

Controlling Bloat:

Individual and Population Based

Approaches in Genetic Programming

A dissertation submitted to the
University of Coimbra

in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in Informatics Engineering

by

Sara Guilherme Oliveira da Silva

University of Coimbra
Faculty of Sciences and Tecnology

Department of Informatics Engineering

April 2008

Financial support by Fundação para a Ciência e a Tecnologia
through the PhD grant SFRH/BD/14167/2003

Controlling Bloat:
Individual and Population Based
Approaches in Genetic Programming
c© 2008 Sara Silva

ISBN 978-989-20-1137-0

This dissertation was prepared
under the supervision of

Ernesto Jorge Fernandes Costa
Full Professor

of the Department of Informatics Engineering
of the Faculty of Sciences and Tecnology

of the University of Coimbra

To my dear little brat Daniel,
the product of a very successful crossover

©

Acknowledgments

First things first, many thanks to John Koza and Wolfgang Banzhaf et al. for
writing the books that definitely put me in the path of Genetic Programming.
Thank you to all the authors who have sent me the papers that I could not find
on the internet or in the library, and Leonardo Vanneschi and Denis Rochat for
additional material and some enlightening discussions about their work. Many
thanks to Penousal Machado and Susana Vinga for lending me the LATEX tem-
plates of their PhD theses.

Thank you so much to my advisor Ernesto Costa for allowing me so much free-
dom and for always supporting and contributing to my ideas, and for sometimes
throwing in a much needed dose of entropy. Thank you also to my unofficial
(and very personal) advisor Pedro J.N. Silva for keeping a constant interest in
my work and always finding the time for pleasant and fruitful discussions about
it. A global thank you to the ECOS – Evolutionary and Complex Systems group
for being such a nice group of people to work with. Many thanks to Francisco
and Leonor for the car rides, meals, and cheerful company in Coimbra.

Last but not least, a big thank you to my family, for always being there and
providing a wonderful sense of security. Most important of all, little Daniel and
his daddy, “my two men”. Daniel was born right in the middle of my PhD,
creating considerable havoc both in my work and in my mind, and I thank him
dearly for revealing a wonderful new world and for constantly reminding me
that a thesis can always wait a little longer. Thank you Pedro for being my
everything, and such a wonderful daddy for our son.

Sara Silva

Lisbon, April 2008

Abstract

Genetic Programming (GP) is the automated learning of computer programs.
Basically a search process, it is capable of solving complex problems by evolving
populations of computer programs, using Darwinian evolution and Mendelian
genetics as inspiration. Theoretically, GP can solve any problem whose candi-
date solutions can be measured and compared, making it a widely applicable
technique. Furthermore, the solutions found by GP are usually provided in a
format that users can understand and modify to their needs. But its high ver-
satility is also the cause of some difficulties. The search space of GP is virtually
unlimited and programs tend to grow in size during the evolutionary process.
Code growth is a healthy result of genetic operators in search of better solutions,
but it also permits the appearance of pieces of redundant code that increase the
size of programs without improving their fitness. Besides consuming precious
time in an already computationally intensive process, redundant code may start
growing rapidly, a phenomenon known as bloat. Bloat can be defined as an
excess of code growth without a corresponding improvement in fitness. This
is a serious problem in GP, often leading to the stagnation of the evolutionary
process. Although many bloat control methods have been proposed so far, a
definitive solution is yet to be found.

This thesis provides a comprehensive description of all the bloat theories pro-
posed so far, and a detailed taxonomy of available bloat control methods. Then
it proposes two novel bloat control approaches, Dynamic Limits and Resource-
Limited GP, both implemented on the GPLAB software package, also developed
in the context of this thesis. Dynamic Limits restricts the size or depth allowed
at the individual level, while Resource-Limited GP imposes restrictions only at
the population level, regardless of the particularities of the individuals within.
Four different problems were used as a benchmark to study the efficiency of both
Dynamic Limits and Resource-Limited GP. They represent a varied selection
of problems in terms of bloat dynamics and response to different bloat control
techniques: Symbolic Regression of the quartic polynomial, Artificial Ant on the
Santa Fe food trail, 5-Bit Even Parity, and 11-Bit Boolean Multiplexer. The
results of exhaustive experiments have shown that, although Dynamic Limits
was a more efficient bloat control method than Resource-Limited GP across the
set of problems studied, both approaches successfully performed the task they
were designed to. Without adding any parameters to the search process, it was
possible to match the performance of some of the best state-of-the-art methods
available so far.

ix

Contents

Acknowledgments . vii
Abstract . ix
List of Tables . xv
List of Figures . xvii
Resumo Alargado em Português . xxi

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Structure . 4

2 Bloat 5
2.1 Theories . 6

2.1.1 Hitchhiking . 6
2.1.2 Defense Against Crossover 6
2.1.3 Removal Bias . 8
2.1.4 Fitness Causes Bloat . 8
2.1.5 Modification Point Depth 9
2.1.6 Crossover Bias . 9
2.1.7 Discussion . 10

2.2 Taxonomy of Bloat Control Methods 11
2.2.1 Evaluation . 11
2.2.2 Selection . 12
2.2.3 Breeding . 12
2.2.4 Survival . 13
2.2.5 Others . 15

3 Dynamic Limits 17
3.1 Dynamic Maximum Tree Depth 17

3.1.1 Dynamic Depth Limit . 17
3.1.2 Early Results . 18

3.2 Variations on Size and Depth . 18
3.2.1 Heavy Dynamic Limit . 18
3.2.2 Dynamic Size Limit . 19
3.2.3 Early Results . 20

xi

xii CONTENTS

4 Resource-Limited GP 21
4.1 Replacing Tree Depth Limits . 21

4.1.1 Static Resource Limit . 21
4.1.2 Early Results . 22

4.2 The Dynamic Approach . 22
4.2.1 Dynamic Resource Limit 23
4.2.2 Early Results . 25

4.3 Comparison with Dynamic Limits 26
4.3.1 Early Results . 26

5 Experiments 27
5.1 Problems . 27

5.1.1 Symbolic Regression . 27
5.1.2 Artificial Ant . 28
5.1.3 5-Bit Even Parity . 29
5.1.4 11-Bit Boolean Multiplexer 29

5.2 Settings . 30
5.3 Plots . 32

6 Comparison within Dynamic Limits 33
6.1 Techniques . 33
6.2 Depth Limits . 33
6.3 Size Limits . 34
6.4 Results . 35

6.4.1 Symbolic Regression . 35
6.4.2 Artificial Ant . 39
6.4.3 5-Bit Even Parity . 42
6.4.4 11-Bit Boolean Multiplexer 45

6.5 Conclusions . 48

7 Comparison within Resource-Limited GP 49
7.1 Techniques . 49
7.2 Resource Limit . 49
7.3 Results . 51

7.3.1 Symbolic Regression . 51
7.3.2 Artificial Ant . 57
7.3.3 5-Bit Even Parity . 63
7.3.4 11-Bit Boolean Multiplexer 69

7.4 Conclusions . 75

8 Dynamic Limits and Resource-Limited GP 77
8.1 Techniques . 77
8.2 Results . 78

8.2.1 Symbolic Regression . 78
8.2.2 Artificial Ant . 80
8.2.3 5-Bit Even Parity . 82
8.2.4 11-Bit Boolean Multiplexer 84

8.3 Conclusions . 86

CONTENTS xiii

9 Comparison with State of the Art 87
9.1 Techniques . 87

9.1.1 Linear Parametric Parsimony Pressure 87
9.1.2 Double Tournament . 88
9.1.3 Dynamic Populations . 88

9.2 Results . 89
9.2.1 Symbolic Regression . 89
9.2.2 Artificial Ant . 91
9.2.3 5-Bit Even Parity . 93
9.2.4 11-Bit Boolean Multiplexer 93

9.3 Conclusions . 96

10 Discussion 97
10.1 Global Performance . 97
10.2 Problemwise Analysis . 99

10.2.1 Performance . 99
10.2.2 Problem Difficulty . 102
10.2.3 Inviable Code . 103
10.2.4 Diversity . 103
10.2.5 Conclusions . 105

10.3 Final Considerations . 107

11 Conclusion 109
11.1 Summary . 109
11.2 Future Work . 111

Bibliography 113

Index 123

List of Tables

5.1 Settings used in the experiments. 31

6.1 Techniques compared within the Dynamic Limits approach. . . . 34
6.2 Limits used within the Dynamic Limits approach. 35

7.1 Techniques compared within the Resource-Limited GP approach. 50

8.1 Techniques involved in the comparison of Dynamic Limits and
Resource-Limited GP. 77

9.1 Techniques involved in the comparison with state of the art. . . . 88

10.1 Relative performance in the Regression problem. 100
10.2 Relative performance in the Artificial Ant problem. 100
10.3 Relative performance in the Parity problem. 100
10.4 Relative performance in the Multiplexer problem. 101
10.5 Indicators of problem difficulty. 103

xv

List of Figures

1.1 Arrangement of techniques that use limits. 3

3.1 Pseudo code of the Dynamic Limits acceptance procedure. 19

4.1 Pseudo code of the resource allocation procedure. 23
4.2 Pseudo code of the reselection procedure. 24
4.3 Example of resource allocation and reselection procedures. 25

5.1 Plotting of the quartic polynomial. 28
5.2 Santa Fe food trail for the Artificial Ant problem. 29
5.3 Example of the 11-Bit Boolean Multiplexer. 30

6.1 Results of the dynamic limit techniques on the Regression prob-
lem, without upper limit. 36

6.2 Results of the dynamic limit techniques on the Regression prob-
lem, with upper limit. 37

6.3 Results of the dynamic limit techniques on the Artificial Ant
problem, without upper limit. 40

6.4 Results of the dynamic limit techniques on the Artificial Ant
problem, with upper limit. 41

6.5 Results of the dynamic limit techniques on the Parity problem,
without upper limit. 43

6.6 Results of the dynamic limit techniques on the Parity problem,
with upper limit. 44

6.7 Results of the dynamic limit techniques on the Multiplexer prob-
lem, without upper limit. 46

6.8 Results of the dynamic limit techniques on the Multiplexer prob-
lem, with upper limit. 47

7.1 Results of the resource-limited techniques (Steady implementa-
tion) on the Regression problem, without upper limit. 52

7.2 Results of the resource-limited techniques (Steady implementa-
tion) on the Regression problem, with upper limit. 53

7.3 Results of the resource-limited techniques (Low implementation)
on the Regression problem, without upper limit. 55

7.4 Results of the resource-limited techniques (Low implementation)
on the Regression problem, with upper limit. 56

xvii

xviii LIST OF FIGURES

7.5 Results of the resource-limited techniques (Steady implementa-
tion) on the Artificial Ant problem, without upper limit. 58

7.6 Results of the resource-limited techniques (Steady implementa-
tion) on the Artificial Ant problem, with upper limit. 59

7.7 Results of the resource-limited techniques (Low implementation)
on the Artificial Ant problem, without upper limit. 61

7.8 Results of the resource-limited techniques (Low implementation)
on the Artificial Ant problem, with upper limit. 62

7.9 Results of the resource-limited techniques (Steady implementa-
tion) on the Parity problem, without upper limit. 64

7.10 Results of the resource-limited techniques (Steady implementa-
tion) on the Parity problem, with upper limit. 65

7.11 Results of the resource-limited techniques (Low implementation)
on the Parity problem, without upper limit. 67

7.12 Results of the resource-limited techniques (Low implementation)
on the Parity problem, with upper limit. 68

7.13 Results of the resource-limited techniques (Steady implementa-
tion) on the Multiplexer problem, without upper limit. 70

7.14 Results of the resource-limited techniques (Steady implementa-
tion) on the Multiplexer problem, with upper limit. 71

7.15 Results of the resource-limited techniques (Low implementation)
on the Multiplexer problem, without upper limit. 73

7.16 Results of the resource-limited techniques (Low implementation)
on the Multiplexer problem, with upper limit. 74

8.1 Results of comparison among both approaches and a hybrid on
the Regression problem. 79

8.2 Evolution of population size by the limited ResSteady and Hybrid
techniques on the Regression problem. 80

8.3 Results of comparison among both approaches and a hybrid on
the Artificial Ant problem. 81

8.4 Evolution of population size by the limited ResSteady and Hybrid
techniques on the Artificial Ant problem. 82

8.5 Results of comparison among both approaches and a hybrid on
the Parity problem. 83

8.6 Evolution of population size by the limited ResSteady and Hybrid
techniques on the Parity problem. 84

8.7 Results of comparison among both approaches and a hybrid on
the Multiplexer problem. 85

8.8 Evolution of population size by the limited ResSteady and Hybrid
techniques on the Multiplexer problem. 86

9.1 Results of comparison with state-of-the-art techniques on the Re-
gression problem. 90

9.2 Results of comparison with state-of-the-art techniques on the Ar-
tificial Ant problem. 92

9.3 Results of comparison with state-of-the-art techniques on the Par-
ity problem. 94

LIST OF FIGURES xix

9.4 Results of comparison with state-of-the-art techniques on the
Multiplexer problem. 95

10.1 Percentage of inviable code. 104
10.2 Genotypic diversity of the population. 106
10.3 Phenotypic diversity of the population. 107

Resumo Alargado em

Português

Introdução

A computação evolucionária é uma área de investigação no âmbito das ciências
da computação. Historicamente, é composta por quatro diferentes paradig-
mas inspirados na biologia: Programação Evolutiva, Algoritmos Genéticos, Es-
tratégias Evolutivas, e a mais recente Programação Genética.

Motivação

Programação Genética (PG) é a aprendizagem automatizada de programas de
computador tendo em vista a resolução de problemas complexos. Basicamente
um processo de procura, resolve os problemas fazendo evoluir populações de
programas, usando a evolução Darwiniana e a genética Mendeliana como fontes
de inspiração. A partir de uma população inicial de programas criados aleato-
riamente, representando potenciais soluções para o problema em causa, avalia
e atribui um valor de aptidão a cada um, quantificando quão bem o programa
resolve o problema. Novas gerações de programas são criadas iterativamente
selecionando os progenitores com base na sua aptidão e reproduzindo-os usando
operadores genéticos como a recombinação e a mutação. Porque os indiv́ıduos
mais aptos são selecionados mais frequentemente, sendo-lhes dada a oportu-
nidade para passar as suas melhores caracteŕısticas aos seus descendentes, a
população tende a melhorar qualitativamente ao longo de sucessivas gerações.
Este processo evolutivo continua até que se verifique uma dada condição de
paragem.

Teoricamente, a PG pode resolver qualquer problema cujas posśıveis soluções
possam ser medidas e comparadas, tornando-a uma técnica largamente aplicável.
Para mais, as soluções encontradas pela PG são geralmente fornecidas num for-
mato que os utilizadores conseguem perceber e modificar de acordo com as suas
necessidades. Mas a sua grande versatilidade é também a causa de algumas di-
ficuldades. Os utilizadores são obrigados a especificar uma série de parâmetros
relacionados com os vários aspectos do processo evolutivo, sendo que alguns
desses parâmetros podem influenciar o processo de procura ao ponto de im-
pedir que seja encontrada uma solução óptima, se escolhidos incorrectamente.
E mesmo na presença de um casamento perfeito entre problemas e parâmetros,

xxi

um importante problema subsiste, que tem sido estudado durante mais de uma
década: o crescimento do código.

O espaço de procura da PG é virtualmente ilimitado, e os programas tendem
a crescer em tamanho durante o processo evolutivo. O crescimento do código é
um resultado natural dos operadores genéticos em busca de melhores soluções,
mas também permite o aparecimento de segmentos de código redundante que
aumentam o tamanho dos programas sem melhorar a sua aptidão. Para além de
consumir tempo precioso num processo já de si computacionalmente intensivo, o
código redundante pode começar a crescer rapidamente, um fenómeno conhecido
por bloat1,2. O bloat pode ser definido como um crescimento excessivo do código
sem uma correspondente melhoria da aptidão. Isto é um problema grave em
PG, frequentemente levando à estagnação do processo evolutivo. Embora vários
métodos para controlar o bloat tenham sido propostos até agora, ainda não foi
encontrada uma solução definitiva.

Contribuições

Este trabalho introduz duas novas abordagens para o controlo do bloat. Ao
contrário de muitas outras, estas abordagens não requerem operadores genéticos
espećıficos, modificações na avaliação da aptidão ou esquemas de seleção difer-
entes, nem adicionam parâmetros ao processo de procura. A primeira abor-
dagem é inspirada na técnica mais tradicional de impor um limite fixo na pro-
fundidade dos indiv́ıduos admitidos na população, introduzida por Koza na PG
baseada em árvores. Implementa um limite dinâmico que pode ser aumen-
tado ou diminuido, dependendo da melhor solução encontrada até então, e pode
ser aplicado tanto à profundidade como ao tamanho dos programas, tornando-a
numa abordagem utilizável também em PG linear. As diferentes variantes desta
abordagem serão colectivamente designadas como Limites Dinâmicos.

A segunda abordagem para controlar o bloat também usa um limite dinâmico,
mas este actua a um ńıvel diferente do paradigma da PG. Um único limite é
imposto ao número total de nós das árvores ou linhas de código que a população
pode usar. Os nós das árvores ou as linhas de código podem ser encarados como
os recursos de que cada indiv́ıduo necessita para sobreviver, e quando se tornam
insuficientes para todos, alguns indiv́ıduos são descartados e a população é red-
imensionada. O limite de recursos pode ser aumentado ou diminúıdo como nos
Limites Dinâmicos, dependendo da aptidão média da população. As diferentes
variantes desta abordagem são colectivamente designadas por PG de Recursos
Limitados.

Enquanto que os Limites Dinâmicos actuam ao ńıvel do indiv́ıduo, impondo
uma condição que cada indiv́ıduo deve verificar para que seja aceite na pop-
ulação, a PG de Recursos Limitados actua ao ńıvel da população, impondo uma
restrição global que a população como um todo deve respeitar, independente-
mente das particularidades dos seus indiv́ıduos. Cada uma destas abordagens
tem as suas vantagens e os seus contras. Esta tese reporta o seu desempenho
em diferentes problemas, combinadas entre si e uma contra a outra, e em com-

1Traduzido à letra para Português, “inchaço”!
2Segundo Bill Langdon, “sobrevivência dos mais gordos” (do Inglês survival of the fattest).

xxii

d
in

â
m

ic
o

e
st

á
ti

co

população

indivíduo profundidade

tamanho

Koza

PG de Recursos Limitados

Limites Dinâmicos
 no tamanho

Híbrida

Limites Dinâmicos
 na profundidade

Figura 1: Arranjo das técnicas que usam limites. Os limites podem ser estáticos
ou dinâmicos, impostos à profundidade ou ao tamanho, ao ńıvel do indiv́ıduo
ou da população.

paração com os melhores métodos do estado da arte para controlo do bloat.
A Figura 1 mostra os Limites Dinâmicos e a PG de Recursos Limitados dis-

postos visualmente num cubo em que os três eixos representam limites estáticos
ou dinâmicos, impostos à profundidade ou ao tamanho, ao ńıvel do indiv́ıduo
ou da população. As setas cinzentas entre os pontos representam o historial
das técnicas. Do tradicional limite estático na profundidade ao ńıvel do in-
div́ıduo (Koza), veio a inspiração para os Limites Dinâmicos na profundidade,
o que originou os Limites Dinâmicos no tamanho. Estes evolúıram para limites
dinâmicos no tamanho ao ńıvel da população, a PG de Recursos Limitados.
Finalmente, uma abordagem h́ıbrida foi implementada combinando os limites
dinâmicos individuais no tamanho com os limites populacionais da PG de Re-
cursos Limitados.

Outra contribuição desta tese é um pacote de software denominado GPLAB
– A Genetic Programming Toolbox for MATLAB3. O MATLAB é um ambi-
ente de programação largamente usado, e dispońıvel para um grande número
de plataformas computacionais. A sua linguagem de programação é simples e
fácil de aprender, sendo no entanto rápida e poderosa em cálculos matemáticos.
Adicionalmente, as suas ferramentas de visualização são extensas e directas,
tornando-o um ambiente de programação muito apelativo. As bibliotecas são
coleções de funções dedicadas e optimizadas para determinadas aplicações, que
estendem o ambiente do MATLAB e providenciam uma sólida fundação onde

3Em Português, “Uma Biblioteca de Programação Genética para MATLAB”.

xxiii

desenvolver trabalho adicional. Disponibilizada primeiramente em 2003 sob a
licença de software livre GNU General Public Licence, GPLAB foi a primeira
biblioteca livremente dispońıvel para o MATLAB, e foi rapidamente adoptada
por investigadores de todo o mundo. Versátil, generalista e facilmente extenśıvel,
a GPLAB pode ser usada por todos os tipos de utilizadores, desde o leigo até
ao investigador avançado. Com um continuado desenvolvimento ao longo dos
anos de investigação e trabalho experimental, e também algumas contribuições
de utilizadores, a GPLAB atingiu uma dimensão bem para além dos seus ob-
jectivos iniciais. A versão 3.0, disponibilizada em Abril de 2007, é composta
por mais de 150 ficheiros que implementam todas as funcionalidades básicas
da PG baseada em árvores mais a multitude de métodos de controlo de bloat
com todas as variantes aqui referidas, assim como algumas funcionalidades ex-
tra que normalmente não são encontradas noutros pacotes de PG. Os ficheiros
da biblioteca, assim como o manual de utilizador de 73 páginas, estão inclúıdos
como material adicional no CD que acompanha esta tese. Também podem ser
descarregados do endereço Internet da GPLAB4.

Limites Dinâmicos

Aqui descreve-se o conjunto de técnicas de controlo de bloat colectivamente
designadas por Limites Dinâmicos, desde a ideia inicial de aplicar um lim-
ite dinâmico à profundidade das árvores em evolução, chamado Profundidade
Máxima Dinâmica das Árvores, até às variantes onde o limite pode ser aplicado
tanto à profundidade como ao tamanho, e é-lhe permitido aumentar ou diminuir
durante a execução.

Profundidade Máxima Dinâmica das Árvores

A PG baseada em árvores usa tradicionalmente um limite na profundidade
para evitar o crescimento excessivo dos seus indiv́ıduos. Quando um indiv́ıduo
é criado que viola este limite, em vez dele um dos seus progenitores é escolhido
para a nova geração. Esta técnica evita eficazmente o crescimento das árvores
para além de um certo ponto, mas não faz nada para controlar o bloat até
o limite ser atingido. A natureza estática deste limite também pode impedir
que a solução óptima seja encontrada em problemas de insuspeitada grande
complexidade.

Limite Dinâmico na Profundidade

A Profundidade Máxima Dinâmica das Árvores é uma técnica de controlo de
bloat inspirada no tradicional limite estático. Também impõe um limite de
profundidade aos indiv́ıduos aceites na população, mas este é dinâmico, o que
significa que pode ser alterado durante a execução. O limite dinâmico é inicial-
mente muito baixo, mas pelo menos tão alto quanto a profundidade máxima
das árvores aleatórias iniciais. Qualquer novo indiv́ıduo que quebre este limite
é rejeitado e substitúıdo por um dos seus progenitores (tal como no tradicional

4http://gplab.sourceforge.net

xxiv

limite estático), a não ser que seja o melhor indiv́ıduo encontrado até então.
Nesse caso, o limite dinâmico é aumentado de forma a ser igual à profundidade
desse novo melhor indiv́ıduo, e permitir a sua entrada na população. O resul-
tado é uma sucessão de incrementos do limite, à medida que a melhor solução
se vai tornando mais exacta e mais complexa.

A Profundidade Máxima Dinâmica das Árvores não substitui necessaria-
mente o tradicional limite de profundidade - ambos os limites dinâmico e estático
podem ser usados ao mesmo tempo. Quando isto acontece, o limite dinâmico
situa-se sempre entre a profundidade máxima das árvores iniciais e o limite
estático da profundidade. A simplicidade da Profundidade Máxima Dinâmica
das Árvores torna-a fácil de usar com quaisquer valores de parâmetros e/ou
combinada com outras técnicas de controlo de bloat.

O limite dinâmico pode ainda ser usado para outro propósito para além do
controlo de bloat. Em aplicações do mundo real, pode não se estar interessado
ou não se poder investir muito tempo em obter a melhor solução posśıvel, partic-
ularmente em problemas de aproximação. Em vez disso, pode considerar-se que
uma solução é aceitável se for suficientemente simples para ser compreendida,
mesmo que a sua exactidão seja reconhecidamente mais baixa do que a exac-
tidão de outras soluções mais complexas. Para além disso, as soluções pequenas
tendem a generalizar melhor. Escolher uma condição de paragem menos exi-
gente por forma a que o algoritmo páre mais cedo não é suficiente para garantir
que a solução resultante seja aceitável, uma vez que não se pode prever a sua
complexidade. Começando com um limite dinâmico baixo na produndidade das
árvores, e aumentando-o repetidamente à medida que as soluções mais com-
plexas provam ser melhores do que as mais simples, a técnica da Profundidade
Máxima Dinâmica das Árvores pode de facto fornecer uma série de soluções de
complexidade e exactidão crescentes, entre as quais o utilizador pode escolher a
mais adequada.

Resultados Prévios

Testes anteriores mostraram que a Profundidade Máxima Dinâmica das Árvores
é capaz de conter eficazmente o crescimento do código num problema de Regressão
Simbólica e num problema de Paridade Par de 3 Bits5. Duas especificações difer-
entes para o valor inicial do limite dinâmico foram experimentadas (6 e 9), sendo
a mais baixa exactamente a profundidade máxima das árvores aleatórias iniciais.
Este valor mais restritivo resultou num tamanho médio das árvores mais baixo
durante a execução, sem qualquer impedimento à capacidade de convergência
para boas soluções. A Profundidade Máxima Dinâmica das Árvores também
foi testada contra e em combinação com outra técnica de controlo de bloat, a
Pressão de Parsimónia Lexicográfica6. As experiências mostraram uma clara
superioridade do limite dinâmico, tendo os melhores resultados sido obtidos
quando ambas as técnicas foram usadas em conjunto.

5Do Inglês 3-Bit Even Parity.
6Do Inglês Lexicographic Parsimony Pressure.

xxv

para todos os novos i nd i v ı́ duo s

tamanho i = tamanho (profundidade) do ind iv ı́ duo

ap t i d ã o i = apt id ão do ind iv ı́ duo

se tamanho i ≤ l im i t e d in âm i co

a c e i t a ind iv ı́ duo

se ap t i d ã o i > melhor apt id ão

melhor apt id ão = ap t i d ã o i

se MuitoPesado

ou Pesado e tamanho i ≥ l i m i t e d i n âm i c o i n i c i a l

l im i t e d in âm i co = tamanho i

se tamanho i > l im i t e d in âm i co

e ap t i d ã o i > melhor apt id ão

a c e i t a ind iv ı́ duo

melhor apt id ão = ap t i d ã o i

l im i t e d in âm i co = tamanho i

Figura 2: Pseudo-código do procedimento de aceitação dos Limites Dinâmicos.

Variações no Tamanho e na Profundidade

A Profundidade Máxima Dinâmica das Árvores original foi rapidamente esten-
dida de forma a incluir funcionalidades adicionais: uma variação pesada do
limite dinâmico, que pode ser diminúıdo para além de aumentado, e um limite
dinâmico no tamanho em vez da profundidade.

A Figura 2 mostra o procedimento geral de aceitação (incluindo todas as vari-
antes) por que todos os novos indiv́ıduos devem passar antes de serem aceites
na nova geração. Qualquer indiv́ıduo que não cumpra os requisitos de taman-
ho/profundidade/aptidão dos Limites Dinâmicos não será aceite por este pro-
cedimento, sendo em vez disso substitúıdo por um dos seus progenitores.

Limite Dinâmico Pesado

A Profundidade Máxima Dinâmica das Árvores é capaz de suportar uma quanti-
dade considerável de pressão de parsimónia, como provam os resultados obtidos
inicializando o limite dinâmico com o valor mais baixo posśıvel, a profundidade
máxima das árvores aleatórias iniciais. Parece pois não haver razão para não
permitir que o limite volte a cair para valores mais baixos caso a profundidade do
novo melhor indiv́ıduo fique mais baixa do que o limite actual, uma ocorrência
que é na verdade muito comum. Então a primeira variação introduzida na Pro-
fundidade Máxima Dinâmica das Árvores original é o limite dinâmico Pesado,
que acompanha a profundidade do melhor indiv́ıduo, para cima e para baixo,

xxvi

com a única restrição de não baixar mais do que o seu valor inicial. Uma outra
variante do limite dinâmico pesado é o limite MuitoPesado, que pode diminuir
mesmo abaixo do seu valor inicial.

Como esperado, sempre que o limite cai para um valor mais baixo, alguns
ind́ıviduos já pertencentes à população passam imediatamente a quebrar o novo
limite, tornando-se ’ilegais’. Havia uma vasta gama de opções sobre como lidar
com eles, sendo a mais drástica a sua imediata remoção da população, possivel-
mente substituindo-os por novos indiv́ıduos aleatórios. No entanto, uma vez
que estes ’ilegais’ podem ser aqueles que conseguiram produzir o novo melhor
indiv́ıduo, removê-los não parece ser uma boa ideia. Uma opção mais branda foi
adoptada: aos ’ilegais’ é-lhes permitido permanecer na população tal como se
não quebrassem o limite, mas quando se reproduzem os seus descendentes não
podem ter mais profundidade do que o progenitor mais profundo. Isto coloca a
população de novo dentro dos limites de forma natural e gradual.

Limite Dinâmico no Tamanho

Apesar de o bloat reconhecidamente afectar muitos outros processos de procura
que usam representações de tamanho variável, os limites de profundidade não
podem ser usados em PG não baseada em árvores. Estender a ideia de um
limite dinâmico a outros domı́nios deve começar pela remoção do conceito de
profundidade, e sua substituição pelo conceito de tamanho. A segunda variação
à Profundidade Máxima Dinâmica das Árvores original é a utilização de um
limite dinâmico no tamanho, em que o tamanho é o número de nós. Caso um
limite estático seja usado juntamente com o limite dinâmico, deve ser também
no tamanho, não na profundidade.

Quando se usa o limite dinâmico no tamanho, não faz sentido continuar
a usar a profundidade como restrição na inicialização das árvores. Foi pois
criada uma versão modificada do método de inicialização Meio-por-Meio em
Rampa7, onde um número igual de indiv́ıduos são inicializados com tamanhos
entre 2 e o valor inicial do limite dinâmico no tamanho. Para cada tamanho,
um número igual de indiv́ıduos são inicializados com o métodos Crescente8

e Completo9, que também foram modificados de modo a obedecer apenas a
restrições no tamanho. No método Crescente modificado, os indiv́ıduos são
formados por adição de nós aleatórios (internos ou terminais) sem exceder o
tamanho máximo especificado; o método Completo modificado escolhe apenas
nós internos até o tamanho estar próximo do especificado, e só então escolhe
terminais. Ao contrário do método Completo original, pode não conseguir criar
indiv́ıduos com exactamente o tamanho especificado, mas apenas próximo (e
nunca excedendo).

Resultados Prévios

Ambas as variações pesada e de tamanho foram testadas nos mesmos prob-
lemas que a técnica da Profundidade Máxima Dinâmica das Árvores original

7Do Inglês Ramped Half-and-Half.
8Do Inglês Grow.
9Do Inglês Full.

xxvii

(Regressão Simbólica e Paridade Par de 3 Bits) contra e combinadas com a
Pressão de Parsimónia Lexicográfica. O limite dinâmico pesado aumenta a
pressão de parsimónia durante a execução. Mesmo sem tomar medidas drásticas
em relação aos indiv́ıduos que subitamente passam a quebrar o limite mais
baixo, o tamanho médio das árvores ao longo da execução foi mantido signi-
ficativamente mais baixo do que com a Profundidade Máxima Dinâmica das
Árvores original ou apenas a Pressão de Parsimónia Lexicográfica. Mais uma
vez os melhores resultados foram obtidos juntando ambas as técnicas, e a ap-
tidão continuou a não ser afectada por valores tão elevados de pressão de par-
simónia. O tamanho dinâmico, no entanto, não teve um desempenho tão bom
num dos problemas (Paridade Par de 3 Bits), onde a capacidade de encontrar
boas soluções ficou comprometida. Estes resultados prévios não incluiram a
variante MuitoPesado.

PG de Recursos Limitados

Aqui descreve-se o conceito e implementação da PG de Recursos Limitados,
desde a ideia original de substituir os limites de profundidade/tamanho ao ńıvel
do indiv́ıduo por um limite global nos recursos usados por toda a população, até
à inspiração nos Limites Dinâmicos para criar um limite de recursos dinâmico,
e a necessária comparação com a abordagem original ao ńıvel do indiv́ıduo.

Substituindo os Limites de Profundidade das Árvores

A PG de Recursos Limitados baseia-se num único limite imposto à quantidade
de recursos dispońıveis para toda a população de PG, onde os recursos são os nós
das árvores ou outros elementos em PG não baseada em árvores, como linhas de
código. Pode-se pensar nesta abordagem como a limitação dos recursos naturais
dispońıveis para uma dada população biológica, onde cada indiv́ıduo compete
com os outros pela sua parte, e os indiv́ıduos mais fracos sucumbem quando
os recursos são escassos. Na PG de Recursos Limitados, os recursos tornam-se
escassos quando o número total de nós da população excede o limite predefinido.
Para lá deste ponto, não há garantias de que todos os descendentes sejam aceites
na nova geração. A alocação de recursos aos indiv́ıduos (garantindo a sua so-
brevivência) é principalmente baseada na aptidão, desempenhando o tamanho
um papel secundário.

Os candidatos à nova geração são os descendentes, seguidos pelos seus pro-
genitores. Cada um destes grupos é ordenado pelos valores de aptidão, inde-
pendentemente do tamanho. Aos indiv́ıduos em fila de espera são-lhes dados
os recursos de que necessitam (o seu número de nós), sendo os primeiros da
fila os primeiros a serem servidos. Os indiv́ıduos que requerem mais recursos
do que aqueles ainda dispońıveis são ignorados (não sobrevivem) e o processo
de alocação continua até ao fim da fila, ou até que se verifiquem restrições
relativas ao tamanho da população. Alguns recursos podem ficar por usar. Al-
guns progenitores podem sobreviver enquanto os seus descendentes sucumbem.
Deste procedimento emerge uma regra que promove a sobrevivência dos mel-
hores indiv́ıduos e a rejeição daqueles que ’não são suficientemente bons para o

xxviii

seu tamanho’, em que a relação entre tamanho e aptidão não é explicitamente
programada, mas sim um produto do processo evolutivo.

A PG de Recursos Limitados remove a maioria das desvantagens dos limites
de profundidade ao ńıvel do indiv́ıduo, ao mesmo tempo que introduz o redi-
mensionamento automático da população, um efeito secundário naturalmente
resultante de usar uma abordagem ao ńıvel da população. Quando o limite
de recursos é alcançado, e desde que o código continue a crescer, o tamanho
da população (definido como o número de indiv́ıduos) começa a decrescer pro-
gressivamente, algo que pode na verdade melhorar a convergência para boas
soluções. É posśıvel que um único indiv́ıduo tenha que ser artificialmente man-
tido na população para evitar a extinção, mas este risco é não-existente se a
recombinação de árvores for o único operador genético usado. Depois de os
recursos terem atingido o ponto de exaustão e o tamanho da população ter sido
reduzido, mais cedo ou mais tarde uma nova geração de indiv́ıduos usará os re-
cursos de forma mais poupada e deixará suficientes recursos para permitir que
o tamanho da população aumente outra vez. Duas opções de implementação
foram consideradas sobre como lidar com esta ocorrência: Depois de aceitar tan-
tos indiv́ıduos quanto o anterior tamanho da população, (1) usa-se os restantes
recursos para permitir a sobrevivência de mais indiv́ıduos da geração anterior -
os progenitores que ainda não tinham sido aceites - continuando o procedimento
de alocação até à exaustão dos recursos, ou até que seja atingido o tamanho ini-
cial da população, ou (2) não se usa os recursos que sobram, desta forma nunca
permitindo à população que volte a crescer. A primeira opção foi designada por
Estável, porque obriga a uma utilização estável dos recursos , e a segunda foi
denominada Baixa, porque permite uma posśıvel baixa utilização de recursos.
A Figura 3 mostra o pseudo-código do procedimento de alocação de recursos.
Ver Figura 5 para um exemplo.

Resultados Prévios

A PG de Recursos Limitados foi testada num problema de Regressão Simbólica
simples. Para comparar o seu desempenho com o uso tradicional de limites
de profundidade ao ńıvel do indiv́ıduo, um limite de recursos estático (14500)
foi encontrado que permitiu que a quantidade cumulativa de recursos (usados
ao longo de toda a execução) fosse semelhante à quantidade cumulativa obtida
aquando da utilização do tradicional limite estático na profundidade 17, intro-
duzido por Koza. Os resultados mostraram que as técnicas Estável e Baixa
se comportaram de forma semelhante, conseguindo o mesmo desempenho que
o limite de profundidade, apesar de usarem diferentes estratégias de controlo
de bloat e produzirem uma dinâmica evolutiva radicalmente diferente. A PG
de Recursos Limitados foi bem sucedida como substituto do popular limite da
profundidade das árvores.

A Abordagem Dinâmica

Tal como o tradicional limite de profundidade, a PG de Recursos Limitados
original baseia-se num limite estático, imposto no ińıcio da execução e nunca
alterado até ao fim. Isto dificilmente reflecte as necessidades de um processo

xxix

ordena descendentes por apt id ão

ordena p rog en i t o r e s por apt id ão

l i s t a = descendentes s egu idos dos p r og en i t o r e s

se Est áve l , minha dimpop = d imen s ã o pop in i c i a l

se Baixa , minha dimpop = dimens ão pop anter io r

r e cu r s o s u sado s = 0

l i s t a a c e i t e s = vaz ia

para todos os i nd i v ı́ duo s em l i s t a

r e c u r s o s i = r e cu r s o s r e qu i s i t a d o s pe lo ind iv ı́ duo

se r e cu r s o s u sado s + r e c u r s o s i ≤ l im i t e r e c u r s o s

l i s t a a c e i t e s = l i s t a a c e i t e s + ind iv ı́ duo

r e cu r s o s u sado s = re cu r s o s u sado s + r e c u r s o s i

se comprimento de l i s t a a c e i t e s = minha dimpop

termina para

nova gera ç ão = l i s t a a c e i t e s

Figura 3: Pseudo-código do procedimento de alocação de recursos.

de procura que tem que fazer crescer os seus indiv́ıduos na procura de soluções
melhores. Embora a PG de Recursos Limitados possua uma capacidade natural
para compensar um maior tamanho das árvores com uma menor dimensão da
população, em problemas complexos isso pode levar a uma perigosa redução do
tamanho da população, à medida que prossegue o crescimento do código. Por
outro lado, fornecer recursos estáticos suficientes para toda a execução pode
levar à ocorrência de bloat desde o ińıcio. Torna-se óbvia a necessidade de um
limite de recursos dinâmico.

Limite de Recursos Dinâmico

A abordagem dinâmica à PG de Recursos Limitados surge naturalmente da
hibridização dos Limites Dinâmicos com o limite de recursos estático original.
É implementado um limite de recursos dinâmico, inicializado com um valor baixo
e aumentado sempre que tal resultar numa melhor aptidão média da população.

Depois da geração de descendentes, os candidatos à nova geração são orde-
nados e são-lhes dados os recursos dispońıveis, segundo o procedimento descrito
anteriormente, ilustrado na Figura 3. A alocação continua até à exaustão dos
recursos, ou até a dimensão inicial da população ser atingida, de acordo com
a opção Estável. Também é posśıvel parar a alocação assim que a anterior di-
mensão da população seja atingida, de acordo com a opção Baixa. Até agora,

xxx

isto é a PG de Recursos Limitados original, mas agora vem a decisão acerca de
quando aumentar o limite de recursos.

Aos indiv́ıduos rejeitados é agora dada uma segunda oportunidade. À vez,
cada um deles é reconsiderado como candidato à nova geração, e tantos quantos
posśıvel são agora aceites, desde que a sua inclusão provoque um melhoramento
da aptidão média da população. Este melhoramento pode ser relativo à mel-
hor aptidão média da população durante toda a execução, ou relativo à aptidão
média da população na geração anterior, criando duas opções de implementação
diferentes designadas por ResDin (de recursos dinâmicos) e ResDinLeve, respec-
tivamente. Espera-se que ResDinLeve implemente um limite que sobe muito
mais facilmente, e dáı o nome. Assim que um dos indiv́ıduos previamente re-
jeitados for rejeitado novamente, o processo de reseleção pára e o limite de
recursos é aumentado de modo a fornecer os recursos adicionais necessários.

Como nos Limites Dinâmicos, a PG de Recursos Limitados também inclui
um limite Pesado que volta a cair para valores mais baixos quando alguns
recursos ficam por usar, e um limite MuitoPesado que pode mesmo cair abaixo
do seu valor inicial. A Figura 4 mostra o pseudo-código do procedimento de
reseleção. Ver a Figura 5 para um exemplo.

Resultados Prévios

Testada em dois problemas diferentes e comparada com ambos os limites de
profundidade estático e dinâmico, o desempenho da variante dinâmica da PG
de Recursos Limitados (a opção Estável) variou entre bom e excelente. Num
problema de Regressão Simbólica a técnica resultou numa aptidão semelhante
com uma utilização de recursos significativamente mais baixa, apesar de a taxa
de sucesso (medida como a percentagem de experiências que convergiram para
uma solução óptima) ter sido um pouco mais baixa do que usando o limite
de recursos estático. Num problema mais complexo da Formiga Artificial, o
limite de recursos dinâmico alcançou a mesma aptidão usando uma quantidade
significativamente menor de recursos, sendo que os resultados revelaram óptimas
perspectivas de se obter um óptimo muito mais facilmente do que com as outras
técnicas. Estes resultados prévios não incluiram a opção Baixa, nem as variantes
Pesado ou MuitoPesado.

Comparação com os Limites Dinâmicos

Os Limites Dinâmicos e a PG de Recursos Limitados operam em diferentes
ńıveis do paradigma da PG: um actua ao ńıvel do indiv́ıduo, o outro ao ńıvel
da população. Ambos conseguiram anteriormente resultados promissores no
controlo do bloat sem piorar o desempenho mas, porque apontam para alvos
diferentes, produzem diferentes dinâmicas no processo evolutivo. Qual deles
obtém melhores resultados?

Resultados Prévios

Resultados comparativos prévios entre os Limites Dinâmicos e a PG de Recursos
Limitados elegeram a versão não leve do limite de recursos dinâmico como a

xxxi

se ResDin , minha aptmedpop = melhor apt id ão média pop

se ResDinLeve , minha aptmedpop = ante r i o r apt id ã o m éd ia pop

l i s t a r e j e i t a d o s = l i s t a − l i s t a a c e i t e s

actual aptmedpop = apt id ão média de l i s t a a c e i t e s

se actual aptmedpop melhor que melhor aptmedpop

melhor aptmedpop = actual aptmedpop

para todos os i nd i v ı́ duo s em l i s t a r e j e i t a d o s

l i s t a a c e i t e s tmp = l i s t a a c e i t e s + ind iv ı́ duo

nova aptmedpop = apt id ão média de l i s t a a c e i t e s tmp

se nova aptmedpop melhor que minha aptmedpop

l i s t a a c e i t e s = l i s t a a c e i t e s tmp

r e c u r s o s i = r e cu r s o s r e qu i s i t a d o s pe lo ind iv ı́ duo

r e cu r s o s u sado s = re cu r s o s u sado s + r e c u r s o s i

senão

termina para

se comprimento de l i s t a a c e i t e s = d imen s ã o pop in i c i a l

termina para

nova gera ç ão = l i s t a a c e i t e s

se r e cu r s o s u sado s > l im i t e r e c u r s o s

ou Pesado e r e cu r s o s u sado s ≥ l i m i t e r e c u r s o s i n i c i a l

ou MuitoPesado

l im i t e r e c u r s o s = re cu r s o s u sado s

Figura 4: Pseudo-código do procedimento de reseleção.

técnica com melhor desempenho. Nos dois problemas simples de Regressão
Simbólica e Paridade Par de 3 Bits, conseguiu atingir a mesma melhor aptidão
utilizando significativamente menos recursos do que as restantes técnicas. No
problema mais complexo da Formiga Artificial, obteve significativamente melhor
aptidão utilizando o mesmo número de recursos. De acordo com o mesmo
critério, a técnica que ficou em segundo lugar foi a da profundidade dinâmica não
pesada. O tradicional limite estático de profundidade foi o último. No entanto,
ao contrário dos Limites Dinâmicos, a PG de Recursos Limitados não manteve
um desempenho constante ao longo da evolução. Conseguiu resultados muito
bons no ińıcio da execução, mas as melhorias foram abrandando gradualmente
à medida que a execução prosseguia, levantando a dúvida se serão de facto a
melhor abordagem.

xxxii

Variáveis:
dimpop_inicial = 10

dimpop_anterior = 6

limite_recursos = 400

melhor_aptmedpop = 42

anterior_aptmedpop = 35

Candidatos à nova geração:

(da esquerda para a direita, 6 descendentes seguidos de 6 progenitores,

cada grupo ordenado por aptidão - valores mais altos são melhores)

Id C1 C2 C3 C4 C5 C6 P1 P2 P3 P4 P5 P6

Aptidão 80 70 60 60 50 10 90 40 40 20 10 10

Tamanho 90 100 50 100 80 80 80 70 70 10 20 10

Nova geração obtida com cada técnica:

(ResDin and ResDinLeve começam a reseleção

a partir dos resultados de Estável)

Id C1 C2 C3 C4 C5 C6 P1 P2 P3 P4 P5 P6

Estável 3 3 3 3 71 71 71 71 71 3 3 3

Baixa 3 3 3 3 71 71 71 71 71 3 3 72

ResDin 3 3 3 3 4 83 – – – 3 3 3

ResDinLeve 3 3 3 3 4 4 4 84 – 3 3 3

Motivos para a não aceitação do indiv́ıduo:
1Recursos não dispońıveis
2dimpop_anterior excedida - terminação do procedimento
3nova_aptmedpop pior que melhor_aptmedpop - terminação do procedimento
4dimpop_inicial excedida - terminação do procedimento

Figura 5: Exemplo dos procedimentos de alocação de recursos e reseleção.

xxxiii

Experiências e Resultados

Aqui descreve-se os problemas usados para testar as duas abordagens originais
descritas anteriormente, Limites Dinâmicos e PG de Recursos Limitados, indi-
cando também quais as comparações efectuadas nas experiências. Finalmente,
resume-se os resultados obtidos em todas as comparações.

Problemas e Comparações

Quatro problemas diferentes foram usados como bancada de testes no estudo da
eficiência dos Limites Dinâmicos e da PG de Recursos Limitados. Representam
uma seleção variada de problemas em termos de dinâmica de bloat e resposta a
diferentes técnicas de controlo de bloat : Regressão Simbólica de um polinómio
de quarto grau, Formiga Artificial no trilho de comida de Santa Fé, Paridade
Par de 5 Bits, e Multiplexor Booleano de 11 Bits.

O objectivo do problema de Regressão Simbólica é fazer evoluir uma função
que melhor aproxime um conjunto de pontos. Neste caso particular, são usa-
dos 21 pontos equidistantes do polinómio de quarto grau x4 + x3 + x2 + x no
intervalo entre −1 e 1. No problema da Formiga Artificial o objectivo é fazer
evoluir uma estratégia que permita à formiga consumir o maior número posśıvel
de unidades de comida dispostas numa grelha (toroidal) de 32 × 32 células. O
trilho de comida apresenta várias interrupções, e a formiga tem tempo limitado
para realizar a sua tarefa. O problema da Paridade Par de 5 Bits é na verdade
um problema de regressão simbólica em que a função a encontrar aceita cinco
argumentos booleanos e retorna um único valor indicando a paridade dos argu-
mentos: 1 (ou verdadeiro) se há um número par de argumentos 1, e 0 (falso)
caso contrário. Também selelhante a um problema de regressão simbólica, o
problema do Multiplexor Booleano de 11 Bits pode no entanto ser encarado
como um problema de desenho de circuitos electrónicos. A função a encontrar
aceita três argumentos representando um endereço, mais oito argumentos de
dados, todos booleanos. O valor retornado pela função é exactamente o bit de
dados especificado pelos bits de endereço.

Todas as experiências foram efectuadas com PG baseada em árvores, uti-
lizando a biblioteca GPLAB. A significância estat́ıstica da hipótese nula de não
haver diferença foi determinada usando a análise de variância (ANOVA) de
Kruskal-Wallis com p = 0.01. Foi usada uma ANOVA não paramétrica pois não
é garantido que os dados sigam uma distribuição normal.

Uma primeira comparação de resultados foi efectuada entre as técnicas de
Limites Dinâmicos, seguida de uma comparação entre as técnicas de PG de Re-
cursos Limitados. As melhores técnicas de ambas as abordagens tomaram então
parte num terceiro grupo de experiências, comparadas entre si e combinadas de
modo a formar uma nova técnica h́ıbrida. Uma última comparação foi efectu-
ada com alguns dos melhores métodos de controlo de bloat do estado da arte.
A base de comparação foi sempre a tradicional técnica de Koza baseada num
limite máximo estático na profundidade das árvores. Todas as técnicas foram
testadas com e sem este limite fixo. O objectivo foi verificar se estas conseguem
operar sem o limite máximo estático, ou se mesmo assim beneficiam de serem
combinadas com a técnica base, em vez de apenas a substituirem.

xxxiv

Resultados dos Limites Dinâmicos

De entre os Limites Dinâmicos, sempre que diferenças estatisticamente significa-
tivas permitiram que as técnicas fossem ordenadas segundo o seu desempenho,
uma das variantes baseadas em profundidade conseguiu sempre o primeiro lugar
em todos os problemas, nunca se qualificando atrás, e muitas vezes apresentando
um desempenho significativamente melhor, do que a bem sucedida técnica base
Koza. Todas as técnicas de Limites Dinâmicos conseguiram controlar o bloat
sem necessitarem do limite máximo estático, uma propriedade extremamente
desejável.

Resultados da PG de Recursos Limitados

De entre as técnicas de PG de Recursos Limitados, uma das variantes utilizando
o limite máximo estático distinguiu-se por conseguir obter um desempenho
semelhante a Koza, e encontrar soluções óptimas rápida e frequentemente nos
casos em que não houve diferenças significativas em termos da melhor aptidão al-
cançada no final. Em muitos casos, esta abordagem tende a colapsar a população
em apenas uns poucos indiv́ıduos (geralmente só um, pequeno), independente-
mente da dificuldade do problema. Para problemas fáceis como a Regressão,
isto significa um bom desempenho, pois encontra-se um óptimo poupando uma
grande quantidade de recursos. Mas, para problemas dif́ıceis como a Paridade,
a população tende a colapsar antes de encontrar um óptimo, tornando toda a
procura subsequente inútil devido a falta de diversidade genética. Logo, o de-
sempenho da PG de Recursos Limitados não foi igual para todos os problemas,
tendo-se obtido resultados excepcionais no problema da Regressão, e apenas um
modesto êxito nos restantes problemas.

Comparação entre Limites Dinâmicos e PG de Recursos
Limitados

Na comparação entre os Limites Dinâmicos e a PG de Recursos Limitados,
foram os limites ao ńıvel do indiv́ıduo que provaram deter o papel principal
no controlo do crescimento das árvores. Entre as melhores técnicas de ambas
as abordagens observaram-se diferenças significativas no tamanho médio das
árvores. Mas quando numa técnica de recursos limitados se substitui o limite
individual estático por um limite individual dinâmico, a nova técnica h́ıbrida
produz curvas de crescimento semelhantes às obtidas com os Limites Dinâmicos,
não com a PG de Recursos Limitados. Independentemente do crescimento das
árvores, os limites ao ńıvel do indiv́ıduo também provaram ser os principais
responsáveis por melhores valores de aptidão. Quer se use um limite estático
ou dinâmico, passar de uma população de tamanho fixo para uma população de
tamanho variável não melhorou o desempenho; mas quer se use uma população
fixa ou variável, passar de um limite estático para um limite dinâmico quase
sempre melhorou os resultados. O mérito pertence ao limite dinâmico, não à
população de tamanho variável.

xxxv

Comparação com o Estado da Arte

Relativamente à comparação com o estado da arte, as técnicas que conseguiram
os melhores valores de aptidão no conjunto dos quatro problemas foram a técnica
base de Koza, o limite dinâmico não pesado na profundidade, e uma técnica do
estado da arte que efectua a seleção para reprodução utilizando um torneio
duplo, primeiro baseado no tamanho dos indiv́ıduos e depois nos valores de
aptidão, ou vice versa. Apesar de o torneio duplo ter geralmente conseguido
chegar a uma solução óptima mais facilmente, tem a desvantagem de utilizar um
método de seleção cujo desempenho pode depender da correcta especificação dos
seus parâmetros. Já era esperado que os valores de parâmetros escolhidos para
estas experiências dessem bons resultados, uma vez que foram precisamente os
melhores valores encontrados em estudos anteriores utilizando o mesmo conjunto
de problemas. Outras técnicas do estado da arte baseadas em populações de
tamanho variável tiveram um fraco desempenho.

Discussão

Aqui resume-se a análise efectuada aos posśıveis motivos que levaram a um
desempenho desigual das duas abordagens nos vários problemas considerados.
São também apresentadas algumas preocupações e considerações acerca de como
alguns detalhes de implementação podem influenciar a dinâmica de procura, em
particular à luz da mais recente teoria que explica o bloat.

Análise por Problema

Foi efectuada uma análise mais profunda relativamente aos motivos pelos quais
cada uma das abordagens obteve resultados diferentes nos vários problemas
considerados, mais precisamente, porque é que o PG de Recursos Limitados
teve um desempenho excepcional no problema da Regressão Simbólica, pre-
cisamente o problema onde a pontuação dos Limites Dinâmicos não foi tão
brilhante. Foram considerados dois indicadores da dificuldade dos problemas,
nomeadamente a taxa de sucesso e a velocidade de convergência, e multiplica-
dos por forma a obter um único valor de dificuldade para cada problema. A
percentagem de código inviável presente na população ao longo de 50 gerações
de evolução também foi estudado, assim como a diversidade (genot́ıpica) da
população, e a diversidade fenot́ıpica na última geração. A principal observação
foi que o problema da Regressão Simbólica é de facto diferente dos outros. É
um problema mais fácil, menos dado a código inviável, e é capaz de manter
uma diversidade fenot́ıpica muito mais elevada, mesmo na presença de uma di-
versidade genot́ıpica mais baixa. Em geral, as experiências com o problema
da Regressão demonstraram uma gama mais vasta de comportamentos do que
as experiências com os outros problemas. Foi sugerido que, apesar de tudo, é
o tamanho da população relativamente às necessidades do problema que mais
influencia o ńıvel de sucesso da PG de Recursos Limitados.

xxxvi

Considerações Finais

Existe uma preocupação considerável relativamente à utilização de limites de
tamanho ou profundidade em PG. A forma mais tradicional de implementar os
limites é rejeitando os indiv́ıduos inválidos e substituindo-os por um dos seus
progenitores. Embora isto impeça eficazmente os indiv́ıduos de crescerem de-
masiado, a replicação de progenitores pode ter efeitos indesejáveis. Os progeni-
tores maiores são aqueles que geralmente produzem descendência inválida, por
isso tendem a ser replicados mais frequentemente do que os progenitores mais
pequenos. A população fica cheia dos indiv́ıduos maiores, sendo rapidamente
levada ao limite. Formas alternativas de implementar os limites de tamanho ou
profundidade são: 1) repetir o operador genético até que um descendente válido
seja criado, com os mesmos progenitores ou com outros; 2) aceitar os indiv́ıduos
inválidos mas atribuindo-lhes um valor de aptidão nulo, por forma a que estes
não sejam selecionados para reprodução na geração seguinte.

A mais recente teoria sobre o bloat defende que é o operador de recombinação
o responsável pelo rápido crescimento do código, pela forma como influencia a
distribuição de tamanhos das árvores na população. Sempre que a recombinação
é usada, a quantidade de material genético removido do primeiro progenitor é
exactamente a mesma quantidade inserida no segundo progenitor, e vice versa.
O tamanho médio das árvores mantém-se inalterado. No entanto, à medida que
a população sofre repetidas operações de recombinação, aproxima-se de uma
distribuição particular de tamanhos de árvores em que os indiv́ıduos pequenos
são muito mais abundantes do que os indiv́ıduos maiores. Por exemplo, a recom-
binação gera uma grande quantidade de indiv́ıduos com apenas um nó. Porque
os indiv́ıduos muito pequenos costumam ser pouco aptos, a seleção tende a
preteri-los em favor dos indiv́ıduos maiores, causando um aumento do tamanho
médio das árvores na população. É a proliferação destes pequenos indiv́ıduos
pouco aptos, perpetuada pela recombinação, que acaba por causar o bloat.

À luz desta teoria, repetir o operador de recombinação quando um indiv́ıduo
inválido é produzido pode não ser aconselhável, uma vez que oferece mais uma
oportunidade para criar pequenos indiv́ıduos pouco aptos. Aceitar os indiv́ıduos
grandes demais parece ser uma medida melhor contra o efeito indesejável da
recombinação, uma vez que estes grandes indiv́ıduos de aptidão nula nunca
procriarão. No entanto, na presença de um limite altamente restritivo que não
sobe facilmente, a replicação de progenitores pode ainda ter algumas vantagens
sobre as outras opções.

Na actual implementação dos Limites Dinâmicos, a tradicional replicação de
progenitores é de facto a opção tomada quando os descendentes violam o limite.
Mas, ao contrário dos limites t́ıpicos (estáticos), o valor inicial do limite dinâmico
é muito baixo, tão baixo quanto o tamanho/profundidade máxima das árvores
iniciais, e não será aumentado até que um indiv́ıduo maior prove ser melhor
do que qualquer outro encontrado até ao momento. Isto restringe seriamente o
espaço de procura, e para a maioria dos problemas é sabido que as boas soluções
se situam acima deste limite, não abaixo. Quando um indiv́ıduo maior e melhor
empurra o limite para cima, isto significa que o processo entrou num terreno
melhor de procura - soluções melhores podem ser encontradas nos novos lim-
ites de tamanho/profundidade permitidos. Assim, encaminhar a população na

xxxvii

direção deste novo, mas ainda muito restritivo, espaço de procura, pode mesmo
acelerar a convergência para soluções melhores. A replicação de progenitores,
juntamente com um limite que sobe lentamente, não sofre necessariamente das
desvantagens inerentes ao uso de um limite estático elevado.

Na PG de Recursos Limitados, embora muitas das experiências realizadas
tenham usado um limite estático ao ńıvel do indiv́ıduo, o maior esforço no sen-
tido de evitar o crescimento do código é exercido ao ńıvel da população. Mas ao
fazer isso, a PG de Recursos Limitados pode estar a criar condições desfavoráveis
que estimulam ainda mais o bloat, de acordo com a mais recente teoria aqui ex-
plicada. Durante o processo de alocação de recursos aos indiv́ıduos em fila de
espera, chega-se invariavelmente a um ponto em que os recursos dispońıveis já
são tão escassos que só os indiv́ıduos mais pequenos podem ainda ser aceites. O
procedimento de alocação continua a garantir a sobrevivência destes pequenos
indiv́ıduos pouco aptos até que os recursos se acabem ou se verifiquem restrições
ao tamanho da população (em termos de número de indiv́ıduos). Em condições
espećıficas, isto pode resultar na aceitação de todos os pequenos indiv́ıduos cri-
ados no último ciclo de reprodução, assim como aqueles da geração anterior,
agravando assim o efeito que causa o bloat.

Conclusões

Apesar de os limites dinâmicos se terem revelado mais eficientes no controlo
do bloat do que a PG de Recursos Limitados no conjunto dos quatro proble-
mas considerados, ambas as abordagens desempenharam com sucesso a tarefa
para que foram desenhadas. Um bom método de controlo de bloat deve ser
capaz de lidar com qualquer tipo de problema, e ser praticamente insenśıvel
à escolha dos valores dos parâmetros e mesmo à combinação de diferentes ele-
mentos algoŕıtmicos como os procedimentos de avaliação, seleção e reprodução.
Ambas as contribuições originais desta tese seguem estas directivas. São livres
de parâmetros e suficientemente flex́ıveis para adaptarem o seu comportamento
às particularidades de cada situação, sem esgotarem os recursos computacionais
dispońıveis.

xxxviii

Chapter 1

Introduction

Evolutionary Computation is a research area within computer science [27]. His-
torically, it is composed of four different biologically inspired paradigms: Evolu-
tionary Programming, Genetic Algorithms, Evolution Strategies, and the most
recent Genetic Programming.

1.1 Motivation

Genetic Programming (GP) is the automated learning of computer programs
[9, 45]. Basically a search process, it is capable of solving complex problems
by evolving populations of computer programs, using Darwinian evolution and
Mendelian genetics as inspiration. Starting from an initial population of ran-
domly created programs representing the potential solutions to a given problem,
it evaluates and attributes a fitness value to each, quantifying how well the pro-
gram solves the problem. New generations of programs are iteratively created
by selecting parents based on their fitness and breeding them using genetic op-
erators like crossover and mutation. Because fitter individuals are selected more
often and given the chance to pass their best characteristics to their offspring,
the population tends to improve in quality along successive generations. This
evolutionary process continues until a given stop condition is verified.

Theoretically, GP can solve any problem whose candidate solutions can be
measured and compared, making it a widely applicable technique. Furthermore,
the solutions found by GP are usually provided in a format that users can
understand and modify to their needs. But its high versatility is also the cause
of some difficulties. Users must set a number of parameters related to several
aspects of the evolutionary process, some of which may influence the search
process so strongly as to actually prevent an optimal solution to be found, if set
incorrectly. And even when the perfect match between problem and parameters
is achieved, a major problem remains, one that has been studied for more than
a decade: code growth.

The search space of GP is virtually unlimited and programs tend to grow in
size during the evolutionary process. Code growth is a healthy result of genetic
operators in search of better solutions, but it also permits the appearance of

1

2 1. INTRODUCTION

pieces of redundant code that increase the size of programs without improving
their fitness. Besides consuming precious time in an already computationally
intensive process, redundant code may start growing rapidly, a phenomenon
known as bloat1 [9, Chap. 7], [58, Chap. 11]. Bloat can be defined as an excess of
code growth without a corresponding improvement in fitness. This is a serious
problem in GP, often leading to the stagnation of the evolutionary process.
Although many bloat control methods have been proposed so far, a definitive
solution is yet to be found.

1.2 Contributions

This work introduces two new approaches to bloat control. Unlike many others
available, these do not require specific genetic operators, modifications in fitness
evaluation or different selection schemes, nor do they add any parameters to the
search process. The first approach is inspired on the most traditional technique
of imposing a fixed limit on the depth of the individuals allowed in the popula-
tion, introduced by Koza in tree-based GP [45]. It implements a dynamic limit
that can be raised or lowered, depending on the best solution found so far, and
can be applied either to the depth or size of the programs being evolved, thus
making it suitable also for linear GP [9]. The different variants of this approach
will be collectively referred to as Dynamic Limits [101,102].

The second approach to bloat control also uses a dynamic limit, but one
that acts at a different level of the GP paradigm. A single limit is imposed on
the total amount of tree nodes or code lines that the entire population can use.
Tree nodes or code lines can be regarded as the resources that each individual
needs to survive, and when they become insufficient for all, some individuals
are discarded and the population is resized. The resource limit can be raised or
lowered as in Dynamic Limits, depending on the mean population fitness. The
several variants of this approach are called Resource-Limited GP [103–105].

While the Dynamic Limits act at the individual level, imposing a condition
that each individual must verify in order to be accepted into the population,
Resource-Limited GP acts at the population level, enforcing a global restriction
that the population as a whole must respect, regardless of the particular indi-
viduals within. Each has its advantages and drawbacks. This thesis reports how
they performed in different problems, combined and against each other, and in
comparison with the best state-of-the-art bloat control methods.

Figure 1.1 shows the Dynamic Limits and Resource-Limited GP visually
arranged in a cube where the three axes represent static or dynamic limits, im-
posed on depth or size, at the individual or population level. The gray arrows
between the dots represent the history of the techniques. From the traditional
static depth limit at the individual level (Koza) came the inspiration for the Dy-
namic Limits on depth, and this originated the Dynamic Limits on size. These
evolved to dynamic limits on size at the population level, Resource-Limited GP.
Finally, a hybrid approach was implemented by joining the individual dynamic
depth limits with the population limits of Resource-Limited GP.

1Or, as Bill Langdon put it, the “survival of the fattest”.

1.2. CONTRIBUTIONS 3

d
y

n
a

m
ic

st
a

ti
c

population

individual depth

size

Koza

Resource-Limited GP

Dynamic Limits
 on depth

Dynamic Limits
 on size

Hybrid

Figure 1.1: Arrangement of techniques that use limits. Limits can be static or
dynamic, on depth or size, and at the individual or population level.

Another contribution of this thesis is a GP software package denominated
GPLAB – A Genetic Programming Toolbox for MATLAB [100]. MATLAB2 is
a widely used programming environment available for a large number of com-
puter platforms. Its programming language is simple and easy to learn, yet
fast and powerful in mathematical calculus. Furthermore, its extensive and
straightforward data visualization tools make it a very appealing programming
environment. Toolboxes are collections of optimized, application-specific func-
tions, which extend the MATLAB environment and provide a solid foundation
on which to build. First released in 2003 under the GNU General Public Li-
cense, GPLAB was the first GP toolbox freely available for MATLAB, and was
quickly embraced by researchers around the world (e.g. [8, 18, 36, 61, 69, 119]).
Versatile, generalist and easily extendable, GPLAB can be used by all types of
users, from the layman to the advanced researcher. With continued development
along the years of research and experimental work, and also a few contributions
from helpful users, GPLAB has now reached a dimension well beyond its ini-
tial goals. Version 3.0, released in April 2007, is made of more than 150 files
that implement all the basic tree-based GP functionalities plus the multitude
of bloat control methods with all the variants herein referred, along with some
extra functionalities not usually found in other GP packages. The toolbox files,
along with the 73 page user’s manual, are included as additional material in the
CD accompanying this thesis. They can also be downloaded from the GPLAB
website3.

2http://www.mathworks.com/matlab
3http://gplab.sourceforge.net

4 1. INTRODUCTION

1.3 Structure

The next chapter deals with bloat. It describes the main theories regarding why
it occurs, and lists many of the bloat control methods that have been proposed
in the literature so far. Chapter 3 describes the Dynamic Limits in detail,
and Chapter 4 does the same with Resource-Limited GP. Chapter 5 describes
the problems and specifies the general parameters used along the experiments,
and introduces the plots that are later used to present the results. Chapter
6 reports the results of the comparisons among the Dynamic Limits variants,
whereas Chapter 7 presents the results of comparing among Resource-Limited
GP. Chapter 8 compares the two approaches with each other and with a hybrid
technique. Chapter 9 ends the results by setting the best techniques from the
previous comparisons against some successful state-of-the-art methods. Chapter
10 discusses the results, and Chapter 11 concludes and points towards future
developments of this work.

Chapter 2

Bloat

When Koza published the first book on GP [45], most of the evolved programs
therein contained pieces of code that did not contribute to the solution and could
be removed without altering the results produced. Besides imposing a depth
limit to the trees created by crossover to prevent spending computer resources on
extremely large programs, Koza also routinely edited the solutions provided at
the end of each run to simplify some expressions while removing the redundant
code.

Two years later, Angeline remarked the ubiquity of these redundant code
segments and, based on a slight biological similarity, called them introns [4].
In spite of classifying them as extraneous, unnecessary and superfluous, Ange-
line noted that they provided crossover with syntactically redundant construc-
tions where splitting could be performed without altering the semantics of the
swapped subtrees. Referring some studies where the introduction of artificial
introns was helpful or even essential to the success of genetic algorithms, An-
geline revels in the fact that introns emerge naturally from the dynamics of
GP, and goes as far as to state that “it is important then to not impede this
emergent property as it may be crucial to the successful development of genetic
programs” [4].

It is possible that introns may provide some benefits. A non-intuitive effect
that introns may have in GP is code compression and parsimony. Not the
bloated code full of redundant segments, but the effective code that remains after
removing the introns. Under specific conditions, particularly in the presence
of destructive crossover, there is evidence that the existence of introns in the
population results in shorter and less complex effective solutions [76, 108, 109],
ones that are thought to be more robust and generalize better [44,76,96,116,126].
Introns also do seem to provide some protection against the destructive effects
of crossover and other genetic operators [1,15,76,106,108] although this may not
always be helpful. The usage of explicitly defined artificial introns has yielded
generally good results in linear GP [60, 78, 79], but in tree-based GP it usually
degraded the performance of the search process [3, 13,106].

Regardless of its possible benefits to GP, the side effects of intron prolifera-
tion are very serious. Computational resources may be totally exhausted in the
storage, evaluation and swapping of code that contributes nothing to the final

5

6 2. BLOAT

solution, preventing GP from performing the effective search needed to find bet-
ter solutions. Bloat is now widely recognized as a pernicious phenomenon that
plagues most progressive search techniques based on discrete variable-length
representations and using fixed evaluation functions [11, 49, 55, 57, 59]. Bloat
control has become a very active research area in GP, already subject to dif-
ferent theoretic and analytic studies [53, 60, 73, 84, 85, 96–98]. Several theories
concerning why bloat occurs have been advanced, and many different bloat con-
trol methods have been proposed.

2.1 Theories

This section briefly describes the six main theories concerning the reasons why
bloat occurs, along with some related ideas that are presented alongside the
main theories. The different explanations for code growth are not necessarily
contradictory. Some appear to be generalizations or refinements of others, and
several most certainly complement each other. They are not presented in precise
chronological order.

2.1.1 Hitchhiking

One of the first explanations to the multiplication of introns among GP pro-
grams, advanced by Tackett, was the hitchhiking phenomenon [116]. This is a
common and undesirable occurrence in genetic algorithms, where unfit build-
ing blocks propagate throughout the population simply because they happen
to adjoin highly fit building blocks. The introduction of artificial introns in
genetic algorithms was partly an attempt to counteract the deleterious effects
of hitchhiking.

According to the hitchhiking explanation, the reason why naturally emerg-
ing introns in GP become so abundant is that they, too, are hitchhikers. Tackett
refutes the hypothetical protection against crossover (see Section 2.1.2) as the
explanation for intron multiplication, based on the fact that the usage of brood
recombination (Section 2.2.3), a less destructive recombination strategy, did not
result in less code growth [116]. An additional hypothesis for code growth, ad-
vanced by Altenberg and somewhat related to the removal bias theory later
advanced by Soule (Section 2.1.3), suggested that it was caused by an “asym-
metry between addition and deletion of code at the lower boundary of program
size”, inherent to the recombination operator and not dependent on selection
pressure [2]. Tackett also refutes this hypothesis by showing that, on the con-
trary, code growth is directly proportional to selection pressure, and the only
time bloat does not occur is when fitness is totally disregarded along the search
process [116]. These results have later been reinforced by other experiments
showing the absence of bloat when selection is random [10,55,60].

2.1.2 Defense Against Crossover

Although early disputed, the idea of defense against crossover as being the
explanation for bloat has persisted in the literature for a long time [1,15,71,76,

2.1. THEORIES 7

106,108], also stated and referred to as the replication accuracy theory [71, 85],
intron theory [34,35,115] and protection theory [17]. It is based on the fact that
standard crossover is usually very destructive [9, Chap. 6], [76, 78, 79]. In face
of a genetic operator that seldom creates offspring better than their parents,
particularly in more advanced stages of the evolution, the advantage belongs
to the individuals that at least have the same fitness as their parents, those
who were created by neutral variations. Introns provide standard crossover and
other genetic operators with genetic material where swapping can be performed
without harming the effective code.

Curiously, most of the theory devoted to the defense against crossover was
developed in the context of linear GP [76] and may not be completely applicable
to tree-based GP [62,63,65,96]. More specifically, introns can be roughly divided
in two categories: inviable code and unoptimized code (or syntactic/structural
and semantic introns [6, 17]). The former is code that cannot contribute to the
fitness no matter how many changes it suffers, either because it is never exe-
cuted or because its return value is ignored. The latter is viable code containing
redundant elements whose removal would not change the return value [65]. De-
fense against crossover does not differentiate both types of introns, which is fine
when considering only linear GP. But in tree-based GP the effects of regular
genetic operators are very different in each type of intron. While inviable code
effectively protects the individual from having its fitness changed, unoptimized
code is highly susceptible to variations of its structure and its return value may
greatly influence the fitness of the individual. It is not surprising to verify that
the experiments supporting the defense against crossover in tree-based GP do
not take into consideration any other type of intron besides inviable code.

Some of these experiments were performed by Soule and Foster, using a form
of non-destructive hill-climbing crossover [80,109] (Section 2.2.3) and studying
its effects on code growth. In this crossover the offspring are kept only if they
are strictly better than their parents in terms of fitness. Specifics apart, when
offspring do not rise to these standards they are replaced by their parents.
This crossover resulted in a strong limitation of code growth when compared to
standard tree crossover, thus supporting the defense theory, but Luke suggests
that code growth is just being delayed by the large amount of parents replicated
along the generations [65,66]. Additional experiments by Soule and Heckendorn
using single node mutations have however suggested that code growth does occur
in response to destructive operators [112].

Luke indeed rejects the defense theory in the context of tree-based GP [65]
by using a simple procedure called marking [15]. Inviable code is identified and
marked so that individuals cannot perform crossover within the inviable regions,
thus removing the hypothetical advantage conferred by intron multiplication.
The results showed a significant reduction of inviable code, but unoptimized
code caused tree growth to persist and even increase. The defense theory seems
to be correct when applied to those “syntactically redundant constructions”
that Angeline called introns, but clearly does not apply to unoptimized code
in tree-based GP. And even in linear GP, Brameier and Banzhaf have recently
identified neutral crossover, not destructive crossover, as the main cause of code
growth [17].

8 2. BLOAT

2.1.3 Removal Bias

Although presenting evidence to support the theory of defense against crossover
(Section 2.1.2), Soule performed additional experiments with another non-de-
structive but less “rigorous” hill-climbing crossover [107, 108] (Section 2.2.3).
While the previous crossover retained only the offspring that were strictly better
than their parents [109], this one retains all the offspring that are equal or better
in terms of fitness. Both are non-destructive operators and yet the less rigorous
one produces a substantial amount of code growth, although smaller than with
standard crossover. Soule concludes that there must be a second cause for
code growth besides the defense against crossover, and presents a theory called
removal bias [59,107,108].

Given the general destructive nature of standard crossover, offspring having
the same fitness as their parents often benefit from a selective advantage over
their siblings. The presence of inviable code provides regions where removal
or addition of genetic material does not modify the fitness of the individual.
According to the removal bias, to maintain fitness the removed branches must
be contained within the inviable region, meaning they cannot be deeper than the
inviable subtree. On the other hand, the addition of a branch inside an inviable
region cannot affect fitness regardless of how deep the new branch is. This
asymmetry can explain code growth, even in the absence of destructive genetic
operators. A related explanation had already been advanced by Altenberg (see
Section 2.1.1).

When using the more rigorous non-destructive crossover that only allows
offspring with better fitness than their parents (Section 2.1.2), removal bias is
disabled and code growth effectively drops to a minimum, lending support to
the theory. However, Luke holds the argument that an even larger amount of
parent replication may be stalling the evolution and that this may be the only
cause for the suppression of bloat [65,66]. The improvement of mean population
fitness does slow down with the introduction of the more rigorous crossover,
but it is still faster than using standard crossover [107], suggesting that the
evolution is not hampered by parent replication. Soule and Heckendorn provided
additional support to the removal bias by showing that crossover destructiveness
is positively correlated with removed branch size, but mostly unaffected by
inserted branch size [112].

2.1.4 Fitness Causes Bloat

The first theory that does not make introns responsible for bloat was first
advanced by Langdon and Poli [49, 55, 57, 59]. Also called solution distribu-
tion [108], diffusion theory [62,63,115], drift [17,112], nature of search spaces [85]
and entropy random walk [60], it has recently been identified simply by its main
claim, fitness causes bloat [68]. Given its general characteristics, this theory is
applicable to any progressive search technique using a discrete variable-length
representation and a static evaluation function.

The fitness causes bloat theory basically states that with a variable-length
representation there are many different ways to represent the same program,
long and short, and a static evaluation function will attribute the same fitness

2.1. THEORIES 9

to all, as long as their behavior is the same. Given the inherent destructiveness
of crossover, when better solutions become hard to find there is a selection
bias towards programs that have the same fitness as their parents. Because
there are many more longer ways to represent a program than shorter ways,
a natural drift towards longer solutions occurs, causing bloat. Although this
explanation does not directly implicate introns in the process, the odds are that
the code growth observed in the progressively longer alternative representations
is ultimately caused by introns, either inviable or unoptimized code. Fitness
causes bloat is strongly supported by theoretical evidence [58, Chap. 8].

If selection did not punish individuals worse than their parents, there would
be no need to search for alternative representations for the same solutions, and
bloat would not occur. So, fitness causes bloat. Confirming previous results by
Tackett [116], experiments have shown that code growth does not occur when
using random selection [10, 55, 60], not even when standard mutation is the
only genetic operator [57]. Selection pressure has been further linked to code
growth by Gustafson et al., who have found that increased problem difficulty
induces higher selection pressure and loss of diversity, which together lead to
bloat [37]. Studying bloat from a statistical learning theory viewpoint, Zhang
and Mühlenbein have stated that programs tend to grow until they fit the fitness
data perfectly [126], and Gelly et al., have also found evidence to support the
claim that fitness causes bloat [34,35].

2.1.5 Modification Point Depth

Another explanation for bloat in tree-based GP was advanced by Luke [62, 63,
65]. It has been called depth-correlation theory [115], but can also be referred
to as depth-based theory or simply modification point depth [65].

Confirming previous results [42], Luke has observed that when a genetic op-
erator modifies a parent to create an offspring, there is a correlation between the
depth of the modified node and its effect on the fitness of the offspring when com-
pared to the parent: the deeper the modification point, the smaller the change
in fitness. Once again, because of the destructive nature of crossover, small
changes will eventually benefit from a selective advantage over large changes,
so there is a preference for deeper modification points. The larger the individ-
ual, the deeper its nodes can be, so large parents have an advantage over small
parents. Plus, the deeper the modification point, the smaller the branch that is
removed, thus creating a removal bias (Section 2.1.3). This may be regarded as
a generalization of the original removal bias theory [112].

Luke denies that introns cause bloat [62]. In fact, according to the theory of
modification point depth, size is a consequence of fitness, and Luke adds that
size itself is what allows the propagation of inviable code [63, 65, 68]. Streeter
also suggests that code growth may be related to a measure of resilience, where
resilience is directly related to tree size [115].

2.1.6 Crossover Bias

The most recent theory concerning bloat is the crossover bias theory by Poli et
al. [24, 25, 89, 90]. It explains code growth in tree-based GP by the effect that

10 2. BLOAT

standard subtree crossover has on the distribution of tree sizes in the population.
Whenever subtree crossover is applied, the amount of genetic material removed
from the first parent is the exact same amount inserted in the second parent, and
vice versa. The mean tree size remains unchanged. However, as the population
undergoes repeated crossover operations, it approaches a particular distribution
of tree sizes (a Lagrange distribution of the second kind), where small individuals
are much more frequent than the larger ones. For example, crossover generates
a high amount of single-node individuals. Because very small individuals are
generally unfit, selection tends to reject them in favor of the larger individuals,
causing an increase in mean tree size. It is the proliferation of these small unfit
individuals, perpetuated by crossover, that ultimately causes bloat. The theory
also holds for the popular 10/90% crossover that uses a non-uniform selection
of crossover nodes, preferring non-terminal nodes with 90% probability.

Strong theoretical and empirical evidence supports the crossover bias theory.
It has been shown that the bias towards smaller individuals is more intense
when the population mean tree size is low, and that the initial populations
resembling the Lagrange distribution bloat more easily than the ones initialized
with traditional methods [24]. A somewhat unexpected finding was that one
common bloat control method, the usage of size limits, actually speeds code
growth in the early stages of the run. The reason is that size limits promote
the proliferation of the smaller individuals, thus biasing the population towards
the Lagrange distribution [25]. Along with further theoretical developments, it
has also been shown that smaller populations bloat more slowly [90], and that
elitism reduces bloat [91].

2.1.7 Discussion

Looking back at all the bloat explanations suggested so far, one cannot help but
notice the one thing that all the theories have in common, the one thing that
if removed would cause bloat to disappear, ironically the one thing that cannot
be removed without rendering the whole process useless: the search for fitness.

Remove fitness from the hitchhiking theory, and redundant code no longer
propagates because the building blocks to which it associates cease to be selec-
tively advantageous. Remove fitness from the defense theory, and individuals no
longer need protection from a crossover that ceases to be destructive. Remove
fitness from the removal bias theory, and the bias to remove small branches
disappears. Remove fitness from the fitness causes bloat theory, and the drift
towards longer alternative solutions no longer occurs. Remove fitness from the
modification point depth theory, and deeper individuals no longer hold any ad-
vantage. Remove fitness from the crossover bias theory, and selection no longer
rejects the numerous small individuals created by crossover. In short, remove
fitness from the search process and bloat vanishes.

All this may sound as obvious as saying that if you climb a mountain high
enough you will suffer from lack of oxygen. Altitude causes lack of oxygen, so
to avoid it you must not climb. But the goal is to climb! And yet the question
remains: what causes the lack of oxygen, the particular way you climb or the
climbing itself? Can we find a climbing technique to avoid lack of oxygen? Can
we find the GP equivalent of the oxygen bottle?

2.2. TAXONOMY OF BLOAT CONTROL METHODS 11

2.2 Taxonomy of Bloat Control Methods

Bloat control methods are so numerous and varied that it is hard to define a
taxonomy to classify them, let alone enumerate them all. Because different con-
trol measures act at different stages of the evolutionary process, the following
taxonomy reflects precisely that: where in the iterative GP process does the
method apply. Evaluation, selection, breeding and survival are the four evolu-
tionary stages considered. Given the extreme diversity of existent bloat control
methods, and to avoid a further discretization of the evolution, some methods
are simply included in a heterogeneous group called others. Although extensive,
the following list of bloat control methods is not exhaustive. Other taxonomies
can be found in the literature [58, Sect. 11.6], [67, 68,127,128].

2.2.1 Evaluation

Applying bloat control at the level of fitness evaluation is a very common prac-
tice, even in other evolutionary computation paradigms besides GP. Like all
techniques where the size of an individual affects its probability of being se-
lected for reproduction, the following belong to the wide family of parsimony
pressure methods.

In parametric parsimony pressure, the fitness of each individual is a function
of its raw fitness and its size, penalizing larger individuals. It has been used
in GP since early times, also under different alternative names and variants
like Occam’s razor and Minimum Description Length [14, 40, 44, 45, 111, 126].
Parsimony pressure is usually linear and constant along the evolution, but some
techniques apply adaptive pressure where the adjustment of the fitness penalty
varies along the evolution [126]. A major difficulty of all parametric methods
is precisely its dependency on the correct setting of the parsimony coefficient,
worsened by the fact that what is correct in the beginning of the evolutionary
process may actually handicap the search later in the evolution. The effects
of parametric parsimony pressure have been studied, and it was found that
although it may speed the evolution, it may also cause the search process to
converge on local optima [96–98,110].

Different parsimony pressure methods have also been used, like the tarpeian
method [85], where a fraction of individuals with above-average size are peri-
odically “killed” by giving them such an extreme fitness value that effectively
prevents them from being selected for reproduction. Notably one of the few
theoretically-motivated bloat control techniques, the tarpeian method has not
however been able to beat some older and newer techniques [68].

Most recently, a very efficient way of setting the parsimony coefficient dy-
namically during the run has been developed for parametric parsimony pressure
methods. Based on solid theory, the method achieves complete control over the
evolution of the average size of the individuals in the population, even forcing
its shrinkage if necessary [92].

12 2. BLOAT

2.2.2 Selection

Unlike parametric parsimony, pareto-based parsimony does not modify the fit-
ness of the individuals. Instead, parsimony is applied by selecting based on two
objectives: fitness and size. Multi-objective parsimony methods do not intro-
duce any parameters to the search process, but unfortunately their results have
not been consistently good [12,21,22,29,54,68,82].

Other bloat control methods that act at the selection level include several
types of tournament. Lexicographic parsimony pressure [67, 68] uses a tourna-
ment that always selects the smaller contestant from among individuals having
the same fitness. In double tournament [66, 68] the contestants are already the
winners of a previous tournament, the first based on size and the second based
on fitness, or vice versa. In proportional tournament [66,68] a proportion of tour-
naments will select winners based on size instead of fitness. Double tournament
has recently proven to be one of the best bloat control methods available [68].

2.2.3 Breeding

Bloat control at the breeding level is performed with specific genetic operators
that attempt to restrict code growth. Many different non-standard operators
have been advanced, most of them searching for better performance [9, Chap. 6],
but some specifically looking to end bloat.

Brood recombination (Section 2.1.1), also called soft brood selection and
greedy recombination [1, 116], is a crossover operator that creates many more
offspring than needed, by selecting different crossover points in both parents.
From all the individuals created in each crossover, only the best become full-
fledged offspring and candidate to the new generation. The number of effective
offspring returned by this operator is always the same regardless of the size of
the brood. The role of a large brood is to reduce the crossover destructiveness.

One-point crossover [86,87], very similar to context preserving crossover [23],
chooses crossover points that are common to both parents. Because parents are
seldom identical in size and shape, crossover points are restricted to parental
structurally identical regions (in terms of function arity from the root node),
usually meaning that relatively large subtrees are swapped. A variant named
strict one-point crossover restricts identical regions to having both the same
arity and the exact same functions. Less restrictive than one-point crossover,
the same depths crossover [106] begins by choosing a random depth in the least
deep parent, and then selects random crossover points at this depth, in both
parents. This also increases the chances that larger subtrees are swapped. The
popular 10/90% crossover that chooses non-terminals with 90% probability [45]
is another attempt at swapping larger branches. Uniform crossover [88] is simi-
lar to one-point crossover in that swapping of genetic material can only be done
within common parental regions, and it also includes a strict variant. The dif-
ference is that in uniform crossover only single nodes are swapped, not entire
branches (except when the swapped node is a non-terminal at the boundary of
the common region). Smooth uniform crossover (and the related smooth point
mutation) [81] is a variant that does not swap entire nodes and instead inter-
polates their behavior to allow smaller movements around the solution space.

2.2. TAXONOMY OF BLOAT CONTROL METHODS 13

One-point, same depth and uniform crossovers all have one thing in common:
they maintain the depth of the offspring within the limits established by the
initial population.

Size fair crossover [51,52] behaves much like standard tree crossover, except
in regard to the choice of the crossover point in the second parent. A bound
is placed on the amount of genetic material exchanged in a single operation,
so the selected branch on the second parent must not exceed a certain size
limit related to the size of the selected branch on the first parent. Size fair
mutation [49, 59] behaves in a similar manner regarding the size of the newly
created subtree. Based on fair crossover, homologous crossover [51] attempts
at preserving the context in which the subtrees are swapped, by selecting the
second branch as similar as possible to the branch in the first parent. The
aligned homologous crossover [77] and the maximum homologous crossover [83]
are homologous crossovers specifically developed for linear GP.

Other bloat control operators include a crossover that truncates excess depth
[70], and also specialized genetic operators that depend on the size or depth of
the parents: large trees are modified with operators likely to reduce their size,
while smaller trees are likely to grow [43].

Finally, two techniques where the number of operations performed on a single
(pair of) parent(s) is dependent on the size of the breeding trees. Uniform
subtree mutation [120] applies several rounds of standard mutation to the same
individual. The larger the parent tree, the higher the number of operations.
Following the same rationale, multiple crossovers have also been used as an
attempt to break the tree resilience that is correlated to code growth [114]
(Section 2.1.5).

2.2.4 Survival

Bloat control at the survival level can be applied on an individual basis, where
each candidate to the new generation must conform to some standards if it is
to become an effective population member, or on a population basis, where the
population as a whole must obey some restrictions, regardless of the particular
characteristics of each individual.

Some of the individual-based techniques are usually described as specific
crossover operators, and as such could be classified as breeding restrictions (Sec-
tion 2.2.3). But this really depends on the implementation details, and it is best
to keep things separate. Any genetic operator can be used along with these bloat
control techniques, intact and unrestricted. Only after the breeding process is
finished are the new individuals filtered as part of the survival process.

Individual-based The first bloat control method ever used on tree-based GP
is still the most popular and commonly used. Traditionally it imposes a fixed
tree depth limit on the individuals accepted into the population. When a genetic
operator creates an offspring that violates this limit, one of its parents is chosen
for the new generation instead [45]. Alternatively, the operator can be retried
until it produces a valid individual [70], or the invalid individuals accepted but
given null fitness [72]. Size limits have been used instead of depth limits, where

14 2. BLOAT

size is the number of tree nodes [47,53,55,59]. However, studies have suggested
that the usage of size or depth limits can interfere with search efficiency once
the average program size approaches the limit, leading to premature convergence
[58, Chap. 10], [33,56]. Another study deals with the impact of size limits on the
average size of the individuals in the population [72], and recent work related
to the crossover bias theory reports that size limits actually speed code growth
in the early stages of the run [25] (see Section 2.1.6).

Dynamic Maximum Tree Depth [101] is a bloat control technique inspired in
the traditional tree depth limit. It also imposes a depth limit on the individuals
accepted into the population, but this one is dynamic and able to increase during
the run. Variants of this technique include the implementation of a heavy limit
that can also decrease during the run, and the usage of a limit on size instead
of depth [102]. Dynamic Maximum Tree Depth and its variants are collectively
called Dynamic Limits (Chapter 3).

Another technique that replaces offspring with their parents when restric-
tions are not respected is the hill-climbing crossover [107–109] (Section 2.1.2),
also called pseudo-hillclimbing [66, 68]. In this technique, only the individuals
that are not worse than their parents, or are strictly better than their parents,
are allowed to enter the population. Individuals who do not conform to these
standards are replaced by their parents. This technique counteracts the natural
destructiveness of crossover. An identical technique is called improved fitness
selection, while changed fitness selection only accepts individuals with a dif-
ferent fitness from their parents, better or worse [106]. A similar approach at
diversity pressure has been used in a different manner, much like parametric
parsimony pressure (Section 2.2.1), by including a penalty on the fitness of the
offspring that have the same fitness as their parents [50].

Developed alongside the crossover bias theory (Section 2.1.6), a new method
for bloat control has been proposed, called operator equalisation [26]. It is ca-
pable of accurately controlling the distribution of sizes inside the population by
probabilistically accepting each individual based on its size, where the proba-
bilities are calculated considering the target distribution. This method can be
used to counteract the crossover bias that ultimately causes bloat.

Population-based The first attempt to control bloat using restrictions at the
population level was made with the implementation of a fixed limit on the total
number of nodes of the entire population [125]. This idea was further developed
and tree nodes were regarded as the natural resources that individuals need to
survive [103]. Its hybridization with Dynamic Limits (Chapter 3) resulted in the
implementation of a dynamic limit on the amount of resources the population
can use [104,105], whose variations depend on the evolution of mean population
fitness. The concept of natural resources in GP was named Resource-Limited
GP (Chapter 4). The introduction of limits at the population level results in
automatic population resizing.

Simpler approaches like the systematic shrinking of the population have also
been used in order to save computational effort and thus counter the effects of
bloat [30, 31, 64]. More sophisticated, another variable population approach is
implemented by explicitly inserting or deleting individuals depending on how

2.2. TAXONOMY OF BLOAT CONTROL METHODS 15

the best fitness is evolving [121, Sect. 7.1] [19, 94, 95, 118]. Individuals are sup-
pressed as long as the best individual in the population keeps improving, and
new individuals are added when the best fitness stagnates.

2.2.5 Others

Some bloat control methods do not really fit into any of the previous categories,
like the waiting room and death by size [68, 82]. The waiting room implements
a queue where newly created individuals must wait until they can enter the
population. The larger the individual, the longer it must wait. Death by size is
a technique designed specifically for steady-state GP, as opposed to generational
GP. At each time step some individuals are selected to be removed from the
population and replaced by the new children. Larger individuals are more likely
to be removed.

Code editing is the plain removal of redundant code, both in tree-based and
in linear GP. It has been performed since early times to clean and simplify
the final solution [45], and has also been used along the evolutionary process
as an attempt to counteract bloat. Code editing can be done before [16] or
after [41] evaluating an individual, with a mutation operator that simplifies [28]
or a crossover operator that deletes redundant regions [13] or through any other
simplification system that acts periodically on the individuals [39,111]. However,
it has been shown that code editing can lead to premature convergence [38].

Explicitly defined introns are intended as substitutes of naturally occurring
introns [5, 13, 60, 78, 79, 106]. This technique consists on the inclusion of spe-
cial nodes with added functionality that adapt the likelihood of crossover or
mutation to operate at specific locations within the code.

Dynamic fitness, where the fitness measure is based on co-evolution, or cal-
culated on a variable set of fitness cases, has been extensively used as an attempt
to improve the convergence ability of GP [48, Sect. 2.4.2], and only rarely as a
bloat control technique [50].

Although not initially developed as a bloat control method, promoting the
modularization and reusability of GP structures often results in more parsimo-
nious code. Some modularization techniques are the creation of Automatically
Defined Functions [46] and Automatically Defined Macros [113], Module Acqui-
sition [7] and Adaptive Representation Learning [99].

Finally, some less common forms of GP seem to have the ability of reducing
code growth, like relaxed GP [20], or do not seem to be affected by bloat at
all, like stochastic grammar-based GP [93] and cartesian GP [74]. In relaxed
GP, the values of the desired solution are relaxed so that any value within a
specified interval will be considered correct. Stochastic grammar-based GP is a
grammar-based GP framework where the information is stored as a probability
distribution on the grammar rules, rather than in a population. In cartesian
GP, a program is represented as an indexed graph.

Chapter 3

Dynamic Limits

This chapter describes the set of bloat control techniques collectively designated
as Dynamic Limits, from the initial idea of applying a dynamic limit to the depth
of evolving trees, called Dynamic Maximum Tree Depth [101], to the variants
where the limit can be applied to either depth or size, and is allowed to increase
or decrease during the run [102].

3.1 Dynamic Maximum Tree Depth

Tree-based GP traditionally uses a depth limit to avoid excessive growth of its
individuals. When an individual is created that violates this limit, one of its
parents is chosen for the new generation instead [45]. This technique effectively
avoids the growth of trees beyond a certain point, but it does nothing to control
bloat until the limit is reached. The static nature of the limit may also prevent
the optimal solution to be found for problems of unsuspected high complexity.

3.1.1 Dynamic Depth Limit

Dynamic Maximum Tree Depth [101] is a bloat control technique inspired in the
traditional static limit. It also imposes a depth limit on the individuals accepted
into the population, but this one is dynamic, meaning it can be changed during
the run. The dynamic limit is initially set with a low value, but at least as high
as the maximum depth of the initial random trees. Any new individual who
breaks this limit is rejected and replaced by one of its parents instead (as with
the traditional static limit), unless it is the best individual found so far. In this
case, the dynamic limit is raised to match the depth of the new best-of-run and
allow it into the population. The result is a succession of limit risings, as the
best solution becomes more accurate and more complex.

Dynamic Maximum Tree Depth does not necessarily replace the traditional
depth limit – both dynamic and fixed limits can be used at the same time. When
this happens, the dynamic limit always lies somewhere between the initial tree
depth and the fixed depth limit. The simplicity of Dynamic Maximum Tree
Depth make it easy to use with any set of parameters and/or coupled with
other techniques for controlling bloat (Section 2.2).

17

18 3. DYNAMIC LIMITS

The dynamic limit may also be used for another purpose besides controlling
bloat. In real world applications, one may not be interested or able to invest
a large amount of time in achieving the best possible solution, particularly
in approximation problems. Instead, one may only consider a solution to be
acceptable if it is sufficiently simple to be understood, even if its accuracy is
known to be worse than the accuracy of other more complex solutions. Plus,
shorter solutions tend to generalize better (Chapter 2). Choosing less stringent
stop conditions to allow the algorithm to stop sooner is not enough to ensure
that the resulting solution will be acceptable, as it cannot predict its complexity.
By starting with a low dynamic limit for tree depth and repeatedly raising it
as more complex solutions prove to be better than simpler ones, the Dynamic
Maximum Tree Depth technique can in fact provide a series of solutions of
increasing complexity and accuracy, from which the user may choose the most
adequate one.

3.1.2 Early Results

Early tests have shown that Dynamic Maximum Tree Depth is able to effec-
tively contain code growth in a Symbolic Regression and the Even-3 Parity
problems [101]. Two different settings for the initial value of the dynamic limit
were tried (6 and 9), the lowest being exactly the maximum depth of the ini-
tial random trees. This most restrictive value resulted in lower mean tree size
along the run without any impairment on the ability to converge to good so-
lutions. Dynamic Maximum Tree Depth was also tested against and together
with another bloat control technique, Lexicographic Parsimony Pressure (Sec-
tion 2.2.2). The experiments showed a clear superiority of the dynamic limit,
with the best results achieved when both techniques were coupled together.

3.2 Variations on Size and Depth

The original Dynamic Maximum Tree Depth was soon extended to include addi-
tional functionalities: a heavy variation of the dynamic limit that can be lowered
as well as raised, and a dynamic limit on size instead of depth.

Figure 3.1 shows the general acceptance procedure (including all the vari-
ants) that all newly created individuals must pass before being accepted into
the new generation. Any individual that does not meet the size/depth/fitness
requirements of the Dynamic Limits method will not be accepted by this pro-
cedure, but instead replaced by one of its parents.

3.2.1 Heavy Dynamic Limit

Dynamic Maximum Tree Depth is capable of withstanding a considerable amount
of parsimony pressure, as proven by the results obtained by initializing the dy-
namic limit with the lowest possible value, the maximum depth of the initial
random trees [101] (Section 3.1.2). So there seems to be no reason why the
limit should not be allowed to fall back to lower values in case the depth of the
new best individual becomes lower than the current limit, an occurrence which

3.2. VARIATIONS ON SIZE AND DEPTH 19

for a l l newly c reated i nd i v i d u a l s

s i z e i = s i z e (depth) o f i nd i v i dua l

f i t n e s s i = f i t n e s s o f i nd i v i dua l

i f s i z e i ≤ dynamic l imit

accept i nd i v i dua l

i f f i t n e s s i > b e s t f i t n e s s

b e s t f i t n e s s = f i t n e s s i

i f VeryHeavy

or Heavy and s i z e i ≥ i n i t i a l d y n am i c l im i t

dynamic l imit = s i z e i

i f s i z e i > dynamic l imit and f i t n e s s i > b e s t f i t n e s s

accept i nd i v i dua l

b e s t f i t n e s s = f i t n e s s i

dynamic l imit = s i z e i

Figure 3.1: Pseudo code of the Dynamic Limits acceptance procedure.

is actually very common. So the first variation introduced to the original Dy-
namic Maximum Tree Depth is the Heavy dynamic limit, one that accompanies
the depth of the best individual, up or down, with the sole constraint of not
going lower than its initialization value [102]. An additional variation to the
heavy dynamic limit is the VeryHeavy limit, one that can even fall back below
its initialization value.

As expected, whenever the limit falls back to a lower value, some individuals
already in the population immediately break the new limit, becoming ’illegals’.
There was a vast range of options to deal with them, the more drastic being
their immediate removal from the population, possibly replacing them by new
random individuals. However, since these new ’illegals’ could be the ones who
managed to produce the new best individual, this did not seem like a very good
idea. A much softer option was adopted: the ’illegals’ are allowed to remain
in the population as if they were not breaking the limit, but when breeding,
their children cannot be deeper than the deepest parent. This naturally and
gradually places the population within limits again.

3.2.2 Dynamic Size Limit

Even though bloat is known to affect many other search processes using variable-
length representations (Chapter 2), depth limits cannot be used on non tree-
based GP systems. Extending the idea of a dynamic limit to other domains must
begin with the removal of the concept of depth, replacing it with the concept
of size. The second variation on the original Dynamic Maximum Tree Depth is

20 3. DYNAMIC LIMITS

the usage of a dynamic size limit, where size is the number of nodes [102]. If
a static limit is to be used along with this dynamic limit, it should also be on
size, not depth.

When using the dynamic size limit, it makes no sense to keep using depth as
a restriction on tree initialization. So a modified version of the Ramped Half-
and-Half initialization method [45] was created [102], where an equal number
of individuals are initialized with sizes ranging between 2 and the initial value
of the dynamic size limit. For each size, an equal number of individuals are
initialized with the Grow method and with the Full method [45], that have also
been modified to fit the size constraints only. In the modified Grow method,
the individual grows by addition of random nodes (internal or terminal) without
exceeding the maximum size specified; the modified Full method chooses only
internal nodes until the size is close to the specified, and only then chooses ter-
minals. Unlike the original Full version, it may not be able to create individuals
with the exact size specified, but only close (and never exceeding).

3.2.3 Early Results

Both heavy and size variations have been tested on the same problems as
the original Dynamic Maximum Tree Depth technique (Symbolic Regression
and Even-3 Parity) against and coupled with Lexicographic Parsimony Pres-
sure [102] (Section 3.1.2). The heavy dynamic limit adds parsimony pressure
during the run. Even without taking drastic measures towards the individuals
that suddenly break the lower limit, the mean tree size along the run was kept
significantly lower than with either the original Dynamic Maximum Tree Depth
or Lexicographic Parsimony Pressure alone. Once again the best results were
achieved by joining both techniques, and fitness was still not affected by such
high levels of parsimony pressure. The dynamic size, however, did not perform
as well in one of the problems (Parity), where the ability to find good solu-
tions was compromised. These early results did not yet include the VeryHeavy
variation.

Chapter 4

Resource-Limited GP

This chapter describes the concept and implementation details of Resource-
Limited GP, from the initial idea of replacing tree depth/size limits at the
individual level by a global limit on the resources used by the entire population
[103], to the inspiration on Dynamic Limits to create a dynamic resource limit
[104], and necessary comparison with the original Dynamic Limits individual-
level approach [105].

4.1 Replacing Tree Depth Limits

Dynamic Limits can effectively control bloat without impairing performance
(Chapter 3). However, previous attempts at applying them to size instead of
depth were somewhat unsuccessful [102], rendering them useless for non tree-
based GP systems.

4.1.1 Static Resource Limit

Resource-Limited GP is based on a single limit imposed on the amount of re-
sources available to the entire GP population, where resources are the tree nodes
or other elements in non tree-based GP, like code lines. We can think about
it as limiting the amount of natural resources available to a given biological
population, where each individual competes with the others for its share, and
the weakest individuals perish when resources are scarce. In Resource-Limited
GP, resources become scarce when the total number of nodes in the population
exceeds the predefined limit. Beyond this point, not all offspring are guaranteed
to be accepted into the new generation. The allocation of resources to individ-
uals (ensuring their survival) is mainly based on fitness, with size playing a
secondary role.

The candidates to the new generation are the offspring, followed by their
parents. Each of these groups is sorted by fitness, regardless of size. The queued
candidates are then given the resources they need (their number of nodes) in a
first come, first served basis. The individuals requiring more resources than the
amount still available are skipped (do not survive) and the allocation continues
until the end of the queue, or until population size restrictions apply. Some

21

22 4. RESOURCE-LIMITED GP

resources may remain unused. Some parents may survive while their offspring
perish. A rule emerges from this procedure, promoting the survival of the best
individuals and the rejection of ‘not good enough for their size’ individuals,
where the relationship between size and fitness is not explicitly programmed,
but a product of the evolutionary process.

Resource-Limited GP removes most of the disadvantages of using depth lim-
its at the individual level, while introducing automatic population resizing, a
natural side-effect of using an approach at the population level. When the re-
source limit is reached, and as long as code growth continues, the population size
(defined as the number of individuals) begins to steadily decrease, something
that may actually improve convergence to good solutions [30,31,64]. It is possi-
ble that a single individual may have to be artificially kept in the population to
avoid extinction, but this risk is non-existent if tree crossover is the only genetic
operator used. After the resources have reached the exhaustion point and the
population size has been reduced, eventually some new generation of individuals
will use them more sparingly and leave enough unused to allow the population
size to increase again. Two implementation options have been considered on
how to deal with this occurrence: After accepting as many individuals as the
previous population size, (1) use the remaining resources to allow the survival
of additional individuals of the previous generation - the parents who have not
yet been accepted - by continuing the resource allocation procedure until the
resources are exhausted, or until the initial population size is reached, or (2)
do not use them, thus never allowing the population size to increase. The first
option was designated as Steady, for it enforces a steady usage of resources, and
the second was called Low, because it allows a possible low usage of resources.
Figure 4.1 shows the pseudo code of the resource allocation procedure. See
Figure 4.3 for an example.

4.1.2 Early Results

Resource-Limited GP was tested on a simple Symbolic Regression problem.
To compare its performance with the traditional usage of depth limits at the
individual level, a static resource limit (14500) was found that would provide
an amount of cumulative resources (used during the entire run) similar to the
cumulative amount obtained when using the traditional static depth limit of
17 introduced by Koza [45]. The results showed that the Steady and Low
techniques behaved in a similar manner, achieving the same performance as
the depth limit, although using different bloat control strategies and producing
radically different evolutionary dynamics [103]. Resource-Limited GP was a
successful replacement for the popular tree depth limit.

4.2 The Dynamic Approach

Like the traditional depth limit, the original Resource-Limited GP relies on
a static limit, imposed in the beginning of the run and never changed until
the end. This hardly reflects the needs of a search process that must grow its
individuals in search of better solutions. Although Resource-Limited GP has

4.2. THE DYNAMIC APPROACH 23

s o r t o f f s p r i n g by f i t n e s s

s o r t parents by f i t n e s s

l i s t = o f f s p r i n g f o l l owed by parents

i f Steady , my popsize = i n i t i a l p o p s i z e

i f Low , my popsize = pr ev i ou s pop s i z e

r e s ou r c e s u s ed = 0

a c c e p t l i s t = empty

for a l l i n d i v i d u a l s in l i s t

r e s o u r c e s i = r e s ou r c e s needed by i nd i v i dua l

i f r e s ou r c e s u s ed + r e s o u r c e s i ≤ r e s o u r c e l im i t

a c c e p t l i s t = a c c e p t l i s t + i nd i v i dua l

r e s ou r c e s u s ed = re s ou r c e s u s ed + r e s o u r c e s i

i f l ength o f a c c e p t l i s t = my popsize

break for

new genera t i on = a c c e p t l i s t

Figure 4.1: Pseudo code of the resource allocation procedure.

the natural ability to compensate higher tree size with lower population size, in
complex problems this may lead to a dangerous shrinking of population size, as
code growth proceeds. On the other hand, providing enough static resources to
last until the end of the run may lead to the occurrence of bloat from the very
beginning. The need for a dynamic resource limit becomes obvious.

4.2.1 Dynamic Resource Limit

The dynamic approach to Resource-Limited GP naturally arises from the hy-
bridization of Dynamic Limits with the original static resource limit. A dynamic
resource limit is implemented, one that is initially set with a low value, and
raised whenever it results in better mean population fitness.

After generating the offspring, the candidates to the new generation are
sorted and given the available resources, following the procedure described in
Section 4.1 and Figure 4.1. The allocation continues until the resources are
exhausted, or until the initial population size is reached, according to the Steady
option. It is also possible to stop allocating once the previous population size
is reached, according to the Low option. So far, this is the original Resource-
Limited GP, but now comes the decision on whether to raise the resource limit.

The rejected individuals are now given a second chance. In turn, each of
them is reconsidered as a candidate for the new generation, and as many as

24 4. RESOURCE-LIMITED GP

i f DynRes , my meanpopfit = best meanpopf i t

i f DynResLight , my meanpopfit = prev ious meanpopf i t

r e j e c t l i s t = l i s t − a c c e p t l i s t

cur rent meanpopf i t = mean f i t n e s s o f a c c e p t l i s t

i f current meanpopf i t b e t t e r than best meanpopf i t

best meanpopf i t = current meanpopf i t

for a l l i n d i v i d u a l s in r e j e c t l i s t

tmp a c c ep t l i s t = a c c e p t l i s t + i nd i v i dua l

new meanpopfit = mean f i t n e s s o f tmp a c c ep t l i s t

i f new meanpopfit b e t t e r than my meanpopfit

a c c e p t l i s t = tmp ac c ep t l i s t

r e s o u r c e s i = r e s ou r c e s needed by i nd i v i dua l

r e s ou r c e s u s ed = re s ou r c e s u s ed + r e s o u r c e s i

else

break for

i f l ength o f a c c e p t l i s t = i n i t i a l p o p s i z e

break for

new genera t i on = a c c e p t l i s t

i f r e s ou r c e s u s ed > r e s o u r c e l im i t

or Heavy and r e s ou r c e s u s ed ≥ i n i t i a l r e s o u r c e l i m i t

or VeryHeavy

r e s o u r c e l im i t = r e s ou r c e s u s ed

Figure 4.2: Pseudo code of the reselection procedure.

possible successive individuals are accepted, as long as their inclusion causes an
improvement of the mean population fitness. This improvement may be relative
to the best mean population fitness of the run, or to the mean population fitness
of the previous generation, creating two different implementation options called
DynRes (for dynamic resources) and DynResLight, respectively. DynResLight
is expected to implement a limit that is raised much easier, hence the name. As
soon as one of the previously rejected individuals is rejected again, the process
of reselection stops and the resource limit is increased to provide the additional
needed resources.

As in Dynamic Limits, Resource-Limited GP also includes a Heavy limit that
falls back to lower values when resources remain unused, and a VeryHeavy limit
that can even fall below its initialization value. Figure 4.2 shows the pseudo
code of the reselection procedure. See Figure 4.3 for an example.

4.2. THE DYNAMIC APPROACH 25

Variables:
initial_popsize = 10

previous_popsize = 6

resource_limit = 400

best_meanpopfit = 42

previous_meanpopfit = 35

Candidates to the new generation:

(from left to right, 6 children followed by 6 parents,

each group sorted by fitness - higher is better)

Id C1 C2 C3 C4 C5 C6 P1 P2 P3 P4 P5 P6

Fitness 80 70 60 60 50 10 90 40 40 20 10 10

Size 90 100 50 100 80 80 80 70 70 10 20 10

New generation obtained with each technique:

(DynRes and DynResLight begin the reselection

from the Steady results)

Id C1 C2 C3 C4 C5 C6 P1 P2 P3 P4 P5 P6

Steady 3 3 3 3 71 71 71 71 71 3 3 3

Low 3 3 3 3 71 71 71 71 71 3 3 72

DynRes 3 3 3 3 4 83 – – – 3 3 3

DynResLight 3 3 3 3 4 4 4 84 – 3 3 3

Reasons for not accepting individual:
1Resources not available
2previous_popsize exceeded - stop procedure
3new_meanpopfit worse than best_meanpopfit - stop procedure
4initial_popsize exceeded - stop procedure

Figure 4.3: Example of resource allocation and reselection procedures.

4.2.2 Early Results

Tested on two different problems and compared both with the static and dy-
namic depth limits, the performance of the dynamic variant of Resource-Limited
GP (the Steady option) ranged from good to excellent. In a Symbolic Regression
problem the technique provided similar fitness with significantly lower resource
usage, although the success rate (measured as the percentage of runs that con-
verged to an optimal solution) was a bit lower than using the static resource
limit. In a more complex problem of Artificial Ant the dynamic resource limit
was able to achieve the same fitness level using a significantly lower amount of
resources, with the results showing fine prospects of reaching the optimal much
easier than the other techniques [104]. These early results did not yet include
the Low option, nor the Heavy or VeryHeavy variants.

26 4. RESOURCE-LIMITED GP

4.3 Comparison with Dynamic Limits

Dynamic Limits and Resource-Limited GP operate at different levels of the GP
paradigm: one acts at the individual level, the other at the population level.
Both have previously achieved promising results in controlling bloat without
impairing performance but, because they aim at different targets, they produce
different dynamics of the evolutionary process. Which one can achieve better
results?

4.3.1 Early Results

Early comparative results between Dynamic Limits and Resource-Limited GP
have elected the non-light version of the dynamic resource limit as the best
performing technique. On the two simple problems of Symbolic Regression and
Even-3 Parity, it managed to reach the same best fitness using significantly less
resources than the remaining techniques. On the more complex problem of the
Artificial Ant, if reached significantly higher fitness using the same amount of
resources. According to the same criteria, the technique scoring the second place
was the non-heavy dynamic tree depth. The traditional static depth limit was
last. However, unlike Dynamic Limits, Resource-Limited GP did not maintain
a constant performance along the evolution. It managed to achieve very good
results in the beginning of the run, but the improvements gradually slowed
down as the run proceeded, casting a doubt on whether it is in fact the best
approach [105].

Chapter 5

Experiments

This chapter introduces the experiments that were performed in order to study
the efficiency of Dynamic Limits and Resource-Limited GP as bloat control
methods. It provides a description of the problems used, the general parameter
settings common to all the techniques, and how the results are presented. The
procedures and parameters specifically related to each set of experiments will
be detailed in the corresponding later chapters.

All the experiments were performed with tree-based GP in generational
mode using the GPLAB toolbox (Section 1.2). Statistical significance of the
null hypothesis of no difference was determined with (pairwise) Kruskal-Wallis
ANOVAs at p = 0.01. A non-parametric ANOVA was used because the data is
not guaranteed to follow a normal distribution. For the same reason, the median
was preferred over the mean. The median is also more robust to outliers, and
has already been used in similar studies [114].

5.1 Problems

Four different problems were chosen to test Dynamic Limits and Resource-
Limited GP: Symbolic Regression, Artificial Ant, 5-Bit Even Parity and 11-Bit
Boolean Multiplexer. This particular set of problems was chosen because it has
been widely used in the literature [19, 20, 29–31, 52, 53, 62–68, 94, 95, 101–105,
118,120,121], as it represents a varied selection in terms of bloat dynamics and
response to different bloat control techniques.

5.1.1 Symbolic Regression

The goal of the Symbolic Regression problem is to evolve a function that best
approximates a set of points. In this particular case, 21 equidistant points of
the quartic polynomial (x4 + x3 + x2 + x) in the interval −1 to +1 are used.
Figure 5.1 plots this function along with the 21 chosen points.

The function and terminal sets for this problem are, respectively, {+,−,×,÷,

sin, cos, log, exp} and {x} (no random constants are used). The division and
logarithm are protected as in [45]: the division returns 1 whenever the denomi-
nator is 0, and the argument of the logarithm is always converted to its absolute

27

28 5. EXPERIMENTS

−1 0 1

0

1

2

3

4

Figure 5.1: Plotting of the quartic polynomial (x4 + x3 + x2 + x) along with 21
equidistant points in the interval −1 to +1.

value. Fitness is measured as the sum of the absolute differences between the
expected and predicted values of each point. It can take any real non-negative
number, so there is a potentially infinite number of possible fitness values. Early
results [101, 102] have suggested that the Symbolic Regression problem is not
prone to the propagation of inviable code, but very much affected by unopti-
mized code, although these notions are contradicted in [68]. For simplicity, from
now on this problem will be referred to simply as Regression.

5.1.2 Artificial Ant

In the Artificial Ant problem the goal is to evolve a strategy to follow a food
trail. In this particular case, the Santa Fe trail is used, shown in Figure 5.2.
The trail is represented on a 32 × 32 (toroidal) grid where black cells are the
food pellets and gray cells are the gaps in the trail. The ant begins its search
on the upper left corner, facing east.

The function and terminal sets for the Artificial Ant problem are, respec-
tively, {if-food-ahead , progn2, progn3} and {left, right, move}, as defined in
[45]. With the if-food-ahead function, the ant checks the cell directly in front of
it and performs a certain action in case it finds a food pellet there. progn2 and
progn3 allow the ant to perform any two or three consecutive actions. With the
terminals left and right the ant can turn around 90 degrees without moving
from its cell. move allows the ant to move to the adjacent cell it is facing.
When the ant stands on a cell containing a food pellet, it immediately eats it.
A foraging strategy is built using these functions and terminals and each ant
is given 400 time steps to apply it repeatedly in search of the 89 food pellets
available in the trail. Fitness is measured as the number of pellets remaining

5.1. PROBLEMS 29

Figure 5.2: Santa Fe food trail for the Artificial Ant problem. Black cells are
the food pellets and gray cells are the gaps in the trail.

afterwards. Many different foraging strategies may result in the same fitness,
and this seems to be correlated to the proliferation of inviable code.

5.1.3 5-Bit Even Parity

The 5-Bit Even Parity problem is in fact a symbolic regression problem where
the function to evolve takes five boolean arguments and returns a single out-
put indicating the parity of the arguments: 1 (or true) if an even number of
arguments are 1, and 0 (or false) otherwise.

This problem uses the function and terminal sets {and, or, nand, nor} and
{x1, . . . , x5}, respectively. Fitness is measured as the number of misclassified
cases, so it may only take values between 0 and 32, even fewer than in the
Artificial Ant problem. Once again, a large amount of structurally distinct
individuals may have the same fitness. For simplicity, from now on this problem
will be referred to simply as Parity.

5.1.4 11-Bit Boolean Multiplexer

Also similar to a symbolic regression problem, the 11-Bit Boolean Multiplexer
problem can however be viewed as a problem of electronic circuit design. The
function to evolve takes three address arguments (a0,a1,a2) plus eight data
arguments (d0,. . . ,d7), all boolean. The value returned by the function is the
particular data bit that is singled out by the address bits. Figure 5.3 shows

30 5. EXPERIMENTS

1

1

0

0

0

0

0

0

1

1

1

1

a2

a1

a0

d7

d6

d5

d4

d3

d2

d1

d0

Figure 5.3: Example of the 11-Bit Boolean Multiplexer with the input
11001001100. The first three bits are the address arguments whose binary value
indicates the data bit d6 as the output.

an example where the input is 110 01001100. The first three bits (underlined)
are the address arguments a2a1a0 whose binary value indicates the data bit d6

(bold) as the output.
The 11-Bit Boolean Multiplexer problem uses the function and terminal

sets {and, or, not, if} and {a0, a1, a2, d0, . . . , d7}, respectively. Note that both
address and data arguments are simply treated as terminals, undistinguishable
from one another. Fitness is measured as the number of misclassified cases. This
theoretically allows fitness values between 0 and 2048, but in practical terms
the values usually fall into multiples of 32 [68]. The 11-Bit Boolean Multiplexer
problem suffers from relatively little inviable code [68]. For simplicity, from now
on it will be referred to simply as Multiplexer.

5.2 Settings

Table 5.1 lists the parameters used in the experiments. A total of 30 runs
were performed with each technique for each problem. All the runs used initial
populations of 1000 individuals allowed to evolve for as many generations as
necessary to consume a certain amount of resources. Since many of the studied
techniques dynamically change the number of individuals in the population,
a fixed number of generations would not provide a fair comparison of results.
Even among the fixed population techniques, some use much fewer resources
than others because their individuals remain much smaller along the run, and
so they would also require additional generations. A fair comparison is achieved
by allowing all the techniques to consume the same amount of resources during
the run. Measured as the total number of nodes used by all the individuals in the
population along the entire run, this amount is given by the median number of
resources used along 50 generations (over 30 runs) by the baseline technique, the

5.2. SETTINGS 31

Table 5.1: Settings used in the experiments.

Runs 30
Generations (variable)
Initial population size 1000
Population initialization Ramped Half-and-Half
Initial maximum depth 6
Final maximum depth 17 (when applicable)
Selection for reproduction tournament size 7 (initial)
Genetic operators tree crossover, no mutation
Reproduction rate 0.1
Selection for survival no elitism

traditional static limit on tree depth, here identified as Koza. After establishing
this amount of resources for each problem, all the runs evolved until reaching it,
regardless of the number of generations required, even if an optimal solution was
found earlier. The amount of resources given was 1163900 for The Regression
problem, 3906594 for the Artificial Ant, 7640390 for the Parity problem, and
5220500 for the Multiplexer.

Most of the remaining parameters follow the settings indicated in [45] and
[68]. The initial populations were generated with the Ramped Half-and-Half
procedure [45], modified when using the dynamic size limit (see Section 3.2.2,
page 19, for details). Although some effort was put into promoting the diversity
of the initial population, the tree initialization procedure does not guarantee
that all individuals are distinct from one another. For each newly created indi-
vidual that is structurally identical to any of the members already in the pop-
ulation, the process is retried until a different individual is generated or until
20 attempts have been made. For 1000 individuals with maximum initial depth
of 6, this resulted in a diversity of roughly 75% (Regression), 75% (Artificial
Ant), 80% (Parity) and 85% (Multiplexer), where diversity is the percentage of
distinct individuals in the population (based on the variety measure [48]).

In all four problems, fitness was calculated such that lower values represent
better fitness. Selection for reproduction was made with tournaments of size
7, in one case modified to implement a specific technique, double tournament
(Section 9.1.2). When using variable size populations the tournament size rep-
resents a proportion of the population (0.7%, with a minimum of 2 individuals)
so that selection pressure is kept constant when the population is resized.

A reproduction rate of 0.1 was used, meaning that there was a 10% probabil-
ity of copying an individual intact into the next generation instead of choosing
a genetic operator to create new individuals. Standard tree crossover was used,
but with uniform distribution of the random crossover points, instead of the
more typical 10/90% choice of terminal/internal nodes. It has been suggested
that a leaf crossover higher than 10% may be beneficial [5], and total random
selection of crossover points may not even affect the results [63]. No mutation
was used.

32 5. EXPERIMENTS

Selection for survival was not elitist (in the traditional sense only, since the
techniques using variable size populations can be considered highly elitist, and
the reproduction rate is also a form of elitism), meaning that the best individual
of a given generation is not guaranteed to survive into the next generation.
When using variable size populations, the selection for survival was modified in
order to implement the particularities of each technique, where some offspring
may not survive their parents, or simply be discarded when the population is
resized.

5.3 Plots

The results of each experiment will be presented by four different plots. See, for
example, Figure 6.1 (page 36). The first plot presents, for each technique, the
amount of resources actually used on each run. The amount of used resources
is lower than the amount of given resources when there is convergence to an
optimal solution before the end of the run. In practical terms, when a technique
succeeds in finding an optimum it does not need to consume the remaining
resources. Techniques that succeed sooner and more often are the ones that save
more resources. In this plot, the circles drawn near the top correspond to runs
that did not succeed, and so used all the resources given (see Section 5.2 for the
amount given to each problem). The numbers above the circles indicate, for each
technique, the median number of generations needed to exhaust all the resources
given, regardless of the success in finding an optimum. The circles drawn lower
correspond to runs that succeeded before exhausting all the resources. The
lower the circle, the sooner the run succeeded. The numbers near the bottom
indicate the success rate of each technique, calculated as the percentage of runs
that found an optimal solution before exhausting the resources.

The second plot presents the evolution of the average tree size inside the
population, one line per technique. The median value of the 30 runs is used.
Lines that rise faster and higher represent techniques that sooner allow larger
individuals into the population. This is directly related to the number of gen-
erations needed to end the run, indicated in the previous plot, since larger trees
consume more resources, that consequently get exhausted in fewer generations.

One of the most important plots, the third is a boxplot1 that presents, for
each technique, the best fitness achieved by any individual on each run. Any
comparative statement regarding the performance of the techniques appearing
on this boxplot is supported by statistical evidence. The several techniques
are ranked according to this plot whenever there are statistically significant
differences between them.

Also very important, the last plot presents the evolution of the best fitness
as a function of the resources used, one line per technique. Once again the
median value of the 30 runs is used. Lines that drop earlier in the run represent
techniques that achieve better fitness with less resources.

1In the boxplot each technique is represented by a box and pair of whiskers. Each box
has lines at the lower quartile, median, and upper quartile values, and the whiskers mark the
furthest value within 1.5 of the quartile ranges. Outliers are represented by +, and × marks
the mean.

Chapter 6

Comparison within

Dynamic Limits

This chapter studies the efficiency of Dynamic Limits for bloat control. It lists
the techniques involved and specifies the procedures and parameters used in
the comparisons. Then it presents the results as described in Section 5.3, and
concludes by summing up the major findings.

6.1 Techniques

Table 6.1 summarizes all the techniques compared within the Dynamic Limits
approach. Koza is the baseline technique, because of its popularity, because all
the original techniques of this thesis were directly or indirectly inspired on this
traditional static limit (see Section 1.2), and also to stress the improvements
introduced when a dynamic limit is used instead. The names (and acronyms) of
the other techniques are composed of several parts to help their identification:
Dyn stands for Dynamic Limits; Depth (D) and Nodes (N) relate to depth and
size limits, respectively; h and vh identify the respective Heavy and VeryHeavy
variants; l stands for limited, meaning that a static upper limit is used along
with the dynamic limit, in which case the dynamic limit cannot go beyond the
static limit. The purpose of testing the limited techniques was to check whether
the Dynamic Limits can do without the static upper limit, or still benefit from
joining, instead of just replacing, the baseline technique.

6.2 Depth Limits

Table 6.2 specifies the maximum depth/size of the individuals on the initial
population, as well as the minimum and maximum limit values, for all the
techniques compared within the Dynamic Limits approach. The limit of the
Koza technique has the same minimum and maximum value, as it remains static
along the run. Heavy and non-heavy variants use the same limit range (hence
they appear together), with the only difference that the non-heavy techniques
can only increase the limit, while the heavy techniques can also decrease it as

33

34 6. COMPARISON WITHIN DYNAMIC LIMITS

Table 6.1: Techniques compared within the Dynamic Limits approach.

Technique Acronym Short description

Koza K static depth limit

DynDepth D dynamic depth limit
DynNodes N dynamic size limit

hDynDepth hD heavy dynamic depth limit
hDynNodes hN heavy dynamic size limit

vhDynDepth vhD very heavy dynamic depth limit
vhDynNodes vhN very heavy dynamic size limit

lDynDepth lD limited dynamic depth limit
lDynNodes lN limited dynamic size limit

lhDynDepth lhD limited heavy dynamic depth limit
lhDynNodes lhN limited heavy dynamic size limit

lvhDynDepth lvhD limited very heavy dynamic depth limit
lvhDynNodes lvhN limited very heavy dynamic size limit

low as the maximum depth/size allowed on the initial population. The limit
of the very heavy variants has no lower bound. An upper bound exists only
in the limited techniques (including Koza), with the traditional value of 17.
The maximum depth of the individuals on the initial population is the also
traditional value of 6. Whenever a dynamic limit is used, its initial value is
exactly the same as the maximum depth/size allowed on the initial population.

6.3 Size Limits

In terms of size instead of depth, appropriate values had to be found that some-
how produced the same behavior as their corresponding values for depth. Tree
initialization was performed using the modified Ramped Half-and-Half proce-
dure described in Section 3.2.2. The maximum size of the initial individuals is
such a number (in multiples of 5) that the median amount of resources used
by the initial population is most similar to the median amount used by the
corresponding depth-limited initial populations. This value turned out to be
different for each problem, because of the distinct function and terminal sets
they use: 20 nodes for the Regression problem, 105 nodes for the Artificial Ant,
and 50 nodes for the Parity and Multiplexer problems. These were the values
that created initial populations using the amount of resources most similar to
the amount used by a depth limit of 6. The maximum size limit was chosen to be
the rounded value (in multiples of 50) that most closely matches the maximum
number of nodes found in 17-depth trees evolved with the baseline technique.
Once again such value was different for each problem: 200 nodes for the Regres-
sion problem, 500 nodes for the Artificial Ant and Multiplexer problems, and
150 nodes for the Parity problem.

6.4. RESULTS 35

Table 6.2: Limits used within the Dynamic Limits approach.

Technique Initial population Minimum limit Maximum limit

Koza 6 17 17

(h)DynDepth 6 6 -
(h)DynNodes 20/105/50‡ 20/105/50‡ -
vhDynDepth 6 - -
vhDynNodes 20/105/50‡ - -

l(h)DynDepth 6 6 17
l(h)DynNodes 20/105/50‡ 20/105/50‡ 200/500/150§

lvhDynDepth 6 - 17
lvhDynNodes 20/105/50‡ - 200/500/150§

‡Regression / Artificial Ant / Parity & Multiplexer
§Regression / Artificial Ant & Multiplexer / Parity

6.4 Results

This section presents the results of the comparisons within the Dynamic Limits
approach, divided in the four problems considered (see Section 5.1). The results
are first presented without using a static upper limit, and then using the upper
limit, except for the baseline technique, Koza. Short concluding remarks are
inserted after each problem, highlighting the best performing techniques and
describing how the introduction of the upper limit affected the performance.

6.4.1 Symbolic Regression

Without upper limit Figure 6.1 shows the results of the comparison among
the dynamic limit techniques on the Regression problem, without using an up-
per limit. The first plot (a) presents the resources used and the number of
generations needed to complete the run, as well as the success rate, for each
technique. It reveals that convergence to an optimal solution often happens in
the Regression problem, and when it does it occurs very early in the run. The
success rates were lower for the dynamic size techniques (7–17%) than for the
baseline Koza (40%) or the dynamic depth techniques (23–47%). Koza was the
technique that used the most resources per generation, requiring fewer genera-
tions than the other techniques to exhaust the amount given. In this case, it
used the expected number of exactly 50 generations (see Section 5.2), although
this does not always happen. vhDynNodes was the most sparing technique, tak-
ing the highest number of generations to exhaust the resources (92), followed
closely by the dynamic depth techniques (84–90).

The second plot (b) presents the growth of the average tree size along the
run, for each technique. It shows a much quicker and larger growth in Koza
than in any other technique, the reason why the resources were exhausted in

36 6. COMPARISON WITHIN DYNAMIC LIMITS

K D hD vhD N hN vhN

0

2

4

6

8

10

12

14

16
x 10

5 Regression (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

50 84 86 90 69 77 92

40 47 23 33 17 7 7

0 2 4 6 8 10 12

x 10
5

0

10

20

30

40

50

60
Regression (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e

K
D
hD
vhD
N
hN
vhN

K D hD vhD N hN vhN

0

0.5

1

1.5

2

2.5

be
st

 fi
tn

es
s

of
 r

un

techniques

Regression (c)

0 2 4 6 8 10 12

x 10
5

0

0.5

1

1.5
Regression (d)

resources used

be
st

 fi
tn

es
s

K
D
hD
vhD
N
hN
vhN

Figure 6.1: Results of the dynamic limit techniques on the Regression problem,
without upper limit: (a) success rate, resources used, and number of generations
needed; (b) growth of average tree size; (c) best fitness of run; (d) evolution of
best fitness.

6.4. RESULTS 37

K lD lhD lvhD lN lhN lvhN

0

2

4

6

8

10

12

14

16
x 10

5 Regression (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

50 82 85 87 66 69 92

40 43 37 17 10 7 17

0 2 4 6 8 10 12

x 10
5

0

10

20

30

40

50

60
Regression (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e

K
lD
lhD
lvhD
lN
lhN
lvhN

K lD lhD lvhD lN lhN lvhN

0

0.5

1

1.5

2

2.5

be
st

 fi
tn

es
s

of
 r

un

techniques

Regression (c)

0 2 4 6 8 10 12

x 10
5

0

0.5

1

1.5
Regression (d)

resources used

be
st

 fi
tn

es
s

K
lD
lhD
lvhD
lN
lhN
lvhN

Figure 6.2: Results of the dynamic limit techniques on the Regression problem,
with upper limit: (a) success rate, resources used, and number of generations
needed; (b) growth of average tree size; (c) best fitness of run; (d) evolution of
best fitness.

38 6. COMPARISON WITHIN DYNAMIC LIMITS

fewer generations. The other techniques did not differ much from each other in
terms of growth of average tree size.

The third plot (c) is a boxplot of the best fitness of run obtained with each
technique. Only DynDepth and vhDynDepth were not worse than the baseline,
Koza. There were no significant differences among the dynamic depth tech-
niques. Among the dynamic size techniques, the performance seemed to degrade
as the parsimony pressure increased, with vhDynNodes performing significantly
worse than DynNodes. In fact, vhDynNodes was significantly worse than all
other techniques except hDynNodes. hDynNodes was worse than DynDepth.
Based on these results, a rough ranking of the several techniques could be: 1)
Koza, DynDepth and vhDynDepth, 2) hDynDepth, DynNodes and hDynNodes,
3) vhDynNodes.

The last plot (d) presents the evolution of the best fitness as a function of
the resources used, for each technique. DynDepth achieved better fitness using
less resources, early in the run, followed closely by Koza.

With upper limit Figure 6.2 shows the results of the comparison among the
dynamic limit techniques on the Regression problem, using a static upper limit.
The first plot (a) once again reveals that, when convergence to an optimum
happens, it happens early in the run. The success rates were again lower for
the dynamic size techniques (7–17%) than for the baseline Koza (40%) or the
dynamic depth techniques (17–43%). Once again, Koza was the technique that
used the most resources per generation, requiring the fewest generations to end
the run (50). As before, lvhDynNodes was the technique requiring the most
generations (92), once again followed by the dynamic depth techniques (82–87).

The second plot (b) again shows a much quicker and larger growth in Koza
than in any other technique. The remaining techniques once again did not differ
much from each other.

The third plot (c) is the boxplot. The results were somewhat similar to
the previous experiment. Only lDynDepth and lhDynDepth were not worse
than the baseline. There were no significant differences among the dynamic
depth techniques, neither among the dynamic size techniques. lvhDynNodes
performed significantly worse than lDynDepth and lhDynDepth. Based on these
results, a rough ranking of the several techniques could be: 1) Koza, lDynDepth
and lhDynDepth, 2) lvhDynDepth and all dynamic size techniques.

In the last plot (d), Koza and lDynDepth improved fitness sooner in the run.
Even though Koza appears to have achieved better values, the difference is not
significant.

Remarks The above results show that Koza and (l)DynDepth are the best
bloat control techniques in the Regression problem. The dynamic size tech-
niques tend to perform worse. The introduction of the static upper limit in-
creased some success rates but lowered others (although the general tendency
was maintained), and did not cause any significant changes in the best fitness
of run.

6.4. RESULTS 39

6.4.2 Artificial Ant

Without upper limit Figure 6.3 shows the results of the comparison among
the dynamic limit techniques on the Artificial Ant problem, without using an
upper limit. The first plot (a) presents the resources used and the number of
generations needed to complete the run, as well as the success rate, for each
technique. It reveals that convergence to an optimum often happens in the
Artificial Ant problem, anytime during the run. The success rates were the
highest for DynDepth, DynNodes and vhDynNodes (30%), followed by hDynN-
odes (23%) and hDynDepth (13%), and finally Koza and vhDynDepth (10%).
Koza was the technique that exhausted the resources in the fewest generations
(51), followed closely by DynNodes and hDynNodes (56–57). vhDynNodes took
the highest number of generations (90).

The second plot (b) presents the growth of the average tree size along the run,
for each technique. All the techniques present a drop of average tree size after
an initial growth, some more markedly than others. Koza was the technique
allowing the largest individuals in the population, with a steep growth of average
tree size until the end of the run. The dynamic depth techniques followed
the same behavior, but with much lower values. The dynamic size techniques,
particularly DynNodes and hDynNodes, present a steep increase of average tree
size in the beginning, but with a tendency for stabilization later in the run.
vhDynNodes had the same behavior, but with much lower values. All in all, by
the end of the run Koza reached the highest average tree size, and vhDynNodes
the lowest, with all other techniques presenting values similar to each other.

The third plot (c) is a boxplot of the best fitness of run obtained with each
technique. There were no significant differences between the techniques, except
for hDynDepth being significantly worse than vhDynNodes. A rough ranking
of the techniques could be: 1) all techniques except 2) hDynDepth.

The last plot (d) presents the evolution of the best fitness as a function of the
resources used, for each technique. vhDynNodes achieved better fitness using
less resources.

With upper limit Figure 6.4 shows the results of the comparison among the
dynamic limit techniques on the Artificial Ant problem, using a static upper
limit. The first plot (a) once again reveals that convergence to an optimum often
happens in the Artificial Ant problem, anytime during the run. The success
rates were the highest for the dynamic size techniques (23–33%), followed by
Koza and the dynamic depth techniques (10–23%). Once again Koza was the
technique that exhausted the resources in the fewest generations (51), followed
closely by lDynNodes and lhDynNodes (56–57), as in the previous experiment.
Also as before, lvhDynNodes took the highest number of generations (87).

The second plot (b) shows similar behavior to what had been observed with-
out using the upper limit, with Koza reaching the highest average tree size by
the end of the run, and lvhDynNodes the lowest.

The third plot (c), the boxplot, presents no significant differences between
any of the techniques, therefore no ranking is possible.

The last plot (d) shows that all the dynamic size techniques were able to
improve fitness sooner than the remaining techniques.

40 6. COMPARISON WITHIN DYNAMIC LIMITS

K D hD vhD N hN vhN

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6 Artificial Ant (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

51 74 77 69 57 56 90

10 30 13 10 30 23 30

0 1 2 3 4

x 10
6

20

30

40

50

60

70

80

90

100

110

120
Artificial Ant (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e

K
D
hD
vhD
N
hN
vhN

K D hD vhD N hN vhN

0

5

10

15

20

25

30

35

40

45

50

55

be
st

 fi
tn

es
s

of
 r

un

techniques

Artificial Ant (c)

0 1 2 3 4

x 10
6

10

15

20

25

30

35

40

45

50
Artificial Ant (d)

resources used

be
st

 fi
tn

es
s

K
D
hD
vhD
N
hN
vhN

Figure 6.3: Results of the dynamic limit techniques on the Artificial Ant prob-
lem, without upper limit: (a) success rate, resources used, and number of gen-
erations needed; (b) growth of average tree size; (c) best fitness of run; (d)
evolution of best fitness.

6.4. RESULTS 41

K lD lhD lvhD lN lhN lvhN

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6 Artificial Ant (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

51 73 76 80 56 57 87

10 10 23 10 30 23 33

0 1 2 3 4

x 10
6

20

30

40

50

60

70

80

90

100

110

120
Artificial Ant (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e

K
lD
lhD
lvhD
lN
lhN
lvhN

K lD lhD lvhD lN lhN lvhN

0

5

10

15

20

25

30

35

40

45

50

55

be
st

 fi
tn

es
s

of
 r

un

techniques

Artificial Ant (c)

0 1 2 3 4

x 10
6

10

15

20

25

30

35

40

45

50
Artificial Ant (d)

resources used

be
st

 fi
tn

es
s

K
lD
lhD
lvhD
lN
lhN
lvhN

Figure 6.4: Results of the dynamic limit techniques on the Artificial Ant prob-
lem, with upper limit: (a) success rate, resources used, and number of genera-
tions needed; (b) growth of average tree size; (c) best fitness of run; (d) evolution
of best fitness.

42 6. COMPARISON WITHIN DYNAMIC LIMITS

Remarks The above results suggest that, although the differences in best
fitness of run were not significant (except one), the dynamic size techniques
have a better performance in the Artificial Ant problem, converging to an op-
timal solution more often and improving fitness more quickly. In addition, the
(l)vhDynNodes techniques are also able to maintain a lower average tree size.
The introduction of the static upper limit harmed the DynDepth technique by
lowering its success rate, although the best fitness of run did not suffer any
significant changes.

6.4.3 5-Bit Even Parity

Without upper limit Figure 6.5 shows the results of the comparison among
the dynamic limit techniques on the Parity problem, without using an upper
limit. The first plot (a) presents the resources used and the number of genera-
tions needed to complete the run, as well as the success rate, for each technique.
There was no success in finding an optimal solution for the Parity problem,
except once. Koza was the technique that exhausted the resources in the fewest
generations (48), followed by the dynamic depth techniques (64–71) and the
dynamic size techniques (97–136), with vhDynNodes being the most sparing
technique.

The second plot (b) presents the growth of the average tree size along the
run, for each technique. Koza presents the largest growth, followed by the
dynamic depth techniques and finally the dynamic size techniques, the last ones
never increasing the average tree size much, and stabilizing its growth early in
the run.

The third plot (c) is a boxplot of the best fitness of run obtained with each
technique. hDynDepth was the only technique that reached significantly bet-
ter fitness than Koza. Among the dynamic depth techniques, hDynDepth also
performed significantly better than vhDynDepth. There were no significant dif-
ferences among the dynamic size techniques, but hDynNodes and vhDynNodes
were outperformed by both DynDepth and hDynDepth. Based on these results,
a rough ranking of the several techniques could be: 1) DynDepth, hDynDepth,
DynNodes 2) Koza, vhDynDepth, hDynNodes and vhDynNodes.

The last plot (d) presents the evolution of the best fitness as a function of
the resources used, for each technique. hDynDepth was able to achieve better
fitness early in the run, sparing resources.

With upper limit Figure 6.6 shows the results of the comparison among
the dynamic limit techniques on the Parity problem, using a static upper limit.
The first plot (a) once again shows that there was no success in finding an
optimal solution for the Parity problem. Once again Koza was the technique
that exhausted the resources in the fewest generations (48), again followed by
the dynamic depth techniques (64–70) and the dynamic size techniques (112–
145), with lvhDynNodes being the most sparing technique.

The second plot (b) shows similar behavior to what had been observed with-
out using the upper limit, with Koza presenting the largest growth, followed by
the dynamic depth techniques and finally the dynamic size techniques, the last

6.4. RESULTS 43

K D hD vhD N hN vhN

0

1

2

3

4

5

6

7

8

9

x 10
6 Parity (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

48 67 64 71 97 119 136

0 0 0 0 3 0 0

0 2 4 6 8

x 10
6

0

50

100

150

200

250
Parity (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e

K
D
hD
vhD
N
hN
vhN

K D hD vhD N hN vhN

0

2

4

6

8

10

12

be
st

 fi
tn

es
s

of
 r

un

techniques

Parity (c)

0 2 4 6 8

x 10
6

3

4

5

6

7

8

9

10

11

12

13

14
Parity (d)

resources used

be
st

 fi
tn

es
s

K
D
hD
vhD
N
hN
vhN

Figure 6.5: Results of the dynamic limit techniques on the Parity problem,
without upper limit: (a) success rate, resources used, and number of generations
needed; (b) growth of average tree size; (c) best fitness of run; (d) evolution of
best fitness.

44 6. COMPARISON WITHIN DYNAMIC LIMITS

K lD lhD lvhD lN lhN lvhN

0

1

2

3

4

5

6

7

8

9

x 10
6 Parity (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

48 64 67 70 112 129 145

0 0 0 0 0 0 0

0 2 4 6 8

x 10
6

0

50

100

150

200

250
Parity (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e

K
lD
lhD
lvhD
lN
lhN
lvhN

K lD lhD lvhD lN lhN lvhN

0

2

4

6

8

10

12

be
st

 fi
tn

es
s

of
 r

un

techniques

Parity (c)

0 2 4 6 8

x 10
6

3

4

5

6

7

8

9

10

11

12

13

14
Parity (d)

resources used

be
st

 fi
tn

es
s

K
lD
lhD
lvhD
lN
lhN
lvhN

Figure 6.6: Results of the dynamic limit techniques on the Parity problem,
with upper limit: (a) success rate, resources used, and number of generations
needed; (b) growth of average tree size; (c) best fitness of run; (d) evolution of
best fitness.

6.4. RESULTS 45

ones presenting stable and relatively low average tree size early in the run.
In the third plot (c), the boxplot, only lDynNodes and lvhDynNodes were

worse than the baseline, Koza. There were no significant differences among
the dynamic depth or the dynamic size techniques, but all the dynamic size
techniques were worse than at least two dynamic depth techniques. Based on
these results, a rough ranking of the several techniques could be: 1) Koza and
all dynamic depth techniques 2) all dynamic size techniques.

The last plot (d) supports the previous ranking, showing that Koza and the
dynamic depth techniques achieved better fitness with less resources than the
dynamic size techniques.

Remarks The above results reveal that the dynamic depth techniques, in par-
ticular DynDepth and hDynDepth, are the best performing techniques among
Dynamic Limits, in the Parity problem. The introduction of the static upper
limit evened the performance of the dynamic depth techniques, although it did
not introduce any significant differences in the best fitness of run.

6.4.4 11-Bit Boolean Multiplexer

Without upper limit Figure 6.7 shows the results of the comparison among
the dynamic limit techniques on the Multiplexer problem, without using an
upper limit. The first plot (a) presents the resources used and the number of
generations needed to complete the run, as well as the success rate, for each
technique. It reveals that there is often success in finding an optimal solution
for the Multiplexer problem (success rates of 23–40%), except with the dynamic
size techniques (success rates of 3–10%). Koza was the technique that exhausted
the resources in the fewest generations (51), while vhDynNodes took the highest
number of generations (118).

The second plot (b) presents the growth of the average tree size along the
run, for each technique. Koza presents the largest growth, followed by the non-
heavy variants of both dynamic depth and dynamic size techniques. Next come
the remaining dynamic depth techniques, and finally the remaining dynamic
size techniques, that were able to stabilize the growth of the average tree size
early in the run.

The third plot (c) is a boxplot of the best fitness of run obtained with
each technique. There were no significant differences among the dynamic depth
techniques, all as good as Koza. There were also no significant differences
among the dynamic size techniques, but these performed worse than Koza and
the dynamic depth techniques. Based on these results, a rough ranking of the
several techniques could be: 1) Koza and all the dynamic depth techniques 2)
dynamic size techniques.

The last plot (d) presents the evolution of the best fitness as a function of
the resources used, for each technique. hDynDepth and vhDynDepth performed
better than the rest, achieving improved fitness earlier in the run.

With upper limit Figure 6.8 shows the results of the comparison among the
dynamic limit techniques on the Multiplexer problem, using a static upper limit.

46 6. COMPARISON WITHIN DYNAMIC LIMITS

K D hD vhD N hN vhN

0

1

2

3

4

5

6

7
x 10

6 Multiplexer (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

51 61 75 72 60 94 118

30 23 37 40 10 3 3

0 1 2 3 4 5

x 10
6

0

20

40

60

80

100

120

140

160

180

200
Multiplexer (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e

K
D
hD
vhD
N
hN
vhN

K D hD vhD N hN vhN

0

100

200

300

400

500

be
st

 fi
tn

es
s

of
 r

un

techniques

Multiplexer (c)

0 1 2 3 4 5

x 10
6

0

100

200

300

400

500

600
Multiplexer (d)

resources used

be
st

 fi
tn

es
s

K
D
hD
vhD
N
hN
vhN

Figure 6.7: Results of the dynamic limit techniques on the Multiplexer problem,
without upper limit: (a) success rate, resources used, and number of generations
needed; (b) growth of average tree size; (c) best fitness of run; (d) evolution of
best fitness.

6.4. RESULTS 47

K lD lhD lvhD lN lhN lvhN

0

1

2

3

4

5

6

7
x 10

6 Multiplexer (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

51 68 76 71 57 72 102

30 40 27 30 7 13 7

0 1 2 3 4 5

x 10
6

0

20

40

60

80

100

120

140

160

180

200
Multiplexer (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e

K
lD
lhD
lvhD
lN
lhN
lvhN

K lD lhD lvhD lN lhN lvhN

0

100

200

300

400

500

be
st

 fi
tn

es
s

of
 r

un

techniques

Multiplexer (c)

0 1 2 3 4 5

x 10
6

0

100

200

300

400

500

600
Multiplexer (d)

resources used

be
st

 fi
tn

es
s

K
lD
lhD
lvhD
lN
lhN
lvhN

Figure 6.8: Results of the dynamic limit techniques on the Multiplexer problem,
with upper limit: (a) success rate, resources used, and number of generations
needed; (b) growth of average tree size; (c) best fitness of run; (d) evolution of
best fitness.

48 6. COMPARISON WITHIN DYNAMIC LIMITS

As in the previous experiment, the first plot (a) shows that there is often success
in finding an optimal solution for the Multiplexer problem (success rates of 27–
40%), but much less with the dynamic size techniques (success rates of 7–13%).
Koza was the technique that exhausted the resources in the fewest generations
(51), followed closely by lDynNodes (57). As previously, lvhDynNodes required
the highest number of generations (102).

The second plot (b) shows that the Koza technique presents, once again, the
largest growth of average tree size, and that lvhDynNodes presents the lowest.
The remaining techniques present similar behavior between each other.

In the third plot (c), the boxplot, once again there were no significant differ-
ences among the dynamic depth techniques, all as good as Koza. There were also
no significant differences among the dynamic size techniques, but lvhDynNodes
performed worse than Koza and all the dynamic depth variants. The non-heavy
depth variant lDynDepth outperformed all the dynamic size techniques. Based
on these results, a rough ranking of the several techniques could be the same as
in the previous experiment: 1) Koza and all the dynamic depth techniques 2)
dynamic size techniques.

The last plot (d) shows that the dynamic depth techniques, followed by Koza,
achieved better fitness sooner than the dynamic size techniques. lDynDepth was
able to achieve better fitness than the rest.

Remarks The above results reveal that, along with the baseline Koza, the
dynamic depth techniques are the best performing techniques among Dynamic
Limits, in the Multiplexer problem. It is also clear that the introduction of
the static upper limit benefited the DynDepth technique, increasing its success
rate and allowing it to reach better fitness values, although not statistically
significant.

6.5 Conclusions

In all problems, whenever statistically significant differences allowed for a rank-
ing of the techniques, DynDepth was the only one that always scored number
one, never performing worse, and sometimes significantly better, than the suc-
cessful baseline Koza. The dynamic size techniques generally performed worse
than the rest, except on the Artificial Ant problem. All the techniques within
the Dynamic Limits are apparently able to control bloat without relying on the
static upper limit, a very desirable property.

Chapter 7

Comparison within

Resource-Limited GP

This chapter studies the efficiency of Resource-Limited GP for bloat control. It
lists the techniques involved and specifies the procedures and parameters used
in the comparisons. Then it presents the results as described in Section 5.3, and
concludes by summing up the major findings.

7.1 Techniques

Table 7.1 summarizes all the techniques compared within the Resource-Limited
GP approach (see Chapter 4 for details). As in Section 6.1, Koza is once again
the baseline technique. The names (and acronyms) of the other techniques are
composed of several parts to help their identification: Res stands for Resources;
Steady (S) and Low (L) relate to the Steady and Low implementations, respec-
tively; a following L stands for Light; h and vh identify the respective Heavy
and VeryHeavy variants; l stands for limited, meaning that a static upper limit
is used along with the resource limit, in which case there are restrictions both
at the individual and population level. The purpose of testing the limited tech-
niques was once again to check whether the new techniques can do without the
static upper limit, or still benefit from joining, instead of just replacing, the
baseline technique.

7.2 Resource Limit

The initial resource limit is always equal to the amount of resources used by the
initial population. This random generation of individuals is created exactly like
the populations of the Koza technique, using the Ramped Half-and-Half proce-
dure with maximum depth 6. As in Dynamic Limits, the non-heavy variants
can only increase the limit, while the heavy variants can also decrease it as low
as the initial resource limit established by the first population, or even lower
in the case of the very heavy variants. No upper bound exists for the resource
limit. Like the baseline Koza, the limited techniques use the static upper limit
of depth 17 at the individual level.

49

50 7. COMPARISON WITHIN RESOURCE-LIMITED GP

Table 7.1: Techniques compared within the Resource-Limited GP approach.

Technique Acronym Short description

Koza K static depth limit

ResSteady S steady resource limit
ResSteadyL SL steady-light resource limit
hResSteady hS heavy steady resource limit

hResSteadyL hSL heavy steady-light resource limit
vhResSteady vhS very heavy steady resource limit

vhResSteadyL vhSL very heavy steady-light resource limit

lResSteady lS limited steady resource limit
lResSteadyL lSL limited steady-light resource limit
lhResSteady lhS limited heavy steady resource limit

lhResSteadyL lhSL limited heavy steady-light resource limit
lvhResSteady lvhS limited very heavy steady resource limit

lvhResSteadyL lvhSL limited very heavy steady-light resource limit

ResLow L low resource limit
ResLowL LL low-light resource limit
hResLow hL heavy low resource limit

hResLowL hLL heavy low-light resource limit
vhResLow vhL very heavy low resource limit

vhResLowL vhLL very heavy low-light resource limit

lResLow lL limited low resource limit
lResLowL lLL limited low-light resource limit
lhResLow lhL limited heavy low resource limit

lhResLowL lhLL limited heavy low-light resource limit
lvhResLow lvhL limited very heavy low resource limit

lvhResLowL lvhLL limited very heavy low-light resource limit

7.3. RESULTS 51

7.3 Results

This section presents the results of the comparisons within Resource-Limited
GP, divided in the four problems considered (see Section 5.1). As in Section
6.4, the results are first presented without using a static upper limit, and then
using the upper limit, except for the baseline technique, Koza. Short conclud-
ing remarks are inserted after each problem, highlighting the best performing
techniques and describing how the introduction of the upper limit affected the
performance.

7.3.1 Symbolic Regression

Steady implementation, without upper limit Figure 7.1 shows the re-
sults of the comparison among the resource-limited techniques (Steady imple-
mentation) on the Regression problem, without using an upper limit. The first
plot (a) presents the resources used and the number of generations needed to
complete the run, as well as the success rate, for each technique. It reveals that
early convergence to an optimum is a very common occurrence in the Regression
problem, with success rates as high as 70% in the ResSteady and hResSteady-
Light techniques. Koza achieved the lowest success rate (40%), followed by the
remaining techniques (43–50%). Koza was the technique that exhausted the
resources in the fewest generations (50), while vhResSteady needed the highest
number of generations (221). The non-light variants were much more sparing,
taking many more generations to exhaust the resources.

The second plot (b) presents the growth of the average tree size along
the run, for each technique. Without using an upper limit, the trees of the
resource-limited techniques grew very large, particularly the light variants. This
growth was accompanied by a prompt decrease in population size (not shown).
Koza was the technique with the lowest growth in average tree size, except for
ResSteady and hResSteadyLight, which present very short growth lines (ending
before reaching 2 × 105 resources) because they converge to an optimum very
early in the run (see plot (d)).

The third plot (c) is a boxplot of the best fitness of run obtained with each
technique. There were no significant differences among the resource-limited
techniques, all as good as Koza, therefore it is not possible to rank the tech-
niques.

The last plot (d) presents the evolution of the best fitness as a function
of the resources used, for each technique. As already stated, ResSteady and
hResSteadyLight converged to an optimum early in the run, while using only a
small amount of resources. Not all runs succeeded, but 70% did (see plot (a)),
so the median presents itself as a line that rapidly drops to the best fitness.
Although the differences in best fitness of run were not significant (see plot (c)),
ResSteady and hResSteadyLight appear to be the best techniques, followed by
Koza and the remaining light techniques, and finally the remaining non-light
techniques.

Steady implementation, with upper limit Figure 7.2 shows the results of
the comparison among the resource-limited techniques (Steady implementation)

52 7. COMPARISON WITHIN RESOURCE-LIMITED GP

K S hS vhS SL hSL vhSL

0

2

4

6

8

10

12

14

16
x 10

5 Regression (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

50 123 127 221 67 70 69

40 70 47 43 47 70 50

0 2 4 6 8 10 12

x 10
5

0

100

200

300

400

500

600

700
Regression (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e

K
S
hS
vhS
SL
hSL
vhSL

K S hS vhS SL hSL vhSL

0

0.2

0.4

0.6

0.8

1

1.2

be
st

 fi
tn

es
s

of
 r

un

techniques

Regression (c)

0 2 4 6 8 10 12

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Regression (d)

resources used

be
st

 fi
tn

es
s

K
S
hS
vhS
SL
hSL
vhSL

Figure 7.1: Results of the resource-limited techniques (Steady implementation)
on the Regression problem, without upper limit: (a) success rate, resources
used, and number of generations needed; (b) growth of average tree size; (c)
best fitness of run; (d) evolution of best fitness.

7.3. RESULTS 53

K lS lhS lvhS lSL lhSL lvhSL

0

2

4

6

8

10

12

14

16
x 10

5 Regression (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

50 128 129 192 75 79 79

40 53 53 40 53 63 37

0 2 4 6 8 10 12

x 10
5

0

10

20

30

40

50

60

70
Regression (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e
K
lS
lhS
lvhS
lSL
lhSL
lvhSL

K lS lhS lvhS lSL lhSL lvhSL

0

0.2

0.4

0.6

0.8

1

1.2

be
st

 fi
tn

es
s

of
 r

un

techniques

Regression (c)

0 2 4 6 8 10 12

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Regression (d)

resources used

be
st

 fi
tn

es
s

K
lS
lhS
lvhS
lSL
lhSL
lvhSL

Figure 7.2: Results of the resource-limited techniques (Steady implementation)
on the Regression problem, with upper limit: (a) success rate, resources used,
and number of generations needed; (b) growth of average tree size; (c) best
fitness of run; (d) evolution of best fitness.

54 7. COMPARISON WITHIN RESOURCE-LIMITED GP

on the Regression problem, using a static upper limit. As in the previous exper-
iment, the first plot (a) shows that early convergence to an optimal solution is
very common in the Regression problem (success rates of 37–63%), with Koza
presenting one of the lowest rates (40%). The number of generations required
to exhaust the resources follows a similar pattern to the previous experiment,
with Koza requiring the lowest number of generations (50), followed by the light
techniques and finally the non-light techniques, with lvhResSteady requiring the
highest number of generation (192).

The second plot (b) shows very different results from the previous experi-
ment. The usage of the upper limit produced a much lower growth of average
tree size on the resource-limited techniques. Many of the techniques quickly
converged to an optimum and produced short growth lines. The remaining
resource-limited techniques present a quick growth that by the end of the run
reaches no higher than Koza.

In the third plot (c), the boxplot, once again there were no significant dif-
ferences among any of the techniques, therefore no ranking is possible.

The last plot (d) shows that most of the resource-limited techniques suc-
ceeded in finding an optimal solution, some earlier than others, and the remain-
ing had a slower convergence but by the end of the run achieved the same fitness
as Koza.

Low implementation, without upper limit Figure 7.3 shows the results
of the comparison among the resource-limited techniques (Low implementation)
on the Regression problem, without using an upper limit. The first plot (a)
presents the resources used and the number of generations needed to complete
the run, as well as the success rate, for each technique. As in the Steady im-
plementation, early convergence to an optimal solution is a common occurrence
in the Regression problem, with success rates as high as 63% in the ResLow-
Light technique and the minimum of 27% in the vhResLow technique, the only
one with a lower success rate than Koza (40%). Koza was the technique that
exhausted the resources in the fewest generations (50). Both very heavy vari-
ants, vhResLow and vhResLowLight, collapsed the population into only a few
individuals (possibly just one, small), so they required hundreds of thousands
of generations to exhaust the resources.

The second plot (b) presents the growth of the average tree size along the
run, for each technique. Without using an upper limit, the trees of the resource-
limited techniques (Low implementation) grew very large. ResLowLight and
vhResLowLight present short growth lines because they quickly converged to
an optimum, followed by hResLowLight (see plot (d)). vhResLow presents a
sudden drop of average tree size when the population collapses (see plot (a)).
Koza was the technique with the lowest growth in average tree size.

The third plot (c) is a boxplot of the best fitness of run obtained with each
technique. There were no significant differences except for vhResLow being
worse than Koza and ResLowLight. Based on these results, a rough ranking of
the techniques could be: 1) all techniques except 2) vhResLow.

The last plot (d) presents the evolution of the best fitness as a function of
the resources used, for each technique. As already stated, ResLowLight and

7.3. RESULTS 55

K L hL vhL LL hLL vhLL

0

2

4

6

8

10

12

14

16
x 10

5 Regression (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

50 138 151
823916

98 126
345530

40 40 47 27 63 50 57

0 2 4 6 8 10 12

x 10
5

0

200

400

600

800

1000

1200

Regression (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e

K
L
hL
vhL
LL
hLL
vhLL

K L hL vhL LL hLL vhLL

0

0.2

0.4

0.6

0.8

1

1.2

be
st

 fi
tn

es
s

of
 r

un

techniques

Regression (c)

0 2 4 6 8 10 12

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Regression (d)

resources used

be
st

 fi
tn

es
s

K
L
hL
vhL
LL
hLL
vhLL

Figure 7.3: Results of the resource-limited techniques (Low implementation) on
the Regression problem, without upper limit: (a) success rate, resources used,
and number of generations needed; (b) growth of average tree size; (c) best
fitness of run; (d) evolution of best fitness.

56 7. COMPARISON WITHIN RESOURCE-LIMITED GP

K lL lhL lvhL lLL lhLL lvhLL

0

2

4

6

8

10

12

14

16
x 10

5 Regression (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

50 136 134
377743

126 131
229999

40 60 53 67 57 53 50

0 2 4 6 8 10 12

x 10
5

0

10

20

30

40

50

60

70
Regression (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e

K
lL
lhL
lvhL
lLL
lhLL
lvhLL

K lL lhL lvhL lLL lhLL lvhLL

0

0.2

0.4

0.6

0.8

1

1.2

be
st

 fi
tn

es
s

of
 r

un

techniques

Regression (c)

0 2 4 6 8 10 12

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Regression (d)

resources used

be
st

 fi
tn

es
s

K
lL
lhL
lvhL
lLL
lhLL
lvhLL

Figure 7.4: Results of the resource-limited techniques (Low implementation) on
the Regression problem, with upper limit: (a) success rate, resources used, and
number of generations needed; (b) growth of average tree size; (c) best fitness
of run; (d) evolution of best fitness.

7.3. RESULTS 57

vhResLowLight succeeded in finding an optimum early in the run, followed by
hResLowLight.

Low implementation, with upper limit Figure 7.4 shows the results of the
comparison among the resource-limited techniques (Low implementation) on the
Regression problem, using a static upper limit. The first plot (a) once again
shows that early convergence to an optimum is very common in the Regression
problem (success rates of 40–67%), with Koza presenting the lowest rate. The
number of generations required to exhaust the resources is the lowest for Koza
(50), with both very heavy techniques once again collapsing the population into
only a few small individuals, thus requiring hundreds of thousands of generations
to exhaust the resources.

The second plot (b) shows that, as in the Steady implementation, the usage
of the upper limit produced a much lower growth of average tree size. All the
techniques except Koza converged to an optimum early in the run, presenting
short growth lines. lvhResLowLight presents a sudden drop of average tree size
when the population collapses (see plot (a)).

In the third plot (c), the boxplot, there were no significant differences among
any of the techniques, therefore no ranking is possible.

The last plot (d) shows again that all the resource-limited techniques con-
verged to an optimum early in the run, first lResLowLight and lvhResLowLight,
followed by the remaining non-light techniques, and finally the remaining light
techniques.

Remarks The above results show that, in the Steady implementation, all the
techniques perform equally well, but (l)ResSteady and (l)hResSteadyLight tend
to succeed in finding an optimum earlier and more often, with or without using
the static upper limit. Among the Low implementation techniques, there are
very few significant differences, with one of the very heavy techniques (vhRes-
Low) performing less reliably, and (l)ResLowLight and (l)vhResLowLight con-
sistently succeeding earlier than the rest. The collapsing of the population into
only a few individuals does not necessarily mean a bad performance. There are
no significant differences between the best techniques of the Steady and Low
implementations in the Regression problem. The introduction of the static up-
per limit greatly reduced the growth of average tree size on the resource-limited
techniques, but did not influence their performance, except for significantly im-
proving vhResLow.

7.3.2 Artificial Ant

Steady implementation, without upper limit Figure 7.5 shows the re-
sults of the comparison among the resource-limited techniques (Steady imple-
mentation) on the Artificial Ant problem, without using an upper limit. The
first plot (a) presents the resources used and the number of generations needed
to complete the run, as well as the success rate, for each technique. It shows that
convergence to an optimal solution seldom occurred in the Artificial Ant prob-
lem, with success rates of 0–10%. Koza was the technique that exhausted the

58 7. COMPARISON WITHIN RESOURCE-LIMITED GP

K S hS vhS SL hSL vhSL

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6 Artificial Ant (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

51 57 73 94 57 64 67

10 3 10 0 10 7 3

0 1 2 3 4

x 10
6

100

200

300

400

500

600

700
Artificial Ant (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e

K
S
hS
vhS
SL
hSL
vhSL

K S hS vhS SL hSL vhSL

0

5

10

15

20

25

30

35

40

45

50

55

be
st

 fi
tn

es
s

of
 r

un

techniques

Artificial Ant (c)

0 1 2 3 4

x 10
6

15

20

25

30

35

40

45

50
Artificial Ant (d)

resources used

be
st

 fi
tn

es
s

K
S
hS
vhS
SL
hSL
vhSL

Figure 7.5: Results of the resource-limited techniques (Steady implementation)
on the Artificial Ant problem, without upper limit: (a) success rate, resources
used, and number of generations needed; (b) growth of average tree size; (c)
best fitness of run; (d) evolution of best fitness.

7.3. RESULTS 59

K lS lhS lvhS lSL lhSL lvhSL

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6 Artificial Ant (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

51 57 83 87 58 67 69

10 7 13 17 3 3 3

0 1 2 3 4

x 10
6

20

40

60

80

100

120

140

160

180

200
Artificial Ant (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e

K
lS
lhS
lvhS
lSL
lhSL
lvhSL

K lS lhS lvhS lSL lhSL lvhSL

0

5

10

15

20

25

30

35

40

45

50

55

be
st

 fi
tn

es
s

of
 r

un

techniques

Artificial Ant (c)

0 1 2 3 4

x 10
6

15

20

25

30

35

40

45

50
Artificial Ant (d)

resources used

be
st

 fi
tn

es
s

K
lS
lhS
lvhS
lSL
lhSL
lvhSL

Figure 7.6: Results of the resource-limited techniques (Steady implementation)
on the Artificial Ant problem, with upper limit: (a) success rate, resources
used, and number of generations needed; (b) growth of average tree size; (c)
best fitness of run; (d) evolution of best fitness.

60 7. COMPARISON WITHIN RESOURCE-LIMITED GP

resources in the fewest generations (51), with vhResSteady taking the highest
number of generations (94).

The second plot (b) presents the growth of the average tree size along the
run, for each technique. As in the previous problem, without using an upper
limit, the trees of the resource-limited techniques grew very large, whit Koza
presenting the smallest growth.

The third plot (c) is a boxplot of the best fitness of run obtained with
each technique. There were no significant differences among the techniques,
except for hSteadyLight being worse than Koza. Based on these results, a rough
ranking of the techniques could be: 1) all techniques except 2) hSteadyLight.

The last plot (d) presents the evolution of the best fitness as a function of
the resources used, for each technique. Koza was the technique achieving better
fitness earlier in the run.

Steady implementation, with upper limit Figure 7.6 shows the results of
the comparison among the resource-limited techniques (Steady implementation)
on the Artificial Ant problem, using a static upper limit. The success rates were
somewhat higher than without using the upper limit, reaching values between
3% and 17%. Koza was once again the technique that exhausted the resources
in the fewest generations (51), with the highest number of generations being
taken by lvhResSteady (87).

The second plot (b) shows that, although the upper limit caused the resource-
limited techniques to have a much more limited tree growth, Koza was still the
technique presenting the smallest growth of average tree size.

In the third plot (c), the boxplot, there were no significant differences among
the dynamic depth techniques, except for lvhResSteadyLight being worse than
Koza and lhResSteady. Based on these results, a rough ranking of the several
techniques could be: 1) all techniques except 2) lvhResSteadyLight.

The last plot (d) shows that lhResSteady was able to reach better fitness than
the other techniques, although the differences are not significant. lhResSteady
and Koza were the techniques achieving better fitness earlier in the run.

Low implementation, without upper limit Figure 7.7 shows the results
of the comparison among the resource-limited techniques (Low implementation)
on the Artificial Ant problem, without using an upper limit. The first plot (a)
presents the resources used and the number of generations needed to complete
the run, as well as the success rate, for each technique. As in the Steady
implementation, convergence to an optimal solution seldom occurred in the
Artificial Ant problem, with success rates of 0–10%, Koza having the highest
rate. Koza was also the technique that exhausted the resources in the fewest
generations (51), while both very heavy techniques collapsed the population into
just a few small individuals, thus requiring millions of generations to exhaust
the resources.

The second plot (b) presents the growth of the average tree size along the
run, for each technique. As in the previous problem, without using an upper
limit, the trees of the resource-limited techniques grew very large, while Koza

7.3. RESULTS 61

K L hL vhL LL hLL vhLL

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6 Artificial Ant (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

51 168 170
2375501

120 155
1498193

10 0 0 0 7 0 0

0 1 2 3 4

x 10
6

200

400

600

800

1000

1200

1400

Artificial Ant (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e

K
L
hL
vhL
LL
hLL
vhLL

K L hL vhL LL hLL vhLL

0

5

10

15

20

25

30

35

40

45

50

55

be
st

 fi
tn

es
s

of
 r

un

techniques

Artificial Ant (c)

0 1 2 3 4

x 10
6

20

25

30

35

40

45

50
Artificial Ant (d)

resources used

be
st

 fi
tn

es
s

K
L
hL
vhL
LL
hLL
vhLL

Figure 7.7: Results of the resource-limited techniques (Low implementation)
on the Artificial Ant problem, without upper limit: (a) success rate, resources
used, and number of generations needed; (b) growth of average tree size; (c)
best fitness of run; (d) evolution of best fitness.

62 7. COMPARISON WITHIN RESOURCE-LIMITED GP

K lL lhL lvhL lLL lhLL lvhLL

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6 Artificial Ant (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

51 170 167

1873629

155 164

1407312

10 0 3 0 3 3 0

0 1 2 3 4

x 10
6

50

100

150

200

250

300
Artificial Ant (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e

K
lL
lhL
lvhL
lLL
lhLL
lvhLL

K lL lhL lvhL lLL lhLL lvhLL

0

5

10

15

20

25

30

35

40

45

50

55

be
st

 fi
tn

es
s

of
 r

un

techniques

Artificial Ant (c)

0 1 2 3 4

x 10
6

20

25

30

35

40

45

50
Artificial Ant (d)

resources used

be
st

 fi
tn

es
s

K
lL
lhL
lvhL
lLL
lhLL
lvhLL

Figure 7.8: Results of the resource-limited techniques (Low implementation) on
the Artificial Ant problem, with upper limit: (a) success rate, resources used,
and number of generations needed; (b) growth of average tree size; (c) best
fitness of run; (d) evolution of best fitness.

7.3. RESULTS 63

maintained a small growth. Both very heavy variants present a dropping growth
line where the population collapsed.

The third plot (c) is a boxplot of the best fitness of run obtained with each
technique. All the resource-limited techniques performed significantly worse
than the baseline, Koza. Based on these results, a ranking of the techniques
could be: 1) Koza 2) all resource-limited techniques.

The last plot (d) presents the evolution of the best fitness as a function of
the resources used, for each technique. Koza was able to achieve a much better
fitness than all the rest.

Low implementation, with upper limit Figure 7.8 shows the results of the
comparison among the resource-limited techniques (Low implementation) on the
Artificial Ant problem, using a static upper limit. The success rates were equally
low when compared to the previous experiment, with Koza again reaching the
highest rate of 10%. Koza was once again the technique that exhausted the
resources in the fewest generations (51), with both very heavy techniques once
again collapsing the population and requiring more than a million generations.

The second plot (b) shows that, although the resource-limited techniques
had a much more limited tree growth than in the previous experiment, Koza
was still the technique presenting the smallest growth of average tree size. Once
again, both very heavy techniques present a sudden drop of tree growth where
the population collapsed into only a few small individuals.

In the third plot (c), the boxplot, once again Koza performed better than
all the rest. Based on these results, the ranking of the techniques is the same
as without the upper limit: 1) Koza 2) all resource-limited techniques.

The last plot (d) shows that Koza quickly achieved better fitness than all
the other techniques.

Remarks The above results reveal that, in the Steady implementation, the
resource-limited techniques are as good as Koza in the Artificial Ant problem,
except some of the light variants, which appear less reliable. The introduction
of the static upper limit increased the success rates and greatly reduced the
growth of average tree size on the resource-limited techniques of the Steady
implementation, but did not significantly influence their performance. In the
Low implementation, all the techniques perform worse than Koza, even when
using the static upper limit.

7.3.3 5-Bit Even Parity

Steady implementation, without upper limit Figure 7.9 shows the re-
sults of the comparison among the resource-limited techniques (Steady imple-
mentation) on the Parity problem, without using an upper limit. The first
plot (a) presents the resources used and the number of generations needed to
complete the run, as well as the success rate, for each technique. It reveals
that an optimal solution was never found for the hard Parity problem. Koza
was the technique that exhausted the resources in the fewest generations (48),

64 7. COMPARISON WITHIN RESOURCE-LIMITED GP

K S hS vhS SL hSL vhSL

0

1

2

3

4

5

6

7

8

9

x 10
6 Parity (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

48 151 169 286 111 103 103

0 0 0 0 0 0 0

0 2 4 6 8

x 10
6

0

200

400

600

800

1000

1200

Parity (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e

K
S
hS
vhS
SL
hSL
vhSL

K S hS vhS SL hSL vhSL

0

2

4

6

8

10

12

be
st

 fi
tn

es
s

of
 r

un

techniques

Parity (c)

0 2 4 6 8

x 10
6

6

7

8

9

10

11

12

13

14
Parity (d)

resources used

be
st

 fi
tn

es
s

K
S
hS
vhS
SL
hSL
vhSL

Figure 7.9: Results of the resource-limited techniques (Steady implementation)
on the Parity problem, without upper limit: (a) success rate, resources used,
and number of generations needed; (b) growth of average tree size; (c) best
fitness of run; (d) evolution of best fitness.

7.3. RESULTS 65

K lS lhS lvhS lSL lhSL lvhSL

0

1

2

3

4

5

6

7

8

9

x 10
6 Parity (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

48 99 172 118 112 111 110

0 0 0 0 0 0 0

0 2 4 6 8

x 10
6

0

50

100

150

200

250

Parity (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e
K
lS
lhS
lvhS
lSL
lhSL
lvhSL

K lS lhS lvhS lSL lhSL lvhSL

0

2

4

6

8

10

12

be
st

 fi
tn

es
s

of
 r

un

techniques

Parity (c)

0 2 4 6 8

x 10
6

6

7

8

9

10

11

12

13

14
Parity (d)

resources used

be
st

 fi
tn

es
s

K
lS
lhS
lvhS
lSL
lhSL
lvhSL

Figure 7.10: Results of the resource-limited techniques (Steady implementation)
on the Parity problem, with upper limit: (a) success rate, resources used, and
number of generations needed; (b) growth of average tree size; (c) best fitness
of run; (d) evolution of best fitness.

66 7. COMPARISON WITHIN RESOURCE-LIMITED GP

followed by the light resource-limited techniques (103-111), and finally the non-
light counterparts (151-286).

The second plot (b) presents the growth of the average tree size along the
run, for each technique. As in the previous two problems, all the resource-
limited techniques present a large unbounded growth of average tree size (with
a tendency for stabilization in the non-light variants), while Koza presents the
smallest growth.

The third plot (c) is a boxplot of the best fitness of run obtained with each
technique. All the resource-limited techniques performed significantly worse
than Koza. Based on these results, a ranking of the several techniques could
be: 1) Koza 2) all resource-limited techniques.

The last plot (d) presents the evolution of the best fitness as a function of
the resources used, for each technique. Koza was able to achieve a much better
fitness than any of the other techniques, from early in the run.

Steady implementation, with upper limit Figure 7.10 shows the results of
the comparison among the resource-limited techniques (Steady implementation)
on the Parity problem, using a static upper limit. As in the previous experiment,
the first plot (a) shows that convergence to an optimum never happened in this
problem. Koza was once again the technique that exhausted the resources in the
fewest generations (48), while lhResSteady required the highest number (172).

The second plot (b) shows a similar average tree size growth for all the
techniques, with Koza presenting a slower growth in the beginning but reaching
the same values as the remaining techniques by the end of the run.

In the third plot (c), the boxplot, only the light techniques performed sig-
nificantly worse than Koza. Based on these results, a ranking of the different
techniques could be: 1) Koza and all non-light resource-limited techniques 2)
light techniques.

The last plot (d) shows that Koza still achieved better fitness than the
remaining techniques, although the difference was not always significant.

Low implementation, without upper limit Figure 7.11 shows the results
of the comparison among the resource-limited techniques (Low implementa-
tion) on the Parity problem, without using an upper limit. The first plot (a)
presents the resources used and the number of generations needed to complete
the run, as well as the success rate, for each technique. It reveals that, as in the
Steady implementation, convergence to an optimum never happened in the Par-
ity problem. Koza was the technique that exhausted the resources in the fewest
generations (48), with both very heavy techniques collapsing the population and
taking more than six million generations to exhaust the resources.

The second plot (b) presents the growth of the average tree size along the
run, for each technique. As in the previous problems, all the resource-limited
techniques present a large unbounded growth of average tree size, while Koza
presents the smallest growth. Both very heavy techniques present a sudden drop
in growth where the population collapsed.

The third plot (c) is a boxplot of the best fitness of run obtained with each
technique. All the resource-limited techniques performed significantly worse

7.3. RESULTS 67

K L hL vhL LL hLL vhLL

0

1

2

3

4

5

6

7

8

9

x 10
6 Parity (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

48 823 983
6679018

349 995
6061422

0 0 0 0 0 0 0

0 2 4 6 8

x 10
6

0

500

1000

1500

2000

2500

Parity (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e

K
L
hL
vhL
LL
hLL
vhLL

K L hL vhL LL hLL vhLL

0

2

4

6

8

10

12

be
st

 fi
tn

es
s

of
 r

un

techniques

Parity (c)

0 2 4 6 8

x 10
6

6

7

8

9

10

11

12

13

14
Parity (d)

resources used

be
st

 fi
tn

es
s

K
L
hL
vhL
LL
hLL
vhLL

Figure 7.11: Results of the resource-limited techniques (Low implementation)
on the Parity problem, without upper limit: (a) success rate, resources used,
and number of generations needed; (b) growth of average tree size; (c) best
fitness of run; (d) evolution of best fitness.

68 7. COMPARISON WITHIN RESOURCE-LIMITED GP

K lL lhL lvhL lLL lhLL lvhLL

0

1

2

3

4

5

6

7

8

9

x 10
6 Parity (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

48 589 578
6200423

421 562
5088383

0 0 0 0 0 0 0

0 2 4 6 8

x 10
6

0

50

100

150

200

250

300

350
Parity (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e

K
lL
lhL
lvhL
lLL
lhLL
lvhLL

K lL lhL lvhL lLL lhLL lvhLL

0

2

4

6

8

10

12

be
st

 fi
tn

es
s

of
 r

un

techniques

Parity (c)

0 2 4 6 8

x 10
6

6

7

8

9

10

11

12

13

14
Parity (d)

resources used

be
st

 fi
tn

es
s

K
lL
lhL
lvhL
lLL
lhLL
lvhLL

Figure 7.12: Results of the resource-limited techniques (Low implementation)
on the Parity problem, with upper limit: (a) success rate, resources used, and
number of generations needed; (b) growth of average tree size; (c) best fitness
of run; (d) evolution of best fitness.

7.3. RESULTS 69

than Koza. vhResLow performed worse than three other techniques. Based on
these results, a ranking of the several techniques could be: 1) Koza 2) all the
resource-limited techniques except 3) vhResLow.

The last plot (d) presents the evolution of the best fitness as a function
of the resources used, for each technique. Koza was able to achieve a much
better fitness than the other techniques, from early in the run. vhResLow only
achieved a slight improvement in the beginning of the run, and then stagnated.

Low implementation, with upper limit Figure 7.12 shows the results of
the comparison among the resource-limited techniques (Low implementation) on
the Parity problem, using a static upper limit. As in the previous experiment,
the first plot (a) shows that convergence to an optimum never happened in this
problem. Koza was once again the technique that exhausted the resources in the
fewest generations (48), and once again both very heavy techniques collapsed
the population and required millions of generations.

The second plot (b) shows that Koza still presents the smallest growth of
average tree size, and both very heavy techniques present a sudden drop where
the population collapsed.

In the third plot (c), the boxplot, Koza performed better than lhResLow,
lvhResLow, and lvhResLowLight. vhResLow performed significantly worse than
all other techniques. Based on these results, a rough ranking of the tech-
niques could be: 1) Koza, lResLow, lResLowLight, lhResLowLight 2) lhResLow,
lvhResLowLight 3) lvhResLow.

The last plot (d) shows that Koza achieved better fitness sooner than the
other techniques. The difference in performance was not as marked as when
using no upper limit.

Remarks The above results reveal that the static upper limit is an essen-
tial element for the resource-limited techniques in the Parity problem, among
the Steady implementation techniques. Without it, all the techniques failed
when compared to Koza. Even when using it, only the non-light variants were
able to achieve similar performance to Koza. Among the Low implementation
techniques, a few were able to achieve similar results to Koza (lResLow, lRes-
LowLight, lhResLowLight), but only when using the static upper limit.

7.3.4 11-Bit Boolean Multiplexer

Steady implementation, without upper limit Figure 7.13 shows the re-
sults of the comparison among the resource-limited techniques (Steady imple-
mentation) on the Multiplexer problem, without using an upper limit. The first
plot (a) presents the resources used and the number of generations needed to
complete the run, as well as the success rate, for each technique. It reveals that
convergence to an optimum almost never happened except with the baseline
technique (success rate of 30%). Koza was the technique that exhausted the re-
sources in the fewest generations (51), while vhResSteady required the highest
number of generations (106).

70 7. COMPARISON WITHIN RESOURCE-LIMITED GP

K S hS vhS SL hSL vhSL

0

1

2

3

4

5

6

7
x 10

6 Multiplexer (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

51 75 96 106 76 79 83

30 0 0 3 0 0 0

0 1 2 3 4 5

x 10
6

0

100

200

300

400

500

600

700
Multiplexer (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e

K
S
hS
vhS
SL
hSL
vhSL

K S hS vhS SL hSL vhSL

0

100

200

300

400

500

600

be
st

 fi
tn

es
s

of
 r

un

techniques

Multiplexer (c)

0 1 2 3 4 5

x 10
6

100

150

200

250

300

350

400

450

500

550

600
Multiplexer (d)

resources used

be
st

 fi
tn

es
s

K
S
hS
vhS
SL
hSL
vhSL

Figure 7.13: Results of the resource-limited techniques (Steady implementation)
on the Multiplexer problem, without upper limit: (a) success rate, resources
used, and number of generations needed; (b) growth of average tree size; (c)
best fitness of run; (d) evolution of best fitness.

7.3. RESULTS 71

K lS lhS lvhS lSL lhSL lvhSL

0

1

2

3

4

5

6

7
x 10

6 Multiplexer (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

51 90 91 144 86 89 84

30 10 13 7 7 7 0

0 1 2 3 4 5

x 10
6

0

20

40

60

80

100

120

140

160

180

200

Multiplexer (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e
K
lS
lhS
lvhS
lSL
lhSL
lvhSL

K lS lhS lvhS lSL lhSL lvhSL

0

100

200

300

400

500

600

be
st

 fi
tn

es
s

of
 r

un

techniques

Multiplexer (c)

0 1 2 3 4 5

x 10
6

100

150

200

250

300

350

400

450

500

550

600
Multiplexer (d)

resources used

be
st

 fi
tn

es
s

K
lS
lhS
lvhS
lSL
lhSL
lvhSL

Figure 7.14: Results of the resource-limited techniques (Steady implementation)
on the Multiplexer problem, with upper limit: (a) success rate, resources used,
and number of generations needed; (b) growth of average tree size; (c) best
fitness of run; (d) evolution of best fitness.

72 7. COMPARISON WITHIN RESOURCE-LIMITED GP

The second plot (b) presents the growth of the average tree size along the
run, for each technique. As in the previous three problems, all the resource-
limited techniques present a large unbounded growth of average tree size, while
Koza presents the smallest growth.

The third plot (c) is a boxplot of the best fitness of run obtained with
each technique. As in the previous problem, all the resource-limited techniques
performed significantly worse than Koza. Based on these results, a ranking of
the several techniques could be: 1) Koza 2) all resource-limited techniques.

The last plot (d) presents the evolution of the best fitness as a function of
the resources used, for each technique. As in the previous problem, Koza was
able to achieve a much better fitness than the other techniques, from early in
the run.

Steady implementation, with upper limit Figure 7.14 shows the results of
the comparison among the resource-limited techniques (Steady implementation)
on the Multiplexer problem, using a static upper limit. The first plot (a) shows
that the success rates were somewhat higher than without using the upper limit,
reaching values between 0% and 13%, except for the baseline (30%). Koza was
once again the technique that exhausted the resources in the fewest generations
(51), with the highest number of generations being again taken by lvhResSteady
(144).

The second plot (b) shows a similar average tree size growth for all the
techniques, with Koza presenting a slower growth in the beginning but reaching
the same values as the remaining techniques by the end of the run.

In the third plot (c), the boxplot, only two of the non-light techniques,
lResSteady and lhResSteady, performed as well as Koza, the rest performing sig-
nificantly worse. lvhResSteady was worse than lResSteady, and lvhSteadyLight
was worse than lResSteady and lhResSteady. Based on these results, a rough
ranking of the different techniques could be: 1) Koza, lResSteady, lhResSteady
2) the remaining techniques.

The last plot (d) shows that Koza, lResSteady and lhResSteady achieved
better fitness than the remaining techniques, with Koza improving the fitness
sooner.

Low implementation, without upper limit Figure 7.15 shows the results
of the comparison among the resource-limited techniques (Low implementation)
on the Multiplexer problem, without using an upper limit. The first plot (a)
presents the resources used and the number of generations needed to complete
the run, as well as the success rate, for each technique. It reveals that con-
vergence to an optimum never happened except with the baseline technique
(success rate of 30%). Koza was the technique that exhausted the resources
in the fewest generations (51), while both very heavy techniques collapsed the
population and required over four million generations to exhaust the resources.

The second plot (b) presents the growth of the average tree size along the
run, for each technique. As in the previous problems, all the resource-limited
techniques present a large unbounded growth of average tree size, while Koza

7.3. RESULTS 73

K L hL vhL LL hLL vhLL

0

1

2

3

4

5

6

7
x 10

6 Multiplexer (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

51 533 595

4791300

253 537

4545003

30 0 0 0 0 0 0

0 1 2 3 4 5

x 10
6

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Multiplexer (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e

K
L
hL
vhL
LL
hLL
vhLL

K L hL vhL LL hLL vhLL

0

100

200

300

400

500

600

be
st

 fi
tn

es
s

of
 r

un

techniques

Multiplexer (c)

0 1 2 3 4 5

x 10
6

100

150

200

250

300

350

400

450

500

550

600
Multiplexer (d)

resources used

be
st

 fi
tn

es
s

K
L
hL
vhL
LL
hLL
vhLL

Figure 7.15: Results of the resource-limited techniques (Low implementation)
on the Multiplexer problem, without upper limit: (a) success rate, resources
used, and number of generations needed; (b) growth of average tree size; (c)
best fitness of run; (d) evolution of best fitness.

74 7. COMPARISON WITHIN RESOURCE-LIMITED GP

K lL lhL lvhL lLL lhLL lvhLL

0

1

2

3

4

5

6

7
x 10

6 Multiplexer (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

51 430 427

4694137

332 430

4182096

30 0 3 0 3 0 0

0 1 2 3 4 5

x 10
6

0

50

100

150

200

250

300
Multiplexer (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e

K
lL
lhL
lvhL
lLL
lhLL
lvhLL

K lL lhL lvhL lLL lhLL lvhLL

0

100

200

300

400

500

600

be
st

 fi
tn

es
s

of
 r

un

techniques

Multiplexer (c)

0 1 2 3 4 5

x 10
6

100

150

200

250

300

350

400

450

500

550

600
Multiplexer (d)

resources used

be
st

 fi
tn

es
s

K
lL
lhL
lvhL
lLL
lhLL
lvhLL

Figure 7.16: Results of the resource-limited techniques (Low implementation)
on the Multiplexer problem, with upper limit: (a) success rate, resources used,
and number of generations needed; (b) growth of average tree size; (c) best
fitness of run; (d) evolution of best fitness.

7.4. CONCLUSIONS 75

presents the smallest growth. Both very heavy techniques present a dropping
line that represents the collapsing of the population.

The third plot (c) is a boxplot of the best fitness of run obtained with each
technique. As before, all the resource-limited techniques performed significantly
worse than Koza. Both very heavy variants performed worse than many of the
other techniques. Based on these results, a ranking of the several techniques
could be: 1) Koza 2) all resource-limited techniques except 3) vhResLow, vhRes-
LowLight.

The last plot (d) presents the evolution of the best fitness as a function of
the resources used, for each technique. As before, Koza was able to achieve a
much better fitness, from early in the run. The worst performance belongs to
both very heavy techniques.

Low implementation, with upper limit Figure 7.16 shows the results of
the comparison among the resource-limited techniques (Low implementation)
on the Multiplexer problem, using a static upper limit. The first plot (a) shows
that convergence to an optimum was again a rare occurrence, except for Koza
(30%). Koza was once again the technique that exhausted the resources in the
fewest generations (51), with both very heavy techniques again taking millions
of generations.

The second plot (b) shows that Koza still presents the smallest growth of
average tree size, and both very heavy techniques present a sudden drop where
the population collapsed.

In the third plot (c), the boxplot, once again all the resource-limited tech-
niques performed significantly worse than Koza, and both very heavy variants
performed worse than many of the other techniques. The ranking of the tech-
niques is the same as without using the upper limit: 1) Koza 2) all resource-
limited techniques except 3) lvhResLow, lvhResLowLight.

The last plot (d) shows that Koza still achieved better fitness than the
remaining techniques, with the worst performance again belonging to both very
heavy techniques.

Remarks The above results reveal that, as in the previous problem, the static
upper limit is an essential element for the resource-limited techniques in the
Multiplexer problem, without which all the techniques fail when compared to
Koza, in the Steady implementation. When using the upper limit, lResSteady
and lhResSteady were able to achieve similar performance to Koza. Among
the Low implementation techniques, all of them are worse than Koza, with or
without using the static upper limit.

7.4 Conclusions

In all problems, among the Steady implementation techniques, lResSteady dis-
tinguished itself by achieving similar performance to Koza when using the static
upper limit, and converging to an optimal solution early and often when there
were no significant differences in terms of best fitness of run. Among the Low

76 7. COMPARISON WITHIN RESOURCE-LIMITED GP

implementation techniques, the heavier variants tend to collapse the popula-
tion into only a few individuals (generally just one, small), regardless of the
difficulty of the problem. For easy problems like Regression, this means good
performance, by finding an optimum while saving a large amount of resources.
But, for difficult problems like Parity, the population collapses before finding any
optima, rendering all further search useless for lack of genetic diversity. Among
the Low implementation techniques, none of the variants can be considered a
reliable bloat control technique.

Chapter 8

Dynamic Limits and

Resource-Limited GP

This chapter compares Dynamic Limits with Resource-Limited GP. It provides
a list of the techniques involved and presents the results as described in Section
5.3, also introducing additional plots. It concludes by summing up the major
findings.

8.1 Techniques

For comparing Dynamic Limits and Resource-Limited GP, the best techniques
from both approaches are selected and compared with each other, and a new hy-
brid technique is introduced by joining both approaches, thus applying size/depth
restrictions both at the individual and at the population level. Table 8.1 lists
the names, acronyms and main characteristics of the four techniques involved.
Some of these techniques use the static upper limits, and others do not. Some
use a variable size population, others do not. All of them are compared to each
other, and everything is once again compared to the baseline.

Table 8.1: Techniques involved in the comparison of Dynamic Limits and
Resource-Limited GP.

Technique Acronym Main characteristics

Koza K static limit, fixed population

DynDepth D dynamic limit, fixed population

lResSteady lS static limit, dynamic population

Hybrid H dynamic limit, dynamic population

77

78 8. DYNAMIC LIMITS AND RESOURCE-LIMITED GP

8.2 Results

This section presents the results of the comparison between Dynamic Limits
and Resource-Limited GP, divided in the four problems considered (see Section
5.1). Short concluding remarks are inserted after each problem, highlighting the
best performing techniques.

Additional plots are introduced, showing the evolution of the population
size, expressed as the number of individuals, for the techniques using variable
size populations. One plot is presented for each problem/technique pair, and
each plot contains 30 evolution lines, one line per run.

8.2.1 Symbolic Regression

Figure 8.1 shows the results of comparing among the dynamic limit and resource-
limited techniques, and a hybrid, on the Regression problem. The first plot (a)
presents the resources used and the number of generations needed to complete
the run, as well as the success rate, for each technique. It was already known that
convergence to an optimal solution often happens in the Regression problem,
and usually very early in the run. lResSteady presents a higher success rate
(53%) than DynDepth (47%), and the Hybrid technique presents the lowest
success rate, along with Koza (40%). Koza was the technique that used the
most resources per generation, requiring fewer generations (50) than the other
techniques to exhaust the resources. The techniques using restrictions at the
population level, lResSteady and Hybrid, were the most sparing, requiring the
highest number of generations (128).

The second plot (b) presents the growth of the average tree size along the
run, for each technique. lResSteady presents a short growth line because most
of the time it quickly finds an optimal solution. Koza was the technique with the
largest growth, while both DynDepth and Hybrid present very similar stabilizing
growth curves.

The third plot (c) is a boxplot of the best fitness of run obtained with each
technique. There were no significant differences between any of the techniques,
therefore it is not possible to rank them.

The last plot (d) presents the evolution of the best fitness as a function of the
resources used, for each technique. lResSteady converged to an optimum early
in the run, and the Hybrid technique appears to present the worst performance,
although not significantly different from the rest.

Figure 8.2 shows the evolution of population size, expressed as the number
of individuals, by both techniques that use variable size populations, lResSteady
and Hybrid. In both cases there was a rapid shrinking of the population from the
very beginning, sometimes reaching only 10% of its initial size. This shrinking
was more pronounced in the lResSteady technique. The sudden jump observed
in one of the Hybrid runs was the result of a large increase of the resource limit.

Remarks The above results reveal that the Hybrid technique does not im-
prove performance when compared to the other techniques in the Regression
problem. All the techniques achieve similar fitness. lResSteady achieves it first,
but DynDepth and Hybrid achieve it with lower average tree size.

8.2. RESULTS 79

K D lS H

0

2

4

6

8

10

12

14

16
x 10

5 Regression (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

50 84 128 128

40 47 53 40

0 2 4 6 8 10 12

x 10
5

0

10

20

30

40

50

60

70
Regression (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e

K
D
lS
H

K D lS H

0

0.2

0.4

0.6

0.8

1

1.2

be
st

 fi
tn

es
s

of
 r

un

techniques

Regression (c)

0 2 4 6 8 10 12

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Regression (d)

resources used

be
st

 fi
tn

es
s

K
D
lS
H

Figure 8.1: Results of comparison among both approaches and a hybrid on the
Regression problem: (a) success rate, resources used, and number of generations
needed; (b) growth of average tree size; (c) best fitness of run; (d) evolution of
best fitness.

80 8. DYNAMIC LIMITS AND RESOURCE-LIMITED GP

0 2 4 6 8 10 12

x 10
5

0

100

200

300

400

500

600

700

800

900

1000

Regression (lResSteady)

resources used

po
pu

la
tio

n
si

ze

0 2 4 6 8 10 12

x 10
5

0

100

200

300

400

500

600

700

800

900

1000

Regression (Hybrid)

resources used

po
pu

la
tio

n
si

ze
Figure 8.2: Evolution of population size by the limited ResSteady and Hybrid
techniques on the Regression problem.

8.2.2 Artificial Ant

Figure 8.3 shows the results of comparing among the dynamic limit and resource-
limited techniques, and a hybrid, on the Artificial Ant problem. The first plot
(a) shows that success rates were the highest for the techniques using dynamic
limits, DynDepth and Hybrid (success rates of 20–30%), followed by the tech-
niques using a static limit, Koza and lResSteady (7–10%). Koza was the tech-
nique that required the fewest generations to exhaust the resources (51), while
the Hybrid technique was the most resource sparing, requiring the highest num-
ber of generations (90).

The second plot (b) shows that lResSteady was the technique allowing the
largest growth in average tree size, followed by Koza. DynDepth and Hybrid
present the lower tree size values, very similar to each other.

The boxplot (c) reveals that lResSteady achieved significantly worse fitness
than DynDepth and Hybrid. Based on this, a rough ranking of the techniques
could be: 1) all except 2) lResSteady.

The last plot (d) shows that lResSteady had indeed the worst performance,
with a slow fitness improvement from the beginning of the run.

Figure 8.4 shows that, after an initial sudden drop of population size, it
tended to rapidly grow larger again, followed by a more gradual shrinking. Some
of the runs ended with the initial number of 1000 individuals, more often in the
Hybrid technique. In both techniques there was a wide dispersion of behaviors.

Remarks The above results reveal that the lResSteady technique is worse
than the others in the Artificial Ant problem. Replacing its static limit with
the dynamic limit, creating Hybrid, improved the performance to the same level
of DynDepth and Koza.

8.2. RESULTS 81

K D lS H

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6 Artificial Ant (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

51 74 57 90

10 30 7 20

0 1 2 3 4

x 10
6

20

40

60

80

100

120

140

160

180

200
Artificial Ant (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e

K
D
lS
H

K D lS H

0

5

10

15

20

25

30

35

40

45

50

55

be
st

 fi
tn

es
s

of
 r

un

techniques

Artificial Ant (c)

0 1 2 3 4

x 10
6

10

15

20

25

30

35

40

45

50
Artificial Ant (d)

resources used

be
st

 fi
tn

es
s

K
D
lS
H

Figure 8.3: Results of comparison among both approaches and a hybrid on
the Artificial Ant problem: (a) success rate, resources used, and number of
generations needed; (b) growth of average tree size; (c) best fitness of run; (d)
evolution of best fitness.

82 8. DYNAMIC LIMITS AND RESOURCE-LIMITED GP

0 1 2 3 4

x 10
6

0

100

200

300

400

500

600

700

800

900

1000

Artificial Ant (lResSteady)

resources used

po
pu

la
tio

n
si

ze

0 1 2 3 4

x 10
6

0

100

200

300

400

500

600

700

800

900

1000

Artificial Ant (Hybrid)

resources used

po
pu

la
tio

n
si

ze
Figure 8.4: Evolution of population size by the limited ResSteady and Hybrid
techniques on the Artificial Ant problem.

8.2.3 5-Bit Even Parity

Figure 8.5 shows the results of comparing among the dynamic limit and resource-
limited techniques, and a hybrid, on the Parity problem. The first plot (a) shows
that that convergence to an optimum never happened, not even for the new tech-
nique Hybrid. This was the technique requiring the most generations to exhaust
the resources (132), while Koza required the lowest number of generations (48).

The second plot (b) shows that lResSteady was the technique with the fastest
growth of average tree size, with Koza presenting a less steep curve that reached
the same values by the end of the run. DynDepth and Hybrid present the lowest
values, very similar to each other.

The boxplot (c) reveals that, as in the previous problem, lResSteady achieved
significantly worse fitness than DynDepth and Hybrid. The proposed ranking
of techniques is the same as previously: 1) all except 2) lResSteady.

The last plot (d) confirms the results of the boxplot, with lResSteady per-
forming worse than the remaining techniques.

Figure 8.6 shows that, after an initial sudden drop of population size, it
eventually climbed rapidly to high values, often followed by a gradual shrinking.
In both techniques there was a wide dispersion of the final values of population
size.

Remarks The above results reveal that the lResSteady technique is worse
than the others in the Parity problem. The new Hybrid technique performs at
the same level as DynDepth and Koza.

8.2. RESULTS 83

K D lS H

0

1

2

3

4

5

6

7

8

9

x 10
6 Parity (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

48 67 99 132

0 0 0 0

0 2 4 6 8

x 10
6

0

50

100

150

200

250

Parity (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e

K
D
lS
H

K D lS H

0

2

4

6

8

10

12

be
st

 fi
tn

es
s

of
 r

un

techniques

Parity (c)

0 2 4 6 8

x 10
6

3

4

5

6

7

8

9

10

11

12

13

14
Parity (d)

resources used

be
st

 fi
tn

es
s

K
D
lS
H

Figure 8.5: Results of comparison among both approaches and a hybrid on the
Parity problem: (a) success rate, resources used, and number of generations
needed; (b) growth of average tree size; (c) best fitness of run; (d) evolution of
best fitness.

84 8. DYNAMIC LIMITS AND RESOURCE-LIMITED GP

0 2 4 6 8

x 10
6

0

100

200

300

400

500

600

700

800

900

1000

Parity (lResSteady)

resources used

po
pu

la
tio

n
si

ze

0 2 4 6 8

x 10
6

0

100

200

300

400

500

600

700

800

900

1000

Parity (Hybrid)

resources used

po
pu

la
tio

n
si

ze
Figure 8.6: Evolution of population size by the limited ResSteady and Hybrid
techniques on the Parity problem.

8.2.4 11-Bit Boolean Multiplexer

Figure 8.7 shows the results of comparing among the dynamic limit and resource-
limited techniques, and a hybrid, on the Multiplexer problem. The first plot (a)
shows that success rates were higher for Koza and DynDepth (23–30%) than for
the techniques using dynamic populations (10–13%). Koza was the technique
exhausting the resources in the fewest generations (51), while Hybrid required
the highest number of generations (116).

The second plot (b) shows a similar behavior to the previous problem, with
lResSteady and Koza reaching the highest average tree size, followed by the
similar DynDepth and Hybrid techniques.

The boxplot (c) contains no significant differences between any of the tech-
niques, therefore no ranking is possible.

The last plot (d) confirms the results of the boxplot, also revealing a some-
what slower fitness improvement by the lResSteady technique.

Figure 8.8 reveals an initial sudden drop of population size, followed by a
rapid climb back to high values, and a tendency for a slow decrease afterwards,
with the occasional climbing back, more frequent in the lResSteady technique.
Once again there was a wide dispersion of the final values of population size in
both techniques.

Remarks The above results reveal that the Hybrid technique does not im-
prove performance when compared to the other techniques in the Multiplexer
problem. All the techniques achieve similar fitness, but lResSteady produces
the undesirable higher average tree size.

8.2. RESULTS 85

K D lS H

0

1

2

3

4

5

6

7
x 10

6 Multiplexer (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

51 61 90 116

30 23 10 13

0 1 2 3 4 5

x 10
6

0

20

40

60

80

100

120

140

160

180

200

Multiplexer (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e

K
D
lS
H

K D lS H

0

50

100

150

200

250

300

350

400

450

be
st

 fi
tn

es
s

of
 r

un

techniques

Multiplexer (c)

0 1 2 3 4 5

x 10
6

0

100

200

300

400

500

600
Multiplexer (d)

resources used

be
st

 fi
tn

es
s

K
D
lS
H

Figure 8.7: Results of comparison among both approaches and a hybrid on the
Multiplexer problem: (a) success rate, resources used, and number of genera-
tions needed; (b) growth of average tree size; (c) best fitness of run; (d) evolution
of best fitness.

86 8. DYNAMIC LIMITS AND RESOURCE-LIMITED GP

0 1 2 3 4 5

x 10
6

0

100

200

300

400

500

600

700

800

900

1000

Multiplexer (lResSteady)

resources used

po
pu

la
tio

n
si

ze

0 1 2 3 4 5

x 10
6

0

100

200

300

400

500

600

700

800

900

1000

Multiplexer (Hybrid)

resources used

po
pu

la
tio

n
si

ze
Figure 8.8: Evolution of population size by the limited ResSteady and Hybrid
techniques on the Multiplexer problem.

8.3 Conclusions

In all problems, the new technique Hybrid performed as well as the baseline
Koza and the very successful DynDepth. lResSteady was almost always the
worst technique, either achieving worse fitness than DynDepth and Hybrid,
converging to an optimum later, or producing larger trees than the other tech-
niques. The evolution of the population size reveals wide differences between
the several problems. In the Regression problem there is mainly a constant
smooth decrease of population size, whereas in the other problems, particularly
Parity and Multiplexer, the evolution of population size follows a jumpy and
unpredictable pattern.

Chapter 9

Comparison with State of

the Art

This chapter compares the best techniques from the previous experiments with
some successful state-of-the-art techniques. It lists and describes the state-of-
the-art techniques involved, presents the results as described in Section 5.3, and
concludes by summing up the major findings.

9.1 Techniques

After selecting the best techniques from the previous experiments, these are
compared with the following state-of-the-art bloat control methods: Linear
Parametric Parsimony Pressure, Double Tournament, and Dynamic Popula-
tions. The first two were the best performing of a fairly extensive set of tech-
niques tested by Luke and Panait [68], and the third is based on the few examples
of recent work dealing with dynamic populations [121, Sect. 7.1] [19,94,95,118].
Table 9.1 shows the names and acronyms of the techniques compared, and a
description of the involved state-of-the-art techniques follows.

9.1.1 Linear Parametric Parsimony Pressure

Parsimony pressure is a family of bloat control methods where the size of an
individual affects its probability of being selected for reproduction. In linear
parametric parsimony pressure, the adjusted fitness of an individual (g) is com-
puted as a function of its raw fitness (f) and its size (s), that is, g = xf+ys. The
experiments of this thesis using linear parametric parsimony pressure follow the
settings used in [68], where the adjustment function always considers y = 1, and
the best cross-problem performance was obtained with x = 32. When a fitness
adjustment function is used, the selection of individuals (for reproduction and
for survival) is based on the adjusted fitness, but all the results are presented
using the raw fitness.

87

88 9. COMPARISON WITH STATE OF THE ART

Table 9.1: Techniques involved in the comparison with state of the art.

Technique Acronym Brief description

Koza K traditional static upper limit

DynDepth D dynamic limit on depth

Hybrid H DynDepth with dynamic populations

Linear Lnr linear parametric parsimony pressure
Double Dbl double tournament

Dynamic Populations 1 M1 dynamic populations, variant M1
Dynamic Populations 2 M2 dynamic populations, variant M2

9.1.2 Double Tournament

This technique uses a double tournament that applies two layers of tournaments
in series, first for fitness and then for parsimony (or the other way around) [68].
A parameter determines whether the first tournament selects based on fitness
and the second one based on size (number of nodes), or vice versa. A second
parameter is D, where 0.5 ≤ D ≤ 1. When two individuals participate in
the parsimony tournament, the smaller one wins with probability D, else the
larger wins. D = 0.5 is random selection, while D = 1 is a plain parsimony
tournament of size 2. The experiments using double tournament follow the
settings used in [68], where the first tournament is based on size and the second
on fitness, and D = 0.7. The fitness tournament is the same used with all the
other techniques, with size 7 (0.7% of the population, with a minimum of 2, for
the variable population techniques).

9.1.3 Dynamic Populations

Dynamic population techniques allow the population size to vary along the gen-
erations, by adding or suppressing individuals from the population depending on
how well fitness is evolving. Basically, individuals are suppressed as long as the
best individual keeps improving, and new individuals are added when the fitness
stagnates, in all the variants developed so far [121, Sect. 7.1] [19, 94,95,118].

The experiments of this thesis using dynamic population techniques follow a
mixture of settings from the different variants, some selected after conversations
with the respective authors. In the beginning of the run, a parameter pivot
is calculated by dividing the best fitness at the initial generation (f0) by the
maximum allowed number of generations for that particular run (gmax). During
the run, every period generations the difference between the current best fitness
(fg) and the best fitness period generations back (fg−period) is computed, and
divided by period. The result is stored in the parameter delta. Every generation,
if delta is larger than pivot, individuals are deleted, otherwise individuals are

9.2. RESULTS 89

added. All experiments used period = 1, as this parameter does not seem to be
very influential [95].

The number of individuals to delete from the population is a portion of the
current population size, proportional to the gain in fitness from generation g −
period to generation g. It is calculated as Pg ∗period∗(fg−period−fg)/fg−period,
where Pg is the population size at the current generation. The worst individuals
are deleted. At least one individual is kept in the population, to avoid extinction.
The number of individuals to add is calculated in order to achieve a certain pop-
ulation size in case the fitness stagnation continues. Different choices regarding
this intended population size created two implementation options called M1 and
M2. In M1 the aim is to reach the exact initial population size by the end of the
run, so the number of individuals to add is calculated as (P0 − Pg)/(gmax − g),
where P0 is the initial population size and g is the current generation. In M2
the intended population size is a proportion of the initial population size. The
number of individuals to add is calculated as (c ∗ P0 − Pg)/(gmax − g), where
c =

√
fg/f0. Individuals are added by mutating the best individuals in the

population, using shrink and swap mutation with equal probability.
As in Resource-Limited GP, dynamic populations vary their number of in-

dividuals along the run, but the philosophies behind these two methods are
notably different. If bloat occurs in Resource-Limited GP, this immediately
results in the removal of the individuals ‘not good enough for their size’ and
the population size is reduced. But in dynamic populations, if bloat happens
to cause fitness stagnation, paradoxically this causes the population size to in-
crease. On the other hand, when convergence to better solutions is good and the
population quickly moves to the optimum, dynamic populations readily speed
this process by continuously reducing the population size.

The immediate handicap of the dynamic population techniques is, however,
the need to use the maximum number of generations to calculate pivot. In
practical terms, this may not be viable and has even caused some trouble in
simple experiments like the ones in this thesis, since the runs do not have a fixed
number of generations. So pivot was calculated using the maximum number
of generations 50, and for those runs where this was not enough to exhaust
the resources, pivot was recalculated using an increased maximum number of
generations (in multiples of 10), and the runs continued.

9.2 Results

This section presents the results of the comparison with the state of the art,
divided in the four problems considered (see Section 5.1). Short concluding
remarks are inserted after each problem, highlighting the best performing tech-
niques.

9.2.1 Symbolic Regression

Figure 9.1 shows the results of comparing the best techniques from Dynamic
Limits and Resource-Limited GP with the best state-of-the-art techniques, on
the Regression problem. The first plot (a) presents the resources used and

90 9. COMPARISON WITH STATE OF THE ART

K D H Lnr Dbl M1 M2

0

2

4

6

8

10

12

14

16

x 10
5 Regression (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

50 84 128 89 93 42
1029496

40 47 40 63 57 40 67

0 2 4 6 8 10 12

x 10
5

0

10

20

30

40

50

60

70
Regression (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e

K
D
H
Lnr
Dbl
M1
M2

K D H Lnr Dbl M1 M2

0

0.2

0.4

0.6

0.8

1

1.2

be
st

 fi
tn

es
s

of
 r

un

techniques

Regression (c)

0 2 4 6 8 10 12

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Regression (d)

resources used

be
st

 fi
tn

es
s

K
D
H
Lnr
Dbl
M1
M2

Figure 9.1: Results of comparison with state-of-the-art techniques on the Re-
gression problem: (a) success rate, resources used, and number of generations
needed; (b) growth of average tree size; (c) best fitness of run; (d) evolution of
best fitness.

9.2. RESULTS 91

the number of generations needed to complete the run, as well as the success
rate, for each technique. Convergence to an optimal solution happens often and
early in the Regression problem. Except for M1, the state-of-the-art techniques
achieved the highest success rates (57–67%), followed by DynDepth (47%) and
the remaining techniques (40%). M1 was the technique that used the most re-
sources per generation, requiring less generations (42) than the other techniques
to exhaust the resources. M2, on the other hand, collapsed the population into
only a few individuals, requiring more than a million generations to exhaust the
resources.

The second plot (b) presents the growth of the average tree size along the
run, for each technique. M1 presents the largest growth, followed by the distant
second Koza, and finally the remaining techniques. M2, Linear and Double
found optimal solutions early, presenting short growth lines.

The third plot (c) is a boxplot of the best fitness of run obtained with each
technique. There were no significant differences between any of the techniques,
therefore it is not possible to rank them.

The last plot (d) presents the evolution of the best fitness as a function of the
resources used, for each technique. M2, Linear and Double found optimal solu-
tions very rapidly; Hybrid achieved the worst results, although not significantly
different from the rest.

Remarks The above results do not permit a choice of best bloat control tech-
nique in the Regression problem. M1 is considered the worst technique because
it reaches a very large average tree size.

9.2.2 Artificial Ant

Figure 9.2 shows the results of comparing the best techniques from Dynamic
Limits and Resource-Limited GP with the best state-of-the-art techniques, on
the Artificial Ant problem. The first plot (a) shows that success rates were
very low for the M1 and M2 techniques (0–7%). Linear and Double once again
reached the highest success rates (33–37%), followed the remaining techniques
(10–30%). M1 and M2 were the techniques requiring the fewest generations
to exhaust the resources (41–47), while Linear was the most resource sparing,
requiring the most generations (108).

The second plot (b) shows that M1 and M2 were the techniques allowing
the largest growth in average tree size, followed by the distant second Koza.
Double presents similar growth to DynDepth and Hybrid, while Linear presents
the smallest growth.

In the boxplot (c), M1 was worse than all other techniques, and M2 was
worse than Linear and Double. Based on these results, a rough ranking of the
techniques could be: 1) all except 2) M2 and 3) M1.

The last plot (d) shows that Double succeeded in finding an optimum faster
than the other techniques, followed closely by Linear. M1 had indeed the worst
performance, with a slow improvement from the beginning of the run.

92 9. COMPARISON WITH STATE OF THE ART

K D H Lnr Dbl M1 M2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6 Artificial Ant (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

51 74 90 108 68 41 47

10 30 20 33 37 0 7

0 1 2 3 4

x 10
6

20

40

60

80

100

120

140

160

180

200
Artificial Ant (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e

K
D
H
Lnr
Dbl
M1
M2

K D H Lnr Dbl M1 M2

0

5

10

15

20

25

30

35

40

45

50

55

be
st

 fi
tn

es
s

of
 r

un

techniques

Artificial Ant (c)

0 1 2 3 4

x 10
6

10

15

20

25

30

35

40

45

50
Artificial Ant (d)

resources used

be
st

 fi
tn

es
s

K
D
H
Lnr
Dbl
M1
M2

Figure 9.2: Results of comparison with state-of-the-art techniques on the Arti-
ficial Ant problem: (a) success rate, resources used, and number of generations
needed; (b) growth of average tree size; (c) best fitness of run; (d) evolution of
best fitness.

9.2. RESULTS 93

Remarks The above results do not permit a choice of best bloat control tech-
nique in the Artificial Ant problem. M1 and M2, however, perform worse than
the rest.

9.2.3 5-Bit Even Parity

Figure 9.3 shows the results of comparing the best techniques from Dynamic
Limits and Resource-Limited GP with the best state-of-the-art techniques, on
the Parity problem. The first plot (a) shows that convergence to an optimum
never happened, not even for the state-of-the-art techniques. M1 was once again
the technique requiring the fewest generations to exhaust the resources (44),
followed closely by Koza and M2 (48). Hybrid and Linear were the techniques
requiring the most generations (130–132).

The second plot (b) shows that, once again, M1 and M2 were the techniques
with the fastest growth of average tree size, followed by the distant second Koza,
then Double, then DynDepth and Hybrid, very similar to each other. Linear
presents the lowest growth.

In the boxplot (c), M1 and M2 present worse performance than DynDepth.
Based on these results, a rough ranking of the techniques could be: 1) all except
2) M1 and M2.

The last plot (d) shows that most techniques achieved similar fitness with
approximately the same amount of resources.

Remarks The above results only permit the exclusion of M1 and M2 as ade-
quate bloat control methods, in the Parity problem.

9.2.4 11-Bit Boolean Multiplexer

Figure 9.4 shows the results of comparing the best techniques from Dynamic
Limits and Resource-Limited GP with the best state-of-the-art techniques, on
the Multiplexer problem. The first plot (a) shows that convergence to an opti-
mum almost never happened for M1 and M2 (success rates of 0–3%). Double
reached the highest success rate (40%), followed by the remaining techniques
(13–30%). Koza was the technique exhausting the resources in the fewest gener-
ations (51), followed closely by M1 and M2 (54–57). Linear required the highest
number of generations (141).

The second plot (b) shows that, once again, M1 and M2 present the largest
growth in average tree size, followed by the distant second Koza. DynDepth
and Hybrid once again reached similar values, followed by Double and finally
the Linear technique, where the average tree size increased and then began to
decrease and stabilize.

In the boxplot (c), M1 and M2 present worse performance than Koza, Dyn-
Depth, and Double. Hybrid and Linear were also worse than Double. Based on
these results, a rough ranking of the techniques could be: 1) Koza, DynDepth,
Double 2) Hybrid, Linear, M1, M2.

The last plot (d) clearly shows the worse performance of the M1 and M2
techniques, and also reveals that Double achieved better fitness earlier than the
rest.

94 9. COMPARISON WITH STATE OF THE ART

K D H Lnr Dbl M1 M2

0

1

2

3

4

5

6

7

8

9

x 10
6 Parity (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

48 67 132 130 62 44 48

0 0 0 0 0 0 0

0 2 4 6 8

x 10
6

0

50

100

150

200

250

Parity (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e

K
D
H
Lnr
Dbl
M1
M2

K D H Lnr Dbl M1 M2

0

2

4

6

8

10

12

be
st

 fi
tn

es
s

of
 r

un

techniques

Parity (c)

0 2 4 6 8

x 10
6

5

6

7

8

9

10

11

12

13

14
Parity (d)

resources used

be
st

 fi
tn

es
s

K
D
H
Lnr
Dbl
M1
M2

Figure 9.3: Results of comparison with state-of-the-art techniques on the Parity
problem: (a) success rate, resources used, and number of generations needed;
(b) growth of average tree size; (c) best fitness of run; (d) evolution of best
fitness.

9.2. RESULTS 95

K D H Lnr Dbl M1 M2

0

1

2

3

4

5

6

7
x 10

6 Multiplexer (a)

techniques

su
cc

es
s

ra
te

, r
es

ou
rc

es
 u

se
d,

 g
en

s
ne

ed
ed

51 61 116 141 76 54 57

30 23 13 20 40 0 3

0 1 2 3 4 5

x 10
6

0

20

40

60

80

100

120

140

160

180

200
Multiplexer (b)

resources used

av
er

ag
e

tr
ee

 s
iz

e

K
D
H
Lnr
Dbl
M1
M2

K D H Lnr Dbl M1 M2

0

50

100

150

200

250

300

350

400

450

be
st

 fi
tn

es
s

of
 r

un

techniques

Multiplexer (c)

0 1 2 3 4 5

x 10
6

100

150

200

250

300

350

400

450

500

550

600
Multiplexer (d)

resources used

be
st

 fi
tn

es
s

K
D
H
Lnr
Dbl
M1
M2

Figure 9.4: Results of comparison with state-of-the-art techniques on the Mul-
tiplexer problem: (a) success rate, resources used, and number of generations
needed; (b) growth of average tree size; (c) best fitness of run; (d) evolution of
best fitness.

96 9. COMPARISON WITH STATE OF THE ART

Remarks The above results reveal that DynDepth and Double, along with the
baseline technique Koza, are the best bloat control techniques in the Multiplexer
problem.

9.3 Conclusions

In all problems, the techniques achieving best fitness of run were the baseline
Koza, the dynamic depth technique DynDepth, and the state-of-the-art tech-
nique Double. This last technique was also able to consistently achieve higher
success rates and find an optimal solution earlier than the rest. In terms of
average tree size, Koza always reached higher values, while the relative results
of DynDepth and Double depended on the problem considered.

Chapter 10

Discussion

In the previous chapters, the two original approaches to bloat control, Dynamic
Limits and Resource-Limited GP, have been compared within themselves and
between each other, and also against some of the best state-of-the-art techniques.
This chapter discusses their global performance, and also presents a deeper
analysis concerning the reasons why each approach achieved different results in
the various problems considered. Closing the chapter are some brief concerns
and considerations on how some implementation details may influence the search
dynamics, particularly in the light of the most recent explanation for bloat, the
crossover bias theory.

10.1 Global Performance

From all the experiments reported in the previous chapters, one of the techniques
belonging to the Dynamic Limits approach, DynDepth, has proven to always
achieve results as good as the best state-of-the-art technique that was tested,
Double. Although Double was generally able to reach the optimum more easily,
it has the disadvantage of being constrained by a tournament selection method
whose performance may be dependent on its settings (see Section 9.1.2). The
settings chosen for these experiments were expected to yield good results, as
they were the best previously found across the set of studied problems [68].
DynDepth, on the other hand, is totally parameterless and, because it only acts
during the survival phase, can be used along with any selection method. This,
and the fact that it does not require the presence of the static upper limit for
a good performance, are the two characteristics that make the Dynamic Limits
an appealing bloat control approach.

Although already expected from the observation of early results [102], the
poorer performance of the dynamic limit on size does not have to be final. This
variant managed to produce good results in the Artificial Ant problem, and with
the right improvement (Section 11.2) it could still be a capable replacement for
the dynamic limit on depth, one that would be suited for linear as well as tree-
based GP. It may not be a coincidence that it was precisely in the Artificial Ant
problem that the average tree size was considerably higher for the dynamic size

97

98 10. DISCUSSION

than for the dynamic depth. Could it be that the poor results of the dynamic
limit on size were simply caused by too much parsimony pressure?

It is arguable whether limiting size instead of depth increases the amount of
parsimony pressure. When dealing with depth, there is usually the opportunity
to add more nodes without breaking the limit, because trees are always far from
full [102]. On the other hand, looking at size regardless of depth removes a very
important restriction from the search: the shape of the trees. Regardless of
the number of necessary nodes, low-depth solutions may be harder to find than
their deeper equivalents. For example, in symbolic regression of the quartic
polynomial, x4 + x3 + x2 + x, tree-based GP usually finds a solution of depth
7, whereas solutions of depth 6, 5, and even 41 are rarely found. When using
the size limit instead of the depth limit, trees are comparatively less full, and a
higher population diversity is achieved [102].

Resource-Limited GP did not perform as well as Dynamic Limits in most of
the problems considered. The Low implementation did not achieve acceptable
results in most problems, while the Steady implementation greatly relied on
the presence of the static upper limit to achieve a performance comparable
to the Koza technique. The lResSteady technique, one of the best resource-
limited techniques, was in most problems worse than DynDepth and the Hybrid
technique, achieving worse fitness, converging to an optimum later, or producing
larger trees. In some cases it produced trees larger than the Koza technique.

So, is Resource-Limited GP preventing bloat, or simply learning to live with
it? The emergent rule that prevents the survival of ‘not good enough for their
size’ individuals (see Section 4.1) actually ensures that bloat does not occur, as
long as we define bloat as “an excess of code growth without a corresponding
improvement in fitness” (from Section 1.1). But how much code growth is
considered excessive? And how much fitness gain is considered a corresponding
improvement? The fact is, Resource-Limited GP allows seemingly free code
growth, and the modest resource usage is only obtained thanks to a prompt
reduction of population size. In the absence of restrictions at the individual
level, nothing is done to directly counteract bloat.

No doubt it is the limits at the individual level that have the main role
in controlling tree growth. Between the DynDepth and lResSteady techniques
there are considerable differences in average tree size. But when the static depth
limit of lResSteady is replaced by a dynamic limit, the new Hybrid technique
produces similar growth curves to DynDepth, not to lResSteady. Regardless
of tree growth, the limits at the individual level also seem to be the main
contributors to an improved best fitness. When using either a static or dynamic
limit, replacing a fixed population with a dynamic population (e.g. Koza versus
lResSteady, DynDepth versus Hybrid) did not improve the performance; but
when using either a fixed or dynamic population, replacing a static limit with
a dynamic limit (e.g. Koza versus DynDepth, lResSteady versus Hybrid) did
improve the results in many cases. The merit belongs to the dynamic limit, not
to the variable size population.

Still, the Resource-Limited GP techniques, both Steady and Low imple-

1The factored form of the polynomial, (x2 + 1)(x2 + x), can be represented with a tree of
depth 4.

10.2. PROBLEMWISE ANALYSIS 99

mentations, produced excellent results on the Regression problem (see Section
10.2.1), the only problem where Dynamic Limits sometimes failed to perform at
the same level as the Koza technique. In the next section an attempt is made
to find a reason for such behavior.

Despite the good results obtained by M1 and M2 in previous work [94, 95],
here they failed to pass the tests. These techniques seem to be highly dependent
on a static upper limit, or maybe on a specific set of parameters that was not
used here. The Linear technique, although producing good results, performed
worse than DynDepth and Double, even though it had been the best technique
in previous comparisons [68]. It, too, seems to be highly dependent on the choice
of parameters. Finally, Koza remains a very successful technique, performing as
well as the best, but the static nature of its limit may prevent it from finding
the solution for problems of unsuspected high complexity.

10.2 Problemwise Analysis

This section summarizes the performance of Dynamic Limits and Resource-
Limited GP on each of the four problems considered, and proceeds to describe
some of the characteristics that may explain the differences observed in the
quality of the results.

10.2.1 Performance

Tables 10.1 through 10.4 show the relative performance of all the techniques
among Dynamic Limits and Resource-Limited GP when compared to the base-
line Koza, in terms of success rate. The success rates of all the techniques,
expressed as the percentage of runs where an optimal solution was found, were
presented in Chapters 6 through 9. The success rates for the Koza technique
were 40, 10, 0, and 30 for the Regression, Artificial Ant, Parity, and Multiplexer
problems, respectively. The present tables only indicate, for each technique,
whether the success rate increased (↗), decreased (↘), or was maintained (→),
not the absolute values. Bold arrows indicate changes equal to or larger than
10 percentual points. The absence of an arrow indicates the technique achieved
significantly worse fitness than Koza. For each group of techniques, the first col-
umn of arrows refers to the ones not using a fixed limit, and the second column
(identified by (l)) refers to the ones using the static upper limit.

Table 10.1 clearly shows what has already been stated in the previous sec-
tion: both Steady and Low implementations of Resource-Limited GP produced
excellent results on the Regression problem. In the vast majority of cases, the
success rate was increased, very often 10 or more percentual points. Dynamic
Limits, on the other hand, produced poor results on this problem. The tech-
niques based on size achieved significantly worse fitness than Koza, as did most
of the depth-based techniques not using the upper limit. Only DynDepth was
able to produce similar fitness to Koza, and slightly increase the success rate.

Table 10.2 shows that Dynamic Limits performed very well on the Artificial
Ant problem. Most of the techniques were able to increase the success rate,
in particular the variants based on size, with improvements of 10 or more per-

100 10. DISCUSSION

Table 10.1: Relative performance in the Regression problem. Arrows indicate
whether the success rate increased, decreased, or was maintained when com-
pared to Koza. Bold arrows indicate changes equal to or larger than 10 per-
centual points. The absence of an arrow indicates the technique achieved sig-
nificantly worse fitness than Koza. Techniques using the static upper limit are
identified by (l).

Dynamic Limits Resource-Limited Resource-Limited
(Steady) (Low)

(l) (l) (l)
DynDepth ↗ ↗ ResSteady ↗↗↗ ↗↗↗ ResLow → ↗↗↗
hDynDepth ↘ hResSteady ↗ ↗↗↗ hResLow ↗ ↗↗↗
vhDynDepth ↘↘↘ vhResSteady ↗ → vhResLow ↗↗↗
DynNodes ResSteadyLight ↗ ↗↗↗ ResLowLight ↗↗↗ ↗↗↗
hDynNodes hResSteadyLight ↗↗↗ ↗↗↗ hResLowLight ↗↗↗ ↗↗↗
vhDynNodes vhResSteadyLight ↗↗↗ ↗ vhResLowLight ↗↗↗ ↗↗↗

Table 10.2: Relative performance in the Artificial Ant problem. For details see
caption of Table 10.1.

Dynamic Limits Resource-Limited Resource-Limited
(Steady) (Low)

(l) (l) (l)
DynDepth ↗↗↗ → ResSteady ↘ ↘ ResLow
hDynDepth ↗ ↗↗↗ hResSteady → ↗ hResLow
vhDynDepth → → vhResSteady ↘ ↗ vhResLow
DynNodes ↗↗↗ ↗↗↗ ResSteadyLight → ↘ ResLowLight
hDynNodes ↗↗↗ ↗↗↗ hResSteadyLight ↘ hResLowLight
vhDynNodes ↗↗↗ ↗↗↗ vhResSteadyLight ↘ vhResLowLight

Table 10.3: Relative performance in the Parity problem. For details see caption
of Table 10.1.

Dynamic Limits Resource-Limited Resource-Limited
(Steady) (Low)

(l) (l) (l)
DynDepth → → ResSteady → ResLow →
hDynDepth → → hResSteady → hResLow
vhDynDepth → → vhResSteady → vhResLow
DynNodes ↗ ResSteadyLight ResLowLight →
hDynNodes → → hResSteadyLight hResLowLight →
vhDynNodes → vhResSteadyLight vhResLowLight

10.2. PROBLEMWISE ANALYSIS 101

Table 10.4: Relative performance in the Multiplexer problem. For details see
caption of Table 10.1.

Dynamic Limits Resource-Limited Resource-Limited
(Steady) (Low)

(l) (l) (l)
DynDepth ↘ ↗↗↗ ResSteady ↘↘↘ ResLow
hDynDepth ↗ ↘ hResSteady ↘↘↘ hResLow
vhDynDepth ↗↗↗ → vhResSteady vhResLow
DynNodes ↘↘↘ ↘↘↘ ResSteadyLight ResLowLight
hDynNodes ↘↘↘ hResSteadyLight hResLowLight
vhDynNodes vhResSteadyLight vhResLowLight

centual points. In terms of Resource-Limited GP, the non-light techniques of
the Steady implementation did fairly well, all of them achieving the same fitness
as Koza and maintaining or slightly changing the success rate. Some of the light
variants of the Steady implementation, as well as all the variants of the Low
implementation, achieved significantly worse fitness than Koza.

Table 10.3 shows that most of the success rates on the Parity problem re-
mained unchanged, and none decreased. This is not surprising, since the success
rate of the baseline Koza is null. All the depth-based variants of Dynamic Limits
performed well, whereas some of the size-based variants achieved significantly
worse fitness than Koza. In terms of Resource-Limited GP, only the limited
non-light variants of the Steady implementation performed well, the rest being
unreliable in terms of best fitness achieved.

Table 10.4 shows that the depth-based variants of Dynamic Limits performed
well on the Multiplexer problem, whereas the size-based variants either achieved
significantly worse fitness when compared to Koza, or decreased the success
rate 10 or more percentual points. Resource-Limited GP did not have a good
performance, with most techniques achieving significantly worse fitness than
Koza.

Summing up, Resource-Limited GP is excellent for the Regression problem,
and the non-light Steady implementation can be safely used on the Artificial
Ant problem and on the Parity problem with the upper limit. Dynamic Limits
are excellent for the Artificial Ant problem, and the depth variants are good
for the Parity and Multiplexer problems. The limited depth variants can be
safely used on the Regression problem. All in all, some variants of the Dynamic
Limits are a reliable option for all types of problems, while Resource-Limited
GP should be used with a bit of caution, except in Regression problems like the
one in this thesis, where its performance was outstanding. The next sections
attempt to find what makes the Regression problem different from the others,
something that may explain the reason for this isolated success of the variable
population approach.

102 10. DISCUSSION

10.2.2 Problem Difficulty

The study of problem difficulty in GP is still a young field of research, and so
far has proven to be a hard one [121, Chap. 3], [122]. One way to access the
difficulty of a problem is by means of its fitness landscape, or search space. In
a setting where the goal is to maximize fitness, a smooth and regular landscape
with a single hill top is typical of an easy problem where the optimum is easily
reached. On the contrary, difficult problems may be characterized by rugged
landscapes with many peaks that can cause the search to get stuck on the local
optima and never reach the highest peak, or by landscapes where most of the
area is flat, with nothing to guide the search towards the points with higher
fitness. Other difficulties may be the presence of deep valleys surrounding the
highest peak, or the need to ascend an exceedingly long path to reach it [121,
Chap. 3]. One of the factors that strongly determines the characteristics of the
landscape is the neighborhood relationship. This relationship is determined by
the genetic operators used to move around the search space: two individuals
are neighbors if one can be obtained from the other by direct application of a
genetic operator. Change this relationship, i.e., change the genetic operators,
and the hills, valleys, and plateaus will probably suffer a major rearrangement.
Likewise, change the representation of the individuals and the landscape will
also be modified. Fitness landscapes are very hard to define when typical GP
operators like crossover are used. Langdon and Poli have extensively studied
the fitness landscapes of several classes of problems in GP [58]. Tavares has
studied how the genetic representation influences the evolvability in different
optimization problems [117].

Vanneschi has proposed two indicators of problem hardness for GP, both
based on sampling the fitness landscape. Fitness Distance Correlation [121,
Chap. 3], [122], first used for genetic algorithms, measures the extent to which
the fitness of the individuals is correlated to their distance to an optimal so-
lution. It is not a good predictive measure for all problems, as it requires
the prior knowledge of an optimal solution. Negative Slope Coefficient [121,
Chap. 3], [122,123] is based on the concept of fitness cloud , a scatterplot where
the fitness of each individual is plotted against the fitness of its neighbors, thus
providing and idea of how capable are the genetic operators of improving the
fitness quality. Negative Slope Coefficient is an algebraic measure that quanti-
fies the difficulty in performing this improvement. Although showing promising
results, including real-life applications [124], the main drawback of this mea-
sure is that it does not return a normalized value that allows a comparison
of difficulty among different problems. Both Fitness Distance Correlation and
Negative Slope Coefficient are still experimental measures. Vanneschi validates
them using a performance measure defined as being the proportion of runs for
which the global optimum has been found in less than 500 generations over 100
runs [121, Chap. 3]. This is no different than the success rate, which seems to
be, after all, the best measure of problem difficulty.

The first indicator of problem difficulty used in this thesis is indeed the
success rate, measured as the percentage of runs where an optimal solution
was found. The higher the rate, the lower the difficulty. The second indicator
is convergence speed, measured as the proportion of resources that was left

10.2. PROBLEMWISE ANALYSIS 103

Table 10.5: Indicators of problem difficulty. Numbers obtained by the Koza
technique. The higher the number on the last column, the lower the difficulty
of the problem.

Problem Success rate (c) Resources saved (r) c× r

Regression 40 0.92 36.8
Artificial Ant 10 0.49 4.9

Parity 0 – 0
Multiplexer 30 0.51 15.3

unused when convergence to an optimum happened. The average of the 30
runs was used. The more resources saved, the lower the difficulty. Table 10.5
shows both these indicators for all the problems considered, obtained by the
baseline technique, Koza. An additional column contains the product of the
two indicators. The higher this number, the lower the difficulty. According
to the last column, Regression is clearly the easiest problem, followed by the
Multiplexer, the Artificial Ant, and finally the Parity as the hardest problem.

10.2.3 Inviable Code

As stated in Section 5.1 (page 27), the amount of inviable code present in the
individuals may be a distinctive feature among the several problems considered.
Figure 10.1 shows the percentage of inviable code present in the individuals
along 50 generations of evolution. These lines were obtained by 30 runs of the
baseline technique, Koza.

Confirming early results [101, 102], the figure shows that most of the runs
of the Regression problem have practically no inviable code, although the vari-
ability is high. The Multiplexer problem also keeps inviable code to low levels,
followed by the Parity problem, and finally the Artificial Ant problem with a
very high percentage of inviable code. The median percentages of inviable code
measured on the last generation are 1.8% (Regression), 78.7% (Artificial Ant),
28.4% (Parity), and 11.5% (Multiplexer).

10.2.4 Diversity

Another feature that may be distinctive among the several problems considered
is the diversity of the population. Figure 10.2 shows the percentage of distinct
individuals present in the population along 50 generations of evolution. These
lines were obtained by 30 runs of the baseline technique, Koza. This is the
structural, or genotypic, diversity. A different kind of diversity, the phenotypic
diversity, may be measured as the percentage of distinct fitness values present
in the population. Figure 10.3 shows a boxplot of the phenotypic diversity
measured on the last generation, for the several problems considered.

In both kinds of diversity, the differences between Regression and the re-
maining problems are striking. In terms of genotypic diversity, on the Regres-
sion problem a large range of behaviors can be observed. In some runs the

104 10. DISCUSSION

10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100
Regression

generation

%
 in

vi
ab

le
 c

od
e

10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100
Artificial Ant

generation

%
 in

vi
ab

le
 c

od
e

10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100
Parity

generation

%
 in

vi
ab

le
 c

od
e

10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100
Multiplexer

generation

%
 in

vi
ab

le
 c

od
e

Figure 10.1: Percentage of inviable code along 50 generations of evolution. Num-
bers obtained by 30 runs of the Koza technique.

10.2. PROBLEMWISE ANALYSIS 105

diversity quickly drops from the early stages of the evolution, while in others it
increases and remains high until the end of the run. Other runs keep diversity
to median values. On the last generation, the distribution of values is very wide.
The other problems keep the values much more constrained, in particular the
Parity and Multiplexer problems, where in all the runs the diversity quickly
rises in the beginning of the evolution and remains close to the maximum value
until the end. The median values of the genotypic diversity measured on the
last generation are 38.0% (Regression), 96.3% (Artificial Ant), 97.3% (Parity),
and 98.2% (Multiplexer).

In terms of the phenotypic diversity measured on the last generation, once
again the Regression problem is the only one that displays a large range of
values, with the remaining problems finishing with very constrained values. It
could be expected that a higher genotypic diversity would naturally lead to a
higher phenotypic diversity, but that is not observed, due to the characteristics
of the problems (see Section 5.1, page 27). The Regression problem is where
the genotypic diversity reached lower, and yet it is the problem with the highest
phenotypic diversity (median of 33.7%), due to its wide range of possible fitness
values. In the remaining problems, where the genotypic diversity remained close
to the maximum value, the phenotypic diversity finished with median values as
low as 4.8% (Artificial Ant), 1.1% (Parity), and 3.2% (Multiplexer). Note that
the maximum allowed values would be 9.0% (Artificial Ant), 3.3% (Parity),
and 6.5% (Multiplexer, hypothetical maximum), according to the distribution
of possible fitness values described in Section 5.1.

10.2.5 Conclusions

The previous sections have described some of the characteristics that may ex-
plain why the Resource-Limited approach performed exceptionally well on the
Regression problem, precisely the one problem where the score achieved by the
Dynamic Limits was not so brilliant. The main observation is that the Regres-
sion problem is indeed different from the others. It is an easier problem than
the rest, it is generally less prone to inviable code, and it is able to maintain
a much higher phenotypic population diversity even in the presence of lower
structural (genotypic) diversity. In general, the runs of the Regression problem
exhibit a wider range of behaviors than the runs of the other problems.

Some of these characteristics may be related to each other. For example,
the reduced amount of inviable code is usually related to a higher phenotypic
diversity. Another related factor that plays an important role, maybe the main
reason for the major success of Resource-Limited GP in the Regression problem,
is the population size. A small population of 250 or 500 individuals would be
enough to solve this problem [32, 118]. With 1000 individuals the structural
diversity drops. The problem becomes so easy that Resource-Limited GP can
steadily shrink the population until close to 10% of its original size (see Figure
8.2, left, page 80) and hardly ever increase the resource limit beyond its initial
value, still achieving performance levels well above those of the Koza technique
(see Table 10.1). Regression was in fact the only problem where the evolution
of the population size showed this orderly behavior (compare with Figures 8.4,
8.6, and 8.8, left, pages 82, 84, and 86).

106 10. DISCUSSION

10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100
Regression

generation

ge
no

ty
pi

c
di

ve
rs

ity

10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100
Artificial Ant

generation

ge
no

ty
pi

c
di

ve
rs

ity

10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100
Parity

generation

ge
no

ty
pi

c
di

ve
rs

ity

10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100
Multiplexer

generation

ge
no

ty
pi

c
di

ve
rs

ity

Figure 10.2: Genotypic diversity of the population along 50 generations of evo-
lution. Numbers obtained by 30 runs of the Koza technique.

10.3. FINAL CONSIDERATIONS 107

Regression Artificial Ant Parity Multiplexer

0

20

40

60

80

100

ph
en

ot
yp

ic
 d

iv
er

si
ty

Figure 10.3: Phenotypic diversity of the population on the last generation.
Numbers obtained by 30 runs of the Koza technique.

This may be the biggest strength of Resource-Limited GP: the ability to deal
with too large a population, by quickly discarding the less promising individuals
while maintaining the ones with a good fitness/size ratio. On the other hand,
in problems where the population may be already too small to cope with the
problem, the Resource-Limited approach may actually degrade the convergence
ability of the search process. Some successful studies based on shrinking the
population to reduce computational effort and counter the effects of bloat have
in fact used larger initial populations. Luke et al. imploded populations from an
initial size of 2048 individuals until they reached only a single individual, for the
same four problems used in this thesis [64]. Fernandez et al. started with 5000
to 10000 individuals for the Artificial Ant and Parity problems [30, 31], stating
that the larger the initial population, the greater the advantage of employing
reductions [30]. Nevertheless, even with a modest population size, some variants
of the Resource-Limited approach are able to achieve a good performance in
most of the problems considered.

All things considered, both original approaches to bloat control presented
in this thesis successfully performed the task they were designed to. Dynamic
Limits have proven to be an excellent option for all the cases studied, capable
of self adapting to the different characteristics inherent to such a diverse set
of problems. Resource-Limited GP has achieved a performance ranging from
modest to excellent, and is apparently more susceptible to the different charac-
teristics of the problems. With additional work, both approaches can be further
improved.

10.3 Final Considerations

There is a considerable amount of concern regarding the usage of depth or size
limits in GP (see Section 2.2.4). The most traditional way of implementing the
limits is to reject the invalid individuals and replace them with one of their

108 10. DISCUSSION

parents. Although this effectively prevents the individuals from growing too
large, the replication of the parents may have undesirable effects. The larger
parents are the ones that usually produce invalid offspring, so they tend to be
replicated more often than the smaller parents. The population is filled with
the largest individuals, and quickly rushes to the limit.

Alternative ways of implementing the depth or size limits are: 1) retry the
genetic operator until a valid offspring is produced, either with the same parents
or using different ones; 2) accept the invalid individuals but null their fitness
so they will not be selected for reproduction in the next generation. In the
light of the crossover bias theory (Section 2.1.6), retrying the genetic operator
may not be advisable, since it provides another opportunity for the creation of
more small unfit individuals. Accepting the large invalid offspring seems like a
better measure against the undesirable crossover bias, since the large nullified
individuals will never reproduce. However, in the presence of a dynamic and
highly constrained limit that does not rise easily, parent replication may still
provide advantages over these other options.

In the present implementation of Dynamic Limits, the traditional parent
replication is indeed the action taken when the offspring violate the limit. But,
unlike typical (static) limits, the initial dynamic limit is very low, as low as
the maximum depth/size of the initial trees, and it will not be increased until
a deeper/longer individual proves to be better than any other found so far.
This highly constrains the search space, and for most problems it is known
that the good solutions lie somewhere beyond this limit, not below. When
a larger and better individual pushes the limit up, it means the process has
entered a better searching ground - better solutions can be found within the
new allowed depth/size. So, rushing the population towards this better, but
still highly constrained, search space, may actually speed the convergence to
better solutions. Parent replication along with a slowly increasing limit does
not necessarily entail the drawbacks of using a high static limit.

In Resource-Limited GP, although many of the experiments presented here
used a static limit at the individual level, the main effort against code growth is
exerted at the population level. But in doing so, Resource-Limited GP may be
creating unfavorable conditions that further stimulate bloat, according to the
crossover bias theory (Section 2.1.6). During the process of allocating resources
to the individuals in the queue, eventually the remaining available resources will
become so scarce that only the smallest individuals can be further accepted. The
allocation procedure continues to grant survival to these small unfit individuals
until the resources are exhausted or the restrictions on population size (in terms
of number of individuals) apply. In specific conditions, this may result in the
acceptance of all the small individuals created in the last breeding cycle, as well
as the ones from the previous generation, thus exacerbating the bias that causes
bloat.

Chapter 11

Conclusion

This final chapter summarizes the main contributions of this thesis and the
results obtained in the experiments, and points toward future directions of this
work.

11.1 Summary

The search space of GP is virtually unlimited and programs tend to grow in
size during the evolutionary process. Code growth is a healthy result of genetic
operators in search of better solutions, but it also permits the appearance of
pieces of redundant code that increase the size of programs without improving
their fitness. Besides consuming precious time in an already computationally
intensive process, redundant code may start growing rapidly, a phenomenon
known as bloat. This is a serious problem in GP, often leading to the stagnation
of the evolutionary process. Although many bloat control methods have been
proposed so far, a definitive solution is yet to be found.

This work has introduced two new approaches to bloat control, called Dy-
namic Limits and Resource-Limited GP. Unlike many others available, these do
not require specific genetic operators, modifications in fitness evaluation or dif-
ferent selection schemes, nor do they add any parameters to the search process.
Dynamic Limits is inspired on the most traditional technique of imposing a fixed
limit on the depth of the individuals allowed in the population, introduced by
Koza in tree-based GP. It implements a dynamic limit that can be raised or
lowered, depending on the best solution found so far, and can be applied either
to the depth or size of the programs being evolved, thus making it suitable also
for linear GP. Resource-Limited GP also uses a dynamic limit, but one that
acts at a different level of the GP paradigm. A single limit is imposed on the
total amount of tree nodes or code lines that the entire population can use.
Tree nodes or code lines can be regarded as the resources that each individual
needs to survive, and when they become insufficient for all, some individuals
are discarded and the population is resized. The resource limit can be raised
or lowered as in Dynamic Limits, depending on the mean population fitness.
While the Dynamic Limits act at the individual level, imposing a condition

109

110 11. CONCLUSION

that each individual must verify in order to be accepted into the population,
Resource-Limited GP acts at the population level, enforcing a global restric-
tion that the population as a whole must respect, regardless of the particular
individuals within.

Four different problems were used as a benchmark to study the efficiency
of both Dynamic Limits and Resource-Limited GP. They represent a varied se-
lection of problems in terms of bloat dynamics and response to different bloat
control techniques: Symbolic Regression of the quartic polynomial, Artificial
Ant on the Santa Fe food trail, 5-Bit Even Parity, and 11-Bit Boolean Multi-
plexer. A first comparison of results was performed among the Dynamic Limits
techniques, followed by a comparison among the Resource-Limited GP tech-
niques. The best techniques from both approaches were then involved in a third
set of experiments, compared between each other and joined together to form
a new hybrid technique. A final comparison was performed with some of the
best state-of-the-art bloat control methods. The baseline for comparison was
always the traditional Koza technique based on the static upper limit on tree
depth. All the techniques were tested with and without using this fixed limit.
The purpose was to check whether they can do without the static upper limit,
or still benefit from joining, instead of just replacing, the baseline technique.

Among the Dynamic Limits, whenever statistically significant differences
allowed for a ranking of the techniques, one of the depth-based variants (Dyn-
Depth) always scored number one in all problems, never performing worse, and
sometimes significantly better, than the successful baseline Koza. The size-based
variants generally performed worse than the rest. All the techniques within the
Dynamic Limits were able to control bloat without relying on the static upper
limit, a very desirable property.

Among Resource-Limited GP, one of the variants using the static upper limit
(lResSteady) distinguished itself by achieving similar performance to Koza, and
finding optima early and often when there were no significant differences in
terms of best fitness of run. In many cases, this approach tended to collapse the
population into only a few individuals (generally just one, small), regardless of
the difficulty of the problem. For easy problems like Regression, this meant good
performance, by finding an optimum while saving a large amount of resources.
But, for difficult problems like Parity, the population collapsed before finding
any optima, rendering all further search useless for lack of genetic diversity. So
the performance of Resource-Limited GP was not even for all problems, with
exceptional results on the Regression problem and only modest achievements
on the remaining problems.

When comparing Dynamic Limits and Resource-Limited GP, it was the lim-
its at the individual level that proved to have the main role in controlling tree
growth. Between the DynDepth and lResSteady techniques there were con-
siderable differences in average tree size. But when the static depth limit of
lResSteady was replaced by a dynamic limit, the new Hybrid technique pro-
duced similar growth curves to DynDepth, not to lResSteady. Regardless of
tree growth, the limits at the individual level also proved to be the main con-
tributors to an improved best fitness. When using either a static or dynamic
limit, replacing a fixed population with a dynamic population (e.g. Koza versus

11.2. FUTURE WORK 111

lResSteady, DynDepth versus Hybrid) did not improve the performance; but
when using either a fixed or dynamic population, replacing a static limit with
a dynamic limit (e.g. Koza versus DynDepth, lResSteady versus Hybrid) did
improve the results in many cases. The merit belonged to the dynamic limit,
not to the variable size population.

Regarding the comparison with the state-of-the-art, the techniques achieving
best fitness of run across all problems were the baseline Koza, the dynamic
depth DynDepth, and the state-of-the-art Double, a technique based on the
usage of a double tournament. Although Double was generally able to reach the
optimum more easily, it has the disadvantage of being constrained by a selection
method whose performance may be dependent on its settings. The settings
chosen for these experiments were expected to yield good results, as they were
the best previously found across the set of studied problems. Other state-of-
the-art techniques based on dynamic populations had a very poor performance.

A deeper analysis was performed concerning the reasons why each approach
achieved different results in the various problems considered, more precisely, why
Resource-Limited GP performed exceptionally well on the Regression problem,
precisely the one problem where the score achieved by the Dynamic Limits was
not so brilliant. Two indicators of problem difficulty were considered, namely,
the success rate and the success speed, and multiplied to provide a single dif-
ficulty value for each problem. The percentage of inviable code present in the
population along 50 generations of evolution was also studied, as well as the
structural (genotypic) diversity of the population, and the phenotypic diversity
in the last generation. The main observation was that the Regression problem
is indeed different from the others. It is an easier problem than the rest, it is
generally less prone to inviable code, and it is able to maintain a much higher
phenotypic diversity even in the presence of lower genotypic diversity. In gen-
eral, the runs of the Regression problem exhibit a wider range of behaviors than
the runs of the other problems. It was suggested that it is, however, the size of
the population relative to the needs of the problem that mostly influences the
level of success of the Resource-Limited GP.

Although Dynamic Limits was a more efficient bloat control method than
Resource-Limited GP across the set of four problems studied, both approaches
successfully performed the task they were designed to. A strong bloat control
method should be able to deal with any type of problem, and be quite insensitive
to the choice of parameters and even the combination of algorithmic elements
like the evaluation, selection, and breeding procedures. Both original contribu-
tions in this thesis follow these guidelines. They are parameterless and flexible
enough to adapt their behavior to the particularities of the situation at hand
without draining the available computational resources. Both deserve to be fur-
ther tested in order to identify their weaknesses, and improved in order to make
them stronger.

11.2 Future Work

The generally poor fitness results achieved by the dynamic size techniques may
be related to the difficulty in exploring around the current solution. Close to the

112 11. CONCLUSION

limit, any slight change in the number of nodes usually conflicts with the limit,
and the new individuals are rejected. The freedom of exploration, that is present
in all dynamic depth techniques, may be the crucial factor that the dynamic
size lacks. If this supposition is true, a simple modification to the dynamic size
techniques may easily solve the problem, for example by allowing individuals to
always grow a little beyond the limit, regardless of their fitness. One way to
do this is to allow the parents who do not exceed the limit to produce offspring
of any size; parents who are already above the limit can only produce offspring
smaller or equal to themselves. This is work in progress.

A comparison between the several implementation options presented when
an offspring violates the limit (see Section 10.3) would be an interesting study.
When using static limits, the best option appears to be the acceptance of the
invalid offspring while giving it null fitness, but parent replication may hold
some advantages when using dynamic limits.

The resource-limited approach could also be improved. When the individuals
are placed in the queue for receiving the resources, they are ranked exclusively by
fitness, regardless of size. If the individuals with the same fitness were ordered
by size, the results achieved could be very different. A simple modification
of a regular tournament to include this second ranking, called lexicographic
parsimony pressure (Section 2.2.2), has already proven to produce very good
results [67, 101,102]. By implementing other types of queuing, ones that give a
little more priority to size and less to fitness, it would be possible to increase the
amount of parsimony pressure of the resource-limited techniques, and possibly
improve their results in the problems where the performance was weaker. These
are precisely the problems with lower phenotypic diversity, where the usage of
different types of ranking is expected to cause more impact. This subject is
currently under study.

In the light of the recent crossover bias theory, another aspect of the resource
allocation procedure is also in need of improvement. In specific conditions, large
numbers of small unfit individuals are accepted into the new generation, in-
creasing the bias that causes bloat (see Section 10.3). The resource allocation
procedure is a powerful tool in shaping the characteristics of the population.
Carefully crafted, and possibly drawing inspiration from the operator equali-
sation bloat control method [26] (Section 2.2.4), it may provide the means to
control the distribution of tree sizes inside the population, and totally suppress
the bias that causes bloat.

Bibliography

[1] Altenberg, L.: The Evolution of Evolvability in Genetic Programming. In
Kinnear Jr., K.E., editor, Advances in Genetic Programming. MIT Press
(1994) C3:47–74

[2] Altenberg, L.: Emergent phenomena in genetic programming. In Se-
bald, A.V. and Fogel, L.J., editors, Proceedings of the 3rd Conference on
Evolutionary Programming. World Scientific Publishing (1994) 233–241

[3] Andre, D. and Teller, A.: A study in program response and the negative
effects of introns in genetic programming. In Koza, J.R. et al., editors,
Proceedings of GP’96. MIT Press (1996) 28–31

[4] Angeline, P.J.: Genetic programming and emergent intelligence. In Kinnear
Jr., K.E., editor, Advances in Genetic Programming. MIT Press (1994)
C4:75–98

[5] Angeline, P.J.: Two self-adaptive crossover operators for genetic program-
ming. In Angeline, P.J. and Kinnear Jr., K.E., editors, Advances in Genetic
Programming 2. MIT Press (1996) C5:89–110

[6] Angeline, P.J.: A Historical Perspective on the Evolution of Executable
Structures. Fundamenta Informaticae 35(1-4): 179–195 (1998)

[7] Angeline, P.J. and Pollack, J.B.: Coevolving high-level representations. In
Langton, C.G., editor, Proceedings of Artificial Life III. Addison-Wesley
(1994) 55–71

[8] Arakawaa, M., Hasegawab, K., Funatsu, K.: QSAR study of anti-
HIV HEPT analogues based on multi-objective genetic programming and
counter-propagation neural network. Chemometrics and Intelligent Labo-
ratory Systems 83(2): 91–98 (2006)

[9] Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic program-
ming – an introduction. dpunkt.verlag and Morgan Kaufmann (1998)

[10] Banzhaf, W. and Langdon, W.B.: Some considerations on the reason for
bloat. Genetic Programming and Evolvable Machines 3(1): 81-91 (2002)

[11] Banzhaf, W., Francone, F.D., Nordin, P.: Some Emergent Properties of
Variable Size EAs. Position paper at the Workshop on Evolutionary Com-
putation with Variable Size Representation at ICGA-97 (1997)

113

114 BIBLIOGRAPHY

[12] Bleuler, S., Brack, M., Thiele, L., Zitzler, E.: Multiobjective Genetic Pro-
gramming: Reducing Bloat Using SPEA2. In Proceedings of CEC-2001.
IEEE Press (2001) 536–543

[13] Blickle, T.: Theory of evolutionary algorithms and applications to system
design. PhD thesis, Swiss Federal Institute of Technology, Computer Engi-
neering and Networks Laboratory (1996)

[14] Blickle, T.: Evolving Compact Solutions in Genetic Programming: A Case
Study. In Voigt, H.-M. et al., editors, Proceedings of Parallel Problem Solv-
ing From Nature IV. Springer (1996) 564–573

[15] Blickle, T. and Thiele, L.: Genetic Programming and Redundancy. In
Hopf, J., editor, Genetic Algorithms within the Framework of Evolutionary
Computation. Max-Planck-Institut für Informatik (1994) 33–38

[16] Brameier, M. and Banzhaf, W.: A Comparison of Linear Genetic Program-
ming and Neural Networks in Medical Data Mining. IEEE Transactions on
Evolutionary Computation 5(1): 17–26 (2001)

[17] Brameier, M. and Banzhaf, W.: Neutral variations cause bloat in linear GP.
In Ryan, C. et al., editors, Proceedings of EuroGP-2003. Springer (2003)
286–296

[18] Brazdilova, S.L.: Autofocusing in Automated Microscopy. RNDr thesis,
Faculty of Informatics, Masaryk University, Czech Republic (2006)

[19] Cuendet, J.: Populations dynamiques en programmation génétique. MSc
thesis, Université de Lausanne, Université de Genève (2004)

[20] Da Costa, L.E. and Landry, J.A.: Relaxed genetic programming. In Kei-
jzer, M. et al., editors, Proceedings of GECCO-2006. ACM Press (2006)
937–938

[21] De Jong, E.D., Watson, R.A., Pollack, J.B.: Reducing Bloat and Promoting
Diversity using Multi-Objective Methods. In Spector, L. et al., editors,
Proceedings of GECCO-2001. Morgan Kaufmann (2001) 11–18

[22] De Jong, E.D. and Pollack, J.B.: Multi-objective methods for tree size con-
trol. Genetic Programming and Evolvable Machines, 4(3): 211–233 (2003)

[23] D’haeseleer, P.: Context preserving crossover in genetic programming. In
Proceedings of the 1994 IEEE World Congress on Computational Intelli-
gence. IEEE Press (1994) 256–261

[24] Dignum, S. and Poli, R.: Generalisation of the limiting distribution of
program sizes in tree-based genetic programming and analysis of its effects
on bloat. In Thierens, D. et al., editors, Proceedings of GECCO-2007. ACM
Press (2007) 1588–1595

[25] Dignum, S. and Poli, R.: Crossover, sampling, bloat and the harmful effects
of size limits. In O’Neill, M. et al., editors, Proceedings of EuroGP-2008.
Springer (2008) 158–169

BIBLIOGRAPHY 115

[26] Dignum, S. and Poli, R.: Operator equalisation and bloat free GP. In
O’Neill, M. et al., editors, Proceedings of EuroGP-2008. Springer (2008)
110–121

[27] Eiben, A.E. and Smith, J.E.: Introduction to Evolutionary Computing.
Springer (2003)

[28] Ekart, A.: Shorter Fitness Preserving Genetic Programs. In Fonlupt, C. et
al., editors, Proceedings of AE-1999. Springer (2000) 73–83

[29] Ekart, A. and Németh, S.Z.: Selection based on the pareto nondomina-
tion criterion for controlling code growth in genetic programming. Genetic
Programming and Evolvable Machines 2(1): 61–73 (2001)

[30] Fernandez, F., Vanneschi, L., Tomassini, M.: The effect of plagues in ge-
netic programming: A study of variable-size populations. In Ryan, C. et
al., editors, Proceedings of EuroGP-2003. Springer (2003) 317–326

[31] Fernandez, F., Tomassini, M., Vanneschi, L.: Saving computational effort
in genetic programming by means of plagues. In Sarker, R. et al., editors,
Proceedings of CEC-2003. IEEE Press (2003) 2042–2049

[32] Fernandez, F., Tomassini, M., Vanneschi, L.: An empirical study of mul-
tipopulation genetic programming. Genetic Programming and Evolvable
Machines 4(1): 21–51 (2003)

[33] Gathercole, C. and Ross, P.: An adverse interaction between crossover and
restricted tree depth in genetic programming. In Koza, J.R. et al., editors,
Proceedings of GP’96. MIT Press (1996) 291–296

[34] Gelly, S., Teytaud, O., Bredeche, N., Schoenauer, M.: A statistical learning
theory approach of bloat. In Beyer, H.-G. et al., editors, Proceedings of
GECCO-2005. ACM Press (2005) 1783–1784

[35] Gelly, S., Teytaud, O., Bredeche, N., Schoenauer, M.: Universal Consis-
tency and Bloat in GP. Revue d’Intelligence Artificielle 20(6): 805–827
(2006)

[36] Güroglu, S.: An Evolutionary Methodology for Conceptual Design. PhD
thesis. Graduate School of Natural and Applied Sciences of Middle East
Technical University (2005)

[37] Gustafson, S., Ekart, A., Burke, E., Kendall, G.: Problem difficulty and
code growth in genetic programming. Genetic Programming and Evolvable
Machines 5(3): 271–290 (2004)

[38] Haynes, T.: Collective Adaptation: The Exchange of Coding Segments.
Evolutionary Computation 6(4): 311–338 (1998)

[39] Hooper, D. and Flann, N.S.: Improving the Accuracy and Robustness of
Genetic Programming through Expression Simplification. In Koza, J.R. et
al., editors, Proceedings of GP’96. MIT Press (1996) 428–428

116 BIBLIOGRAPHY

[40] Iba, H., de Garis, H., Sato, T.: Genetic Programming Using a Minimum
Description Length Principle. Kinnear Jr., K.E., editor, Advances in Ge-
netic Programming. MIT Press (1994) 265–284

[41] Iba, H. and Terao, M.: Controlling Effective Introns for Multi-Agent Learn-
ing by Genetic Programming. In Whitley, D. et al., editors, Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO-2000).
Morgan Kaufmann (2000) 419–426

[42] Igel, C. and Chellapilla, K.: Investigating the Influence of Depth and Degree
of Genotypic Change on Fitness in Genetic Programming. In Banzhaf, W.
et al., editors, Proceedings of GECCO-1999. Morgan Kaufmann (1999)
1061–1068

[43] Kennedy, C.J. and Giraud-Carrier, C.: A depth controlling strategy for
strongly typed evolutionary programming. In Banzhaf, W. et al., editors,
Proceedings of GECCO-1999. Morgan Kaufmann (1999) 879–885

[44] Kinnear Jr., K.E.: Generality and Difficulty in Genetic Programming:
Evolving a Sort. In Forrest, S., editor, Proceedings of ICGA’93. Morgan
Kaufmann (1993) 287–294

[45] Koza, J.R.: Genetic programming – on the programming of computers by
means of natural selection. MIT Press (1992)

[46] Koza, J.R.: Genetic Programming II – Automatic discovery of reusable
programs. MIT Press (1994)

[47] Koza, J.R., Bennett III, F.H., Andre, D., Keane, M.A.: Genetic Program-
ming III – Darwinian Invention and Problem Solving. Morgan Kaufmann
(1999)

[48] Langdon, W.B.: Genetic Programming + Data Structures = Automatic
Programming! Kluwer Academic Publishers (1998)

[49] Langdon, W.B.: The Evolution of Size in Variable Length Representations.
In Proceedings of the 1998 IEEE International Conference on Evolutionary
Computation. IEEE Press (1998) 633–638

[50] Langdon, W.B.: Genetic Programming Bloat with Dynamic Fitness. In
Banzhaf, W. et al., editors, Proceedings of EuroGP-1998. Springer (1998)
96–112

[51] Langdon, W.B.: Size fair and homologous tree genetic programming
crossovers. In Banzhaf, W. et al., editors, Proceedings of GECCO-1999.
Morgan Kaufmann (1999) 1092–1097

[52] Langdon, W.B.: Size fair and homologous tree genetic programming
crossovers. Genetic Programming and Evolvable Machines, 1(1/2): 95–119
(2000)

BIBLIOGRAPHY 117

[53] Langdon, W.B.: Quadratic Bloat in Genetic Programming. In Whitley, D.
et al., editors, Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2000). Morgan Kaufmann (2000) 451–458

[54] Langdon, W.B. and Nordin, J.P.: Seeding GP Populations. In Poli, R. et
al., editors, Proceedings of EuroGP-2000. Springer (2000) 304–315

[55] Langdon, W.B., Poli, R.: Fitness Causes Bloat. Technical Report CSRP-
97-09, School of Computer Science, University of Birmingham (1997)

[56] Langdon, W.B. and Poli, R.: An analysis of the MAX problem in genetic
programming. In Koza, J.R. et al., editors, Proceedings of GP’97. Morgan
Kaufman (1997) 222–230

[57] Langdon, W.B., Poli, R.: Fitness Causes Bloat: Mutation. In Banzhaf, W.
et al., editors, Proceedings of EuroGP’98. Springer (1998) 37–48

[58] Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer
(2002)

[59] Langdon, W.B., Soule, T., Poli, R., Foster, J.A.: The evolution of size and
shape. In Spector, L. et al., editors, Advances in Genetic Programming 3.
MIT Press (1999) C8:163–190

[60] Langdon, W.B. and Banzhaf, W.: Genetic programming bloat without
semantics. In Schoenauer, M. et al., editors, Proceedings of PPSN-2000.
Springer (2000) 201–210

[61] Luerssen, M.H.: Graph Grammar Encoding and Evolution of Automata
Networks. In Proceedings of the 28th Australasian Computer Science Con-
ference (ACSC-2005), ACS CRPIT Series, vol 38 (2005) 229–238

[62] Luke, S.: Code Growth is Not Caused by Introns. In Late Breaking Papers
at GECCO-2000 (2000) 228–235

[63] Luke, S.: Issues in Scaling Genetic Programming: Breeding Strategies,
Tree Generation, and Code Bloat. PhD thesis, Department of Computer
Science, University of Maryland (2000)

[64] Luke, S., Balan, G.C., Panait, L.: Population implosion in genetic pro-
gramming. In Cantú-Paz, E. et al., editors, Proceedings of GECCO-2003.
Springer (2003) 1729–1739

[65] Luke, S.: Modification Point Depth and Genome Growth in Genetic Pro-
gramming. Evolutionary Computation 11(1): 67–106 (2003)

[66] Luke, S. and Panait, L.: Fighting Bloat With Nonparametric Parsimony
Pressure. In Guervos, J.M. et al., editors, Proceedings of PPSN-2002.
Springer (2002) 411–420

[67] Luke, S. and Panait, L.: Lexicographic parsimony pressure. In Lang-
don, W.B. et al., editors, Proceedings of GECCO-2002. Morgan Kaufmann
(2002) 829–836

118 BIBLIOGRAPHY

[68] Luke, S. and Panait, L.: A comparison of bloat control methods for genetic
programming. Evolutionary Computation 14(3): 309–344 (2006)

[69] Majid, A., Khan, A., Mirza, A.M.: Improving performance of nearest neigh-
borhood classifier using genetic programming. In Proceedings of the 2004
IEEE International Conference on Machine Learning and Applications.
IEEE Press (2004) 469–476

[70] Martin, P. and Poli, R.: Crossover operators for a hardware implementation
of genetic programming using FPGAs and Handel-C. In Langdon, W.B. et
al., editors, Proceedings of GECCO-2002. Morgan Kaufmann (2002) 845–
852

[71] McPhee, N.F. and Miller, J.D.: Accurate replication in Genetic Program-
ming. In Eshelman, L., editor, Proceedings of ICGA’95. Morgan Kaufmann
(1995) 303–309

[72] McPhee, N.F., Jarvis, A., Crane, E.F.: On the strength of size limits
in linear genetic programming. In Deb, K. et al., editors, Proceedings of
GECCO-2004. Springer (2004) 593–604

[73] McPhee, N.F. and Poli, R.: A schema theory analysis of the evolution of
size in genetic programming with linear representations. In Miller, J. et al.,
editors, Proceedings of EuroGP-2001. Springer (2001) 108–125

[74] Miller, J.: What Bloat? Cartesian Genetic Programming on Boolean Prob-
lems. In Late Breaking Papers at GECCO-2001 (2001) 295–302

[75] Montana, D.J. and Davis, L.: Training feedforward neural networks using
genetic algorithms. In Proceedings of the International Joint Conference on
Artificial Intelligence (1989) 762-767

[76] Nordin, P. and Banzhaf, W.: Complexity compression and evolution. In
Eshelman, L., editor, Proceedings of ICGA’95. Morgan Kaufmann (1995)
318–325

[77] Nordin, P., Banzhaf, W., Francone, F.D.: Efficient Evolution of Machine
Code for CISC Architectures using Instruction Blocks and Homologous
Crossover. Spector, L. et al., editors, Advances in Genetic Programming 3.
MIT Press (1999) 275–299

[78] Nordin, P., Francone, F., Banzhaf, W.: Explicitly Defined Introns and De-
structive Crossover in Genetic Programming. In Rosca, J.P., editor, Pro-
ceedings of the Workshop on Genetic Programming: From Theory to Real-
World Applications (1995) 6–22

[79] Nordin, P., Francone, F., Banzhaf, W.: Explicitly Defined Introns and De-
structive Crossover in Genetic Programming. In Angeline, P.J. and Kinnear
Jr., K.E., editors, Advances in Genetic Programming 2. MIT Press (1996)
111–134

BIBLIOGRAPHY 119

[80] O’Reilly, U.-M. and Oppacher, F.: Hybridized Crossover-Based Search
Techniques for Program Discovery. In Proceedings of the 1995 World Con-
ference on Evolutionary Computation. IEEE Press (1995) 573–578

[81] Page , J., Poli, R., Langdon, W.B.: Smooth Uniform Crossover with
Smooth Point Mutation in Genetic Programming: A Preliminary Study.
In Poli, R. et al., editors, Proceedings of EuroGP-1999. Springer (1999)
39–49

[82] Panait, L. and Luke, S.: Alternative Bloat Control Methods. In Deb, K. et
al., editors, Proceedings of GECCO-2004. Springer (2004) 630-641

[83] Platel, M.D., Clergue, M., Collard, P.: Maximum Homologous Crossover
for Linear Genetic Programming. In Ryan, C. et al., editors, Proceedings
of EuroGP-2003. Springer (2003) 194–203

[84] Poli, R.: General schema theory for genetic programming with subtree-
swapping crossover. In Miller, J. et al., editors, Proceedings of EuroGP-
2001. Springer (2001) 143–159

[85] Poli, R.: A simple but theoretically-motivated method to control bloat in
genetic programming. In Ryan, C. et al., editors, Proceedings of EuroGP-
2003. Springer (2003) 200–210

[86] Poli, R. and Langdon, W.B.: Genetic Programming with One-Point
Crossover. In Chawdhry, P.K. et al., editors, Proceedings of the Second
On-line World Conference on Soft Computing in Engineering Design and
Manufacturing. Springer London (1997) 180–189

[87] Poli, R. and Langdon, W.B.: A New Schema Theory for Genetic Program-
ming with One-point Crossover and Point Mutation. In Koza, J. et al.,
editors, Proceedings of GP’97. Morgan Kaufmann (1997) 278–285

[88] Poli, R. and Langdon, W.B.: On the Search Properties of Different
Crossover Operators in Genetic Programming. In Koza, J. et al., editors,
Proceedings of GP’98. Morgan Kaufmann (1998) 293–301

[89] Poli, R., Langdon, W.B., Dignum, S.: On the limiting distribution of pro-
gram sizes in tree-based genetic programming. In Ebner, M. et al., editors,
Proceedings of EuroGP-2007. Springer (2007) 193–204

[90] Poli, R., McPhee, N.F., Vanneschi, L.: The impact of population size on
code growth in GP: analysis and empirical validation. In Proceedings of
GECCO-2008. ACM Press (2008), to appear

[91] Poli, R., McPhee, N.F., Vanneschi, L.: Elitism reduces bloat in GP: a the-
oretical analysis with empirical corroboration. In Proceedings of GECCO-
2008. ACM Press (2008), to appear

[92] Poli, R. and McPhee, N.F.: Parsimony pressure made easy. In Proceedings
of GECCO-2008. ACM Press (2008), to appear

120 BIBLIOGRAPHY

[93] Ratle, A. and Sebag, M.: Avoiding the bloat with Probabilistic Grammar-
guided Genetic Programming. In Collet, P. et al., editors, Proceedings of
the Artificial Evolution 5th International Conference (Evolution Artificielle,
EA-2001). Springer (2001) 255–266

[94] Rochat, D.: Programmation Génétique Parallèle: Opérateurs Génétiques
Variés et Populations Dynamiques. MSc thesis, Université de Lausanne,
Université de Genève (2004)

[95] Rochat, D., Tomassini, M., Vanneschi, L.: Dynamic Size Populations in
Distributed Genetic Pogramming. In Keijzer, M. et al., editors, Proceedings
of EuroGP-2005. Springer (2005) 50–61

[96] Rosca, J.P.: Generality versus Size in Genetic Programming. In Koza, J.R.
et al., editors, Proceedings of GP’96. MIT Press (1996) 381–387

[97] Rosca, J.P.: Analysis of Complexity Drift in Genetic Programming. In
Koza, J.R. et al., editors, Proceedings of GP’97. Morgan Kaufmann (1997)
286–294

[98] Rosca, J.P. and Ballard, D.H.: Complexity Drift in Evolutionary Compu-
tation with Tree Representations. Technical Report NRL96.5, Computer
Science Department, The University of Rochester (1996)

[99] Rosca, J.P. and Ballard, D.H.:: Discovery of Subroutines in Genetic Pro-
gramming. In Angeline, P.J. and Kinnear Jr., K.E., editors, Advances in
Genetic Programming 2. MIT Press (1996) 177–202

[100] Silva, S. and Almeida, J.: GPLAB – A Genetic Programming Toolbox for
MATLAB. In Gregersen, L., editor, Proceedings of the Nordic MATLAB
Conference (2003) 273–278

[101] Silva, S. and Almeida, J.: Dynamic maximum tree depth - a simple tech-
nique for avoiding bloat in tree-based GP. In Cantú-Paz, E. et al., editors,
Proceedings of GECCO-2003. Springer (2003) 1776–1787

[102] Silva, S. and Costa, E.: Dynamic limits for bloat control - variations on
size and depth. In Deb, K. et al., editors, Proceedings of GECCO-2004.
Springer (2004) 666–677

[103] Silva, S., Silva, P.J.N., Costa, E.: Resource-Limited Genetic Program-
ming: Replacing Tree Depth Limits. In Ribeiro, B. et al., editors, Proceed-
ings of ICANNGA-2005. Springer (2005) 243–246

[104] Silva, S. and Costa, E.: Resource-Limited Genetic Programming: The
Dynamic Approach. In Beyer, H.-G. et al., editors, Proceedings og GECCO-
2005. ACM Press (2005) 1673–1680

[105] Silva, S. and Costa, E.: Comparing tree depth-limits and resource-limited
GP. In Corne, D. et al., editors, Proceedings of CEC-2005. IEEE Press
(2005) 920–927

BIBLIOGRAPHY 121

[106] Smith, P.W.H. and Harries, K.: Code Growth, Explicitly Defined Introns,
and Alternative Selection Schemes. Evolutionary Computation 6(4): 339–
360 (1998)

[107] Soule, T. and Foster, J.A.: Removal Bias: a New Cause of Code Growth in
Tree Based Evolutionary Programming. In Proceedings of the 1998 IEEE
International Conference on Evolutionary Computation. IEEE Press (1998)
781–786

[108] Soule, T.: Code growth in genetic programming. PhD thesis, College of
Graduate Studies, University of Idaho (1998)

[109] Soule, T. and Foster, J.: Code size and depth flows in genetic program-
ming. In Koza, J. et al., editors, Proceedings of GP’97. Morgan Kaufmann
(1997) 313–320

[110] Soule, T. and Foster, J.A.: Effects of Code Growth and Parsimony Pres-
sure on Populations in Genetic Programming. Evolutionary Computation
6(4): 293–309 (1998)

[111] Soule, T., Foster, J., Dickinson, J.: Code growth in genetic programming.
In Koza, J. et al., editors, Proceedings of GP’96. MIT Press (1996) 215–223

[112] Soule, T. and Heckendorn, R.B.: An analysis of the causes of code growth
in genetic programming. Genetic Programming and Evolvable Machines
3(1): 283–309 (2002)

[113] Spector, L.: Simultaneous evolution of programs and their control struc-
tures. In Angeline, P.J. and Kinnear Jr., K.E., editors, Advances in Genetic
Programming 2. MIT Press (1996) 137–154

[114] Stevens, J., Heckendorn, R.B., Soule, T.: Exploiting disruption aversion to
control code bloat. In Beyer, H.-G. et al., editors, Proceedings of GECCO-
2005. ACM Press (2005) 1605–1612

[115] Streeter, M.J.: The Root Causes of Code Growth in Genetic Program-
ming. In Ryan, C. et al., editors, Proceedings of EuroGP-2003. Springer
(2003) 443–454

[116] Tackett, W.A.: Recombination, Selection, and the Genetic Construction
of Genetic Programs. PhD thesis, Department of Electrical Engineering
Systems, University of Southern California (1994)

[117] Tavares, J.: Evolvability in Optimization Problems: The Role of Rep-
resentations and Heuristics. PhD thesis, Department of Informatics Engi-
neering, University of Coimbra (2007)

[118] Tomassini, M., Vanneschi, L., Cuendet, J., Fernandez, F.: A New Tech-
nique for Dynamic Size Populations in Genetic Programming. In Proceed-
ings of CEC-2004. IEEE Press (2004) 486–493

122 BIBLIOGRAPHY

[119] Trujillo, L. and Olague, G.: Synthesis of interest point detectors through
genetic programming. In Keijzer, M. et al., editors, Proceedings of GECCO-
2006. ACM Press (2006) 887–894

[120] Van Belle, T. and Ackley, D.H.: Uniform subtree mutation. In Foster, J.A.
et al., editors, Proceedings of EuroGP-2002. Springer (2002) 152–161

[121] Vanneschi, L.: Theory and Practice for Efficient Genetic Programming.
PhD thesis, Faculty of Sciences, University of Lausanne (2004)

[122] Vanneschi, L., Tomassini, M., Collard, P., Clergue, M.: A Survey of Prob-
lem Difficulty in Genetic Programming. In Bandini, S. and Manzoni, S.,
editors, Proceedings of the 9th Congress of the Italian Association for Ar-
tificial Intelligence. Springer (2005) 66–77

[123] Vanneschi, L., Tomassini, M., Collard, P., Vérel, S.: Negative slope coeffi-
cient. A measure to characterize genetic programming. In Collet, P. et al.,
editors, Proceedings of the 9th European Conference on Genetic Program-
ming. Springer (2006) 178–189

[124] Vanneschi, L.: Investigating Problem Hardness of Real Life Applications.
In Riolo, R.L. et al., editors, Genetic Programming Theory and Practice
V. Springer (2007) 107–125

[125] Wagner, N., Michalewicz, Z.: Genetic programming with efficient popu-
lation control for financial time series prediction. In Late Breaking Papers
at GECCO-2001 (2001) 458–462

[126] Zhang, B.-T. and Mühlenbein, H.: Balancing Accuracy and Parsimony in
Genetic Programming. Evolutionary Computation 3(1): 17–38 (1995)

[127] Zhang, B.-T.: A Taxonomy of Control Schemes for Genetic Code Growth.
Position paper at the Workshop on Evolutionary Computation with Vari-
able Size Representation at ICGA-97 (1997)

[128] Zhang, B.-T.: Bayesian methods for efficient genetic programming. Ge-
netic Programming and Evolving Machines 1(1): 217–242 (2000)

Index

11-Bit Boolean Multiplexer, 29
5-Bit Even Parity, 29

Adaptive Representation Learning, 15
ANOVA, 27
Artificial Ant, 28
Automatically Defined Functions, 15
Automatically Defined Macros, 15

bloat, 2, 98, see also theories, bloat;
techniques, bloat control

analogy, 10
boxplot, 32
brood recombination, 6, 12

changed fitness selection, 14
code editing, 5, 15
code growth, 1, 2, 98, see also bloat
crossover, 31, see also techniques, bloat

control, crossover
crossover bias, 9, 108

death by size, 15
defense against crossover, 6
depth correlation theory, 9
depth-based theory, 9
diffusion theory, 8
diversity, see also population, diversity

phenotypic, 103
genotypic, 103

diversity pressure, 14
drift theory, 8
dynamic fitness, 15
Dynamic Limits, 2, 14, 17–20
Dynamic Maximum Tree Depth, see Dy-

namic Limits
dynamic populations, 15, 88

entropy random walk theory, 8
Evolutionary Computation, 1

explicitly defined introns, 15

fitness, 31
best, 32, 98
cloud, 102
diversity, see diversity, phenotypic
landscape, 102

fitness causes bloat, 8
Fitness Distance Correlation, 102

generations, 30, 32
Genetic Programming, 1

cartesian, 15
linear, 2, 5, 7, 13, 15, 97
relaxed, 15
stochastic grammar-based, 15
tree-based, 2, 5, 7, 9, 13, 15, 17,

27, 97, 98
GPLAB, 3, 27
greedy recombination, 12

hitchhiking, 6

improved fitness selection, 14
intron theory, 7
introns, 5

artificial introns in genetic algo-
rithms, 5, 6

benefits, 5
explicitly defined, 5, 15
inviable code, 7
side effects, 5
unoptimized code, 7

inviable code, 7, 103, see also introns

Lagrange distribution, 10
limits

concerns, 14, 107
depth, 33
implementation options, 13, 108

123

124 INDEX

resources, 49
size, 34

marking, 7
MATLAB, 3
Minimum Description Length, 11
modification point depth, 9
Module Acquisition, 15
multiplexer, see 11-Bit Boolean Multi-

plexer
mutation, 31, see also techniques, bloat

control, mutation

nature of search spaces theory, 8
Negative Slope Coefficient, 102
neighborhood relationship, 102

Occam’s razor, 11
operator equalisation, 14, 112
original contributions

Dynamic Limits, 2, 14
GPLAB, 3
Resource-Limited GP, 2, 14
visual arrangement, 2

parity, see 5-Bit Even Parity
parsimony pressure, 11

lexicographic, 12, 112
multi-objective, 12
parametric, 11

difficulties, 11
effects, 11
linear, 87

pareto-based, 12
population, 30

diversity, 31, 98, 103
initialization, 31
size, 78, 105

problem difficulty, 102
problems studied

11-Bit Boolean Multiplexer, 29
5-Bit Even Parity, 29
Artificial Ant, 28
Symbolic Regression, 27

protection theory, 7
pseudo-hillclimbing, 14

redundant code, see introns

regression, see Symbolic Regression
removal bias, 8
replication accuracy theory, 7
reproduction rate, 31
Resource-Limited GP, 2, 14, 21–26
resources, 2, 14, 21–23, 30, 32

amount, 31
given, 32
saved, 102
used, 32

selection for reproduction, 31
selection for survival, 32
semantic introns, see unoptimized code
soft brood selection, 12
solution distribution theory, 8
structural

diversity, see diversity, genotypic
introns, see inviable code

success rate, 32, 99, 102
Symbolic Regression, 27
syntactic introns, see inviable code

tarpeian, 11
techniques, bloat control

changed fitness selection, 14
code editing, 5, 15
crossover

10/90%, 12
brood recombination, 6, 12
context preserving, 12
greedy recombination, see brood

recombination
hill-climbing, 7, 8, 14
homologous, 13
homologous, aligned, 13
homologous, maximum, 13
multiple, 13
one-point, 12
one-point, strict, 12
others, 13
pseudo-hillclimbing, 14
same depths, 12
size fair, 13
soft brood selection, see brood

recombination
uniform, 12
uniform, smooth, 12

INDEX 125

uniform, strict, 12
death by size, 15
diversity pressure, 14
dynamic fitness, 15
Dynamic Limits, 14
dynamic populations, 15
explicitly defined introns, 15
fixed limit on population nodes,

14
improved fitness selection, 14
modularization and reusability, 15

Adaptive Representation Learn-
ing, 15

Automatically Defined Functions,
15

Automatically Defined Macros,
15

Module Acquisition, 15
mutation

others, 13
point, smooth, 12
size fair, 13
subtree, uniform, 13

operator equalisation, 14, 112
parsimony pressure

lexicographic, 12, 112
parametric, 11
pareto-based, 12

Resource-Limited GP, 14
tarpeian, 11
tournament

double, 12, 88
lexicographic, 12, 112
proportional, 12

traditional Koza limit, 2, 5, 13
waiting room, 15

theories, bloat
asymmetry between addition and

deletion of code, 6
crossover bias, 9, 108
defense against crossover, 6
depth correlation theory, see mod-

ification point depth
depth-based theory, see modifica-

tion point depth
diffusion theory, see fitness causes

bloat

drift theory, see fitness causes bloat
entropy random walk theory, see

fitness causes bloat
fitness causes bloat, 8
hitchhiking, 6
intron theory, see defense against

crossover
modification point depth, 9
nature of search spaces theory, see

fitness causes bloat
neutral crossover, 7
protection theory, see defense against

crossover
removal bias, 8
replication accuracy theory, see de-

fense against crossover
selection pressure, 9
solution distribution theory, see fit-

ness causes bloat
tree resilience, 9

tournament, 31, see also techniques,
bloat control, tournament

traditional Koza limit, 2, 5, 13
tree size, average, 32, 97, 98

unoptimized code, 7, see also introns

waiting room, 15

