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Abstract. The Radio Network Design (RND) constitutes an important class of 
problems, particularly in the planning of wireless communication networks. 
RND problems are challenging to tackle since they fall in the NP-hard class of 
optimisation problems. In this paper, we assess the viability of adapting the 
Differential Evolution (DE) algorithm to a wide-scale real world RND problem. 
To fulfil the high computational demands of the DE approach, we resort to a 
pool of more than 150 non-dedicated machines, whose CPU cycles are 
scavenged through a high throughput system. Our results show that DE is a 
viable approach for RND problems if proper computing power is available. 

Keywords: RND, Differential Evolution, high throughput computing, 
mathematical techniques in telecommunications, Bio-inspired optimisation  

1   Introduction 

With the rapid growth of communication infrastructures, the radio network design 
(RND) problem has become a major issue for the efficient placement of radio 
transmitters, in such a way that coverage area is maximized while the number of 
antennas is minimized. However, since RND is a NP-Hard problem [1], exhaustive 
search of the solution space is computationally not tractable, and thus alternative 
approaches are sought. In this paper, we apply the Differential Evolution (DE) 
methodology to tackle the RND problem, combining it with the Condor high 
throughput platform [2] to perform a directed, yet computationally heavy search using 



non-dedicated computing resources. Previous partial experiments had been conducted 
[3][4], but this work scales up to a real world sized problem, in order to evaluate the 
effectiveness of DE on such extent using a discretized representation. Until now, DE 
had proven to converge with real-valued continuous functions. High throughput 
computing (HTC) pierces the time required to obtain scientific evidence, in which we 
could actually consider the RND optimisation itself not less important, but also as a 
real world scientific research sidekick case study. 

 
This paper is organized as follows. In section 2, we successively introduce the 

RND problem, the differential evolution methodology, and how we apply DE to 
RND. In section 3, we briefly review the Condor high throughput computing system, 
while our main results are presented in section 4. Section 5 discusses related work, 
while section 6 concludes the paper and presents venues for future work. 

2   RND and Differential Evolution  

2.1   RND 

The RND problem consists in minimizing the number and locations of 
transmission antennae to cover a maximum area in order to give service to the highest 
possible amount of terminal paraphernalia. Hence we can consider it as being an 
intrinsically multi-objective problem. Specifically, a base station transmitter (BS or 
BTS) is a radio signal transmitting device, with a determined type of coverage. In this 
work we disregard different types of wave propagation models, since any complex 
model can be applied.  

          
(a)        (b)  (c) 

Fig. 1. The terrain is digitalized by means of a grid. (b) Three BS locations are shown, together 
with the locations under their influence. 

We consider a digitalized model of the terrain. The area is divided in sectors or 
locations (atomic bits of terrain). Each coordinate (x,y) of the grid represents a 
possible BS transmitter location. Fig. 1 represents this model, showing how three BS 
transmitters are located in available coordinates of the grid (Fig. 1a), and how some 
locations are under the influence of these BS with different coverage degrees 
(Fig. 1b). Fig. 1c depicts several Base Station transmitters with a simplified omni-
directional wave propagation model which is used in this and previous work [3]. 



It is important to note, that if two or more BS transmitters are close to each other, 
their cover areas are overlapped, and thus the locations inside these areas might have 
different degrees of coverage (for example, one location can be under the influence of 
two BS transmitters, while another location can be inside the cover area of only one 
transmitter; in this case, the second location ends up with a lower level of intensity of 
the received signal).  

In order to mathematically define this problem [5], let us consider the set L of all 
potentially covered locations and the set M of all potential transmitter locations. Let G 
be the graph, (M ∪  L, E), where E is a set of edges such that each transmitter 
location is linked to the locations it covers. As the geographical area needs to be 
discretized, the potentially covered locations are taken from a grid, as previously 
shown in Figure 1a. In our case, we are focusing (in average) a      echelon problem. 
The vector x will be a solution to the problem where xi ∈ {0,1}, and i ∈ [1, 1000], 
indicates whether a transmitter is used (1) or not (0) in the corresponding location. 
Other complementary information can be modelled at this stage, in order to add 
further restrictions on RND specific domain problem modelling. 

Since the objective of RND is to find the minimum subset [6] of transmitters that 
covers a maximum surface of an area, we are looking for a subset M’⊆ M such that 
|M’| is minimum and such that |Neighbours(M’, E)| is maximum, where: 

Neighbours(M’, E) = {u ∈  L | ∃ v ∈  M’, (u, v) ∈  E} 

M’ = {t ∈  M | xt = 1} 

(1) 

The main constraint of this problem relates to the set of available locations for the 
antennas, since there are some places where the antennas can not be placed (public 
recreation areas, some roofs, water or mountain zones, etc.).  

We also need to establish a fitness function (f ) to evaluate the efficiency of a 

BTS set disposed in a determined way in the grid. In our case,f (Eq. 2) depends on 

the square of the cover rate and on the number of BS transmitters [5][6].  
 
 
 
 
 
 
 
 
A textual description for the modus operandi of the previously referred 

fundamentals is presented next. Primarily, we need to build a BS network giving the 
maximum coverage to an area. So, in cell planning design, we have to determine the 
set of available locations for the BS. Then, the goal is to obtain high percentage 
coverage for the considered area, using the lowest amount possible of BTS. This must 
be done in a resourceful manner. The set of available locations can be modelled 
through an array of coordinates related to the grid. In this case, the size of the array 
would be the size of the problem instance (or solution). Every instance problem 
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should be evaluated by the fitness function in order to differentiate a better solution 
from a worst one. 

The problem we consider recalls the Unicost Set Covering Problem (USCP), which 
is a known NP-hard combinatorial optimisation problem [1]. However, the RND 
problem differs from the USCP in the fact that the target is to select a subset of BTS 
that ensures a good coverage of a given area, and not to ensure a total coverage.  

Due to its NP-hardness classification, we wanted to exhaustively assess a 
bio-inspired algorithm, because previous implementations with genetic algorithms (in 
sequential and parallel implementations) and other evolutionary techniques have been 
employed with success in some other works [5][7][8]. 

2.2   Differential Evolution 

Differential Evolution (DE) is an algorithm created by Ken Price and Rainer Storn 
[9]. Since 1994, DE has been used for many optimisation problems with satisfactory 
results [10][11][12]. This is the main motivation to use it in our research, with the 
future decisive purpose of comparing it with other works [13]. The DE base code is 
fully available to researchers [14]. 

DE is a very simple population-based stochastic function minimizer, which can be 
categorized into a class of floating-point encoded, evolutionary algorithms. It is 
currently used in a wide range of optimisation problems, including multi-objective 
optimisation [15]. Generally, the function to be optimised, F, is of the form: 

RRXf n →:)(  (4) 

The optimisation target is to minimize the value of the objective function f (X), 

))(min( Xf  (5) 

by optimising the values of its parameters: 

RxxxX
paramn ∈= ),,,( 1 K  (6) 

where X denotes a vector composed of nparam objective function parameters. Usually, 
the parameters of the objective function are also subject to lower and upper boundary 
constraints, x(L) and x(U), respectively: 
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As with all population-based evolutionary optimisation algorithms, DE handles a 
population of solutions, instead of a single solution for the optimisation of a domain 
dependant problem. Population P of generation G contains nparam solution vectors, 
each one usually known as an individual of the population. Consequently, each vector 
represents a potential solution for the optimisation problem. 
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So, the population P of generation G contains npop individuals, each one containing 
nparam parameters (usually referred as chromosomes): 

In order to establish a starting point for optimum seeking, the population P(0) 
(initial population) must be initialized. This is usually done by seeding P(0) with 
random values that are within the given boundary constraints:  
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Where 

parampop njni ,,1,,1 KK ==  

(9) 

where r denotes a uniformly distributed random value within range [0.0, 1.0]. 
The population reproduction scheme of DE is different from other evolutionary 

algorithms. From the 1st generation forward, the population of the following 
generation P(G+1) is created in the following way on basis of the current population 
P(G). First, a temporary individual (usually referred as trial) that can possibly populate 
the subsequent generation, P’(G+1), is generated as shown in Equation 10.  
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A, B and C are three randomly chosen indexes referring three individuals of the 
population. Fig. 2 schematically illustrates how the reproduction of a Nth generation 
population yields the next generation (N+1).  

F, Cr and npop are DE control parameters that remain constant during the search 
process. npop represents the population size, F is a real-valued factor in range [0.0, 2.0] 
that controls the amplification of differential variations, and Cr is a real-valued 
crossover factor in range [0.0,1.0] controlling the probability to choose the mutated 
value for x instead of its current value. According to Lampinen et al. [10], both F and 
Cr affect the convergence velocity and robustness of the search process. Their optimal 
values are dependent on the individuality of the objective functionf (X), and on the 

population size npop. Normally, suitable values for F, Cr and npop can be found by 
trial-and-error after some experiments using different values. Practical advice on how 
to select control parameters npop, F and Cr are given in [9][11][12][13]. 

Usually, higher values of npop and F result in a more robust search but at the 
expense of a lower convergence velocity. Conversely, excessively small values for 
npop and for F may cause premature convergence and/or stagnation before finding the 
global optima. Typically npop varies from 2*nparam to 20*nparam. Small population size 
is recommended for unimodal and moderately multimodal problems. However, highly 
multimodal problems may require npop higher than 50*nparam. According to practical 
experiences, F lower than 2/npop or higher than 1.2 are unlikely to work best. Hence, F 
within range [(2/npop), 1.2] should be used as initial estimation. 



Generally a high value of Cr, ranging from 0.9 to 1.0 can be recommended as a 
starting point unless the objective function is a priori known to be separable. Small 
values of Cr may result in higher convergence speed, but only in cases where 
separable functions or functions with a low degree of epistasis are used (masking 
effect of a gene action by another one), or if low variable dependency exists [18][19]. 
With Cr=1.0 the algorithm is rotationally invariant, an important property for solving 
real life problems, since these can rarely be represented by separable functions, and in 
fact, are more often subject to non-linear interactions between the variables. The 
generational scheme of DE also differs from other evolutionary algorithms. Based on 
the current population P(G) and on the trial vector X(G), the population of the next 
generation P(G+1) is created as follows: 
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Accordingly, each computed trial vector (generally known as a donor vector) is 
compared with the target vector. The one with the lower value of cost function 

)(cos Xf t will remain in the population of the next generation. 

2.3   RND Differential Evolution-based Model 

Our generational algorithmic model retains the main characteristics from the 
original DE, namely the panmictic steady-state iterative structure and the donor vector 
that schemes the generational iterations. 

Previous works [19] have stated that usage of general steady-state algorithms 
overwhelm other generational models. The removal of the donor vector element has 
not been considered due to the intrinsic nature of the mathematical operations in the 
variation operators. These operations are known as differential mutation operations in 
DE context.  

In our approach, we kept the iterative element (see blocks 1-4 of Fig. 2), where the 
successive generations try to get an optimal solution, ending when the stopping 
criterion is met, i.e., when a number of generations is reached or when the fitness of 
the current solution is better than a predetermined value. Additionally, all design 
issues took into account the differential evolution fast convergence, proven in 
previous works [16], and its canonical self adapting differential mutation operator. 

The Nearest Point Differential Mutation Operator (NPDM) has been created 
for maximum effectiveness [4] and is described as follows: relies on the DE 
differential mutation scheme and enforce RND hard constraints. Before fitness 
computation of the trial vector, each gene is checked to see if the location is an 
available BTS location (since differential mutation will create non legitimate alleles). 
If not, it is replaced with the nearest available location (using the Euclidian distance) 
not yet in the offspring. Further details about this operator and its effectiveness can be 
found in [4]. 

 
 



 
 

Fig. 2. Illustrated example of Differential Evolution algorithm depicting the usage of 
floating-point encoding in its Bio-inspired strategy. 

 
In its canonical form, the DE algorithm is only capable of handling continuous 

variables. The NPDM operator needs thus to enforce both integer representation and 
the location constraints, although, the donor vector will use underlying temporary 
floating point values. According to [20], the handling of integer and discrete variables 
in DE can be done rather easily, by truncating a real value to an integer, just before 
the fitness function evaluation (Eq. 12, where INT(x) is the truncate function).  
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We also included an enhancement technique [4], called Superimposed Grid 
Initialization (SIGRI), with two intentions in mind: (a) reduction and orientation of 
the search space in order to route the global search direction, and (b) creation of 
alternate initial populations with good diversity that can effectively empower 
individual collaboration. This approach is based on the fast paced convergence 
achieved by DE and by the usage of its canonical self adapting operator. This simple 
heuristic defines boundaries on each of the gene initial values. The same boundaries 
are to be applied at the gene level for each individual in the population. 
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The lower and upper boundary constraints for each one of the genes composing the 
individual are x(L) and x(U), respectively. Further details about SIGRI and its 
effectiveness can be found in [4]. 

3   Non-dedicated High Throughput Computing 

Although the differential evolution approach studied in this paper aims to reduce 
the computational effort, the search space is still considerable, and thus we resorted 
high throughput computing. Specifically, the executions of the experiments described 
in this paper were carried out through the Condor high throughput computing 
framework [2]. Specifically, the Condor framework permits to harvest computing 
resources that would otherwise be left idle, allowing users with access to the Condor 
system to submit batches of independent tasks. These tasks are then scheduled by the 
Condor master over the available computing resources. If a task does not complete in 
the assigned machine – for instance, the remote machines is taken back for interactive 
usage or the machine is simply turned off – the execution lease times out after a given 
time interval and Condor automatically reschedules the task to another machine. All 
of this is practically transparent to the application programmer, with application 
submitters only providing the unchanged application binary (this needs to be a 
console application), a specially tailored submit file (this is a simple text file holding 
instructions to the Condor system, such as the required environments, for example, 
Windows or Linux, or what are the command-line arguments to be passed for the 
application), and the required input files.  

Since Differential Evolution algorithms are computing intensive and can easily be 
split in independent tasks, an easy to use high throughput computing system like 
Condor is an important tool for running such class of algorithms, and in fact was 
instrumental for conducting our experiments.  



4   Results 

In this section, we present the main results. We first characterize the used 
computing environment and then present and discuss main results. 

4.1   Computing Environment 

At the academic institution where all experiments were performed, a Linux 
machine fulfils the role of the Condor server, while the Condor client is installed over 
170 Windows XP machines that are distributed through 10 classrooms (each 
classroom holds 17 machines). Four additional client machines (the fastest ones) 
belong to an advanced laboratory. The main characteristics of the pool of client 
machines are reported in Table 1 grouped by types (from type A to type F). The 
columns INT and FP refer respectively to NBench benchmark [21] integer and 
floating-point performance indexes. The NBench’s indexes are used to assess relative 
performance among the monitored machines, since the same benchmark binary was 
used throughout the machines. Finally, the column INTFP represents the combination 
of both INT and FP indexes, facilitating the comparison between machines. As can be 
seen by this last column, the fastest machines – type F – are roughly 70% faster than 
the slowest ones (type A). Furthermore, the Windows machines are primarily 
assigned for teaching activities (essentially to support classes), and are also used by 
students for their practical assignments and other e-activities (e-mail, web, etc.). 
Therefore, the machines are primarily devoted to interactive usage, with Condor tasks 
being scheduled to a machine only when no interactive user is logged on. 
Additionally, whenever an interactive login occurs at a machine that is running a 
Condor task, the task is suspended, and after 10 minutes, if the interactive usage 
persists, the task is evicted and rescheduled to another machine. Again, this 
conservative configuration was adopted to prioritize interactive users over Condor’s 
tasks, although it provokes a high churn rate of tasks, since machines are frequently 
used for interactive usage, resulting in a vast percentage of interrupted executions. 
This is aggravated by the fact that the classrooms are heavily used (they are open 20 
hours on weekdays, and 13 hours on Saturdays, only closing on Sundays). 

Table 1:  Main characteristics of the Condor’s pool of machines that run the experiments. 

Type Qty CPU INT FP INTFP 
A 34 P4 @2.4 GHz 39.010 36.557 37.784 
B 51 P4 @2.6GHz 42.038 40.323 41.181 
C 51 P4 @3.0 GHz 43.198 41.715 42.457 
D 17 P4 @3.2 GHz 46.705 44.257 45.581 
E 17 P4 @3.4 GHz 48.975 46.800 48.888 
F 4 Core 2 Duo 6600 @ 2.40 GHz 63.697 63.736 63.717 

 
A subtle issue regarding Condor lies in the way it handles machines with the 

hyperthreading technology (in our case, machines of type B, C, D and E all have 
hyperthreading enabled). For Condor, the hyperthreading machines are, by default 
regarded as having two processors, and thus two virtual clients are allocated per 



machine. This means that up to two tasks can be simultaneously running in those 
machines, a situation that substantially lengthens the execution time of the tasks, since 
the hyperthreading technology has been reported to marginally improve performance 
by 5% or 10% (this depends on the workload). In our case, the overload of machines 
with hyperthreading resulted in higher execution times per task, which in turn further 
exposes the execution of tasks to interruptions caused by machines being claimed for 
interactive usage. Note that although dual core machines (type F) are also used by 
Condor to host two virtual clients, the architecture of such machines effectively 
supports two simultaneous tasks without substantial (if any) performance degradation 
(each task runs in an individual core). 

4.2   Experiments 

In our experiments we considered base station transmitters with omni-directional 
cells, each transmitter having 2810 associated matrix point cells (coverage radius size 
is 30). Other cell shapes are possible but deferred for future work. We used a 450x300 
matrix map depicting the city of Malaga (Spain) that covers 6.4 x 4.25 Km. Each 
sector in the grid matrix represent approximately a 15 x 15m squared area. Under this 
scenario, it is impossible to attain a 100% cover rate due to waste spots (mountains 
and considerable bodies of water); hence the maximum cover rate is 95.522%. A set 
of 1000 predefined possible BS locations have been defined. Several combinatory 
scales have been used, as for instance, in the approach of the Pareto front 
construction; the number of BS varied from 1 to 100. Further details can be found at 
[22]. Since DE is well known for being a fast optimisation algorithm, two main tests 
sets where made within a 100,000 and 200,000 fitness evaluation boundary. Most 
experimental aspects are based on 30 independent test runs each, yielding a total 
aggregate of several thousandths executions, performed on Windows XP machines 
under the control of Condor. Each set of experiment was performed having as 
parameter set the best known configurations. The code was developed in C# and 
requires the .Net (or Mono) framework to run. 

 
Fig. 3 – F and Cr parameters fine tuning. 
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Fig. 4 – Cr reliability based on the F=0.2. 

 
The optimal value for F parameter was set to 0.2 as it clearly emerges from Fig. 3 

as the most appropriate. The optimal Cr parameter (0.6) was chosen based on the 
maximum average fitness values and minimal standard deviation within the 0.2 F axes 
(Fig. 4). Fig. 5 depicts the optimal number of BTS to use, which is weighted by the 
usage of the fitness function (Eq. 2). The results point out that 45 is the optimal 
number of antennas to deploy. 

Although the problem has not been tackled in a multi-objective fashion, it was 
possible to build an approach to the Pareto front concerning the maximum cover rate 
and minimal deployed BTS objectives (Fig. 6). The construction of the Pareto front 
required 3,000 experiments (30 runs x [1…100] BS). Fig. 7 depicts the convergence 
attained by the usage of DE within a 50,000 fitness evaluation boundary. Although 
experiences had been prepared with a stopping criterion of 200,000 fitness 
evaluations, no better results were obtained after 50,000.  

Figure 8 plots the wall clock times of the runs relatively to the number of 
considered antennas. Specifically, the plot presents, for every count of antennas, the 
best wall clock execution time (out of the 30 experiments that were run for every 
number of antennas), the average and the standard deviation observed for these 30 
experiments. From the plot, it clearly emerges that, for each count of antennas, the 
best execution times progress linearly, an indication that the algorithm scales linearly 
with the number of antennas. As an aside note, the linear growth of the best execution 
times also indicates that the fastest execution times were all achieved by the fastest 
machines (type F).  

The high divergences between the average and the best execution times stems from 
the computer pool’s heterogeneity (as stated before, type F machines are roughly 70% 
faster than type A machines). In fact, the tasks submitted to Condor were configured 
to prioritize scheduling over the fastest machines (this way, when two or more 



machines are available, Condor selects the fastest one). The influence of the 
machines’ heterogeneity on the results is further confirmed by the discrepancy among 
the average execution times, with some average execution times being close to the 
respective best time, while others are as far as 70% apart. This also applies to the high 
fluctuation of the standard deviations.  
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Fig. 5 – Optimal number of BTS 
(fitness/deployed BTS). 

Fig. 6 – Approach to the Pareto Front. 
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Fig. 7 – DE Algorithm progression series. Fig. 8 – Execution profiling. 

6   Related work 

Vega-Rodríguez et al. [23] resorted to the BOINC middleware system [24] to 
perform a wide-scale study of the applicability of the Population-Based Incremental 
Learning algorithm to the RND problem. Comparatively to the Condor approach, the 
BOINC middleware requires not only a specifically tailored application (the 
application needs to use the BOINC client API), but also a whole server-side 
infrastructure (used (1) to distribute tasks and collect results and (2) to give feedback 
to resource donors through forums and contribution ranks). Moreover, in order to 
participate in the computation, resource donors need to be attracted to the project and 
explicitly register their machines to the project. On the contrary, the Condor approach 
is mostly transparent, since only rather simple submit files need to be prepared, with 
practically no changes required for the applications itself. However, a BOINC-based 
project has the potential to reach several thousands of resource donors, where all 



expenses (computer acquisition and maintenance, network bandwidth, etc.), apart the 
server-side ones, are supported by the volunteers, while Condor is limited to 
single-geographical sites (mostly local area environments) and thus has a much lower 
potential for scalability. It should be noted that Vega-Rodríguez et al. used a smaller 
map representation and only 349 possible BS positions. The BS positions were 
tailored so that it would be possible to fit the BS nicely in order to get 100% coverage 
without a single overlap, using a square wave model, so results are not comparable at 
all. Furthermore, the computing power required for this magnitude of problems is 
lowermost when compared to our current work. 

7 Conclusion and future work 

DE convergence has been proven on a large-scale real-world problem, although 
the quality of the results are non-conclusive yet, since no related work has been 
developed at this echelon, i.e., no other work that we are aware of use this magnitude 
of combinatorics. Using Condor-based high throughput computing offers a credible 
framework for providing a significant speed-up to evolutionary optimisation 
experimentation in science and engineering, especially in cases where dedicated 
resources are not possible to achieve. 

Future work includes the study of other bio-inspired algorithms, such as VNS, 
Scatter Search and GRASP, as a mean of finding a comparison base on problems of 
this order of magnitude. In this research line, we will continue using desktop grid 
computing with Condor in order to speedup all our experiments and create more 
effective algorithms resorting to the Alchemi platform to gather parallelism, building-
up, exploiting and comparing resulting algorithms that are also suitable to tackle the 
RND problem. Another line of research is the fine tuning of the Condor platform 
itself via a task application-level checkpointing independent API, so that interrupted 
executions under a Condor host can be resumed, reducing the amount of lost 
computing power. 
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