Timing of transmitting components: pre-deployment, on-demand

transmission;
• Route of transmitting components: direct or indirect;
• Communication: client to server or server to server;
• Determination of offloading server : pre-determined or dynamically

discovered;
• Adaptation: contemplating the different contexts or instances of

task execution.

Fig. 1. Computation offloading process.

Offloading in EC environments is challenging. First, offloading may
not always achieve the lowest cost due to possible high communication
and remote execution costs that may also change with time or available
connections. Therefore, the software developer must always evaluate
costs when deciding whether to execute a job locally, on the end device,
or offloading to nearby cloudlets or other edge nodes. Thus, a dynamic
decision-making algorithm is necessary. Second, the user’s mobility is
an issue because their end devices can become disconnected from the
edge node to which it is offloading, preventing the user from receiving
the result, causing a failure. Moreover, there is a need to develop
admission policies for edge nodes so end-users can access these devices
and proceed with the offloading requests. Furthermore, the fluctua-
tions in Internet connection quality need to be accounted for (Zhang
et al., 2015). Liu et al. (2019) described yet another challenge, the
energy consumption spent in the offloading decision. Therefore, the
offloading process, due to its multiplicity of variables, is ideal for the
implementation of Artificial Intelligence (AI) techniques.

AI techniques are becoming one of the main trends in compu-
tation offloading coordination, essentially by the rising number of
research papers published in this area. These techniques will enable ef-
ficient access to massive amounts of distributed data over edge devices.
EC devices are evolving in what concerns processing power, energy
consumption, data storage, and memory capacity, creating space for
on-device Machine Learning (ML) (Yazici, 2018). Because network
environments are unstable and its parameters or requirements may
suddenly change, AI techniques can provide for intelligent on-time
reconfiguration. 5G infrastructures will allow EC systems to better
manage computation offloading by diminishing link costs, guaranteeing
higher bandwidths, and enabling massive scale connections, enforcing
decentralization, and trimming communication with Cloud data cen-
ters (Kiss et al., 2018). Also, achieving an efficient decision for the
offloading process in future 5G environments, will improve scenarios
such as smart cities, smart transportation, augmented reality, edge
analytics, and image/video processing. Moreover, every prospective
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computation offloading application will benefit or necessarily have to
consider 5G features.

In this work, we aim to provide an exhaustive literature review on
the application of AI methods in computation offloading. The main
contributions of this paper are the following:

• We provide a literature review on computation offloading in EC
systems without AI and the enhancements that could be achieved
by applying AI techniques.

• We provide a comparative analysis of AI techniques used in
computation offloading coordination in EC technologies.

• We provide an in-depth analysis of the use of AI for offloading, in
particular, the use case of Vehicular Edge Computing Network.

• We provide a discussion on offloading to edge/Cloud, using or not
the AI approaches, and on the main advantages and limitations of
the ML algorithms.

The rest of this paper is organized as follows. In Section 2, we
discuss the related work. In Section 3, we offer background knowledge
of EC and offloading methods, identifying some limitations. In Sec-
tion 4, we describe current AI approaches to EC computing offloading,
and analyze in detail the use case of offloading in Vehicular Edge
Computing Networks. In Section 5, we provide a discussion on the main
advantages and limitations of offloading, with and without the use of
AI. Finally, Section 6 concludes the paper and presents future work.

2. Related work

Concerning related work, despite the rise in the number of published
works on computation or data offloading, the amount of works survey-
ing this topic is still limited. Furthermore, addressing the use of AI in
EC environments is a quite recent approach.

In 2013, Kumar et al. (2013) provided a survey as an overview
of the background, motivations, techniques, systems, technological en-
ablers, architectures and research areas for offloading computation,
aiming to allow readers to get acquainted with computation offload-
ing for mobile systems. They also provide some insights on the of-
floading future which will rely on sensor deployment, that produce
huge amounts of data but have limited computing resources, and the
evolution of smartphones as the main computation device.

Dinh et al. (2013) addressed the issues in Mobile Cloud Computing
and specifically computation offloading in terms of static and dynamic
environments.

Fernando et al. (2013) discussed the major approaches in com-
putation offloading methods, such as client–server communication,
virtualization, and mobile agents, and discuss the advantages and
weaknesses of each solution. The authors mention the importance to
find an answer to how to perform offloading efficiently, and what
incentives can be provided for devices that share their resources. Some
other challenges are provided, such as virtualization techniques, which
also gain from the standardization of mobile systems, which are still
highly heterogeneous, and the difficulty to compare studies on energy
saving offloading techniques since it also depends on the application
itself.

In 2014, Rahimi et al. (2014) surveyed computation offloading as
the method to alleviate resource limitations in Mobile Cloud Computing
and also provide open research issues, such as joint optimization efforts
amongst devices, pricing an offloading service is still not defined,
and studies of effectiveness of client/server or virtualization-based
architectures to run different mobile applications.

In 2015, Wang et al. (2015) discussed the challenges and future
direction of computation offloading by presenting the existing solution
in terms of static partitioning, dynamic profiling, and the offloading de-
cision. The authors highlight the importance of application partitioning
and proceed to mention the necessity for automatic code/computation
offloading since it is still human-based.

In 2016, Ahmed and Ahmed (2016) surveyed Mobile Edge Comput-
ing and discuss several frameworks, algorithms or scenarios where com-
putation offloading is used. They state offloading should be performed
in edge devices, keeping low latency, when compared to Cloud offload-
ing methods, and reliability, even when a node leaves the network, is
a feature that must be integrated on the offloading process.

Pang et al. (2016) developed their work regarding Cloudlets and
the computation and data offloading, where the first was analyzed
regarding the objective, underlying technology, decision and partition
granularity, comparing the approach where a Cloudlet node is included
to other offloading frameworks without this middle layer node. The
authors also introduce two interesting research directions, such as
creating a cluster of Cloudlets to aid every node with the produced
data, restraining the need for data to travel to the core of the network,
and the use of Cloudlets to perform social media offloading, keeping
content and services in the edge, diminish security and privacy risks.

In 2017, Mach and Becvar (2017) described Multi-access Edge Com-
puting benefits in computation offloading and survey the research in
three main extents, the decision on offloading, the computing resource
allocation, and mobility management. This detailed survey introduces
open issues on the distribution and management of resources, the
difficulties around the offloading decision, allocation of computing
resources, mobility management, since mobile offloading may occur
while the user is moving, and traffic management considering also
conventional data with offloaded data.

Wang et al. (2017) added a literature review on the research ef-
forts on computation offloading regarding the following five scenarios:
single-user systems, multi-user systems, offloading to Multi-access Edge
Computing servers, offloading to other devices and mobility awareness.
Nonetheless, the authors state that cooperation between the edge and
the core is crucial to improve overall system capacity, and the inte-
gration of computing, storage and communication will allow optimal
performance, but it is still an open issue.

In 2018, Aazam et al. (2018) presented offloading in Fog Computing
environments regarding eight criteria used in the offloading process:
excessive computation or resource constraint; latency; load balancing;
permanent or long-term storage; data management and organization;
privacy and security; accessibility; and affordability, feasibility, and
maintenance. Then proceed to introduce the enabling technologies,
such as wireless technology, smart, intelligent, and autonomous appli-
cations, virtualization and containment, and parallelism. The scenarios
which offloading is fundamental, and future research challenges in
offloading, such as fault-tolerance and reconfiguration of the offloading
system, incentives, monitoring and scalability amongst others already
mentioned in previous works.

In 2019, Fei et al. (2019) explored how ML methods should be
deployed and integrated into Cloud and Fog architectures for better ful-
fillment of mission-critical and time-critical requirements arising from
cyber–physical systems, but lack to explore computation offloading as
an enhancement of their system.

Cao et al. (2019) addressed intelligent offloading in Mobile Edge
Computing (Multi-access Edge Computing). The authors detailed some
applications, such as video acceleration, augmented reality, connected
vehicles, and stream analysis. These applications would benefit from us-
ing ML-based approaches, which the authors started to divide into two
categories by learning style: Reinforcement Learning and Supervised
with Unsupervised Learning. However the remaining two categories,
Deep Learning and Deep Reinforcement Learning are types of algo-
rithms that are contained within the three main learning styles, thus
their division is not appropriate. Nevertheless, the authors approach
different algorithms for each learning style, provide the best application
for each and survey works using each algorithm, such as Markov Deci-
sion Process and Q-Learning (Reinforcement Learning), Support Vector
Machine and Support Vector Regression (Supervised), K-means (Un-
supervised Learning), Multi-layer Neural Networks (Deep Learning),
and Deep Q-Learning (Deep Reinforcement Learning). Moreover, some
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advantages and problems using AI in EC environments were discussed,
highlighting the comparison between scenarios with and without ML.
Finally, they presented an intelligent offloading framework, which
observes-orients-decides-acts with an evaluation system for continuous
improvement of the decision process loop.

Zhou et al. (2019) surveyed Edge Intelligence, focusing on Deep
Neural Networks. The authors provide a brief introduction to AI, al-
though mixing Deep Neural Networks and Deep Reinforcement Learn-
ing models. The authors add four benefits between EC and AI, such
as edge data needs AI to achieve its full potential, AI can prosper
with EC data and application scenarios, the wide use of AI requires EC
as a fundamental infrastructure, and EC can gain popularity with AI
applications. The authors also presented a six-level division for Edge
Intelligence, depending on the amount and path length of data offload-
ing. From the closest to the Cloud – Cloud–Edge Coinference and Cloud
Training – to the closest to the edge — All On-Device. This path leads to
minor transmission latency of data offloading and bandwidth costs, and
increased data privacy. Concerning training architectures, the authors,
consider three possibilities, centralized (just Cloud), decentralized (on
edge devices), and hybrid (Cloud–edge devices). For the Deep Neural
Networks model inference, the authors considered four architectures:
edge-based, device-based, edge-device, and edge-Cloud. Regarding of-
floading, the authors consider this technique to partition the model in
order to reduce the weight of Edge Intelligence applications execution
on end devices. From the several future research directions mentioned,
offloading integrates the analysis on efficient service discovery and
resource management. Despite being a comprehensive survey on just
one group of AI techniques Deep Learning, offloading is also just
superficially mentioned.

Deng et al. (2019) also surveyed Edge Intelligence as an integration
between EC and AI. Furthermore, the authors categorize their approach
in AI for Edge and AI on Edge, considering that both should enhance
Quality of Experience for the end user. The first focus on granting
better solutions to optimizations problems. The authors presented sev-
eral research areas which where divided into Topology, Content, and
Service (Computation Offloading is placed within the Service area since
AI delivers effective tools for solving complex learning, planning, and
decision-making problems). The latter, researches the implementation
of AI models processes on the edge, regarding the following research
areas: Model Adaptation, Framework Design, and Processor Acceler-
ation. In addition, the authors mention challenges for each branch
of Edge Intelligence: model establishment, algorithm deployment and
balance between optimality and efficiency are connected to AI for
Edge. Data availability, model selection and coordination mechanism
are associated challenges for AI on Edge.

Chen and Ran (2019) presented a review at the intersection of Deep
Learning and EC, focused on the applications, training methods and
challenges. The authors state that applying Deep Learning at the edge
of the network will tackle the latency, scalability and privacy challenges
associated with centralized approaches. The authors surveyed methods
for fast inference, which were divided into three architectures: on-
device computation, edge server computation, and computing across
edge devices. Offloading was addressed in the last two architectures. In
edge server computation the authors found existing works on offloading
data. In computing across edge devices the analysis is performed under
four scenarios: binary offloading (offloading the entire Deep Neural
Network or not), partial offloading (only part of the computations
are offloaded), hierarchical offloading (combining edge devices, edge
servers, and Cloud in the offloading process), and distributed comput-
ing (the Deep Neural Network is simply distributed and not offloaded).
In these scenarios, the decision aims to reach the best trade-off between
energy consumption, accuracy, latency and input size for the models.
The authors also reviewed a recent approach on Deep Learning at the
edge which consists on training the models on edge devices. Regarding
the challenges of offloading Deep Neural Networks, the authors men-
tion the continuous evolution of the models, which may be unfitted to

be partial offloaded, increasing the difficulty of the offloading decision
process.

From our bibliographic research, prior to 2019, no studies addressed
the use of AI algorithms for computation offloading. However, as a
result of the improvements of edge devices computation capabilities,
deploying AI, and more especially ML algorithms became feasible.
Thus, it excludes the need to regularly use Cloud services to benefit
from the ML models. Furthermore, the offloading process, including
the decision, achieves high value with this recent approach in these
stochastic environments.

3. Fundamentals of computation offloading in edge computing

Distributed Computing paradigms have been continuously evolv-
ing. Recently, Cloud Computing introduced new features such as on-
demand services and applications, cost-effective, scalable, and efficient
data storage and management (Hall and Miller, 2018), fault-tolerance,
simple management, fair pricing policies, among others, resulting in
worldwide availability (Mouradian et al., 2018). However, the techno-
logical progress and the quick rising of the amount of data generated,
processed and stored, brought new problems to Cloud Computing.
For example, undesirable latency in accessing Cloud servers, lack of
mobility support, the ineffectiveness of context awareness, overhead
in data transmission (Li et al., 2018a), difficulties to assure privacy,
removal of systems control from the users to the Cloud (Garcia Lopez
et al., 2015), limitations on location and connectivity between Cloud
and end devices (Mouradian et al., 2018).

To tackle these challenges, a new computing paradigm was created,
known as EC, not to replace Cloud Computing, but as its complement.
Moreover, because EC processes data locally, benefiting from local
devices, it surpasses mere data migration or computation offloading
from the Cloud, by encompassing latency-sensitive, geo-distributed and
mobile applications, as well as distributed control systems (Li et al.,
2018a). Furthermore, EC systems aim to drive computation proficiency
to the edge of the network, lower the restrictions of a centralized
architecture, such as implementation costs, scalability, lower quality of
service and lack of real-time solutions, among others (El-Sayed et al.,
2018).

In an EC architecture (Fig. 2), the end devices are not only data
consumers, but also data producers. To minimize communication bot-
tlenecks and latency, and to enhance performance, many of the oper-
ations are performed by nearby edge devices, such as base stations,
access points or routers. Some tasks performed by edge devices are pro-
cessing tasks on data that was offloaded, data caching and/or storage
when long-term data storage is not needed and can be disposed of. In
addition, using edge devices to perform computation will also improve
security and privacy protection. Cloud data centers are used when long
term storage or high computation resources are needed.

In this paper, the EC term will cover the previously mentioned ar-
chitectures of Fog Computing, Cloudlets, Multi-access Edge Computing,
and Mobile Cloud Computing.

Computation offloading is one of the capabilities of these systems
and has been explored by several authors. If an application involves
minor data communication but major computational processing, then
computation offloading is the appropriate solution, which aspires to
prolong battery lifetime (Taleb et al., 2017), benefiting from external
computing resources and storage capacity (Li et al., 2018a). How-
ever, offloading also introduces costs as it implies higher systems and
communication complexities.

Table 1 presents the challenges of computation offloading meth-
ods identified by different authors and highlights current approaches/
solutions. In the following subsections, we will address in detail the
analysis according to the main challenge tackled by the authors: energy
consumption or battery saving, offloading complexity, and a group of
other challenges.
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Fig. 2. Edge computing architecture.

3.1. Energy consumption

The following reviewed papers aim to address the challenge of
energy consumption or saving the devices’ battery.

Cuervo et al. (2010) presented MAUI which approaches code of-
floading in a Mobile Cloud Computing environment, regarding both
energy and performance issues. MAUI analyzes the performance of
the last processed method to decide dynamically whether offloading
is beneficial.

Barbarossa et al. (2014) used an approach based on FemtoClouds
which leverage the nearby unused end devices at the network edge,
thus diminishing network latency while offloading computation to the
traditional Cloud data center.

Chen et al. (2016) tackled the computation offloading decision-
making problem as a game theory approach among multiple mobile
device users for Mobile Edge-Cloud Computing.

Ur Rehman et al. (2016) presented a data mining offloading scheme.
It is an opportunistic evaluation of the size of unprocessed data, privacy
configurations, contextual information, and available on-board local
resources, such as memory, CPU, and battery power. The offloading
decision is performed on the end device. If it is beneficial and the edge
resources are available, then the data is transmitted.

Wang et al. (2016) formulated a nonconvex problem to address
minimization of both energy consumption by the smart device and
execution latency. The proposed setup does not benefit from full of-
floading. Also, through analysis of the optimal solutions, the algorithm
is able to successfully decide when to compute data locally.

Chen and Hao (2018) managed to achieve optimal task offloading in
Software Defined Ultra-Dense Networks. By solving a NP-hard program
the task offloading scheme was able to diminish the task duration while
contemplating the user device energy consumption.

Wang et al. (2019) first approached the CPU clock frequency in
the offloading decision. To minimize energy cost and queue delay, the
authors proposed a distributed algorithm regarding clock frequency
configuration, transmission power allocation, channel rate scheduling
and offloading strategy selection. This algorithm optimizes both clock
frequency for local execution and the transmission power in edge Cloud
execution.

3.2. Offloading complexity

In this group the authors tackled challenges associated with offload-
ing complexity, such as heterogeneity, availability and scalability.

Chun et al. (2011) introduced CloneCloud which uses a static pro-
gram analyzer followed by dynamic program profiling to determine the
partitioning of an application. These processes are done offline, then
offloaded to the Cloud which runs a clone of the end device.

Kosta et al. (2012) proposed ThinkAir, a framework for code of-
floading which runs Mobile Cloud Computing applications on the Cloud
through parallel computation.

Kemp et al. (2012) developed Cuckoo for Android and is a program-
ming model for code offloading focused on the intermittent network
connection.

Oueis et al. (2015) implemented an algorithm designed for cluster
formation and load balancing. This cluster would be beneficial to the
offloading process by joining resources, without increasing the system
complexity.

Orsini et al. (2016) presented CloudAware to monitor networks, net-
work strength, available surrogate computing resources for offloading,
and the workload of each server, which was the responsibility of a
discovery service.

3.3. Other challenges

Memory replication and offloading quality are the remaining
challenges, that did not fit any of the previous categories.

Abdelwahab et al. (2016) introduced REPLISOM, aiming to trim
Cloud responsiveness when multiple Internet of Things (IoT) devices
replicate memory objects to the edge. The architecture enhances the
Cloud Computing resources at the edge that provide clone virtual
machines, storage and network resources for IoT applications.

Zhang et al. (2017) created a vehicular edge computing offload-
ing scheme, where the several vehicular edge servers had a common
backup server to share information. This process was addressed as a
game theory through incentive mechanisms. Also, a distributed algo-
rithm was implemented to reach the optimal computation offloading.

Computation offloading assumes multiple actions. Determining the
cost of the offloading procedure needs to address some decisions,
such as how to maximize the benefits of offloading; what will be the
offloading target, code or data; what is the destination of the offloading
process; will offloading consider the full task or just a minor part of it;
and when should the offloading process occur. The decision between
local processing or offloading is the outcome of all these choices.
Latency, energy, and performance metrics are the main drivers of the
process. Within this process, we can review Fig. 1 and zoom in on one
of the steps in the flow of the offloading decision named ‘‘Does the
application benefit from offloading?’’. Fig. 3 depicts the main questions
the offloading decision must answer in order to achieve the proposed
benefits. The questions presented aim to help the process of deciding
whether the offloading will be beneficial or not.

How? The decision must sustain how does the application bene-
fit from offloading, is through the improvement of the overall per-
formance, by maximizing computation, or by reducing the energy
consumption?
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Table 1
EC approaches to computation offloading.

Subsection Challenges Approach Reference

Energy consumption

Higher energy consumption when the
latency to the server is low.
Using profiling to estimate the energy
savings of code offloading

Framework: MAUI
Figuring if the method can and should be offloaded.
Calculating the cost of offloading.

Cuervo et al. (2010)

Optimizing the communication and
computation resources jointly

Latency and energy constraints.
Optimal resource allocation approach.

Barbarossa et al. (2014)

Achieve efficient wireless access
coordination
Low energy efficiency and long data
transmission time

Use a game theory algorithm to choose between local and Cloud
computing, while achieving efficiency.

Chen et al. (2016)

Limitations in computational power,
battery resources, and memory availability

The decision algorithm considers data size, privacy settings, contextual
information, and resource availability.
The cost–benefit calculations are performed in the end device.

Ur Rehman et al. (2016)

Energy consumption and latency
minimization

Approach partial computation offloading by the optimization of
computational speed of the smartphone, transmit power, and offloading
ratio.

Wang et al. (2016)

Minimizing latency, delay and devices’
energy consumption

Addressed task placement and resource allocation for offloading
optimization.

Chen and Hao (2018)

Minimizing energy cost considering time
and energy

Consider application completion deadline and processing capability
constraints to choose the offloading destination.

Wang et al. (2019)

Offloading complexity

Heterogeneity in decisions Framework: CloneCloud
Not just yes/no decision but on the amount of offloaded applications.
Removing the developer of the equation by making partitioning
automatic and seamless.
Calculating the cost of offloading.

Chun et al. (2011)

Scalability Framework: ThinkAir
Perform on-demand resource allocation.
Manipulates parallelism by dynamically creating, resuming, and
destroying Virtual Machines.

Kosta et al. (2012)

Complex programs for offloading Framework: Cuckoo
Custom runtime system.
Resource manager.
Programming model for developers.

Kemp et al. (2012)

Customizable design
Reduce complexity

Split the resources allocation process.
Computation clusters for unsatisfied requests.

Oueis et al. (2015)

Uninterrupted availability
Limited requirements

Framework: CloudAware
Holistic approach. Context adaptation.
Guiding offloading decisions.
Techniques to fit mobile applications and developer’s mindset.

Orsini et al. (2016)

Other challenges Memory replication Framework: Replisom
Splitting the Cloud resources to local resources.
Compressed sampling construction.

Abdelwahab et al. (2016)

Maintain offloading quality with limited
resources

Used a game theory algorithm in vehicular edge, to design an optimal
multilevel offloading scheme.
Maximizes the utilities of both the vehicles and the computing servers.

Zhang et al. (2017)

Fig. 3. Questions to decide if the offloading is beneficial.
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What? What type of operations benefit from offloading? It is essen-
tial to determine if the offloading process will target data storage or
code/application processing.

Where? It is crucial to identify resources for offloading so that the
application benefit from the process. Will the process stay on the edge
of the network, in a cloudlet, in a fog node, or in another end user
device? Or, in alternative, be offloaded to the Cloud server on the core
of the network. Such decision must also take into account the user
mobility.

How much? Determining how much offloading will be performed
is decisive. There is a need to decide the amount of data to transfer,
or how many parts of the computation complexity to offload, while
considering the networks’ trade-offs.

When? It is critical to establish the ideal moment to offload a
task or data. Among the alternatives are: at the beginning; only when
the devices’ resources cannot cope with the processing requirements;
or with a dynamic provision, depending on the devices’ resources
availability or network conditions.

It is mandatory to know if the application benefits from offloading.
It is only after this conclusion that the system will assess if offloading
the application will improve computation or save energy. The cost
of offloading is based on solving the challenges raised by each ques-
tion. Accurately answering these five questions will enable the correct
offloading decision and reduce latency, promoting users’ quality of
service and experience, thus the offloading decision will ultimately
maximize utilization while saving energy.

The provided examples, share a common handicap, in terms of
management of the computation offloading. These approaches are not
adaptable to the environment and its changes, not learning from them.
In the fast-changing environment we live in, they will quickly become
obsolete, and thus are unacceptable solutions. Also, these approaches
are only suitable for each cited scenario and are not widely-spreadable.
To overcome these problems, AI arises as a promise for better EC
computation offloading, contributing to making such approaches more
transferable, adaptable, and scalable, increasing the systems or frame-
works applicability to different scenarios, and not just one. In the
next section, we will discuss the current AI approaches in EC systems,
examining results, and pointing out limitations.

4. Artificial intelligence approaches to computation offloading in
edge computing

In the previous section, we identified several cases of tasks and
computation offloading applications to edge devices, none of which
used AI techniques. Recently, several authors implemented AI in of-
floading with encouraging results, since it enhances the infrastructures’
adaptability to continuously changing requirements, and reorganize
themselves when necessary (Kiss et al., 2018). Bierzynski et al. (2017)
stated that increased efforts to apply AI techniques on the edge of the
network are required to unlock its full potential, advancing the devel-
opments of supporting hardware and communication infrastructures.
Edge Intelligence is a term already used by some authors, such as Deng
et al. (2019) and Zhou et al. (2019), as the integration between EC and
AI. Zhou et al. (2019) discussed the lack of collaboration among edge
and Cloud, as one limitation of the Edge Intelligence scope, direct at
deploying AI models on the edge servers or devices.

AI has its origins in the middle of the past century. McCarthy (1987)
considered AI as the science of creating intelligent machines, including
intelligent computer programs, and ML as conceiving systems that can
adapt and learn within an environment. ML is a subfield of AI that
supplies computers the knowledge to learn without being explicitly
programmed (Samuel, 1959).

Depending on the feedback available to the learning system, we
can classify ML tasks into Supervised Learning, Unsupervised Learn-
ing, Semi-supervised Learning, and Reinforcement Learning (Ayodele,

2010). The first two are the most common and explored, however,
Reinforcement Learning use is increasing.

Supervised Learning is the most frequent type of ML. This type
of learning consists of the data and the predicted output for every
combination of inputs. The aim is to map the relationship between
the input variables and its outputs so that, for a new set of inputs, it
will predict the correct output. The learning process results in the term
supervised, where the algorithm iteratively seeks to learn to predict from
the dataset provided and is corrected until it achieves a predefined error
rate.

Unsupervised Learning has no such supervision, meaning that for
a combination of inputs, there is no class or label for it. Here the goal
is to find a structure or distribution in the input space so that the
algorithms can find recurring patterns.

Semi-supervised Learning is located in between supervised and
unsupervised learning, as it has both labeled and unlabeled data.
Because labeling data is very time expensive, usually only a small
set of data is labeled. Semi-supervised learning may refer to either
transductive or inductive learning, where transduction means to label the
unlabeled data through an approximate model, and the latter to the
prediction function for the input data.

Reinforcement Learning interacts with the environment while
learning a model that outlines situations to actions, as to maximize
the reward. The algorithms observe the produced results in each in-
teraction. The model must find the best actions to take to achieve the
best reward because it is not stated which direction is the best. Each
iteration impacts the next iteration that will encompass the previous re-
ward. Trial-and-error characterizes this type of learning. Reinforcement
learning does not learn from data, it learns from its own experience.

In this section, we provide a literature review of applications of AI
techniques in computation offloading through edge devices, organized
in families of ML algorithms by similarity. We observed the following
classes of algorithms in the EC offloading literature: Neural Networks
and Deep Learning, Regression, a single group of Instance-based, As-
sociation Rule Learning, Decision Tree and Bayesian. We compiled a
set of other ML algorithms, that do not fit the previously mentioned
categories, in the Other Algorithms subsection. Furthermore, we provide
an in-depth analysis of the use of AI for offloading, in particular the
use case of Vehicular Edge Computing Networks. Finally, we provide a
summary of all encountered algorithms, together with a brief analysis.

4.1. Neural networks and deep learning algorithms

An artificial Neural Network is a model of computation inspired in
the structure of neural networks in the brain. It can be described as
a directed graph, where the nodes are the neurons and the edges are
the links between them. Each neuron has as input a weighted sum of
the outputs of the neurons connected to its incoming edges (Shalev-
Shwartz and Ben-David, 2013). However, these are limited, due to
the training time and model complexity amongst others, and deep
neural networks, currently called deep learning, emerged to surpass
traditional approaches in training neural networks. These are very
specific neural networks, with more players, different protocols, and
more complexity. Nowadays, these reach great performance on several
problems such as computer vision, speech recognition, and natural
language processing (Nielsen, 2015). Deep learning adopts numerous
layers to implement computational models and embody data abstrac-
tions. Having its roots in conventional neural networks, recent studies
state that it considerably outperforms its predecessors (Shyu et al.,
2018). Both of these algorithms belong to the Supervised Learning style.

Yu et al. (2017) developed a multi-label classification approach to
coordinate offloading, and to minimize the computation and offload-
ing overhead they established a Deep Supervised Learning method
in mobile edge computing devices. Their results show that the pro-
posed framework can decrease system cost up to 49.24%, 23.87%,
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15.69%, and 11.18% compared to the following schemes: ‘‘no offload-
ing’’, ‘‘random offloading’’, ‘‘total offloading’’ and ‘‘multi-label linear
classifier-based offloading’’, respectively.

Kang et al. (2017) used a systematic approach to identify the
optimal points to partition computation and designed Neurosurgeon,
a scheduler to autonomously segregate Deep Neural Network compu-
tation between end devices and data centers. Neurosurgeon is highly
adaptable and using its intelligence partitions computation for latency
or mobile energy enhancements. Neurosurgeon was evaluated through
a mobile development platform, achieving an average improvement
in latency by 3.1x, up to 40.7x, energy consumption diminished on
average by 59.5%, up to 94.7%, and data center throughput attained
increases averaging 1.5x, up to 6.7x.

Alelaiwi (2019) addressed the difficulties of determining the best
node to receive the offloaded computation in an edge/fog–Cloud envi-
ronment. By proposing a Deep Learning based approach, they can select
the node with the shortest response time, after learning the request and
response-time history of the nodes and predicting the response time
of the future request. The performance evaluation of the prediction
models between the two fog nodes and a Cloud node resorted to the
Mean Absolute Percentage Error (MAPE) and R-squared, which were
normalized, and all three models achieve a MAPE under 0.1 and a
R-squared greater than 0.6, meaning high accuracy in response time
prediction, thus the node with minimized response time was selected.

The works that made use of Deep Learning Algorithms achieved
promising results when compared to baseline solutions, especially the
works of Yu et al. (2017), Kang et al. (2017) and Alelaiwi (2019)
that provided quantitative results and allow a better understanding of
how much better their approach was. Furthermore, the specific algo-
rithms presented were Deep Supervised Algorithm to calculate offload-
ing accuracy and Deep Neural Network to calculate latency, energy
consumption, and data throughput, respectively. Despite using different
techniques to evaluate contrasting features, both achieved good results
indicating a wide range of applications for these algorithms.

In addition, to configure and manage networks intelligently and
autonomously, Deep Learning algorithms are feasible (Fadlullah et al.,
2017). Moreover, these algorithms automatically extract features min-
imizing human effort and domain knowledge to gather discriminating
characteristics (Shyu et al., 2018), making them highly appreciated in
the heterogeneity of EC environments. Furthermore, these techniques
may be applied in different scenarios, despite having been developed
for specific use cases, meaning that both methodology and architecture
are generalizable.

4.2. Regression algorithms

Regression problems are a form of supervised learning. Regression
tries to predict continuous values, based on the relationship between
two variables, and how much one influences the other. These methods
attempt to explicitly model the relationship between the inputs and
the outputs. The model is refined, after each iteration, based on the
measure of the error in the predictions made. In the go-to methodology
the algorithm builds a model on the features of training data and
uses this model to predict values for new data. Some examples of
applications are financial forecasting, trend analysis, marketing, time
series prediction, and even drug response modeling (Alpaydin, 2014).
In this subsection, we will review the literature that uses regression
algorithms to perform computation offloading. These are Supervised
algorithms.

Khoda et al. (2016) motivated by cost-effective offloading decisions,
developed an intelligent code offloading decision-making system. Ex-
Trade improves application response time while saving end devices’
energy. Using a nonlinear optimization solution, the offloading decision
is made by the Lagrange Multiplier which inputs intelligence to the sys-
tem to capture its environment and achieve high accuracy in offloading
prediction, save computation time and energy. To estimate execution

time, the authors used a Statistical Regression-based algorithm, which
considered the dynamic behavior of the environment and application
usage.

Kwon et al. (2016) proposed f_Mantis, a feature-based forecasting
technique to overcome the input-sensitivity challenge of mobile appli-
cation performance. Regarding the metrics of execution time, energy
consumption, memory usage, and state size, the system calculates if
running the application is more profitable than offloading it. Through a
Non-Linear Regression algorithm, f_Mantis predicts both dividends and
costs of offloading a method somewhere in the application execution,
contributing to factual offloading decisions that diminish running time
or energy waste of a mobile application.

Khoda et al. (2016) only considered one Cloud service provider
for a mobile device in the 5G system, in the system evaluation and
when compared to ThinkAir, ExTrade over-performed considering com-
putation time saving, prediction accuracy, and energy-saving metrics.
Regarding the f_Mantis evaluation (Kwon et al., 2016), the system
achieved high rates of accuracy when forecasting the gains and costs
of offloading, granting precise offloading decisions that allowed saving
energy and trimming running time of a mobile application.

The results regarding Regression Algorithms are also promising as
a technique to coordinate computing offloading in EC systems. The
amount of published works is lower than the one identified in the previ-
ous category of ML algorithms, as well as the use cases since the authors
do not provide its feasibility in real-world scenarios, instead, they
provide theoretical problem solving through regression algorithms.

4.3. Instance-based, association rule learning, decision trees and Bayesian
algorithms

Instance-based are non-parametric methods, also called memory-
based learning, that stores the training instances in a lookup table
and interpolate from these. An Association Rule is an implication of
form X -> Y, where X is the antecedent and Y is the consequent of
the rule, i.e., Y is the dependent variable. These methods are used
in data mining applications, e.g. web sites that recommend books,
movies, music, among others (Alpaydin, 2014). A Decision Tree, also a
non-parametric method, is a hierarchical data structure implementing
the divide-and-conquer strategy. The local region is identified in a
sequence of recursive splits in a smaller number of steps (Alpaydin,
2014). Bayesian rules are used to calculate the conditional probabilities
of the classes having a direct influence on each other (Alpaydin, 2014).
All of these are Supervised Learning algorithms, except for Association
Rule that belongs to the Unsupervised Learning style.

Eom et al. (2013) evaluated the possibility to use ML techniques in
an adaptive scheduling problem, regarding the memory limitations, in a
mobile offloading framework. They used the classifiers of RandomTree
(Decision Trees Algorithms), Instance-Based Learning (Instance-based
Algorithm), and Rule-Based Learning (Association Rule Learning Al-
gorithms) and compared the three in the scheduling problem. In the
provided evaluation, Instance-Based Learning was the best, operating
7% better than RandomTree and 3% than Rule-Based Learning. Re-
garding the best fit, Instance-Based Learning, they proceed to prove
its benefits and the scheduler adaptability to dynamic network circum-
stances. Using an image processing workload to be offloaded under
changeable network bandwidth conditions, they managed to make the
right scheduling decision in 87.5% of the occurrences.

Eom et al. (2015) developed MALMOS (MAchine Learning-based
Mobile Offloading Scheduler) which is a ML classifier that decides
whether mobile computations are run locally rather than offloaded
while implementing a training mechanism. This feature permits the
scheduling to dynamically accommodate its decision under previous
offloading verdicts and their precision. The authors evaluated per-
formance and cost of three ML algorithms: Instance-Based Learning
(Instance-Based Learning Algorithms), Perceptron (Artificial Neural
Networks Algorithms), and Naïve Bayes (Bayesian Algorithms), re-
garding the classifier training time, classification time, and scheduling
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accuracy. MALMOS adaptability was tested regarding several network
circumstances and computing potential of external resources using an
Android-based prototype. Under its offloading accuracy evaluation,
MALMOS outperformed two scheduling policies, threshold-based and
linear equation-based, by 10.9% to 40.5%.

Crutcher et al. (2017) aimed to diminish resource consumption
through the identification of the correct edge node to collect an of-
floaded task. By integrating elements from Knowledge-Defined Net-
working and historical data, they managed to introduce smart predic-
tions on offloading costs. The nodes for computation offloading were se-
lected through a k-Nearest Neighbor (Instance-based Algorithm). Their
results exposed the modeling accuracy with regression over numerous
network metrics, and in certain cases, k-Nearest Neighbor queries using
Euclidean distance are more promising rather than rectilinear distance.

Junior et al. (2019) addressed the problem of offloading under-
achievement when ignoring contextual information, incurring in im-
precise decisions that result in the deficient performance of the overall
system. To achieve a great accuracy level in the offloading decision,
the authors contemplated a Context-Sensitive Offloading System that
clouts on ML reasoning techniques and powerful system profiling. For
the decision-making on whether the computation should be offloaded
or not, this work used k-Nearest Neighbors (Instance-based Algorithm),
Rules (Association Rule Learning Algorithms), Decision Tree (Decision
Trees Algorithms) and Naive Bayes (Bayesian Algorithms). Moreover,
two different evaluations took place. The first evaluated the best two
performing algorithms, J48 (C4.5) and JRIP (Rules-based), within their
database of classification algorithms which had the previous two-plus
IBK (k-Nearest Neighbors) and Naive Bayes algorithms, and achieved
a 95% offloading decision accuracy. The second, contemplated struc-
tured and authentic scenarios, with shifts on context information be-
tween experiments, which attained precise decisions while enhancing
performance and energy consumption.

Overall, all the mentioned algorithms achieved auspicious results.
Systems were compared in terms of scheduling accuracy in Eom et al.
(2015), energy consumption and time sending data in Crutcher et al.
(2017), in Junior et al. (2019) specificity, sensitivity, precision, F1,
false positive rate and false negative rate, and, finally, in Eom et al.
(2013) bandwidth and offloading decision accuracy. All approaches
outperformed the baseline systems or in the case of the work developed
in Eom et al. (2013) the authors compared amongst each other three
classifiers in an offline offloading scheduler. Nevertheless, these ap-
proaches fail to use real-world scenarios and are limited to theoretical
approaches to the quality of their algorithms. Except for the work
developed in Junior et al. (2019), the only that test a real scenario,
face recognition, using a Cloudlet device to receive the offloaded
application.

4.4. Other algorithms

In this subsection, we will detail different algorithms that do not
fit the previous categories. Some of these are well studied and docu-
mented, such as the Markov Decision Process and Q-Learning. Markov
models use a parametric random process to generate the input se-
quences, and since the states are not observable, whenever the model
visits a state, an observation is recorded that is a probabilistic function
of the state. Q-learning searches the optimal policy of offloading by
a trial-and-error method, thus it is essential that the decision-maker
calculates the trade-off between exploration and exploitation in an un-
known environment (Cao et al., 2019). Markov models and Q-learning,
aim to learn the best policy, which is the sequence of actions that
maximize the total reward (Alpaydin, 2014). Most of the algorithms
presented in this category belong to the Reinforcement Learning style.
Nevertheless, others, such as Genetic approaches are Supervised.

Zhang et al. (2015) developed an optimal offloading algorithm for
handling connectivity fluctuations in Cloudlets. Both the users’ mobil-
ity and local load, as well as both Cloudlets’ admission control and

availability, were considered to analytically calculate the success prob-
ability of effective offloading schedules. By defining and determining
a Markov decision process model aiming to diminish computation and
offloading costs, authors achieved an optimal policy for the end user,
which attained great results when compared to conventional baseline
schemes.

Alam et al. (2016) proposed a Reinforcement Learning multi-agent-
based code offloading coordination in a fog environment, delivering to
end users a low-latency service. End devices are heterogeneous and for
that reason, resource requirements change over time and space becom-
ing one major challenge. Their evaluation, made by simulations, mainly
studied energy consumption and response time, and achieved good re-
sults compared to only phone or Cloud approaches and compared with
the ThinkAir system, which is a framework with both dynamic adap-
tation and scaling of computational performance, developed for com-
putation offloading in Mobile Cloud Computing environments (Kosta
et al., 2012).

Cao and Cai (2018) investigated the challenge of making a com-
putation offloading decision in a multi-user environment. Regarding
a Cloudlet-based Mobile Cloud Computing system, they developed a
non-cooperative game which contemplates communication and com-
putation costs of computation offloading. This game includes at least
one pure-strategy Nash Equilibrium Point, which means no player
benefits from altering only their own strategy, thus the introduction
of ML to customize each end device’s decision-making regarding the
unknown and changing environment. Authors developed a Fully Dis-
tributed Computation Offloading Algorithm to encounter the Nash
Equilibrium Point where no data sharing is allowed. Their algorithm
augmented the number of Cloudlets computing end devices’ data,
keeping a low execution cost across the system when compared to local
computation by end devices.

Chen et al. (2018) used a Multi-access Edge Computing environment
considering the high availability of base stations for computation of-
floading, which was modeled as a Markov decision process. The goal
was to enhance performance, regarding the task and energy queues
states, and the channel qualities between end users and base stations,
in the offloading decision. They introduced a double deep Q-network,
named DARLING, to determine the best computation offloading pol-
icy in a changeable network. Furthermore, a Q-function decomposi-
tion technique was merged with the double deep Q-network, named
Deep-SARL, resulting in a new learning algorithm to solve stochastic
computation offloading. The evaluation determined considerable gains
in computation offloading performance compared with the baseline
policies.

Wang et al. (2018a) merged Deep Reinforcement Learning tech-
niques and Federated Learning framework with the mobile edge sys-
tems, revising caching and communication. They intended the In-Edge
AI framework to intelligently use the cooperation between devices
and edge nodes. Aiming to cut avoidable communication, the frame-
work shared the learning criteria, so the models could be provided
with better training, inference and carried dynamic system-level and
application-level improvements. Edge caching and computation of-
floading in mobile edge systems were the scenarios under evaluation,
in which the In-Edge AI framework had great performance results.

Tan et al. (2018) developed a Deep Reinforcement Learning frame-
work for vehicular networks, aiming to access an excellent resource
allocation of communication, caching and computing. In addition, to
reach operational and cost supremacy the vehicle’s mobility was ex-
plored. Their theoretical evaluation presented substantial gains in cost
efficiency.

Li et al. (2018b) framed the offloading and resource allocation
for Mobile Edge Computing system as a Deep Reinforcement Learning
optimization problem, with the goal to trim the sum cost through pro-
cessing delay and energy consumption of all users in this system. The
scheme was evaluated using simulations, with several systems charac-
teristics, such as data size, computational capacity, and a number of
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user’s equipment, registering surpassing performance when compared
to other baseline solutions.

Alam et al. (2019) applied a deep Q-Learning based method to
automatically manage the offloading requests. The decision regards the
resource demand and availability, and the network status to minimize
latency. They used a Markov decision process to allocate computing
resources and reinforcement learning in their solution. The evaluation
of the model was based on simulations of the N-queen problem, and
regarding response time and energy consumption analysis. They com-
pared their results with ThinkAir and achieved better results both in
response time and energy consumption.

Qiu et al. (2019) proposed a new model-free Deep Reinforcement
Learning-based online computation offloading approach, which they
called deep reinforcement learning combined with a genetic algorithm
(DRGO), for blockchain-empowered Mobile Edge Computing. They
implemented a Markov decision process for blockchain tasks, such
as mining and data processing. In addition, to maximize long-term
offloading performance, they used Deep Reinforcement Learning to
adapt to very dynamical environments. The authors also addressed the
computational complexity, adopting an adaptive genetic algorithm, in
order to accelerate the convergence that results from high-dimensional
action space. Moreover, for the online offloading problem, the authors
implemented a Markov decision process to consider dynamic environ-
ments. The evaluation was performed under a simulation environment
with the following metrics: average cost, task drop rate, and aver-
age transmission time. Also, they compared their solution to other
three representative benchmark policies, such as greedy, genetic and
deep deterministic policy gradient algorithms. The results showed that
the DRGO algorithm achieved better performance compared to the
mentioned benchmarks.

Cheng et al. (2019) presented an innovative approach to computa-
tion offloading in an edge environment considering remote energy and
computation constraints. They presented a space-air-ground integrated
network (SAGIN) edge/Cloud computing architecture composed of Un-
manned Aerial Vehicles (UAVs) as edge serves with virtual machines for
tasks offloading and satellites for Cloud computing. The authors used a
Markov decision process for the offloading decision, where the system
state considers the network dynamics. A Deep Reinforcement Learning-
based approach is used to improve the decision policy in large action
space scenarios for its applicability in the decision-making process.
The authors used simulation to evaluate the weighted sum of delay,
energy consumption, and server usage cost. The results exhibit that the
proposed edge virtual machine allocation and task scheduling approach
can achieve near-optimal performance with very low complexity and
the proposed learning-based computing offloading algorithm not only
converges fast but also achieves a lower total cost compared with
other offloading approaches, in this case, a ‘Greedy’ and a ‘Random’
approach.

Although the mentioned works do not provide quantitative evalu-
ations, the stated results mention an overall better performance than
baseline schemes. The metrics used to evaluate each work were the
following: number of beneficial Cloudlet Computing end devices in
Cao and Cai (2018), Cloudlet availability and user’s relative expected
cost in Zhang et al. (2015), and trade-off among the computation task
execution delay, the task drops, the task queuing delay, the Multi-
access Edge Computing service payment and the task failure penalty
in Chen et al. (2018). All these approaches are dedicated to measuring
the performance of offloading algorithms in more theoretical scenarios.

4.5. Offloading in Vehicular Edge Computing Networks

In the previous subsections, we provided a global review of offload-
ing using AI algorithms. Because those works use different approaches,
address distinct areas, and have divergent opportunities, created by
diverse datasets, algorithms, and testbeds, we think that an in-depth
analysis of a particular use case would help us in better understanding

the current state-of-the-art on the use of AI for offloading. We chose this
use case because the involved technology reached prominent relevance
with the development of autonomous, semi-autonomous, and assisted
driving. Moreover, we decided to leave an analysis of approaches
without AI algorithms out of the scope of this paper, mainly because the
authors were more concerned with the vehicular network architecture,
rather than the offloading decision.

With the concentration and tremendous growth in the number of
computers, vehicular infrastructure, communication capabilities, and
automobiles technologies, researchers in vehicular networks have per-
ceived new opportunities to prosper (Ahmed and Gharavi, 2018). The
research community acknowledges this as one technology to solve a
list of traffic-related issues, such as traffic congestion, traffic accidents,
and environmental pollution (Wu et al., 2020). This evolution also
poses a prominent challenge because the requirements of data com-
munication, computation, and storage are higher than the currently
available (Hou et al., 2016). Motivated by this progress, researchers
investigated several possibilities for computation and data offloading
between vehicles and other vehicles (V2V), vehicles and infrastructures
(V2I), and between vehicles and everything (V2X).

Vehicular Cloud networks have contributed to better resource uti-
lization and higher computation performance. However, the connection
delay may depreciate the offloading efficiency and increase the network
operation cost (Liu et al., 2018). Hence, the use of EC devices, such
as Base Stations (BS) or Road Side Units (RSU), have promising ap-
plications and results. These can significantly diminish communication
latency, which scales exponentially with the increase of routing hops
in vehicular networks (Ning et al., 2019a). Besides, the high number of
parked vehicles in urban areas presents itself as a valuable opportunity
by putting these underutilized vehicular resources into use (Hou et al.,
2016).

In these environments, the offloading decision is remarkably impor-
tant. According to Ning et al. (2019b) such a decision should include
the metrics of the utility function, such as the server reward for message
uploading, message size, offloading cost, and delay. However, these
metrics may not be enough to provide an intelligent offloading system.
For this reason Ning et al. (2019a) and Liu et al. (2018) identify the
following challenges:

• How to manage extremely dynamic vehicular networks?
• How to build an accurate AI model in this fast changing environ-

ment?
• How to migrate these AI model implementation models?
• How to determine computation offloading strategies to maximize

the quality of experience?
• How to handle intermittent connectivity between vehicles and EC

servers?
• How to implement adequate pricing schemes to advocate resource

sharing of vehicles?

Fig. 4 illustrates the different opportunities for offloading in a ve-
hicular network. It performs computation offloading on three scenarios.
Vehicles to other vehicles (V2V), either moving or parked, where avail-
able resources support the computation of the offloaded tasks. Vehicles
communicate with RSUs (V2R), which can perform computation and
produce forwarding decisions locally. Finally, vehicles may connect
directly with a BS (V2I), which are powerful devices to perform local
computation. Both RSUs and BSs frequently use a wired connection
to the Cloud servers for long-term data storage or, in case of great
necessity, use Cloud resources also for computation.

Feng et al. (2017) implemented a distributed vehicular architecture,
where users inside vehicles can perform computation offloading to
nearby nodes, such as RSUs, based on their distributed decisions. The
authors developed a computation offloading algorithm based on Ant
Colony Optimization (ACO), aiming to maximize the utility function of
offloaded tasks concerning the delay, tasks caching, and the algorithm’s
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Fig. 4. Vehicular Edge Computing Network implementation.

efficiency to manage them. The authors, through simulations in urban
and highway scenarios, compared three offloading scenarios: local pro-
cessing, Naive algorithm, and ACO. The last achieved the best results
due to higher flexibility in the scheduling algorithm.

Wang et al. (2018c) stated that an efficient offloading in vehicular
networks is difficult to achieve due to the delay requirements and
variable computation resources. To address these issues, the authors
developed a Vehicular Fog Computing System (VFCS) with a priority
queuing system. Also, a Semi-Markov Decision Process (SMDP) was
applied in an application-aware offloading policy, to maximize the
reward of the VFCS, by satisfying the delay requirements, and achieve
the optimal computation resource allocation, through dynamic resource
assignment. The authors used a simulation environment with three
offloading approaches, a First Come First Served, a Preemptive (higher-
priority tasks are processed first), and their SMDP proposal. SMDP
performed better compared to the other two.

Sun et al. (2018) used a modified genetic algorithm to tackle
computation offloading in edge clouds and vehicular clouds. The au-
thors subdivide the offloaded computation into smaller tasks in order
to optimize the response time. The main issues mentioned were the
mobility of the vehicles and the different processing capabilities of
each. The genetic-based heuristic algorithms were implemented to
reduce the complexity of the mentioned issues while improving the
use of vehicular onboard resources. Through simulations, the authors
analyzed several metrics, such as the time each vehicle remained in
the vehicular cloud, the offloading decisions, the average response
time and the system stability. Without any comparison with other
implementations, it was stated that the solution improved the overall
computing efficiency of the edge cloud.

Qi et al. (2019) implemented a deep reinforcement learning of-
floading decision model, which takes into consideration the required
resources, the access network, and the vehicles’ mobility. Based on the
gathered offloading knowledge, the decision for the present task reflects
the future data dependency of the subsequent tasks. The simulations
performed show that the authors’ approach converged on the offloading
decision, faster and with more adaptability to different conditions than
greedy algorithms.

Cui et al. (2019) presented a multi-platform intelligent offloading
and resource allocation algorithm. This algorithm can dynamically

manage the computing resources to enhance performance. The plat-
form calculates the destination of the computation offloading by a
K-nearest neighbor, and the authors tackle the optimization problem
of resource allocation through reinforcement learning. The authors
assessed the proposed joint optimization algorithm, that manages the
local, BS/RSUs, and Cloud resources, through simulation. The algo-
rithm succeeded to decrease latency cost, and reduce the average
system cost by 50%, and 80%, as opposed to full local computation
and full BS/RSU offloading, respectively.

Ning et al. (2019a) presented their work on deep reinforcement
learning to develop an intelligent offloading system for Vehicular Edge
Computing. The authors applied a Dynamic V2I Matching algorithm
(DVIM), to match the vehicles and BS scheduling. Also, they developed
finite Markov chains to model the communication and computation
states and a Mobility-Aware Double DQN (MADD) to assess vehicles’
mobility. The joint optimization problem, between task scheduling
and resource allocation strategy, aimed to maximize users’ quality of
experience. The authors tested, through simulations, DVIM against a
greedy method, and a random sorting method, where DVIM achieved a
good overall performance and decreased execution time by over 90%.
And MADD surpassed traditional Deep Q-Network (DQN), Q-learning,
and two baseline algorithms, from 10% to 15%.

When a moving vehicle that is processing a task leaves the range of
the system, it breaks the offloading process and diminishes the overall
performance. This challenge was tackled by Wu et al. (2020), and the
authors implemented an optimal offloading scheme that considers the
departure of vehicles engaged with offloaded tasks in a Vehicular Fog.
The authors elaborated on the offloading problem as a semi-Markov
decision process, which had to determine and analyze the states, ac-
tions, discounted rewards, and transition probabilities. The authors also
designed the algorithm to find the optimal task offloading scheme,
while maximizing the long-term reward of the vehicular system. Under
experimental scenarios, compared to a greedy scheme, the suggested
algorithm scored higher system rewards.

Sun et al. (2020) developed a Joint Offloading Decision and Task
Scheduling algorithm (JODTS), a hybrid intelligent optimization algo-
rithm based on a partheno-genetic algorithm (Hou et al., 2012) and
heuristic rules for computation offloading in multi-user and multi-
server Vehicular Edge Computing scenarios. Aiming to optimize overall
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accuracy of the decision, task delay and computing resource consump-
tion, associated with reducing the time complexity, the offloading
algorithm not only regulates task execution place but also specifies
the execution order of the tasks on the server. In a comprehensive
evaluation through simulations, JODTS outperformed four baseline
algorithms, achieving better offloading utility.

Ning et al. (2020) presented a Distributed Joint Offloading Algo-
rithm (DJOA), applying intelligence in an offloading cost minimiza-
tion problem while diminishing latency for 5G-enabled vehicular net-
works. The authors tackled the problem by dividing it into two sub-
problems: centralized unlicensed spectrum allocation and distributed
cellular spectrum allocation. To address the first, the authors developed
a two-sided matching algorithm to allocate the unlicensed spectrum.
For the second, the authors implemented a deep reinforcement learning
method to schedule cellular channels. Also, the authors simplified the
system state to achieve a distributed offloading scheduling, which could
decrease the communication overhead between vehicles and the macro-
cell. The authors simulated a real-world scenario to assess DJOA against
DQN, Q-learning and full cellular offloading algorithms, and achieved
an overall better offloading cost.

Finally, Chen et al. (2020) used a vehicle-to-vehicle (V2V) commu-
nication to perform computation offloading between vehicles concen-
trated in traffic lights or other areas, thus fully exploring the idle assets.
The authors planned the computation offloading process as a Min–Max
problem between one task and various cooperative vehicles, aiming to
diminish latency while considering mobility as part of the problem.
Also, to minimize the task execution time, the authors implemented
the Max–Min Fairness algorithm for the decision to call all service
vehicles, and a Particle Swarm Optimization algorithm to meet the
fittest task allocation scheme. The authors produced several simulations
to assess their model, outperforming other schemes in time execution
and consumed resources.

What these works showed us is that although some problems have
been solved with great success, some remain open, such as resource
discovery by fast-moving vehicles that need to find instantly nearby
devices to perform offloading and data storage (Datta et al., 2016);
assessing the computational capacity of nearby devices, to weigh on
the offloading decision, and the need for mobility models, discovering
critical vehicular behaviors (Hou et al., 2016); enhancing offloading
efficiently in the presence of various applications with diverse delay
requirements (Wang et al., 2018b); guaranteeing constant wireless
connectivity between vehicles and RSUs, for a continuous offloading
process (Premsankar et al., 2018); achieving the full benefits of
deploying deep reinforcement learning algorithms in this dynamic
and agile environment (Ning et al., 2019a).

4.6. Summary

We summarize in chronological order, within each group of al-
gorithms, the literature review considering the analysis on which EC
paradigm was addressed, the ML algorithm used, the motivation for
their work, the adopted metrics, and the results obtained by each of
the cited works. In Table 2 we address the three groups of Neural
Networks and Deep Learning Algorithms, Regression Algorithms, and
Instance-based, Association Rule Learning, Decision Trees and Bayesian
Algorithms, each group separated by a double line. In Table 3 we
present all the authors in the ‘‘Other Algorithms’’ group. Finally, Ta-
ble 4 summarizes computation offloading for only Vehicular Edge
Computing Network.

The analyzed EC paradigms include Multi-access Edge Computing,
which also encompasses Base Stations (BS) and Road Side Units (RSU),
Fog Computing, Edge Computing, and Mobile Cloud Computing. The
ML algorithms (MLA) used were Deep Supervised Learning (DSL), Deep
Neural Network (DNN), Reinforcement Learning (RL), Deep Reinforce-
ment Learning (DRL), Convolutional Neural Networks (CNN), Statis-
tical Regression-based Algorithm (SRA), Non-linear Regression (NlR),

Instance-based Algorithms (IbA), Artificial Neural Networks (ANN),
Bayesian, Association Rule Learning (ARL), Decision Tree (DT), Fully
Distributed Computation Offloading Algorithm (FDCOA), Markov de-
cision process (Markov), Deep Reinforcement learning combined with
Genetic algOrithm (DRGO), Ant Colony Optimization (ACO), Modified
Genetic Algorithm (MGA), Integer Linear Program (ILP), Partheno-
Genetic Algorithm and Heuristic Rules (PGA/HR), and Particle Swarm
Optimization (PSO).

The surveyed works are not directly comparable. Use cases are
not the same, different metrics and datasets were also used to assess
unlike solutions, and the results are mainly qualitative. Thus, we can-
not conclude which of the previous algorithms is the best. Without
further implementations, under comparable conditions, with the same
dataset, running in analogous hardware, with the same metrics, we
cannot provide a direct comparison between the results each author
achieved in their work. Furthermore, the surveyed systems lack real-
life implementation, thus the evaluations performed, which achieved
promising results, may accomplish very different outcomes in realistic
scenarios on computation offloading decisions. Moreover, the dataset
used in each proposed algorithm is absent or shortfalls from an explicit
definition of the data source and how it was trained. Some approaches
are compared to different benchmarks or systems that have a high
rate of acceptance among the research community, however, others
only use performance-related metrics to evaluate their solution. In
addition, some solutions fail to address the multi-resources availability
and heterogeneity of the real-world and were enforced to single node
offloading. Also, these implemented solutions analyzed specific metrics,
without the desirable generalization to the possibility of incorporating
other metrics. Finally, these works address a specific section of the
offloading process, resulting in the need to further explore other al-
gorithms or offloading schemes to solve the existing problems in each
phase of the process.

Table 5 indicates the type of information provided by the authors
in their work, from which we highlight the available datasets (‘‘-’’ no
available dataset, ‘‘✓’’ available either directly or indirectly through
references, and ‘‘⋆’’ if the dataset is not available, but the provided
information can be used to train a model); the design and description
of the algorithms, despite the varying level of detail presented; and
the testbed used, comprising information on the hardware and tech-
nologies employed in the evaluation of their work. The purpose is to
provide information regarding reproducible experiments and simula-
tions. Moreover, most of the works do not provide a public dataset to
reuse. However, several authors presented a comprehensive discussion
around the algorithm and how it was used, which could, eventually, be
reproduced.

Amongst the discussed works, there are some promising results,
such as the ones presented in the works of Yu et al. (2017) and Kang
et al. (2017), when using deep learning algorithms. Also, Li et al.
(2018b) achieved interesting results when using deep reinforcement
learning. In addition, the techniques used by Yu et al. (2017) may
also be applied to multi-user, multi-cell scenarios, and mobility man-
agement. And Li et al. (2018b) developed techniques to deal with
interference and radio resources. Moreover, concerning the discussed
use case, the works of Cui et al. (2019) that used an instance-based al-
gorithm, and Ning et al. (2019a) which provided a deep reinforcement
learning algorithm, displayed numerical results, allowing to assess the
effectiveness of the authors’ proposals.

Yu et al. (2017) proposed a deep learning scheme that reduces sys-
tem cost by half and achieved an offloading accuracy around 60%. Kang
et al. (2017) performed a comprehensive evaluation using eight deep
neural networks datasets to benchmark across different types of wire-
less networks, also against the framework MAUI. Neurosurgeon used a
deep neural network and achieved lower latency (between 3.1x and
40.7x), savings in energy consumption (from 59.5% to 94.7%), and
higher throughput (1.5x up to 6.7x). Li et al. (2018b) used a sum cost
of the key elements of reinforcement learning: state, action, and reward,
achieving an overall improvement around 150%.
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Table 2
Summary of AI techniques in computation offloading in EC.

Reference EC Algorithm Motivation Metrics Results

Yu et al. (2017) MEC DSL Minimize the offloading cost
considering the network resource
usage

Offloading accuracy Reduces system cost up to 49.24%,
23.87%, 15.69%, and 11.18% compared
to ‘‘no offloading’’, ‘‘random offloading’’,
‘‘total offloading’’ and ‘‘multi-label linear
classifier-based offloading’’, respectively

Kang et al. (2017) MEC DNN Processing and computation
partitioning strategies

Latency, energy consumption
and data throughput

Achieves an improvement in latency
from 3.1x, up to 40.7x, energy
consumption diminished from 59.5%, up
to 94.7%, and data center throughput
attained increases from 1.5x, up to 6.7x

Alelaiwi (2019) FG DNN Identifying the best node for
offloading

Response time Achieves a MAPE under 0.1 and a
R-squared greater than 0.6

Khoda et al. (2016) MCC SRA Cost-effective offloading decision Execution time, energy
consumption, prediction
accuracy and time saving

ExTrade over performed in the metrics
under evaluation

Kwon et al. (2016) MCC NlR Predict performance Offloading decision predictions
accuracy, overhead and energy
consumption

High rates of accuracy when forecasting
the gains and costs of offloading,
granting precise offloading decisions
which saves energy and reduces running
time of a mobile application

Eom et al. (2013) MCC IbA
ARL
DT

Adaptative scheduling Bandwidth and decision
accuracy

The Instance-Based Learning was the
best, 7% better than RandomTree and
3% better than Rule-Based Learning

Eom et al. (2015) MCC IbA
ANN
Bayesian

Scheduling Scheduling accuracy MALMOS out performed two scheduling
policies, threshold-based and linear
equation-based, from 10.9% to 40.5%

Crutcher et al. (2017) MEC IbA Identifying which edge nodes
should receive tasks

Energy consumption and time
sending data

Several network metrics can be modeled
accurately

Junior et al. (2019) MCC IbA
ARL
DT
Bayesian

Underperformance when the
offloading decision ignores
contextual information

Specificity, sensitivity, precision,
F1, FPR and FNR, energy, time
and context

Guarantees performance gains and
energy efficiency

Table 3
Summary of AI techniques in computation offloading in EC (‘‘Other Algorithms’’).

Reference EC Algorithm Motivation Metrics Results

Zhang et al. (2015) MCC Markov Intermittently connected
Cloudlet system

Cloudlet availability and user’s relative
expected cost

Achieves an optimal policy for the end
user, which attained great results in
cost reduction

Alam et al. (2016) FG RL Low-latency service delivery Energy consumption and the response
time

Good results compared to only phone
or Cloud approaches and compared
with ThinkAir

Cao and Cai (2018) MCC FDCOA Offloading decision making Number of beneficial Cloudlets
computing enddevices

Increases the number of Cloudlet
Computing end devices’ data, keeping
a low execution cost across the system

Chen et al. (2018) MEC Markov Maximize utility performance Trade-off among the computation
execution delay, task drops, task
queuing delay, MEC service payment
and the failure penalty

Considerable gains in computation
offloading performance

Wang et al. (2018a) MEC DRL Collaboration between devices
and edge nodes

Performance between utility and
training time

Proved to achieve near-optimal
performance

Tan et al. (2018) EC DRL Resource allocation of
communication, computing and
caching

Performance/cost Registered surpassing performance

Li et al. (2018b) MCC DRL Privacy Running time, energy consumption and
memory cost

Improvement of 150% in object
recognition when compared to a
generic deep model

Alam et al. (2019) EC RL
Markov

Automatic Offloading
Management

Response time and energy consumption Outperformed ThinkAir in the metrics
under evaluation

Qiu et al. (2019) MEC DRGO Blockchain mining and
processing data

Average cost,
Task drop rate
Average transmit time

Better performance compared to three
benchmarks

Cheng et al. (2019) EC Markov
DRL

Energy and computation
constraints

Weighted sum of delay, energy
consumption, server usage cost

Near-optimal performance with very
low complexity; Validates the
convergence and efficiency of proposed
approaches
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Table 4
Summary of AI techniques in computation offloading in Vehicular Edge Computing Network.

Reference EC Algorithm Motivation Metrics Results

Feng et al. (2017) RSU ACO Maximize the sum utility of
offloaded tasks

Scheduling decisions accuracy Achieves best results due to higher
flexibility in the scheduling algorithm,
compared to local processing, Naive
algorithm, and Ant Colony
Optimization

Wang et al. (2018c) Fog Markov Maximize reward of delay and
resource allocation

Offloading policy Achieves best performance compared
First Come First Served, and
Preemptive approaches

Sun et al. (2018) BS MGA Vehicles’ mobility; Different
processing capabilities

Contact duration, offloading decisions
response time and the system stability

Improved overall computing efficiency
of the edge Cloud

Qi et al. (2019) BS DRL Offloading complexity Learning capacity The algorithm converged on the
offloading decision, faster and with
more adaptability to different
conditions than greedy algorithms

Cui et al. (2019) BS/RSU IbA Dynamically manage the
computing resources for
offloading

Sum cost of bandwidth, CPU
frequency, and vehicles distance

Decreases latency cost, and reduces the
average system cost by 50%, and 80%,
as opposed to full local computation
and full BS/RSU offloading

Ning et al. (2019a) BS/RSU DRL Maximize users’ quality of
experience

Task scheduling and resource
allocation

Good trade-off between network
performance and execution time by
over 90% compared to greedy and
random sorting methods. Surpassed
traditional DQN, Q-learning, and two
baseline algorithms, from 10% to 15%.

Wu et al. (2020) RSU Markov Finding the optimal offloading
scheme also considering the
departure of vehicles

States, actions, discounted rewards,
and transition probabilities

Compared to a greedy scheme, the
suggested algorithm scored higher
system rewards

Sun et al. (2020) BS/RSU PGA/HR Optimize task delay and
computing resource
consumption

Accuracy, delay cost, operating cost,
and offloading utility

JODTS outperformed four baseline
algorithms, achieving better offloading
utility

Ning et al. (2020) BS/RSU DRL Minimize cost and latency Offloading scheduling, communication
overhead

Assessed DJOA against DQN,
Q-learning and full cellular offloading
algorithms, and achieved an overall
better offloading cost

Chen et al. (2020) RSU PSO Minimize latency and task
execution time

Execution time under different
situations

Outperforming other schemes in time
execution and consumed resources

Cui et al. (2019) through a K-nearest neighbor achieved a latency
and system cost reduction by 50%, and 80%, respectively, thus suc-
cessfully managing the computing resources for offloading. Ning et al.
(2019a) developed a Matching algorithm to match the vehicles and
BS scheduling, and Markov chains to model the communication and
computation states and to assess vehicles’ mobility, achieving a good
overall performance and a decreasing execution time by over 90%.

These highlighted works presented promising quantitative results.
Notwithstanding the need to assess them using the same datasets,
metrics and testbeds, for a direct comparison between these and other
mentioned works.

Regarding the offloading decision, only seven authors addressed this
crucial issue. Khoda et al. (2016) motivated by cost-effective offloading
decisions, used a regression algorithm to achieve high accuracy in
offloading predictions, save computation time and energy. Cao and
Cai (2018) contemplated communication and computation costs on the
computation offloading decision. Sun et al. (2018) studied mutually
dependent tasks, because of the influence inter-dependency of tasks
held on the offloading decision. The authors analyzed the schedul-
ing time slot of individual tasks and the processing vehicles for any
scheduling slot. Junior et al. (2019) address the problem of offloading
underachievement when ignoring contextual information, the authors
implemented an several algorithms and achieved a 95% offloading
decision accuracy, while enhancing performance and energy consump-
tion. Qi et al. (2019) also investigated the offloading decision as a
resource scheduling problem and considered the decision as a long-
term planning problem. Cheng et al. (2019) used a Markov decision
process for the offloading decision, where the system state considers the

network dynamics. Sun et al. (2020) settled the decision to offloading
based on the most recently learned information regarding the vehi-
cles’ task offloading strategies and the service nodes’ task scheduling
policies.

5. Discussion

In this section, we will discuss, and highlight some important ideas
on computation offloading, such as the environment where it takes
place, the methods used to achieve a successful state in the running
application and, finally, the advantages and limitations of AI methods
in EC, considering training and deployment.

The first idea is on the environment, meaning that resource-
restricted devices may have the possibility for computation offloading
to nearby edge servers or, further away, Cloud servers. As mentioned
before, the devices’ restrictions on battery and computation resources,
especially IoT devices and end-users’ end devices, such as smartphones,
may require computation offloading to the Cloud. The centralized
Cloud Computing has exceptional computing resources available, re-
ceiving the offloading of computation-demanding applications, which
may diminish the computation delay and the devices’ battery usage.
However, the shortcomings of Cloud Computing, already mentioned
in Section 3, may fail to achieve the delay requirements of sensitive
applications, because the span between users and the Cloud servers
results in long transmission delays. Thus, using any EC architecture,
with computing resources near the end user, delivers efficient and
flexible computing services (Cheng et al., 2019). Moreover, deploying
ML algorithms in the Edge (either in nodes or servers), even if highly
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Table 5
Available datasets or reproduceable testbeds.

Reference Available
dataset

Algorithm
design

Testbed

Yu et al. (2017) – ✓ ✓

Kang et al. (2017) ⋆ – ✓

Alelaiwi (2019) – – ✓

Khoda et al. (2016) ⋆ ✓ ✓

Kwon et al. (2016) ⋆ ✓ ✓

Eom et al. (2013) ✓ – ✓

Eom et al. (2015) – ✓ ✓

Crutcher et al. (2017) ✓ ✓ ✓

Junior et al. (2019) ⋆ ✓ ✓

Zhang et al. (2015) ⋆ ✓ ✓

Alam et al. (2016) ⋆ ✓ ✓

Cao and Cai (2018) – ✓ –
Chen et al. (2018) ⋆ ✓ ✓

Wang et al. (2018a) – ✓ –
Tan et al. (2018) ⋆ ✓ ✓

Li et al. (2018b) – ✓ ✓

Alam et al. (2019) ⋆ ✓ ✓

Qiu et al. (2019) ⋆ ✓ ✓

Cheng et al. (2019) ⋆ ✓ ✓

Offloading in Vehicular Edge Computing Networks

Feng et al. (2017) ⋆ ✓ ✓

Wang et al. (2018c) ⋆ ✓ –
Sun et al. (2018) ⋆ ✓ ✓

Qi et al. (2019) ⋆ ✓ ✓

Cui et al. (2019) ⋆ ✓ ✓

Ning et al. (2019a) ⋆ ✓ ✓

Wu et al. (2020) ⋆ ✓ ✓

Sun et al. (2020) ⋆ ✓ ✓

Ning et al. (2020) ⋆ ✓ ✓

Chen et al. (2020) ⋆ ✓ ✓

– no available data.
✓ available either directly or indirectly through references.
⋆ no available data, but the provided information can be used to train a model.

resource-demanding, is becoming feasible because of the improvements
of edge resources and capabilities. These new hardware capacities
may cause to consider the Edge as the future main target for ML
applications.

Next, we will provide a discussion on the use of AI, more precisely
ML algorithms, to improve the offloading decision and the following
steps after.

To begin with, traditional approaches, without any AI method to
support the decision, require previous knowledge regarding end users’
patterns and network parameters. While also needing the same previous
knowledge, AI methods adapt better to new circumstances without
human interaction. In a static or slowly varying environment, the tra-
ditional approach may be beneficial and even recommended. Besides,
usually developing solutions within the traditional approach consider
ad hoc optimization, meaning it may fail to engage the long-term per-
formance of computation offloading or apply in additional scenarios.
Furthermore, traditional approaches are not able to tackle, at least
so efficiently, some network problems in offloading processes, such
as instability, heterogeneity, and the inter-dependency of computing
tasks (Sun et al., 2018). The overall environment where these processes
occur is stochastic and identified by fast-changing mobile networks,
where there is no prior knowledge, or where knowledge is quite limited
to support the decision-making process. This characteristic leads to the
term Concept Drift, meaning the capacity to learn in dynamic environ-
ments (Žliobait, 2010), where data used to train and test the model
do not efficiently apply. Thus, IA, specifically ML, enables the system
to learn patterns from new distinct and varying data streams (Iwashita
and Papa, 2019).

The value of ML-based approaches arises from the implemented
mechanisms to detect changes or new patterns of the ever-changing
environment (Cao et al., 2019). Also, ML-based implementations regu-
late, effectively, the varying workloads in the users’ devices from the

offloading process, such as local processing, new requests, and ended
executions. The network features and computing capacities of edge
servers change throughout the timeline of the application offloading.
The number of connected devices also change, and accurate decisions
must be instant, which AI aims to achieve with no human interaction.
ML algorithms can detect data patterns that would be hard to find
without these systems, being able to predict future situations. ML solu-
tions should apply in several scenarios and consider the environments’
evolution to accomplish durable high performance of computation
offloading. The slow convergence caused by high-dimensional action
space still is an open issue (Qiu et al., 2019).

Different ML algorithms cope differently with these changing en-
vironments. Re-training Neural Networks could be feasible, but the
entire network had to sustain this process, which would be very time
consuming, even more with Deep Learning. In these dynamic scenarios,
processing an application locally without ML can be advantageous,
because of re-training times, or deterioration in predictive performance.
Working with an obsolete model that does not incorporate new data
into the training data, thus ignores current information regarding this
changing behavior, enhances the difficulty of an accurate offloading
decision. It is remarkably important to address concept drift so that
the ML model does not lose its predictive performance. Žliobait (2010)
and Brownlee (2016) mention some solutions, from which we extracted
the most relevant ones for this work, Periodically Re-Fit, Periodically
Update and Learn the Change. Periodically Re-Fit is the method to update
the static model, from time to time, with more current data. Periodically
Update, uses the present state as the origin for a fit process that updates
the model fitness, applying a sample of the most recent data, rather
than reject the static model. Finally, Learn the Change, is a solution
where a new model learns to improve the predictions from the static
model based on the relationships in more up-to-date data.

Finally, we address the advantages and limitations of training the
models of the previously presented algorithms.

5.1. Advantages

In this section, we summarize the advantages of some of the algo-
rithms, based on the works of Atkeson et al. (1997), Alpaydin (2014),
and Cao et al. (2019).

Neural Networks and Deep learning algorithms have good perfor-
mance in predicting stochastic changes for offloading decision-making
optimization. Another advantage is that, compared to other algorithms,
Neural Networks do not require so much feature engineering. Nev-
ertheless, these still need to have defined parameters to continue its
evolution, since going too slow or too fast may lead to not achieve the
best solution. Neural Networks perform parameter tuning to converge
on the best solution between the compromise of quality and speed. This
manual setup will allow the Neural Network to learn from data without
any additional intervention.

Regression algorithms are ideal for continuous values, for example,
to calculate the expected execution time of a given application in order
to decide afterward if offloading computation would be beneficial.

Instance-based algorithms are considered to cover the diverse and
variable requirements of EC, through classification and cluster methods
to create offloading decisions for varied service features. Moreover,
estimating or predicting radio parameters and anomaly detection in
wireless networks are possible applications. Also, these algorithms
do not suffer from data interference, thus receiving inputs about an
operating regime does not diminish modeling performance, resulting
in a feasible approach for offloading decision-making.

Association Rule algorithms are good at discovering interesting re-
lations between variables in large databases. Also, at predicting future
behaviors using past data. These advantages result in the applicabil-
ity of the algorithms in the offloading decision based on previous
experiences.
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Decision Trees algorithms allow a fast localization of the region
covering an input. Characterized as a binary decision, comparable to
the offloading compromise (as we explained in Section 1), each decision
discards the other branches’ possibilities, thus significantly reducing
the size of the dataset. Because these are highly interpretable, with
understandable If-Then rules, these are very popular and sometimes
preferred over more accurate but less interpretable methods. Also,
Decision Trees are used more frequently for classification than for
regression. These algorithms also learn and respond quickly.

Bayesian algorithms assume that each of the features is condition-
ally independent of one another, require less training data and are
highly scalable. Moreover, these algorithms are used to make prob-
abilistic future predictions. Thus, the offloading process may benefit
from predictions about the network state and the available resources,
since these algorithms can handle continuous and discrete data.

Markov decision process algorithms are applied to model the
decision to whether or not perform offloading in a continuous process.
This process consists of moving amongst states and calculating the
corresponding reward. Only if the calculated reward is positive, other
steps are addressed, such as choosing the appropriate EC server, and
the amount of workload to offload.

Q-Learning algorithms are appropriate for decision-making of the
offloading process when the available information is restricted and the
environment is dynamic. Also, to design the online and model-free
learning approach, without any prior knowledge of the environment.

5.2. Limitations

Although ML algorithms are, in general, beneficial to the offloading
decision problem, these algorithms also suffer some limitations. Thus,
before implementing them, we must also be aware of their limitations.

Neural Networks and Deep Learning have a long training time,
long response delay, and mostly rely on massive labeled data (Cao
et al., 2019). In fast-changing environments, this would have a great
cost associated with the offloading decision, thus, when deploying
these algorithms, developers must take the scenario into consideration.
Furthermore, it is mainly subjective, knowing how a prediction is ac-
complished because it is remarkably challenging to perceive it from the
Neural Network model. Deep Learning algorithms having a higher num-
ber of layers, usually hidden, emphasizes this condition. Being black-box
systems, understanding its holistic functioning, troubleshooting, and
optimization is remarkably hard.

Some Regression algorithms have dimensionality limitations and
do not allow interactions of predictor variables. Besides, when a de-
pendent variable is not normally distributed, Regression algorithms
only apply in case of a large sample size. Also, they have the choice
of a loss, meaning that there is a one-sided decision that can be
made (Smola and Vishwanathan, 2009). Regression algorithms may
not manipulate irrelevant features well, especially if the features are
strongly correlated. Meaning that the algorithms will not discard these
irrelevant data, contributing to the growth of the size of the dataset.
Because the offloading decision is addressed as a categorization process,
as we explained in Section 1, Regression algorithms may display some
adversities, since they are optimal for continuous values.

Instance-based algorithms rely on massive amounts of data that
involve a possibly large amount of memory to store, and it is hard
to display their theoretical performance bounds (Cao et al., 2019). As
these algorithms are very sensitive to data, each request for different
information involves starting the identification of a new local model
from scratch, thus rising the implementation time (Atkeson et al.,
1997). With a scenario with user mobility, where each offloading
decision involves the assessment of a different set of conditions (that
must originate a new request), the use of this algorithm may require a
constant overhead.

Association Rules algorithms have a limitation with small samples,
because even if there is a dependency with a strong confidence value, if

the number of such samples is small, the association rule between vari-
ables is worthless (Alpaydin, 2014), increasing the risk of an incorrect
offloading decision.

Decision Trees algorithms are usually slower than other
approaches, overfitting becomes an issue if a high purity tree is desir-
able and prone to outliers. Also, the tree may grow to be very complex
while training complicated datasets and loses valuable information
while handling continuous variables (Atkeson et al., 1997). In the EC
agile environment, where time is a great concern and the offloading
decision must not only be accurate but also fast, using Decision Trees
algorithms may not always be feasible.

Bayesian algorithms are not sensitive to irrelevant features, re-
sulting in large datasets because these algorithms keep all data for
re-training the model, not discarding the irrelevant values. Bayesian
algorithms have extreme difficulty in specifying a prior model, because
there is a necessity to specify every setting of the model parameters, to
define a posterior, which is a probability distribution that represents the
updated model. This difficulty leads to an increase in computational
complexity. Besides, prediction consumes more memory compared to
others. These limitations, in resource-restricted devices, may put at risk
the correct offloading decision.

The algorithms under the ‘‘Others’’ category, can learn without a
priori knowledge. However, they comprise dimensionality limitations,
imply a trade-off between exploration and exploitation and rely on
hand-crafted features. If we extend the analysis to deep reinforcement
learning, a long training time in large discrete state space and extreme
computational complexity are added to the shortcomings of these algo-
rithms (Cao et al., 2019). This trade-off and hand-crafted features may
lead to an incorrect offloading decision. Reinforcement learning needs
a high amount of data and computation. Also too much reinforcement
learning may produce an overload of states, thus diminishing the
results. Finally, reinforcement learning wrongly assumes the world is
Markovian, in which future events have a probability of happening
according to the state attained in the previous event.

6. Conclusions and future work

In this paper, we have surveyed computation offloading within EC
environments. First, we assess computation offloading in EC systems
and how the different authors addressed the challenges that compu-
tation offloading still poses. Next, we reviewed the application of AI
techniques, more precisely ML algorithms, for computation offloading
regarding EC paradigms. We identified the category of each algorithm,
the metrics used in each study and the results achieved. We also
provided an in-depth analysis of the use of AI for offloading, in par-
ticular, the use case of Vehicular Edge Computing Networks, where
we presented an overview, the state-of-the-art approaches using AI
algorithms, and open issues. Finally, we discussed the usage of AI
methods in EC environments.

We provided an indirect comparison between the referenced works
because the authors used different ML techniques or algorithms, and
addressed multiple features and metrics to quantify their work on the
use of ML algorithms to coordinate computation offloading. From the
performed analysis and provided discussion, we highlight the following
works. The method developed in Junior et al. (2019) achieved the
higher accuracy value in the offloading decision of whether performing
it or not through the use of a Markov decision process. Using a deep
learning algorithm, more precisely a deep neural network, the authors
in Kang et al. (2017) attained impressive results in terms of latency,
energy consumption, and data throughput, with improvements up to
40.7x, 94.7%, and 6.7x, respectively. Within the discussed use case,
through a K-nearest neighbor, the work of Cui et al. (2019) accom-
plished a latency and system cost reduction by 50%, and 80%. By
developing a Matching algorithm, the author in Ning et al. (2019a)
achieved a good performance and diminished execution time by over
90%.
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We highlighted the main advantages and limitations of ML algo-
rithms used to assist the offloading decision, and concluded that Deep
Learning and Markov decision process algorithms can achieve signifi-
cant performance and accuracy for offloading decision coordination.

Computation offloading is beneficial merely if processing an ap-
plication locally uses more time and/or energy than the offloading
overhead (Akherfi et al., 2018). As we discussed, there are many
considerations to be made in the offloading decision, which drastically
increase in complexity in EC environments. Applying ML algorithms
to sustain this decision shows auspicious results. A correct offloading
decision is not trivial to achieve, and the associated complexity is a
perfect scenario for implementing ML-based approaches. The promising
results supported by AI, which consider past experiences, and have fast
and powerful models, improve the decision-making process, and the
accuracy of a correct offloading decision.

As future work, we plan to test some aforementioned algorithms, in
identical setups, using the same technologies, hardware, and under the
same environment, to compare the results and assess which is better
in providing a correct offloading decision. We intend to develop a
framework that suits all stages of the offloading process, instead of
single-phase solutions and study the results of switching the type of
criteria used in each offloading decision. Finally, the objective is to
implement a system that can automatically and transparently decide
amongst these several criteria accordingly to the environment on which
the offloading may occur.
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