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Abstract. The Radio Network Design (RND) constitutes an imgatriclass of

problems, particularly in the planning of wirelessmmunication networks.

RND problems are challenging to tackle since thdélyidahe NP-hard class of
optimisation problems. In this paper, we assessvihlility of adapting the

Differential Evolution (DE) algorithm to a wide-deareal world RND problem.

To fulfil the high computational demands of the Bfproach, we resort to a
pool of more than 150 non-dedicated machines, whoB& cycles are

scavenged through a high throughput system. Ouwiltseshow that DE is a
viable approach for RND problems if proper computogver is available.

Keywords: RND, Differential Evolution, high throughput compugi
mathematical techniques in telecommunications, Bépired optimisation

1 Introduction

With the rapid growth of communication infrastrues, the radio network design
(RND) problem has become a major issue for theciefit placement of radio
transmitters, in such a way that coverage areaasimzed while the number of
antennas is minimized. However, since RND is a NitdHoroblem [1], exhaustive
search of the solution space is computationally trettable, and thus alternative
approaches are sought. In this paper, we applyDifierential Evolution (DE)
methodology to tackle the RND problem, combiningwith the Condor high
throughput platform [2] to perform a directed, gemputationally heavy search using



non-dedicated computing resources. Previous pastiagériments had been conducted
[3][4], but this work scales up to a real worldegizproblem, in order to evaluate the
effectiveness of DE on such extent using a distadtrepresentation. Until now, DE
had proven to converge with real-valued continudwsctions. High throughput
computing (HTC) pierces the time required to ob&ientific evidence, in which we
could actually consider the RND optimisation itsetft less important, but also as a
real world scientific research sidekick case study.

This paper is organized as follows. In section 2, successively introduce the
RND problem, the differential evolution methodologgnd how we apply DE to
RND. In section 3, we briefly review the Condor titdproughput computing system,
while our main results are presented in sectioBettion 5 discusses related work,
while section 6 concludes the paper and presemnisegefor future work.

2 RND and Differential Evolution

21 RND

The RND problem consists in minimizing the numbaeanrd alocations of
transmission antennae to cover a maximum areadier do give service to the highest
possible amount of terminal paraphernalia. Hencecame consider it as being an
intrinsically multi-objective problem. Specificallya base station transmitter (BS or
BTS) is a radio signal transmitting device, witetermined type of coverage. In this
work we disregard different types of wave propagatmodels, since any complex
model can be applied.

@ T ©

Fig. 1. The terrain is digitalized by means of @ gtb) Three BS locations are shown, together
with the locations under their influence.

We consider a digitalized model of the terrain. Hnea is divided in sectors or
locations (atomic bits of terrain). Each coordingxey) of the grid represents a
possible BS transmitter location. Fig. 1 repres#mits model, showing how three BS
transmitters are located in available coordinafethe grid (Fig. 1a), and how some
locations are under the influence of these BS vdifierent coverage degrees
(Fig. 1b). Fig. 1c depicts several Base Stationgmatters with a simplified omni-
directional wave propagation model which is usethia and previous work [3].



It is important to note, that if two or more BSrtsanitters are close to each other,
their cover areas are overlapped, and thus thé¢idosainside these areas might have
different degrees of coverage (for example, onatlon can be under the influence of
two BS transmitters, while another location canrside the cover area of only one
transmitter; in this case, the second location emdwith a lower level of intensity of
the received signal).

In order to mathematically define this problem [Ig}, us consider the set L of all
potentially covered locations and the set M ofpaliential transmitter locations. Let G
be the graph, (ML L, E), where E is a set of edges such that eacisnriter
location is linked to the locations it covers. Aw tgeographical area needs to be
discretized, the potentially covered locations tken from a grid, as previously
shown in Figure 1a. In our case, we are focusingjerage) a< echelon problem.
The vectorx will be a solution to the problem whexel] {0,1}, andi I [1, 1000],
indicates whether a transmitter is used (1) or(6dtin the corresponding location.
Other complementary information can be modelledhi& stage, in order to add
further restrictions on RND specific domain problamdelling.

Since the objective of RND is to find the minimunbset [6] of transmitters that
covers a maximum surface of an area, we are lodking subset Mi_1M such that

[M’[ is minimum and such that |[Neighbours(M’, E)piaximum, where:
Neighbours(M’, E) ={uJ L | Cv O M, (u, v) U E} 1
M ={t LIM]|x=1}

The main constraint of this problem relates togbeof available locations for the
antennas, since there are some places where thenastcan not be placed (public
recreation areas, some roofs, water or mountaiasatc.).

We also need to establish a fitness functidn) (to evaluate the efficiency of a
BTS set disposed in a determined way in the gricbur casef (Eq. 2) depends on
the square of the cover rate and on the numbeBdf&smitters [5][6].

CoverRatéx)? @
NumberTrasmittersUgd(x)

f(x) =
Where
©)
[NeighbourgM', E')

CoverRaté¢x) =100 :
Neighbour¢M , E)

A textual description for themodus operandiof the previously referred
fundamentals is presented next. Primarily, we rteduuild a BS network giving the
maximum coverage to an area. So, in cell planneggh, we have to determine the
set of available locations for the BS. Then, thalgs to obtain high percentage
coverage for the considered area, using the loarastunt possible of BTS. This must
be done in a resourceful manner. The set of availldrations can be modelled
through an array of coordinates related to the.dridhis case, the size of the array
would be the size of the problem instance (or smh)t Every instance problem



should be evaluated by the fitness function in otdedifferentiate a better solution
from a worst one.

The problem we consider recalls tiricost Set Covering Proble(tSCP), which
is a known NP-hard combinatorial optimisation pesbl [1]. However, the RND
problem differs from the USCP in the fact that thiget is to select a subset of BTS
that ensures a good coverage of a given area,@rid ensure a total coverage.

Due to its NP-hardness classification, we wantedekhaustively assess a
bio-inspired algorithm, because previous implem@nta with genetic algorithms (in
sequential and parallel implementations) and ogfveiutionary techniques have been
employed with success in some other works [5][7][8]

2.2 Differential Evolution

Differential Evolution (DE) is an algorithm creatbgt Ken Price and Rainer Storn
[9]. Since 1994, DE has been used for many optiinisgroblems with satisfactory
results [10][11][12]. This is the main motivatioa tise it in our research, with the
future decisive purpose of comparing it with otherks [13]. The DE base code is
fully available to researchers [14].

DE is a very simple population-based stochastiction minimizer, which can be
categorized into a class diobating-point encoded, evolutionary algorithmi$ is
currently used in a wide range of optimisation peais, including multi-objective
optimisation [15]. Generally, the function to beiopsed,F, is of the form:

f(X):R" - R (©)
The optimisation target is to minimize the valuetaf objective functionf (X),
min( f (X)) ®
by optimising the values of its parameters:

X=X X, ), XHOR ©®)

whereX denotes a vector composedrpf..m objective function parameters. Usually,
the parameters of the objective function are aldgext to lower and upper boundary
constraintsx®™ andx", respectively:

L u) 7
XV <x < x® =N @
As with all population-based evolutionary optimisatalgorithms, DE handles a
population of solutions, instead of a single solutfor the optimisation of a domain
dependant problem. Populatiéhof generationG containsnyaam solution vectors,
each one usually known as an individual of the petfan. Consequently, each vector
represents a potential solution for the optimisapicoblem.
©) —yx©@) ;- - 8
PO =Xx®i=1..n_,G=1...,G,, ®

pop?



So, the populatiof of generatiorG containsn,,, individuals, each one containing
Nparam Parameters (usually referred@somosomgs

In order to establish a starting point for optimseeking, the populatioP®
(initial population) must be initialized. This issually done by seedin§© with
random values that are within the given boundanstraints:

© = O —p (v _ Ly 4 L ©
P™=x =6, (7 =x7)+X

Where
1=1...n0 ) =1 Nparam
wherer denotes a uniformly distributed random value wittange [0.0, 1.0].

The population reproduction scheme of DE is différsom other evolutionary
algorithms. From the *1 generation forward, the population of the follogin
generationP®*? s created in the following way on basis of therent population
P©. First, a temporary individual (usually referresitdal) that can possibly populate
the subsequent generati®®™V, is generated as shown in Equation 10.

(G) (G) _ (G ; (10)

X (6*Y :{XC,J +F EG(X?,; Xg i n;<Cr

1) G
Xc.i

Where
=1 N J =1 N
A=1..n,,B=1...,n,
crofoa,Fofo2rofog]

A, B and C are three randomly chosen indexes iafgthree individuals of the
population. Fig. 2 schematically illustrates how tleproduction of a R generation
population yields the next generation (N+1).

F, Cr and n,o, are DE control parameters that remain constaningutie search
processny,, represents the population sigeis a real-valued factor in range [0.0, 2.0]
that controls the amplification of differential vations, andCr is a real-valued
crossover factor in range [0.0,1.0] controlling gmebability to choose the mutated
value forx instead of its current value. According to Lampirg al. [10], both+ and
Cr affect the convergence velocity and robustnessegearch process. Their optimal

values are dependent on the individuality of thgeative functionf (X), and on the

population sizen,,, Normally, suitable values fdf, Cr andny,, can be found by
trial-and-error after some experiments using déffervalues. Practical advice on how
to select control parametetg,, F andCr are given in [9][11][12][13].

Usually, higher values ofi,,, and F result in a more robust search but at the
expense of a lower convergence velocity. Conveysetgessively small values for
Npop @and forF may cause premature convergence and/or stagrziore finding the
global optima. Typicallyn,o, varies from 2Maram t0 2052w Small population size
is recommended for unimodal and moderately multiah@doblems. However, highly
multimodal problems may requirg,, higher than 50M,,.m According to practical
experiences: lower than 24, or higher than 1.2 are unlikely to work best. Haffic
within range [(2hy0p), 1.2] should be used as initial estimation.

C=1...n_,A#B #C #i

pop’



Generally a high value dEr, ranging from 0.9 to 1.0 can be recommended as a
starting point unless the objective functioraipriori known to be separable. Small
values of Cr may result in higher convergence speed, but onlydses where
separable functions or functions with a low degoéepistasisare used (masking
effect of a gene action by another one), or if laxiable dependency exists [18][19].
With Cr=1.0 the algorithm is rotationally invariant, angartant property for solving
real life problems, since these can rarely be smed by separable functions, and in
fact, are more often subject to non-linear intécast between the variables. The
generational scheme of DE also differs from othedgionary algorithms. Based on
the current populatio® and on the trial vectok®, the population of the next
generatiorP®*? is created as follows:

' If (G+1) (©) (11
X.(G+l) fcost(xw ) < fcost(xl )
Xi(G+l) = { I (G)

>(i

Otherwise
Accordingly, each computed trial vector (generdhown as adonor vector) is
compared with the target vector. The one with theelr value of cost function

f.oq (X) will remain in the population of the next generatio

2.3 RND Differential Evolution-based M odel

Our generational algorithmic model retains the malraracteristics from the
original DE, namely thpanmicticsteady-state iterative structure and the donatovec
that schemes the generational iterations.

Previous works [19] have stated that usage of gérgteady-state algorithms
overwhelm other generational models. The removahefdonor vector element has
not been considered due to the intrinsic naturdh@fmathematical operations in the
variation operators. These operations are knowdifeesential mutatioroperationsn
DE context.

In our approach, we kept the iterative element (deeks 1-4 of Fig. 2), where the
successive generations try to get an optimal smiutending when the stopping
criterion is met, i.e., when a number of generaimreached or when the fitness of
the current solution is better than a predetermivaldie. Additionally, all design
issues took into account the differential evolutitast convergence, proven in
previous works [16], and its canonical self adaptiifferential mutation operator.

The Nearest Point Differential Mutation Operator (NPDM) has been created
for maximum effectiveness [4] and is described alowvs: relies on the DE
differential mutation scheme and enforce RND haohstraints. Before fithess
computation of the trial vector, each gene is chdcio see if the location is an
available BTS location (since differential mutatiaill create non legitimate alleles).
If not, it is replaced with the nearest availaldedtion (using the Euclidian distance)
not yet in the offspring. Further details aboustbperator and its effectiveness can be
found in [4].



m DE Parameters

Crossover Constant (Cr) = 0.50

El  seiecTion

|a) Randomly choose target vector |

| b)  Randomly choose 3 vectors |

Objective Function DE Control Parameters Individual
X Parameter 1
f(X)=x+x, Individual Size (D) = 2
Without constraint definition Population Size (NP) = 6 X Parameter 2
Mutation Constant (F) = 0.90 Fitness | Cost Value

Xc
Xa Xs
individual 1 | [Individuai2 | [Individual3 | [individuai4 | [[individuals | [individuale
Current
0.30 0.13 058 071 055 0.02
(Generation G) 015 007 019 049 083 021
0.45 0.20 0.77 120 | 1.38 0.23 |
L o R U ) | Tencmm] e
Pl wutaTion
+ =
Pre Trial X Pre Trial X
Mutation Formula E0ss) *F 02 +
© ©) _ (G . 5
X9+ F (7 —xi) 042 0378
NA | NA |
+
Pre Trial X'
~0.502
~0.168
NIA
EJ  crossover
T
Crossover Strategy Trial X With probability Cr select parameter
T y 0502 |r<Cr value from Pre Trial vectror, otherwise
‘mm:{\ +F- (7 —x0) i n,scr 5 R select value from target vector
- -0.352
'} RePLACEMENT
s s Replace target vector iftrial vector is Replacement Strategy
etter (finess based) o X LS
min( f(X)) T x@ otherwise
individual 1 | [Individuai2 | [Individual3 | [individuai4 | [[individual | [individuale
Population -0.502 013 0.58 0.71 0.55 0.02
(Generation G+1) 0.15 0.07 0.19 049 083 021
0.352 0.20 0.77 120 1.38 0.23 |

Fig. 2. lllustrated example of Differential Evolotti algorithm depicting the usage of
floating-point encoding in its Bio-inspired strayeg

In its canonical form, the DE algorithm is only effe of handling continuous
variables. The NPDM operator needs thus to enfbaoth integer representation and
the location constraints, although, the donor weeidl use underlying temporary
floating point values. According to [20], the haindl of integer and discrete variables
in DE can be done rather easily, by truncatingad value to an integer, just before
the fitness function evaluation (Eq. 12, whi&@ (x) is the truncate function).

fcost (YI)’I = 1' ' nparam
Where
X

INT(x)
x OX

Yi =

(12)

, for continuous variables

, for

integer variables



We also included an enhancement technique [4]edabuperimposed Grid
Initialization (SIGRI), with two intentions in minda) reduction and orientation of
the search space in order to route the global Bedirection, and (b) creation of
alternate initial populations with good diversithat can effectively empower
individual collaboration. This approach is based toe fast paced convergence
achieved by DE and by the usage of its canonidabsapting operator. This simple
heuristic defines boundaries on each of the geitialimalues. The same boundaries
are to be applied at the gene level for each iddadiin the population.

X =(X1----1ana,am)-XDR (13)
Where
xV<x <xMjA

The lower and upper boundary constraints for eawh af the genes composing the
individual are X! and x), respectively. Further details about SIGRI and its
effectiveness can be found in [4].

param

3 Non-dedicated High Throughput Computing

Although the differential evolution approach stutlie this paper aims to reduce
the computational effort, the search space is atifisiderable, and thus we resorted
high throughput computing. Specifically, the exémus of the experiments described
in this paper were carried out through the Condimyh hthroughput computing
framework [2]. Specifically, the Condor frameworlermits to harvest computing
resources that would otherwise be left idle, allmyiisers with access to the Condor
system to submit batches of independent tasks.eTfas&s are then scheduled by the
Condor master over the available computing ressuife task does not complete in
the assigned machine — for instance, the remotdimesis taken back for interactive
usage or the machine is simply turned off — thecetien lease times out after a given
time interval and Condor automatically reschedthestask to another machine. All
of this is practically transparent to the applioatiprogrammer, with application
submitters only providing the unchanged applicatlmnary (this needs to be a
console application), a specially tailored subrihd fthis is a simple text file holding
instructions to the Condor system, such as theinedjenvironments, for example,
Windows or Linux, or what are the command-line angats to be passed for the
application), and the required input files.

Since Differential Evolution algorithms are compmgtiintensive and can easily be
split in independent tasks, an easy to use higbutifrput computing system like
Condor is an important tool for running such cla$salgorithms, and in fact was
instrumental for conducting our experiments.



4 Results

In this section, we present the main results. Wet fcharacterize the used
computing environment and then present and distiass results.

4.1 Computing Environment

At the academic institution where all experimentsrav performed, a Linux
machine fulfils the role of the Condor server, whihe Condor client is installed over
170 Windows XP machines that are distributed thhoud@ classrooms (each
classroom holds 17 machines). Four additional tlimachines (the fastest ones)
belong to an advanced laboratory. The main chaiatits of the pool of client
machines are reported in Table 1 grouped by tyfresn(type A to type F). The
columns INT and FP refer respectively to NBench dbemark [21] integer and
floating-point performance indexes. The NBenchteixes are used to assess relative
performance among the monitored machines, sincesdahee benchmark binary was
used throughout the machines. Finally, the coluMifiAP represents the combination
of both INT and FP indexes, facilitating the conipan between machines. As can be
seen by this last column, the fastest machinepe Ey— are roughly 70% faster than
the slowest ones (type A). Furthermore, the Windawachines are primarily
assigned for teaching activities (essentially tppsut classes), and are also used by
students for their practical assignments and othactivities (e-mail, web, etc.).
Therefore, the machines are primarily devoted teractive usage, with Condor tasks
being scheduled to a machine only when no interactiser is logged on.
Additionally, whenever an interactive login occuasa machine that is running a
Condor task, the task is suspended, and after Hutes, if the interactive usage
persists, the task is evicted and rescheduled t@than machine. Again, this
conservative configuration was adopted to pricgitimteractive users over Condor’s
tasks, although it provokes a high churn rate sksasince machines are frequently
used for interactive usage, resulting in a vastemmage of interrupted executions.
This is aggravated by the fact that the classroarasheavily used (they are open 20
hours on weekdays, and 13 hours on Saturdaysctoging on Sundays).

Table 1: Main characteristics of the Condor’s pafahachines that run the experiments.

Type | Oty CPU INT FP INTFP
A 34 P4 @2.4 GHz 39.010 36.557 37.784
B 51 P4 @2.6GHz 42.038 40.323 41.181
C 51 P4 @3.0 GHz 43.198 41.715 42.457
D 17 P4 @3.2 GHz 46.705 44.257 45581
E 17 P4 @3.4 GHz 48.975 46.800 48.888
F 4 | Core 2 Duo 6600 @ 2.40 GHz 63.697 63.736 63.71

A subtle issue regarding Condor lies in the wayhandles machines with the
hyperthreading technology (in our case, machinetyppé B, C, D and E all have
hyperthreading enabled). For Condor, the hypertingamachines are, by default
regarded as having two processors, and thus twaaviclients are allocated per



machine. This means that up to two tasks can belineously running in those

machines, a situation that substantially lengthbasxecution time of the tasks, since
the hyperthreading technology has been reportedatginally improve performance

by 5% or 10% (this depends on the workload). In@ase, the overload of machines
with hyperthreading resulted in higher executiones per task, which in turn further

exposes the execution of tasks to interruptionsedy machines being claimed for
interactive usage. Note that although dual corehinas (type F) are also used by
Condor to host two virtual clients, the architeetwf such machines effectively

supports two simultaneous tasks without substaifiahy) performance degradation

(each task runs in an individual core).

4.2 Experiments

In our experiments we considered base station rrdtess with omni-directional
cells, each transmitter having 2810 associatedixr@aaint cells (coverage radius size
is 30). Other cell shapes are possible but defdaefiiture work. We used a 450x300
matrix map depicting the city of Malaga (Spain)tticavers 6.4 x 4.25 Km. Each
sector in the grid matrix represent approximatehba 15m squared area. Under this
scenario, it is impossible to attain a 100% cote due to waste spots (mountains
and considerable bodies of water); hence the maxirmover rate is 95.522%. A set
of 1000 predefined possible BS locations have haefimned. Several combinatory
scales have been used, as for instance, in theoagprof the Pareto front
construction; the number of BS varied from 1 to .1B0rther details can be found at
[22]. Since DE is well known for being a fast opation algorithm, two main tests
sets where made within a 100,000 and 200,000 fitmesluation boundary. Most
experimental aspects are based on 30 independ&ntutes each, yielding a total
aggregate of several thousandths executions, pesfbron Windows XP machines
under the control of Condor. Each set of experim&as performed having as
parameter set the best known configurations. Thae cmas developed in C# and
requires the .Net (or Mono) framework to run.

@ 140-150
m 130-140
0120-130
0110-120
m100-110
@90-100

Fig. 3 — F and Cr parameters fine tuning.
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Fig. 4 — Cr reliability based on the F=0.2.

The optimal value for F parameter was set to O.R elearly emerges from Fig. 3
as the most appropriate. The optimal Cr paraméd) (was chosen based on the
maximum average fitness values and minimal standevétion within the 0.2 F axes
(Fig. 4). Fig. 5 depicts the optimal number of BibSuse, which is weighted by the
usage of the fitness function (Eq. 2). The respliént out that 45 is the optimal
number of antennas to deploy.

Although the problem has not been tackled in a irolifective fashion, it was
possible to build an approach to the Pareto fronterning the maximum cover rate
and minimal deployed BTS objectives (Fig. 6). Tlmstruction of the Pareto front
required 3,000 experiments (30 runs x [1...100] B9j. 7 depicts the convergence
attained by the usage of DE within a 50,000 fitnegaluation boundary. Although
experiences had been prepared with a stopping rioriteof 200,000 fithess
evaluations, no better results were obtained &figd00.

Figure 8 plots the wall clock times of the runsatielely to the number of
considered antennas. Specifically, the plot presdat every count of antennas, the
best wall clock execution time (out of the 30 expents that were run for every
number of antennas), the average and the stan@sidtion observed for these 30
experiments. From the plot, it clearly emerges,tfat each count of antennas, the
best execution times progress linearly, an indicathat the algorithm scales linearly
with the number of antennas. As an aside notdjribar growth of the best execution
times also indicates that the fastest executioegimere all achieved by the fastest
machines (type F).

The high divergences between the average and #teekecution times stems from
the computer pool's heterogeneity (as stated befgpe F machines are roughly 70%
faster than type A machines). In fact, the tasksrstied to Condor were configured
to prioritize scheduling over the fastest machifgsgs way, when two or more



machines are available, Condor selects the fasims). The influence of the

machines’ heterogeneity on the results is furtleficomed by the discrepancy among
the average execution times, with some averageu&ractimes being close to the
respective best time, while others are as far & &Part. This also applies to the high
fluctuation of the standard deviations.
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6 Redated work

Vega-Rodriguez et al. [23] resorted to the BOINGIidigware system [24] to
perform a wide-scale study of the applicabilitytbé Population-Based Incremental
Learning algorithm to the RND problem. Comparatvie the Condor approach, the
BOINC middleware requires not only a specificallgildred application (the
application needs to use the BOINC client API), laldo a whole server-side
infrastructure (used (1) to distribute tasks anliecbresults and (2) to give feedback
to resource donors through forums and contributimks). Moreover, in order to
participate in the computation, resource donorsliede attracted to the project and
explicitly register their machines to the proje@h the contrary, the Condor approach
is mostly transparent, since only rather simplensitiiles need to be prepared, with
practically no changes required for the applicatidself. However, a BOINC-based
project has the potential to reach several thousaridresource donors, where all



expenses (computer acquisition and maintenanceionebandwidth, etc.), apart the
server-side ones, are supported by the volunteghile Condor is limited to
single-geographical sites (mostly local area emritents) and thus has a much lower
potential for scalability. It should be noted thaga-Rodriguez et al. used a smaller
map representation and only 349 possible BS positidhe BS positions were
tailored so that it would be possible to fit the Bi€ely in order to get 100% coverage
without a single overlap, using a square wave maaetesults are not comparable at
all. Furthermore, the computing power required tluis magnitude of problems is
lowermost when compared to our current work.

7 Conclusion and futurework

DE convergence has been proven on a large-scdlevoeld problem, although
the quality of the results are non-conclusive w#tce no related work has been
developed at this echelon, i.e., no other work thatare aware of use this magnitude
of combinatorics. Using Condor-based high throughgmmputing offers a credible
framework for providing a significant speed-up taolationary optimisation
experimentation in science and engineering, esihedia cases where dedicated
resources are not possible to achieve.

Future work includes the study of other bio-insgidgorithms, such as VNS,
Scatter Search and GRASP, as a mean of findingrpaason base on problems of
this order of magnitude. In this research line, wi## continue using desktop grid
computing with Condor in order to speedup all oypeziments and create more
effective algorithms resorting to the Alchemi ptath to gather parallelism, building-
up, exploiting and comparing resulting algorithrhattare also suitable to tackle the
RND problem. Another line of research is the finmithg of the Condor platform
itself via a task application-level checkpointingiépendent API, so that interrupted
executions under a Condor host can be resumedcingduhe amount of lost
computing power.
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