
RESULT ERROR DETECTION ON HETEROGENEOUS
AND VOLATILE RESOURCES VIA INTERMEDIATE
CHECKPOINTING ∗

Derrick Kondo
Laboratoire d’Informatique de Grenoble/INRIA Rhône-Alpes, France

dkondo@imag.fr

Filipe Araujo
CISUC, Department of Informatics Engineering, University of Coimbra, Portugal

filipius@dei.uc.pt

Patricio Domingues
School of Technology and Management, Polytechnic Institute of Leiria, Portugal

patricio@estg.ipleiria.pt

Luis Moura Silva
CISUC, Department of Informatics Engineering, University of Coimbra, Portugal

luis@dei.uc.pt

Abstract
Desktop grids use the free resources in Intranet and Internet environments

for large-scale computation and storage. While desktop grids offer tremendous
computational power and a high return on investment, one critical issue is the
validation of results returned by participating hosts that are volatile, anonymous,
and potentially malicious. We conduct a benefit analysis of a mechanism for
result validation that we proposed recently for the detection of errors in long-
running applications. This mechanism is based on using the digest of intermediate
checkpoints, and we show in theory and simulation that the relative benefit of
this method compared to the state-of-the-art is as high as 45%.

∗This work was supported by the CoreGRID Network of Excellence, funded by the European Commission
under the Sixth Framework Programme. project no. FP6-004265.



2

Keywords: Desktop Grids, Error Detection, Result Validation, Checkpointing, Digest



Result Error Detection on Heterogeneous and Volatile Resources 3

1. Introduction

For over a decade, one of the largest distributed computing platforms in the
world have been desktop grids, which use the idle computing power and free
storage of a large set of networked (and often shared) hosts to support large-
scale applications [14, 13–1]. Desktop grids are an extremely attractive platform
because they offer huge computational power at relatively low cost. Currently,
many desktop grid projects, such as SETI@home [14], FOLDING@home [13],
and EINSTEIN@home [1], use TeraFLOPS of computing power of hundreds of
thousands of desktop PC’s to execute large, high-throughput applications from
a variety of scientific domains, including computational biology, astronomy,
and physics.

Despite the huge return-on-investment that desktop grids offer, one criti-
cal issue is the correctness of results returned from volatile, anonymous, and
potentially malicious hosts. A number of different factors can influence the
correctness of the results returned from the desktop grid worker to the server.
These factors can be due to computational errors (for example, overclocking
of the CPU or incorrectly modified application binaries [15]) or input/output
errors (for example, a machine crash during an out-of-order flush of in-memory
blocks [11]).

Given the risk of erroneous results, effective error detection mechanisms
are essential. In this paper, we conduct a benefit analysis of a mechanism
that we proposed recently for the detection of errors in long-running applica-
tions. This mechanisms uses the digest of intermediate checkpoints to accel-
erate the detection of result errors, especially for long running applications. A
number of projects such as climateprediction.net, climatechange, and
seasonalattribution have workunits whose execution span months [6], and
we believe early error detection for these projects would be useful. We present
theoretical upper and lower bounds on the benefits of our mechanism for het-
erogeneous and volatile resources, using error rates derived from a real desktop
grid system. Finally, we present simulation results that loosen the assumptions
of our theoretical analysis, but nevertheless confirm our theoretical results.

The paper is structured as follows. In Section 2, we describe how our work
in this paper relates to previous research. Then, in Section 3, we detail our
mechanism for error detection, give theoretical upper and lower bounds on its
benefits, and confirm our analysis with simulation results. Finally, in Section 4,
we summarize our conclusions and describe future research directions.

2. Related Work

In [4], we presented the theoretical analysis and simulation results of the
same error detection mechanism presented here, but there were two main lim-
itations. First, the previous analysis was conducted using hypothetical error



4

rates instead of error rates obtained empirically from a real project. In fact,
our previous work assumed error rates that were orders of magnitude higher
than the rates we determined in this study. Nevertheless, we show here that
substantial benefits can still be achieved using this novel technique with real
but relatively lower error rates. Second, the theoretical analysis previously
conducted made the assumption that checkpoints occur simultaneously across
hosts at constant intervals. For reasons that we detail in the next section, this
is an unrealistic assumption in volatile and heterogeneous desktop grids. We
loosen the assumption to consider variable checkpointing intervals, and give
new theoretical upper and lower bounds on the benefits of this technique using
a mathematical approach based on order statistics.

3. Comparing Intermediate Checkpoints for
Long-Running Workunits

In this section, we present novel benefit analysis of a mechanism for error
detection that we proposed recently in [4]. This mechanism is based on check-
pointing and replication, and is well-suited for long-running workunits. The
technique involves comparing intermediate checkpoint digests (provided for ex-
ample by the MD5 [12]family of algorithms) of redundant instances of the same
task. (Note that often computations occupy a large space in memory often near
the 100MB range [6]and/or sending a small, intermediate result for comparison
may not be possible nor efficient.) If differences are found, the conclusion is
that at least one task’s execution is wrong. In contrast to the simple redundancy
mechanism, where diverging computations can only be detected after a majority
of tasks have completed, intermediate checkpoint comparison allows for earlier
and more precise detection of errors, since execution divergence can be spotted
at the next checkpoint following any error. This allows one to take proactive
and corrective measures without having to wait for the completion of the tasks,
and it allows for faster task completion, since faulty tasks can immediately be
rescheduled.

We assume the following. First, if the digests differ from the correct digest,
then the divergent digest differs from all other digests (including other divergent
ones). Second, the errors occur independently of one another. Finally, each
task is checkpointed locally and periodically (as is done in several existing
desktop grid systems [3, 9]). (Note that later we relax these assumptions in our
simulations.) With respect to CPU time, the application could conduct local
checkpointing periodically (for example, every 10 minutes). However, with
respect to wall-clock time, the time between checkpoints is random because of
non-deterministic events that could delay checkpointing such as a host being
powered off, or the worker being suspended or killed because of user activity [8].



Result Error Detection on Heterogeneous and Volatile Resources 5

Parameter Definition

W Benefit in time of intermediate check-
pointing relative to the state-of-the-art
method

Tk,j Time from start of workunit to the time
of checkpointing segment j on worker k

R Number of workers on which a check-
pointed task is replicated

c Number of segments or equivalently
checkpoints per task

Sk,g Time from start of segment g to the time
of checkpointing segment g on worker
k

p, v p is the probability of getting an error
within a segment on any host. v = 1−p

X Random variable distributed geometri-
cally with parameters p and v represent-
ing the number of task segments before
an error occurs

Table 1. Parameter Definitions.

Thus, we model the time between checkpoints as a random variable. In
particular, each checkpoint delineates the end of a task segment to create a total
of c segments. Let R be the number of workers on which a checkpointed task
is replicated (see Table 1). Let Sk,g be a random variable that represents the
time to checkpoint the current segment g, beginning from the last checkpoint
(or start of the task, in the case of the first checkpoint), on worker k where
1 ≤ g ≤ c, and 1 ≤ k ≤ R.

Let Tk,j be a random variable that represents the amount of time elapsed
since the start of the task up to the checkpoint time of segment j, on worker k.
Specifically, Tk,j =

∑j
g=1 Sk,g (see Figure 1 for an example).

We assume that Sk,g is distributed exponentially with parameter λ across all
workers. While a number of previous studies have characterized the distribution
of availability intervals on enterprise desktop resources (for example, [8]), it is
unclear how these periods of availability relate to the time of checkpointing a
segment on Internet environments. Thus, for future work, we will verify our
assumption using resource traces, for example, those currently being collected
on Internet desktop environments [10].

Given that Sk,g is distributed exponentially, Tk,j has a gamma distribution
with parameters α = j and β = 1/λ.



6

WORKER 1

WORKER 2

s1,1 s1,2 s1,3

s2,1 s2,1

t1,2

s2,3

t 2,2

TIME

t(2),1 c=3
R=2

Figure 1. Example of Intermediate Checkpointing

The time to validate the ith segment is given by T(R),i, which is the Rth order
statistic of the set T1,i, ..., TR,i. That is, T(R),i represents the maximum time to
complete segment i among all R workers.

The expected gain E[W ] for using intermediate checkpoints compared to
state-of-the-art methods where the comparison is done at the end of the workunit
is then given by:

E[W ] = E[T(R),c − T(R),i] (1)

where 1 ≤ i ≤ c.
Let X be the number of trials, i.e., the segment in which an error occurs on

any of the hosts, and let X have a geometric distribution with parameters p and
v, where p is the probability of getting an error within a segment in any of the
hosts, and v = 1 − p.

From [5], a lower bound on the expectation of the maximum of a set of
random variables is the maximum of the expected value of each random variable
in the set. Moreover, Hartley and David [7]report that an upper bound for the
expectation of the maximum is µ + σ × (n − 1)/

√
2n − 1, given a set of n

independent random variables with identical means and variances (µ, σ2).
In Figure 2, we show the upper and lower bounds on the benefit E[W ] relative

to the upper and lower bounds of the expected maximum time E[T(R),c] for
checkpointing at the end of the task. In particular, in Figure 2(a), the number
of checkpoints c is fixed to 1000, and p varies between [0.0005, 0.0015]. In



Result Error Detection on Heterogeneous and Volatile Resources 7

0.5 1 1.5

x 10
−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of error in segment computation

B
en

ef
it 

re
la

tiv
e 

to
 e

xp
ec

te
d 

m
ax

im
um

 ti
m

e

upper bound
lower bound
simulation

(a) Varying probability of error

500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of checkpoints

B
en

ef
it 

re
la

tiv
e 

to
 e

xp
ec

te
d 

m
ax

im
um

 ti
m

e

upper bound
lower bound
simulation

(b) Varying checkpoint frequency

Figure 2. Benefits of intermediate checkpointing

Figure 2(b), the probability of error within each segment p is fixed at 0.001, and
c varies between [500, 1000]. (The range of error rates are based upon those
observed in a real desktop grid system [16]. In that study, the authors checked
syntactically and semantically the results returned from about 600 hosts in an
Internet-wide desktop grids to determine error rates of hosts. )

We observe potentially significant gains even for small error rates. For ex-
ample, in Figure 2(a), we find that if the probability of error p is 0.001 and
the number of checkpoints per task c is 1000, then the potential benefit of in-
termediate checkpointing is between ∼ 30 − 45%. While 1000 checkpoints
may seem abnormally large, if we assume a task checkpoints every 10 min-
utes a thousand times, this equates to a 7-day workunit. (This is a reasonable
checkpoint frequency and workunit length as the frequency in real projects
EINSTEIN@home, PREDICTOR@Home, and SIMAP is on the order of min-
utes [2]and execution is on the order of days or months [6].) In Figure 2(b),
we find that if the number of checkpoints is 1050 (and the probability of error
is 0.001), then the potential benefit of intermediate checkpointing is between
∼ 30 − 45%.

We then confirmed and extended the theoretical results through simulation.
We assign a number of tasks to a set of workers. Whenever a worker computes
a checkpoint, it randomly determines whether that computation is wrong or
correct. Once a checkpoint is wrong, all the remaining checkpoints from that
worker are also considered as wrong. In our experiments, the time that a worker
needed to compute a checkpoint was given by an exponential distribution. We
chose an arbitrary average checkpoint time (as it does not impact the relative
benefit of our technique). We varied the number of checkpoints of each task
and the probability of error in each checkpoint. (We used a constant value for



8

the probability of error. We also tried random variables (truncated Gaussian,
exponential and others), with little if any impact on the outcome of the trials.)

In Figures 2(a) and 2(b), we show the results of our experiments for the
same range of parameters as used for the theoretical analysis. The curve of the
observed benefit is the average of 300 trials.

Our results show that the there is a considerable benefit in comparing in-
termediate checkpoints, especially for long-running workunits. Even for very
small probabilities of error, which correspond to real values observed in real
systems, the time savings can amount to 20%-45% of the time correspond-
ing to state-of-the-art solutions. (One potential limitation of this method is
scalability of receiving the high-frequency digest messages if digests are sent
centrally to a “supervisor” for comparison. We are currently working on se-
cure load-balancing techniques via distributed hash tables (DHT) to remove
this limitation, and we will report on this in future work.)

4. Conclusion

We showed the benefits of a recently proposed method for accelerating error
detection on large-scale and volatile resources. In particular, we gave novel
theoretical analysis for our proposed method based on the digest of intermediate
checkpoints, where each task segment can take a variable amount of time due to
host volatility or heterogeneity, for example. For error rates often found in real
systems, we found that the time savings bounded by theoretical analysis can
often range from 20% to 45%. We then verified our theoretical bounds on the
potential benefit through simulation experiments, while loosening assumptions
of the analysis. We find that our simulation experiments validate our theoretical
analysis, even for various distributions of the probability of error. For future
work, we will develop scalable ways to collect and compare checkpoint digests,
for example using mechanisms based on DHT’s.

References
[1] EINSTEN@home. http://einstein.phys.uwm.edu.

[2] B. Allen, C. An, and T. Rattel. Personal communications, April 2006.

[3] D. Anderson. Boinc: A system for public-resource computing and storage. In Proceedings
of the 5th IEEE/ACM International Workshop on Grid Computing, Pittsburgh, USA, 2004.

[4] F. Araujo, P. Domingues, D. Kondo, and L. M. Silva. Validating Desktop Grid Results By
Comparing Intermediate Checkpoints. Submitted to 2nd Coregrid Integration Workshop,
2006.

[5] T. Aven. Upper (lower) bounds on the mean of the maximum (minimum) of a number of
random variables. Journal of Applied Probability, 22:723–728, 1985.

[6] Catalog of boinc projects. http://boinc-wiki.ath.cx/index.php?title=Catalog of BOINC Powered projects.

[7] H. Hartely and H. David. Universal bounds for mean range and extreme observations.
The Annals of Mathematical Statistics, 25:85–89, 1954.



Result Error Detection on Heterogeneous and Volatile Resources 9

[8] D. Kondo, M. Taufer, C. Brooks, H. Casanova, and A. Chien. Characterizing and Evalu-
ating Desktop Grids: An Empirical Study. In Proceedings of the IPDPS’04, April 2004.

[9] M. Litzkow, M. Livny, and M. Mutka. Condor - A Hunter of Idle Workstations. In Pro-
ceedings of the 8th International Conference of Distributed Computing Systems (ICDCS),
1988.

[10] P. Malecot, D. Kondo, and G. Fedak. Xtremlab: A system for characterizing internet desk-
top grids (abstract). In in Proceedings of the 6th IEEE Symposium on High-Performance
Distributed Computing, 2006.

[11] A. Oltean. How to do atomic writes in a file.
http://blogs.msdn.com/adioltean/archive/2005/12/28/507866.aspx, December 2005.

[12] R. Rivest. RFC-1321 The MD5 Message-Digest Algorithm. Network Working Group,
IETF, April 1992.

[13] M. Shirts and V. Pande. Screen Savers of the World, Unite! Science, 290:1903–1904,
2000.

[14] W. T. Sullivan, D. Werthimer, S. Bowyer, J. Cobb, G. Gedye, and D. Anderson. A new
major SETI project based on project Serendip data and 100,000 personal computers. In
Proc. of the Fifth Intl. Conf. on Bioastronomy, 1997.

[15] M. Taufer, D. Anderson, P. Cicotti, and C. L. B. III. Homogeneous redundancy: a technique
to ensure integrity of molecular simulation results using public computing. In Proceedings
of the International Heterogeneity in Computing Workshop, 2005.

[16] D. Kondo, F. Araujo, P. Domingues, P. Malecot, G. Fedak, F. Cappello Characterization
Error Rates on Internet Desktop Grids. To appear in Proceedings of Euro-Par, 2007.


