
Omni-directional RND Optimisation using Differential
Evolution: In-depth Analysis via High Throughput

Computing

Sílvio Mendes1,2, Patricio Domingues1,3, David Pereira1, Renato Vale1, Juan A.
Gomez-Pulido2, Luis Moura Silva3, Miguel A. Vega-Rodríguez2 and Juan M.

Sánchez-Pérez2

1 School of Technology and Management - Polytechnic Institute of Leiria,
2411-903 Leiria, Portugal

2 Polytechnic School -University of Extremadura
10071 Cáceres, Spain

3 CISUC, Department of Informatic Engineering, University of Coimbra
3030 Coimbra, Portugal

{smendes, patricio}@estg.ipleiria.pt, {ei12407,ei12405}@student.estg.ipleiria.pt,

jangomez@unex.es, luis@dei.uc.pt, {mavega,sanperez}@unex.es

Abstract. The Radio Network Design (RND) constitutes an important class of
problems, particularly in the planning of wireless communication networks.
RND problems are challenging to tackle since they fall in the NP-hard class of
optimisation problems. In this paper, we assess the viability of adapting the
Differential Evolution (DE) algorithm to a wide-scale real world RND problem.
To fulfil the high computational demands of the DE approach, we resort to a
pool of more than 150 non-dedicated machines, whose CPU cycles are
scavenged through a high throughput system. Our results show that DE is a
viable approach for RND problems if proper computing power is available.

Keywords: RND, Differential Evolution, high throughput computing,
mathematical techniques in telecommunications, Bio-inspired optimisation

1 Introduction

With the rapid growth of communication infrastructures, the radio network design
(RND) problem has become a major issue for the efficient placement of radio
transmitters, in such a way that coverage area is maximized while the number of
antennas is minimized. However, since RND is a NP-Hard problem [1], exhaustive
search of the solution space is computationally not tractable, and thus alternative
approaches are sought. In this paper, we apply the Differential Evolution (DE)
methodology to tackle the RND problem, combining it with the Condor high
throughput platform [2] to perform a directed, yet computationally heavy search using

non-dedicated computing resources. Previous partial experiments had been conducted
[3][4], but this work scales up to a real world sized problem, in order to evaluate the
effectiveness of DE on such extent using a discretized representation. Until now, DE
had proven to converge with real-valued continuous functions. High throughput
computing (HTC) pierces the time required to obtain scientific evidence, in which we
could actually consider the RND optimisation itself not less important, but also as a
real world scientific research sidekick case study.

This paper is organized as follows. In section 2, we successively introduce the

RND problem, the differential evolution methodology, and how we apply DE to
RND. In section 3, we briefly review the Condor high throughput computing system,
while our main results are presented in section 4. Section 5 discusses related work,
while section 6 concludes the paper and presents venues for future work.

2 RND and Differential Evolution

2.1 RND

The RND problem consists in minimizing the number and locations of
transmission antennae to cover a maximum area in order to give service to the highest
possible amount of terminal paraphernalia. Hence we can consider it as being an
intrinsically multi-objective problem. Specifically, a base station transmitter (BS or
BTS) is a radio signal transmitting device, with a determined type of coverage. In this
work we disregard different types of wave propagation models, since any complex
model can be applied.

(a) (b) (c)

Fig. 1. The terrain is digitalized by means of a grid. (b) Three BS locations are shown, together
with the locations under their influence.

We consider a digitalized model of the terrain. The area is divided in sectors or
locations (atomic bits of terrain). Each coordinate (x,y) of the grid represents a
possible BS transmitter location. Fig. 1 represents this model, showing how three BS
transmitters are located in available coordinates of the grid (Fig. 1a), and how some
locations are under the influence of these BS with different coverage degrees
(Fig. 1b). Fig. 1c depicts several Base Station transmitters with a simplified omni-
directional wave propagation model which is used in this and previous work [3].

It is important to note, that if two or more BS transmitters are close to each other,
their cover areas are overlapped, and thus the locations inside these areas might have
different degrees of coverage (for example, one location can be under the influence of
two BS transmitters, while another location can be inside the cover area of only one
transmitter; in this case, the second location ends up with a lower level of intensity of
the received signal).

In order to mathematically define this problem [5], let us consider the set L of all
potentially covered locations and the set M of all potential transmitter locations. Let G
be the graph, (M ∪ L, E), where E is a set of edges such that each transmitter
location is linked to the locations it covers. As the geographical area needs to be
discretized, the potentially covered locations are taken from a grid, as previously
shown in Figure 1a. In our case, we are focusing (in average) a echelon problem.
The vector x will be a solution to the problem where xi ∈ {0,1}, and i ∈ [1, 1000],
indicates whether a transmitter is used (1) or not (0) in the corresponding location.
Other complementary information can be modelled at this stage, in order to add
further restrictions on RND specific domain problem modelling.

Since the objective of RND is to find the minimum subset [6] of transmitters that
covers a maximum surface of an area, we are looking for a subset M’⊆ M such that
|M’| is minimum and such that |Neighbours(M’, E)| is maximum, where:

Neighbours(M’, E) = {u ∈ L | ∃ v ∈ M’, (u, v) ∈ E}

M’ = {t ∈ M | xt = 1}

(1)

The main constraint of this problem relates to the set of available locations for the
antennas, since there are some places where the antennas can not be placed (public
recreation areas, some roofs, water or mountain zones, etc.).

We also need to establish a fitness function (f) to evaluate the efficiency of a

BTS set disposed in a determined way in the grid. In our case,f (Eq. 2) depends on

the square of the cover rate and on the number of BS transmitters [5][6].

A textual description for the modus operandi of the previously referred

fundamentals is presented next. Primarily, we need to build a BS network giving the
maximum coverage to an area. So, in cell planning design, we have to determine the
set of available locations for the BS. Then, the goal is to obtain high percentage
coverage for the considered area, using the lowest amount possible of BTS. This must
be done in a resourceful manner. The set of available locations can be modelled
through an array of coordinates related to the grid. In this case, the size of the array
would be the size of the problem instance (or solution). Every instance problem

)(

)(
)(

2

xedsmittersUsNumberTran

xCoverRate
xf =

(2)

Where

),(

),(
100)(

EMNeighbours

EMNeighbours
xCoverRate

′′
⋅=

(3)










50

1000

should be evaluated by the fitness function in order to differentiate a better solution
from a worst one.

The problem we consider recalls the Unicost Set Covering Problem (USCP), which
is a known NP-hard combinatorial optimisation problem [1]. However, the RND
problem differs from the USCP in the fact that the target is to select a subset of BTS
that ensures a good coverage of a given area, and not to ensure a total coverage.

Due to its NP-hardness classification, we wanted to exhaustively assess a
bio-inspired algorithm, because previous implementations with genetic algorithms (in
sequential and parallel implementations) and other evolutionary techniques have been
employed with success in some other works [5][7][8].

2.2 Differential Evolution

Differential Evolution (DE) is an algorithm created by Ken Price and Rainer Storn
[9]. Since 1994, DE has been used for many optimisation problems with satisfactory
results [10][11][12]. This is the main motivation to use it in our research, with the
future decisive purpose of comparing it with other works [13]. The DE base code is
fully available to researchers [14].

DE is a very simple population-based stochastic function minimizer, which can be
categorized into a class of floating-point encoded, evolutionary algorithms. It is
currently used in a wide range of optimisation problems, including multi-objective
optimisation [15]. Generally, the function to be optimised, F, is of the form:

RRXf n →:)((4)

The optimisation target is to minimize the value of the objective function f (X),

))(min(Xf (5)

by optimising the values of its parameters:

RxxxX
paramn ∈=),,,(1 K (6)

where X denotes a vector composed of nparam objective function parameters. Usually,
the parameters of the objective function are also subject to lower and upper boundary
constraints, x(L) and x(U), respectively:

param
U
jj

L
j njxxx ,,1,)()(

K=≤≤ (7)

As with all population-based evolutionary optimisation algorithms, DE handles a
population of solutions, instead of a single solution for the optimisation of a domain
dependant problem. Population P of generation G contains nparam solution vectors,
each one usually known as an individual of the population. Consequently, each vector
represents a potential solution for the optimisation problem.

max
)()(,,1,,1, GGniXP pop

G
i

G
KK === (8)

So, the population P of generation G contains npop individuals, each one containing
nparam parameters (usually referred as chromosomes):

In order to establish a starting point for optimum seeking, the population P(0)
(initial population) must be initialized. This is usually done by seeding P(0) with
random values that are within the given boundary constraints:

L
j

L
j

U
jjiji xxxrxP +−==)()()(

,
)0(

,
)0(

Where

parampop njni ,,1,,1 KK ==

(9)

where r denotes a uniformly distributed random value within range [0.0, 1.0].
The population reproduction scheme of DE is different from other evolutionary

algorithms. From the 1st generation forward, the population of the following
generation P(G+1) is created in the following way on basis of the current population
P(G). First, a temporary individual (usually referred as trial) that can possibly populate
the subsequent generation, P’(G+1), is generated as shown in Equation 10.

if Crr ji ≤,





 −⋅+

=+
)(
,

(
,

)(
,

)(
,)1('

,

(
G

jC

G
B

G
jA

G
jCG

ji

i

iii

x

xxFx
x

Where
parampop njni ,,1,,1 KK ==

iCBAnCnBnA iiipoppoppop ≠≠≠=== ,,,1,,,1,,1 KKK

[] [] [[1,0,2,0,1,0 ∈∈∈ rFCr

(10)

A, B and C are three randomly chosen indexes referring three individuals of the
population. Fig. 2 schematically illustrates how the reproduction of a Nth generation
population yields the next generation (N+1).

F, Cr and npop are DE control parameters that remain constant during the search
process. npop represents the population size, F is a real-valued factor in range [0.0, 2.0]
that controls the amplification of differential variations, and Cr is a real-valued
crossover factor in range [0.0,1.0] controlling the probability to choose the mutated
value for x instead of its current value. According to Lampinen et al. [10], both F and
Cr affect the convergence velocity and robustness of the search process. Their optimal
values are dependent on the individuality of the objective functionf (X), and on the

population size npop. Normally, suitable values for F, Cr and npop can be found by
trial-and-error after some experiments using different values. Practical advice on how
to select control parameters npop, F and Cr are given in [9][11][12][13].

Usually, higher values of npop and F result in a more robust search but at the
expense of a lower convergence velocity. Conversely, excessively small values for
npop and for F may cause premature convergence and/or stagnation before finding the
global optima. Typically npop varies from 2*nparam to 20*nparam. Small population size
is recommended for unimodal and moderately multimodal problems. However, highly
multimodal problems may require npop higher than 50*nparam. According to practical
experiences, F lower than 2/npop or higher than 1.2 are unlikely to work best. Hence, F
within range [(2/npop), 1.2] should be used as initial estimation.

Generally a high value of Cr, ranging from 0.9 to 1.0 can be recommended as a
starting point unless the objective function is a priori known to be separable. Small
values of Cr may result in higher convergence speed, but only in cases where
separable functions or functions with a low degree of epistasis are used (masking
effect of a gene action by another one), or if low variable dependency exists [18][19].
With Cr=1.0 the algorithm is rotationally invariant, an important property for solving
real life problems, since these can rarely be represented by separable functions, and in
fact, are more often subject to non-linear interactions between the variables. The
generational scheme of DE also differs from other evolutionary algorithms. Based on
the current population P(G) and on the trial vector X(G), the population of the next
generation P(G+1) is created as follows:

If)()()(
cos

)1('
cos

G
it

G
it XfXf ≤+





=
+

+
)(

)1('
)1(

G
i

G
iG

i
X

X
X

Otherwise

(11)

Accordingly, each computed trial vector (generally known as a donor vector) is
compared with the target vector. The one with the lower value of cost function

)(cos Xf t will remain in the population of the next generation.

2.3 RND Differential Evolution-based Model

Our generational algorithmic model retains the main characteristics from the
original DE, namely the panmictic steady-state iterative structure and the donor vector
that schemes the generational iterations.

Previous works [19] have stated that usage of general steady-state algorithms
overwhelm other generational models. The removal of the donor vector element has
not been considered due to the intrinsic nature of the mathematical operations in the
variation operators. These operations are known as differential mutation operations in
DE context.

In our approach, we kept the iterative element (see blocks 1-4 of Fig. 2), where the
successive generations try to get an optimal solution, ending when the stopping
criterion is met, i.e., when a number of generations is reached or when the fitness of
the current solution is better than a predetermined value. Additionally, all design
issues took into account the differential evolution fast convergence, proven in
previous works [16], and its canonical self adapting differential mutation operator.

The Nearest Point Differential Mutation Operator (NPDM) has been created
for maximum effectiveness [4] and is described as follows: relies on the DE
differential mutation scheme and enforce RND hard constraints. Before fitness
computation of the trial vector, each gene is checked to see if the location is an
available BTS location (since differential mutation will create non legitimate alleles).
If not, it is replaced with the nearest available location (using the Euclidian distance)
not yet in the offspring. Further details about this operator and its effectiveness can be
found in [4].

Fig. 2. Illustrated example of Differential Evolution algorithm depicting the usage of
floating-point encoding in its Bio-inspired strategy.

In its canonical form, the DE algorithm is only capable of handling continuous

variables. The NPDM operator needs thus to enforce both integer representation and
the location constraints, although, the donor vector will use underlying temporary
floating point values. According to [20], the handling of integer and discrete variables
in DE can be done rather easily, by truncating a real value to an integer, just before
the fitness function evaluation (Eq. 12, where INT(x) is the truncate function).

paramit niYf ,,1),(cos K=

Where





=
)(i

i
i xINT

x
y

Xxi ∈

, for continuous variables

, for integer variables

(12)

We also included an enhancement technique [4], called Superimposed Grid
Initialization (SIGRI), with two intentions in mind: (a) reduction and orientation of
the search space in order to route the global search direction, and (b) creation of
alternate initial populations with good diversity that can effectively empower
individual collaboration. This approach is based on the fast paced convergence
achieved by DE and by the usage of its canonical self adapting operator. This simple
heuristic defines boundaries on each of the gene initial values. The same boundaries
are to be applied at the gene level for each individual in the population.

RxxxX
paramn ∈=),,,(1 K

Where

param
U
jj

L
j njxxx ,,1,)()(

K=≤≤

(13)

The lower and upper boundary constraints for each one of the genes composing the
individual are x(L) and x(U), respectively. Further details about SIGRI and its
effectiveness can be found in [4].

3 Non-dedicated High Throughput Computing

Although the differential evolution approach studied in this paper aims to reduce
the computational effort, the search space is still considerable, and thus we resorted
high throughput computing. Specifically, the executions of the experiments described
in this paper were carried out through the Condor high throughput computing
framework [2]. Specifically, the Condor framework permits to harvest computing
resources that would otherwise be left idle, allowing users with access to the Condor
system to submit batches of independent tasks. These tasks are then scheduled by the
Condor master over the available computing resources. If a task does not complete in
the assigned machine – for instance, the remote machines is taken back for interactive
usage or the machine is simply turned off – the execution lease times out after a given
time interval and Condor automatically reschedules the task to another machine. All
of this is practically transparent to the application programmer, with application
submitters only providing the unchanged application binary (this needs to be a
console application), a specially tailored submit file (this is a simple text file holding
instructions to the Condor system, such as the required environments, for example,
Windows or Linux, or what are the command-line arguments to be passed for the
application), and the required input files.

Since Differential Evolution algorithms are computing intensive and can easily be
split in independent tasks, an easy to use high throughput computing system like
Condor is an important tool for running such class of algorithms, and in fact was
instrumental for conducting our experiments.

4 Results

In this section, we present the main results. We first characterize the used
computing environment and then present and discuss main results.

4.1 Computing Environment

At the academic institution where all experiments were performed, a Linux
machine fulfils the role of the Condor server, while the Condor client is installed over
170 Windows XP machines that are distributed through 10 classrooms (each
classroom holds 17 machines). Four additional client machines (the fastest ones)
belong to an advanced laboratory. The main characteristics of the pool of client
machines are reported in Table 1 grouped by types (from type A to type F). The
columns INT and FP refer respectively to NBench benchmark [21] integer and
floating-point performance indexes. The NBench’s indexes are used to assess relative
performance among the monitored machines, since the same benchmark binary was
used throughout the machines. Finally, the column INTFP represents the combination
of both INT and FP indexes, facilitating the comparison between machines. As can be
seen by this last column, the fastest machines – type F – are roughly 70% faster than
the slowest ones (type A). Furthermore, the Windows machines are primarily
assigned for teaching activities (essentially to support classes), and are also used by
students for their practical assignments and other e-activities (e-mail, web, etc.).
Therefore, the machines are primarily devoted to interactive usage, with Condor tasks
being scheduled to a machine only when no interactive user is logged on.
Additionally, whenever an interactive login occurs at a machine that is running a
Condor task, the task is suspended, and after 10 minutes, if the interactive usage
persists, the task is evicted and rescheduled to another machine. Again, this
conservative configuration was adopted to prioritize interactive users over Condor’s
tasks, although it provokes a high churn rate of tasks, since machines are frequently
used for interactive usage, resulting in a vast percentage of interrupted executions.
This is aggravated by the fact that the classrooms are heavily used (they are open 20
hours on weekdays, and 13 hours on Saturdays, only closing on Sundays).

Table 1: Main characteristics of the Condor’s pool of machines that run the experiments.

Type Qty CPU INT FP INTFP
A 34 P4 @2.4 GHz 39.010 36.557 37.784
B 51 P4 @2.6GHz 42.038 40.323 41.181
C 51 P4 @3.0 GHz 43.198 41.715 42.457
D 17 P4 @3.2 GHz 46.705 44.257 45.581
E 17 P4 @3.4 GHz 48.975 46.800 48.888
F 4 Core 2 Duo 6600 @ 2.40 GHz 63.697 63.736 63.717

A subtle issue regarding Condor lies in the way it handles machines with the

hyperthreading technology (in our case, machines of type B, C, D and E all have
hyperthreading enabled). For Condor, the hyperthreading machines are, by default
regarded as having two processors, and thus two virtual clients are allocated per

machine. This means that up to two tasks can be simultaneously running in those
machines, a situation that substantially lengthens the execution time of the tasks, since
the hyperthreading technology has been reported to marginally improve performance
by 5% or 10% (this depends on the workload). In our case, the overload of machines
with hyperthreading resulted in higher execution times per task, which in turn further
exposes the execution of tasks to interruptions caused by machines being claimed for
interactive usage. Note that although dual core machines (type F) are also used by
Condor to host two virtual clients, the architecture of such machines effectively
supports two simultaneous tasks without substantial (if any) performance degradation
(each task runs in an individual core).

4.2 Experiments

In our experiments we considered base station transmitters with omni-directional
cells, each transmitter having 2810 associated matrix point cells (coverage radius size
is 30). Other cell shapes are possible but deferred for future work. We used a 450x300
matrix map depicting the city of Malaga (Spain) that covers 6.4 x 4.25 Km. Each
sector in the grid matrix represent approximately a 15 x 15m squared area. Under this
scenario, it is impossible to attain a 100% cover rate due to waste spots (mountains
and considerable bodies of water); hence the maximum cover rate is 95.522%. A set
of 1000 predefined possible BS locations have been defined. Several combinatory
scales have been used, as for instance, in the approach of the Pareto front
construction; the number of BS varied from 1 to 100. Further details can be found at
[22]. Since DE is well known for being a fast optimisation algorithm, two main tests
sets where made within a 100,000 and 200,000 fitness evaluation boundary. Most
experimental aspects are based on 30 independent test runs each, yielding a total
aggregate of several thousandths executions, performed on Windows XP machines
under the control of Condor. Each set of experiment was performed having as
parameter set the best known configurations. The code was developed in C# and
requires the .Net (or Mono) framework to run.

Fig. 3 – F and Cr parameters fine tuning.

 0

 20

 40

 60

 80

 100

 120

 140

 160

1.41.31.21.110.90.80.70.60.50.40.30.2

F
itn

es
s

Cr

avg.
stdev

14
5.

22

11
6.

34

11
3.

28

11
4.

88

11
4.

80

11
3.

28

11
6.

34

11
1.

76 12
2.

58

11
4.

80

11
6.

34

11
1.

76

11
1.

76

0.
00

1.
54

1.
52 6.

12

0.
00

1.
52

1.
54

0.
00

1.
58

0.
00

1.
54

0.
00

0.
00

Fig. 4 – Cr reliability based on the F=0.2.

The optimal value for F parameter was set to 0.2 as it clearly emerges from Fig. 3

as the most appropriate. The optimal Cr parameter (0.6) was chosen based on the
maximum average fitness values and minimal standard deviation within the 0.2 F axes
(Fig. 4). Fig. 5 depicts the optimal number of BTS to use, which is weighted by the
usage of the fitness function (Eq. 2). The results point out that 45 is the optimal
number of antennas to deploy.

Although the problem has not been tackled in a multi-objective fashion, it was
possible to build an approach to the Pareto front concerning the maximum cover rate
and minimal deployed BTS objectives (Fig. 6). The construction of the Pareto front
required 3,000 experiments (30 runs x [1…100] BS). Fig. 7 depicts the convergence
attained by the usage of DE within a 50,000 fitness evaluation boundary. Although
experiences had been prepared with a stopping criterion of 200,000 fitness
evaluations, no better results were obtained after 50,000.

Figure 8 plots the wall clock times of the runs relatively to the number of
considered antennas. Specifically, the plot presents, for every count of antennas, the
best wall clock execution time (out of the 30 experiments that were run for every
number of antennas), the average and the standard deviation observed for these 30
experiments. From the plot, it clearly emerges that, for each count of antennas, the
best execution times progress linearly, an indication that the algorithm scales linearly
with the number of antennas. As an aside note, the linear growth of the best execution
times also indicates that the fastest execution times were all achieved by the fastest
machines (type F).

The high divergences between the average and the best execution times stems from
the computer pool’s heterogeneity (as stated before, type F machines are roughly 70%
faster than type A machines). In fact, the tasks submitted to Condor were configured
to prioritize scheduling over the fastest machines (this way, when two or more

machines are available, Condor selects the fastest one). The influence of the
machines’ heterogeneity on the results is further confirmed by the discrepancy among
the average execution times, with some average execution times being close to the
respective best time, while others are as far as 70% apart. This also applies to the high
fluctuation of the standard deviations.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80 90 100

F
itn

es
s

Deployed BTS

Avg
StdDev

Max

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

C
ov

er
 R

at
e

Deployed BTS

Avg
StdDev

Max

Fig. 5 – Optimal number of BTS
(fitness/deployed BTS).

Fig. 6 – Approach to the Pareto Front.

 100

 110

 120

 130

 140

 150

 160

 5000 15000 25000 35000 45000

F
itn

es
s

Fitness Evaluations

Avg
Best

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 10 20 30 40 50 60 70 80 90 100

S
ec

on
ds

Deployed Antennas

Avg
StdDev

Best

Fig. 7 – DE Algorithm progression series. Fig. 8 – Execution profiling.

6 Related work

Vega-Rodríguez et al. [23] resorted to the BOINC middleware system [24] to
perform a wide-scale study of the applicability of the Population-Based Incremental
Learning algorithm to the RND problem. Comparatively to the Condor approach, the
BOINC middleware requires not only a specifically tailored application (the
application needs to use the BOINC client API), but also a whole server-side
infrastructure (used (1) to distribute tasks and collect results and (2) to give feedback
to resource donors through forums and contribution ranks). Moreover, in order to
participate in the computation, resource donors need to be attracted to the project and
explicitly register their machines to the project. On the contrary, the Condor approach
is mostly transparent, since only rather simple submit files need to be prepared, with
practically no changes required for the applications itself. However, a BOINC-based
project has the potential to reach several thousands of resource donors, where all

expenses (computer acquisition and maintenance, network bandwidth, etc.), apart the
server-side ones, are supported by the volunteers, while Condor is limited to
single-geographical sites (mostly local area environments) and thus has a much lower
potential for scalability. It should be noted that Vega-Rodríguez et al. used a smaller
map representation and only 349 possible BS positions. The BS positions were
tailored so that it would be possible to fit the BS nicely in order to get 100% coverage
without a single overlap, using a square wave model, so results are not comparable at
all. Furthermore, the computing power required for this magnitude of problems is
lowermost when compared to our current work.

7 Conclusion and future work

DE convergence has been proven on a large-scale real-world problem, although
the quality of the results are non-conclusive yet, since no related work has been
developed at this echelon, i.e., no other work that we are aware of use this magnitude
of combinatorics. Using Condor-based high throughput computing offers a credible
framework for providing a significant speed-up to evolutionary optimisation
experimentation in science and engineering, especially in cases where dedicated
resources are not possible to achieve.

Future work includes the study of other bio-inspired algorithms, such as VNS,
Scatter Search and GRASP, as a mean of finding a comparison base on problems of
this order of magnitude. In this research line, we will continue using desktop grid
computing with Condor in order to speedup all our experiments and create more
effective algorithms resorting to the Alchemi platform to gather parallelism, building-
up, exploiting and comparing resulting algorithms that are also suitable to tackle the
RND problem. Another line of research is the fine tuning of the Condor platform
itself via a task application-level checkpointing independent API, so that interrupted
executions under a Condor host can be resumed, reducing the amount of lost
computing power.

References
1. M. Garey and D. Johnson. Computers and Intractability: a Guide to the Theory of

NP-completeness. Freeman and Cº, 1979.
2. Thain ,D.,Tannenbaum,T., Livny, M.”Distributed Computing in practice: the Condor

Experience”. Concurrency and Computation Practice and Experience, 17(2-4), 2005.
3. Mendes S., Gomez-Pulido J., Vega-Rodriguez M., Sánchez-Perez J., “A Differential

Based Algorithm to Optimize the Radio Network Design Problem”, 2nd IEEE
International Conference on e-Science and Grid Computing, Amsterdam,
Netherlands, December 2006.

4. Mendes S., Gomez-Pulido J., Vega-Rodríguez M., Pereira M., Sanchez-Pérez J.,
“Fast Wide Area Network Design Optimisation using Differential Evolution”,
AdvComp 2007 – International Conference on Advanced Engineering Computing
and Applications in Sciences, Papeete, French Polynesia, Tahiti, November 2007.

5. P. Calegari, F. Guidec, P. Kuonen, and D. Kobler. Parallel island-based genetic
algorithm for radio network design. Journal of Parallel and Distributed Computing,
47:86–90, 1997.

6. P. Calegari, F. Guidec, P. Kuonen,. Combinatorial Optimization Algorithms for
Radio Network Planning. Journal of Theoretical Computer Science, Vol. 263, issue
1-2 pages 235–265, 2001.

7. E. Alba. Evolutionary Algorithms for Optimal Placement of Antennae in Radio
Network Design, NIDISC'04, Santa Fe, New Mexico, USA, pp. 168, 2004.

8. Price, K. and R. Storn (2006), Web site of DE as on July 2006, the URL of which is:
http://www.ICSI.Berkeley.edu/ ~storn/code.html

9. S. Khuri and T. Chiu. Heuristic algorithms for the terminal assignment problem. In
Proceedings of the 1997 ACM Symposium on Applied Computing, 1997.

10. Price, K. and R. Storn (1997), “Differential Evolution – A simple evolution strategy
for fast optimisation”. Dr. Dobb’s Journal, 22 (4), 18 – 24 and 78.

11. Vasan A. and Raju K., Optimal Reservoir Operation Using Differential Evolution,
Birla Institute of Technology and Science, Pilani, Rajasthan 333031, 2004.

12. Joshi R. and Sanderson A., Minimal Representation Multisensor Fusion Using
Differential Evolution. IEEE 0-8186-8138-1, 1997.

13. Vega-Rodríguez M., Gomez-Pulido J., Alba E., Pérez D., Mendes S., Molina G.,
Different Evolutionary Approaches for Selecting the Optimal Number and Locations
of Omnidirectional BTS in a Radio Network, Eurocast, Eleventh International
Conference on Computer Aided Systems Theory, Spain, Feb. 2007.

14. Gomez-Pulido J., Web site of Optimización y Ambientes de Red (OPLINK::UNEX)
as on september 2006, the URL of which is: http://oplink.unex.es/

15. Hussein A. Abbass and Ruhul Sarker. The Pareto Differential Evolution Algorithm,
International Journal on Artificial Intelligence Tools, Vol. 11, No. 4, pp. 531--552,
2002.

16. Storn R. and Price K., Differential evolution – a simple and efficient adaptive scheme
for global optimization over continuous spaces. Tech. report TR-95-012, ICSI, 1995.

17. Storn R., On the usage of differential evolution for function optimization. NAFIPS
1996, Berkeley, pp519-523, 1996.

18. Price K., An Introduction to Differential Evolution. In new methods for optimization.
ISBN:0-07-709506-5, 1999, Mc-Graw-Hill, UK.

19. Salomon R., Reevaluating Genetic Algorithm Performance under Coordinate
Rotation of Benchmark Functions; A survey of some theoretical and practical aspects
of genetic algorithms. BioSystems, 39(3):263-278, 1996.

20. Lampinen J., and Zelinka I. Mixed Variable Non-Linear Optimization by Differential
Evolution, Proceedings of Nostradamus ’99, 2nd International Prediction Conference,
Oct. 7-8, 1999.

21. Mayer,Uwe F. NBenchProject (http://www.tux.org/~mayer/linux/), 2007.
22. OPLINK: http://oplink.lcc.uma.es/problems/rnd.html, January 2007.
23. Miguel A. Vega-Rodríguez, David Vega-Pérez, Juan A. Gómez-Pulido and Juan M.

Sánchez-Pérez, “Radio Network Design Using Population-Based Incremental
Learning and Grid Computing with BOINC", Lecture Notes on Computer Sciences,
4448: Applications of Evolutionary Computing. Berlin Heidelberg, 2007.

24. Anderson, D., “BOINC: A System for Public-Resource Computing and Storage”,
Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing, 2004.

