
UNIVERSIDADE DE COIMBRA

Faculdade de Ciências e Tecnologia

Departamento de Engenharia Informática

NNEETTWWOORRKK MMIIDDDDLLEEWWAARREE FFOORR MMOOBBIILLEE AANNDD PPEERRVVAASSIIVVEE LLAARRGGEE SSCCAALLEE AAUUGGMMEENNTTEEDD RREEAALLIITTYY GGAAMMEESS

((MMIIDDDDLLEEWWAARREE DDEE RREEDDEE PPAARRAA JJOOGGOOSS DDEE RREEAALLIIDDAADDEE AAUUMMEENNTTAADDAA MMÓÓVVEEIISS EE PPEERRVVAASSIIVVOOSS EEMM LLAARRGGAA EESSCCAALLAA))

By

Pedro Miguel da Fonseca Marques Ferreira

PhD thesis submitted for obtaining the degree of

Doutor em Engenharia Informática

May 2008

Thesis made under the supervision of

Prof. Doutor Fernando P. L. Boavida Fernandes

(Faculdade de Ciências e Tecnologia da Universidade de Coimbra)

And under the co-supervision of

Prof. Doutor João de Matos Orvalho

(Escola Superior de Educação de Coimbra, Instituto Politécnico de Coimbra)

This thesis was financed by FCT
(Fundação para a Ciência e Tecnologia)

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página iii

Dedicated to my family and friends

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página iv

ACKNOWLEDGMENTS

I specially acknowledge the help of my advisor Fernando Boavida and co-advisor João Orvalho for their

precious input along the road that led to the writing of this thesis.

I also like to acknowledge the support of FCT – Portuguese Foundation for Science and Technology for

their financial Support and the E-NEXT and CONTENT Networks of Excellence for their support when i

needed to present papers on top conferences.

Last, but not least, I would like to acknowledge the support of my family and friends through these years

of work, without which things would surely have been much more difficult.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página v

TABLE OF CONTENTS

Acknowledgments ... iv

Table of contents .. v

Index of figures .. ix

Index of tables ... xi

Abbreviations .. xiii

Abstract ... xxi

Resumo ... xxiii

Introduction .. 1

Framework ... 1

Objectives .. 2

Contributions ... 3

Structure of this thesis ... 3

2. State of the art and related work ... 5

2.1. Pervasive computing... 5

2.1.1. Introduction .. 5

2.1.2. Essential issues .. 5

2.1.3. Middleware ... 7

2.1.4. Context awareness .. 8

2.1.5. System challenges ... 8

2.1.6. Taxonomies ... 9

2.1.7. Devices .. 10

2.1.8. Operating systems .. 11

2.1.9. Sensing and actuating ... 12

2.1.10. Pervasive software architecture and future evolution ... 13

2.2. Augmented reality .. 17

2.3. Games ... 24

2.4. Methods, Protocols and Technologies ... 26

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página vi

2.4.1. Security ... 26

Geospatial location and orientation ... 31

2.4.3. Service discovery ... 40

2.4.4. Third generation mobile networks ... 45

2.4.5. Ad-hoc networking and dynamic configuration .. 52

2.4.6. Scalability .. 55

2.4.7. Consistency ... 55

2.4.8. Multimedia data heterogeneity .. 59

2.4.9. Data distribution and replication .. 59

2.4.10. Quality of service .. 60

2.4.11. Management of networks and services .. 62

2.5. Related work ... 63

3. Proposal and experimental development .. 66

3.1. Proposal .. 66

3.1.1. Introduction .. 66

3.1.2. Requirements specification .. 68

3.1.3. Proposed General Architecture .. 69

3.2. Experimental development .. 75

3.2.1.. The SENSACT API .. 75

3.2.2. The STF PAN API .. 77

3.2.3. The STFServer API ... 81

3.2.4. Changes in STF from version 1 to version 2 .. 82

3.2.5. The Sixrm Reliable Multicast Protocol .. 84

3.2.6. The Sixrm API .. 87

3.2.7. The ARMSV6 System ... 90

3.2.8. The QoS APIs ... 90

3.2.9. The Security Architecture ... 94

3.2.10. Managing the system .. 95

4. Evaluation ... 102

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página vii

4.1. Evaluating scalability ... 102

4.1.1. The personal area network level .. 102

4.1.2. The large scale distributed server level .. 103

4.1.3. The back office central level ... 103

4.1.4. Analysing the scalability of possible alternate architectures .. 104

4.1.5. Graphical case study of the alternatIVE architectures .. 106

4.2. Evaluating SENSACT and STF PAN ... 109

4.3. Evaluating the Sixrm protocol ... 111

4.4. Evaluating the QoS APIs .. 114

4.4.1. Emulation of the PDP Context Handler architecture .. 114

4.4.2. RSVP implemented by UDP encapsulation with a simulated router in between 114

4.5. Evaluating the security architecture ... 115

4.5.1. Personal Area Network Level Security Testing ... 115

4.5.2. Testing communication between large scale distributed level servers 120

4.6. Evaluating common APIs .. 123

4.7. Evaluating the management architecture .. 123

4.7.1. Scalability analysis ... 123

4.8. Building a concept application .. 124

4.8.1. The objective ... 124

4.8.2. The Concept .. 124

4.8.3. The Architecture ... 125

4.8.10. Running the concept application .. 125

5. Conclusions and future work .. 131

5.1. Future work .. 133

References .. 135

Annexes .. 141

Annex I – List of published papers ... 141

Annex II – SENSACT API Interfaces and Classes ... 142

Annex III – STFPAN API Interfaces and Classes .. 146

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página viii

Annex IV – STFSERVER API Interfaces and Classes .. 152

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página ix

INDEX OF FIGURES

Figure 1 - Central level of the system ... 66

Figure 2 - Large scale network level of the system .. 67

Figure 3 - The personal area network level of the system ... 67

Figure 4 - Opting for network middleware architecture .. 68

Figure 5 - Central level architecture ... 71

Figure 6 - Large Scale Distributed Level Architecture ... 72

Figure 7 - Sensor architecture (Personal Area Network level) ... 73

Figure 8 - Actuator architecture (Personal Area Network level) .. 74

Figure 9 - Central Game Device Architecture (Personal Area Network level) .. 74

Figure 10 - Management application menu structure and available menu options 101

Figure 11 - Personal Area Network level .. 106

Figure 12 - Large Scale Distributed Server Level .. 107

Figure 13 - Totally centralized architecture .. 107

Figure 14 - Totally distributed architecture .. 108

Figure 15 - Totally peer-to-peer architecture ... 108

Figure 16 - Delay in milliseconds from messages received at the game controller device from a sensor

 .. 109

Figure 17 - Jitter in milliseconds from messages received at the game controller device from a sensor 110

Figure 18 - Delay in milliseconds from messages received at the actuator from the main game controller

device ... 110

Figure 19 - Jitter in milliseconds from messages received at the actuator from the main controller game

device ... 111

Figure 20 - Delay from second node on first node ... 113

Figure 21 - Jitter from second node on first node .. 113

Figure 22 - Delay received at PAN from distributed server .. 116

Figure 23 - Jitter received at PAN from distributed server ... 117

Figure 24 - Delay received at the distributed server from the PAN ... 118

Figure 25 - Jitter received on the distributed server from the PAN ... 119

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página x

Figure 26 - Delays received from the distributed server Gillian on distributed server Julian 120

Figure 27 - Jitter received from the distributed server Gillian on the distributed server Julian 121

Figure 28 - Delay received from the distributed server Julian on the distributed server Gillian 122

Figure 29 - Jitter received from the distributed server Julian on the distributed server Gillian 122

Figure 30 - ConceptCentralMidlet working with a session active .. 127

Figure 31 - ConceptLookingCamera working with a session active .. 128

Figure 32 - ConceptlookingGlasses working with a session active ... 129

Figure 33 - ConceptVirtualLightRay working with a session active .. 130

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página xi

INDEX OF TABLES

Table 1 - Types of sensors .. 21

Table 2- SENSACT API Packages .. 75

Table 3 - Methods of the SENSACT Sensor interface ... 76

Table 4 – Methods of the SENSACT Actuator interface.. 76

Table 5 - Methods of SENSACT interface SensactManager .. 77

Table 6 - Packages of the STF PAN API ... 78

Table 7 - STF PAN Sensor interface of package pt.uc.dei.lcst.sft.pan.comms.area 78

Table 8 - STF PAN Actuator interface from package pt.uc.dei.lcst.sft.pan.comms.area 79

Table 9 - STF PAN STFSessionManager class of package pt.uc.dei.lcst.stf.pan .. 79

Table 10 - STF PAN STFMessager interface of package pt.uc.dei.lcst.stf.pan .. 80

Table 11 - STF PAN STFPartitioner interface of package pt.uc.dei.lcst.stf.pan .. 80

Table 12 - STF PAN STFStatistics interface of package pt.uc.dei.lcst.stf.pan.. 80

Table 13 - STF PAN STFApplication interface of package pt.uc.dei.lcst.stf.pan.. 81

Table 14 - STFServer API Packages ... 82

Table 15 - STFState methods and correspondent functions .. 83

Table 16 - Sixrm profile settings ... 88

Table 17 - Methods of class Sixrm Entity .. 89

Table 18 - Methods of class SixrmListener ... 89

Table 19 - Classes of pt.uc.dei.lcst.stf.pan.qos ... 92

Table 20 - classes of package pt.uc.dei.lcst.stf.pan.qos.rsvp ... 94

Table 21 - Messages between central server and management application ... 99

Table 22 - Messages between distributed server and management application 100

Table 23 - Messages between central and distributed servers .. 100

Table 24 - Messages between distributed servers and UEs ... 100

Table 25 - Profile settings for the tests .. 112

Table 26 - SENSACT package pt.uc.dei.lcst.stf.sensact.link classes and functions 142

Table 27 - SENSACT package pt.uc.dei.lcst.stf.sensact.main classes and functions 142

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página xii

Table 28 - SENSACT package pt.uc.dei.lsct.stf.sensact.net classes and functions 143

Table 29 - SENSACT package pt.uc.dei.lcst.stf.sensact.persist classes and functions 143

Table 30 - SENSACT package pt.uc.dei.lcst.stf.sensact.pack classes and functions 145

Table 31 - Classes of STFPAN package pt.uc.dei.lcst.stf.pan .. 147

Table 32 - Classes of STFPAN package pt.uc.dei.lcst.stf.pan.comms.area ... 150

Table 33 - Classes of STFPAN package pt.uc.dei.lcst.stf.pan.comms.link ... 150

Table 34 - Classes of STFPAN package pt.uc.dei.lcst.stf.pan.comms.sdp ... 151

Table 35 - Classes of STFPAN package pt.uc.dei.lcst.pan.net ... 151

Table 36 - Classes of STFPAN package pt.uc.dei.lcst.stf.pan.persist .. 151

Table 37 - STFSERVER classes of package pt.uc.dei.lcst.stf .. 153

Table 38 - STFSERVER classes of package pt.uc.dei.lcst.stf.applications .. 153

Table 39 - STFSERVER classes of package pt.uc.dei.lcst.stf.applications.manager................................... 153

Table 40 - STFSERVER classes of package pt.uc.dei.lcst.stf.applications.messages 155

Table 41 - STFSERVER classes of package pt.uc.dei.lcst.stf.arms ... 155

Table 42 - STFSERVER classes of package pt.uc.dei.lcst.stf.diameter... 158

Table 43 - STFSERVER classes of package pt.uc.dei.lcst.stf.diameter.cxdx .. 160

Table 44 - STFSERVER classes of package pt.uc.dei.lcst.diameter.sh ... 161

Table 45 – STFSERVER classes of package pt.uc.dei.lcst.stf.net ... 161

Table 46 - STFSERVER classes of package pt.uc.dei.lcst.stf.persist .. 161

Table 47 - STFSERVER classes of package pt.uc.dei.lcst.stf.sctp ... 162

Table 48 - STFSERVER classes of package pt.uc.dei.lcst.stf.uelink.. 162

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página xiii

ABBREVIATIONS

3D - 3 (Three) Dimensions (in space)

3G - Third Generation mobile networks

3GPP - 3
rd

 Generation partnership Project

AAA - Authentication, Authorization, and Accounting

ACL - Asynchronous Connection-Less

AES - Advance Encryption Standard or Ryjandael

AH - Authenthication header

AKA - Authentication and Key Agreement

AN - Access Network

ANSI - American National Standards Association

API - Application Programming Interface

AR - Augmented Reality

ARMS - Augmented Reliable corba Multicast System

ARMS - Augmented Reliable corba Multicast System

AS - Anti spoofing

AS - Application Server

AuC - Authenthication Center

AVP - Attribute Value Pair

BD - Bluetooth device

BGCF - Breakout Gateway Control Function

BSC - Base Station Controller in BSS system

BSS - Base Station Subsystem

BTS - Base Transceiver Stations in BSS system

CBC - Cell Broadcast Center

CBC - Cipher Block Chaining mode

CC - Country Code

CDMA - Code Division Multiple Access

CGI - Cell Global Identity

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página xiv

CI - Cell Identity

CLDC - Common Limited Device Configuration

CN - Core Network

COPS - Common Open Policy Service Protocol

CORBA - Common Object Request Broker Architecture

CS - Circuit Switched

CSCF - Call Session Control Function

DA - Directory Agent

DCON - Dissemination Controls

DEA - Data Encryption Algorithm defined in DES (DEA=DES)

DES - Data Encryption Standard

DES-EDE2- Protocol variation of Triple DES

DES-EDE3- Protocol variation of Triple DES

DES-EEE2- Protocol variation of Triple DES

DES-EEE3- Protocol variation of Triple DES

DGPS - Differential GPS

DiffServ - Differentiated Services

DRM - Digital Rights Management

DSA - Digital Signature Algorithm

DS-CDMA- Direct Sequence CDMA

DSS - Digital Signature Standard

DSSS - Direct Sequence Spread Spectrum

ECB - Electronic Codebook mode

ECC - Elliptic curve cryptography

EDR - Enhanced Data Rate

EIR - Equipment Identity Register

ESP - Encapsulating Security Payload

FDD - Frequency Division Duplex

GALILEU - European positioning system contender to GPS

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página xv

GGSN - Gateway GPRS Support Node

GLMC - Gateway Mobile Location Center

GPRS - General Packet Radio Service

GPS - Global Positioning System

GSM - Global System for Mobile Communications

GSN - GPRS Support node (GGSN or SGSN)

HLR - Home Location Register

HMD - Head Mounted Display

HSS - Home Subscriber Server

I-CSCF - Interrogating CSCF

IETF - Internet Engineering Task Force

IKE - Internet Key Exchange

IMEI - International Mobile Equipment Identity

IMS - IP Multimedia Subsystem

IMSI - International Mobile Subscriber identity

IM-SSF - IP Multimedia Service Switching Function

IMT-2000- International Mobile Telecommunications 2000

IntServ - Integrated Services

IP - Internet Protocol

IPSec - IP Security

Ipv4 - Internet Protocol Version 4

Ipv6 - Internet Protocol Version 6

IS-95 - Interim Standard 95

ISIM - IP Multimedia Services Identity Module

IT - Information Technologies

J2ME - Java 2 Micro Edition

J2ME - Java 2 Micro Edition

J2SE - Java 2 Standard Edition

L2CAP - Logical Link Control and Adaptation Protocol

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página xvi

LA - Location Area

LAC - Location Area Code

LADGPS - Local Area DGPS

LAI - Location Area Identifier

LAN - Local Area Network

LAPI - J2ME Location API

LCS - Location Services

LMP - Link Manager Protocol

LMSI - Local Mobile Station Identifier

LSP - Locally Significant Part

M3UA - MTP3 User Adaptation Layer

MAC - Message authentication code

MAP - Message Application Part

MAPSec - MAP Security

MCC - Mobile Country Code

ME - Mobile Equipment

MGCF - Media Gateway Control Function

MGW - Media Gateway

MIDP - Mobile Information Device Profile

MMAPI - Mobile Media API

MNC - Mobile Network Code

MR - Mixed Reality

MS - Mobile Station

MS - Mobile Station

MSIN - Mobile Subscriber identification Number

MSISDN - Mobile Subscriber ISDN

MSRN - Mobile Station Roaming Number

MT - Mobile Termination

MTP - Message Transfer Part

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página xvii

NDC - National Destination Code

NDS/IP - Network domain security for IP based protocols

NE - Network Element

NIST - National Institute for Standards and Technology

NMSI - National Mobile Subscriber Identity

Node-B - Equivalent to BTS in RNS system

OAM - Operation, Administration and Management

OBEX - Object Exchange protocol

OSA-SCS - Open Services Architecture Service Capability Server

PAN - Personal Area Network

P-CSCF - Proxy-CSCF

PDN - Packet Data Network

PDP - Packet Data Protocol

PIN - Personal Identification Number

PKCS - Public Key Cryptography Standards

PLMN - Public Land Mobile Network

PN - Pseudo Noise

PPP - Point to Point Protocol

PPS - Precise Positioning Service

PS - Packet Switched

PSTN - Plain old Switching Telephone Network

P-TMSI - PS domain TMSI

QoS - Quality of Service

QoS - Quality Of Service

RA - Routing Area

RAC - Routing Area Code

RAI - Routing Area Identifier

RC2 - Rivest’s Cipher 2 Encryption Standard

RC4 - Rivest’s Cipher 4 Encryption Standard

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página xviii

RC5 - Rivest’s Cipher 5 Encryption Standard

RFCOMM- Radio Frequency Communications

RNC - Radio Network Controller (Equivalent to BSC in the RNS system)

RNS - Radio Network Subsystem (also known as UTRAN)

RNTI - Radio Network Temporary Identity

RRC - Radio Resource Control

RSA - Rivest Shamir Adleman algorithm for asymmetric cryptography

RSVP - Resource Reservation Protocol

RTP - Real Time Protocol

S/MIME - Secure Multipurpose Internet Mail Extensions

SA - Select availability / Service Agent

SCO - Synchronous Connection Oriented

S-CSCF - Serving CSCF

SCTP - Stream Control Transmission Protocol

SDK - Software Development Kit

SDP - Service Discovery Protocol (Bluetooth) / Session Description Protocol

SEG - Security gateway

SENSACT- SENSors and ACTuators API

SGSN - Serving GPRS Support Node

SIGTRAN- Signaling and Transport Working Group of IETF

SIP AS - SIP protocol Application Server

SIP - Session Initiation Protocol

Sixrm - The Sixrm reliable multicast protocol.

SLF - Subscription Locator Function

SLM-API- Salutation manager API

SLM-TI - Salutation manager Transport Interface

SLP - Service Location Protocol

SMS-GMSC- SMS gateway MSC

SMS-IWMSC- SMS Interworking MSC

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página xix

SN - Subscriber Number

SNR - Serial Number

SPS - Standard Positioning Service

SS7 - Signaling System 7

SSDP - Simple Service Discovery Protocol (SSDP)

SSL - Secure Sockets Layer

STF - Status Transmission Framework

STFPAN - STF Personal Area Network middleware

STFSERVER- STF Server middleware

SUA - SCCP User Adaptation Layer

TAC - Type Allocation Code

TCP - Transmission Control Protocol

TCS BIN - Telephony Control Specification Binary protocol

TDD - Time Division Duplex

TE - Terminal Equipment

TLS - Transport Layer Security

TMN - Telecommunications Management Network

TMSI - Temporary Mobile Subscriber Identity

TOA - Time of Arrival

Triple DES- Triple Data Encryption Standard

UA - User Agent

UDP - User Datagram Protocol

UE - User Equipment

UICC - UMTS Integrated Circuit Card

UMTS - Universal Mobile Telecommunications System

uPnP - Universal Plug and Play

URA - UTRAN Registration area

URL - Uniform Resource Locator

USIM - Universal Subscriber Identity Module

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página xx

UTC - Coordinated Universal Time

UTRAN - Universal Terrestrial Radio Access Network

VLR - Visitor Location Register

VR - Virtual Reality

WAAS - Wide Area Augmentation System

WADGPS- Wide Area DGPS

WAP - Wireless Application protocol

WCDMA - Wideband Code Division Multiple Access

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página xxi

ABSTRACT

Mark Weiser theorized about a new kind of computing, called ubiquitous or pervasive computing, where

specialized elements of hardware and software would be so ubiquitous no one would notice their

presence. According to Mark Weiser the technology required for ubiquitous computing would come in

three parts: cheap, low power computers including equally convenient displays, software for ubiquitous

applications and a network that ties them all together.

In the current decade we will see the merger of telecommunications and IT worlds. The Internet

Protocol (IP) is the network layer protocol in the 3GPP specifications, and the current trend in

developing new telecommunications networks is to utilize internet protocols. So, the network that ties

all things together is now possible. But there are many issues under study in the internet community.

These are mobility, quality of service, security, management of networks and services, discovery, ad -

hoc networking and dynamic configuration, and geospatial location.

A significant requirement of pervasive applications is fast service development and deployment, which

implies the introduction of various service and application frameworks and platforms. For this,

middleware is a common solution. The benefits of middleware utilization are the improved

programming model, and the hiding of many implementation details, which make middleware based

application development much faster.

It is now becoming quite clear that entertainment, and more specifically mobile gaming, will be one of

the killer applications of future wireless networks, however, mobile gaming applications face issues that

are different from fixed network applications. These issues include fluctuating connectivity, quality of

service and host mobility. Another issue is how to manage game state consistency with a dynamic

mobile networked environment in which devices may be physically close but topologically distant.

Further yet, there is the issue of how to manage multiple wireless network connections such as, for

example, GPRS and IEEE 802.11 at the same time.

Augmented reality extends reality with virtual elements while keeping the computer in an assistive,

unobtrusive role. It is possible to create games that place the user in the physical world through

geographically aware applications. The latest mobile phones are being equipped with GPS receivers and

there are software and hardware tendencies from the largest manufacturers to equip mobile phones

with more advanced context - aware technology. All the latest mobile phones are equipped with

cameras and some of the latest ones are coming with some form of 3D rendering technology. Bluetooth

technology and increasing miniaturization makes possible, in the near future, specialized pervasive

equipment for augmented reality. The opportunity for some cheap augmented reality is here.

To our knowledge, there was no specialized network middleware solution for large-scale mobile and

pervasive augmented reality games.

The main objective of this PhD was the creation of a network middleware for mobile communications

that will enable integrated large-scale augmented reality applications to be built around it.

The middleware that was created evolved from previous work from the candidate in the area of

interactive distributed multimedia, more specifically in state transmission for a collaborative virtual

environment middleware platform, the Status Transmission Framework (STF). This platform extended

ARMS - Augmented Reliable corba Multicast System - with capabilities for the handling of state

transmission for distributed collaborative virtual environments.

In this context mechanisms were studied, proposed and evaluated to deal with issues ranging from

Internet issues to architectural issues.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página xxii

The internet issues are: Mobility (such as fluctuating connectivity, host mobility and handling of multiple

simultaneous network connections), Quality of Service (QoS - such as minimizing delay and jitter, and

reliability), security (such as authentication and prevention of cheating), management of networks and

services, discovery, ad-hoc networking and dynamic configuration, geospatial location and orientation.

The architectural issues are: scalability; consistency; multimedia data heterogeneity; data distribution

and replication.

The main contribution of this thesis was the creation of a network middleware for mobile and pervasive

large scale augmented reality games, based in Java.

As sub contributions, we have the development of the total architecture of the system, the

development of the SENSACT API, a API for sensors and actuators in a PAN based on Bluetooth network

and Java CLDC, in connection with the STF PAN API. We also have the development of the Sixrm Reliable

Multicast protocol (part of the STF Server API). As for QoS we developed the QoS API, for the distributed

servers (part of the STF Server API) and for the clients (part of the STF PAN API), and for security we

developed the Security Architecture for the whole system. We also have proven system scalability.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página xxiii

RESUMO

Mark Weiser teorizou sobre um novo tipo de computação, chamada computação ubíqua ou

computação pervasiva, onde elementos especializados de software e hardware seriam tão ubíquos que

ninguém notaria a sua presença. De acordo com Mark Weiser a tecnologia requerida para a computação

ubíqua viria em três partes: Computadores baratos e de baixo consumo energético incluindo ecrãs

igualmente convenientes, software para aplicações ubíquas e uma rede que os ligasse todos.

Na década corrente iremos ver a junção dos mundos da telecomunicação e da tecnologia da informação

(IT). O protocolo da Internet (IP) é o protocolo de camada de rede nas especificações 3GPP, e a

tendência corrente ao desenvolver novas redes de telecomunicações é utilizar protocolos de Internet.

Logo, a rede que liga todas as coisas juntas é agora possível. Mas existem muitos problemas em estudo

na comunidade da Internet. Estes são por exemplo a mobilidade, a qualidade de serviço (QoS), a

segurança, a gestão de redes e serviços, a descoberta de serviços, redes ad-hoc e configuração

dinâmica, e localização e orientação geo-espacial.

Um requisito fundamental de aplicações pervasivas é um rápido desenvolvimento e instalação de

serviços, o que implica a introdução de vários frameworks e plataformas de serviços. Para isto o

middleware é uma solução comum. Os benefícios da utilização de middleware são o modelo melhorado

de programação, e o esconder de muitos detalhes de implementação, que fazem o desenvolvimento de

aplicações baseadas em middleware muito mais rápido.

Está agora a tornar-se muito claro que o entretenimento, e mais especificamente o jogo móvel, serão

uma das aplicações mais utilizadas nas redes wireless do futuro. No entanto, as aplicações de jogos

móveis enfrentam problemas diferentes das suas congéneres de rede fixa. Estes problemas incluem

conectividade flutuante, qualidade de serviço, e mobilidade do host. Outro problema é como gerir a

consistência do estado do jogo com um ambiente móvel dinâmico em que os aparelhos podem estar

fisicamente perto mas topologicamente distantes. Mais ainda existe o problema de como gerir múltiplas

ligações de rede como, por exemplo, GPRS e IEEE 802.11 ao mesmo tempo.

A realidade aumentada estende a realidade com elementos virtuais enquanto mantém o computador

num papel de assistente, não obstrutivo. È possível criar jogos que colocam o utilizador no mundo físico

através de aplicações que sejam sensíveis á localização. Os últimos aparelhos móveis estão a ser

equipados com aparelhos GPS e existem tendências de software e hardware dos maiores fabricantes

para equipar os telefones móveis com ainda mais avançada tecnologia sensível ao contexto. Todos os

últimos telefones móveis são equipados com câmaras e alguns dos últimos vêm com alguma forma de

tecnologia 3D. A tecnologia Bluetooth e a miniaturização que cada vez é maior tornarão possível, num

futuro próximo, equipamento especializado para realidade aumentada. A oportunidade para realidade

aumentada barata está aí.

Ao nosso conhecimento, não existe nenhuma solução de middleware de rede para jogos de realidade

aumentada móvel e pervasiva em larga escala.

O principal objectivo deste doutoramento é a criação de um middleware de rede para comunicações

móveis que permita a construção de aplicações de realidade aumentada de larga escala.

O middleware criado evoluiu de trabalho prévio do candidato na área de multimédia interactivo e

distribuído (no seu mestrado), mais especificamente em transmissão de estados numa plataforma para

ambientes virtuais colaborativos, a Status Transmission Framework Versão 1.0. (STF). Esta plataforma

estendeu o ARMS – Augmented Reliable corba Multicast System – com capacidades para o

manuseamento de transmissão de estados para ambientes virtuais distribuídos e colaborativos.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página xxiv

Neste contexto foram estudados, propostos e avaliados mecanismos para tratar de problemas desde

problemas de Internet a problemas arquitecturais.

Os problemas de Internet são: Mobilidade (tais como a conectividade flutuante, mobilidade do host e a

gestão de conexões múltiplas do host), qualidade de serviço (QoS – tais como minimizar atraso e jitter,

e maximizar a confiabilidade), segurança (como autenticação e prevenção de batota), gestão de redes e

serviços, descoberta de serviços, redes ad-hoc e configuração dinâmica, localização e orientação geo-

espacial.

Os problemas arquitecturais são: escalabilidade; consistência; heterogeneidade dos dados multimédia;

distribuição e replicação de dados.

A principal contribuição desta tese é a criação de um middleware de rede para a criação de jogos de

realidade aumentada móvel e pervasiva em larga escala, baseado em Java.

Como subcontribuições, temos o desenvolvimento da arquitectura total do sistema, , e a arquitectura

detalhada. Temos também o desenvolvimento da API SENSACT, uma API para sensores e actuadores

numa PAN baseada numa rede Bluetooth e Java CLDC, em conexão com a API STF PAN. Temos também

o desenvolvimento do protocolo de multicast confiável Sixrm (parte da API STF Server). Para a

qualidade de serviço desenvolvemos a API QoS, para os servidores distribuídos (parte da STF Server API)

e para os clientes (parte da STF PAN API) e para segurança desenvolvemos a arquitectura de segurança

para o sistema de middleware completo. Provámos também a escalabilidade do sistema.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 1

INTRODUCTION

FRAMEWORK

According to Mark Weiser in [1], “The most profound technologies are those that disappear. They

weave themselves into the fabric of everyday life until they are indistinguishable from it.”

According yet to Mark Weiser in [1], and his colleagues at Palo Alto Research some time ago, the idea of

The Personal Computer itself is misplaced and the and that the vision of laptop machines, “dynabooks”

and “knowledge navigators” is only a transitional step towards achieving the real potential of

information technology.

In the same article Weiser continues to argue that such machines can now truly make computing an

integral, invisible part of people’s lives, and they were trying at Palo Alto Research to conceive a new

way of thinking about computers, one that takes into account the human world and allows the

computers themselves to vanish in the background.

Augmented reality tries to extend the real world with virtual objects while maintaining the computer in

an assistive, unobtrusive role, thus trying to keep in line with the pervasive computing objective of

invisibility.

Augmented Reality is a sub concept of Mixed Reality [4]. AR augments the real world with synthetic

electronic data. Augmented Virtuality (AV) enhances the virtual world with data from the physical (real)

world. Mixed reality is a term that covers a continuum from AR to AV.

An example project of Mixed Reality is exposed in [4] by the Mixed Reality Systems Laboratory.

Both Mixed Reality and Augmented Reality are different than Virtual Reality, which is not pervasive at all

(as we discussed in the previous section), and just deprives the user from the real world, completely

evolving it in a virtual world.

It is quickly becoming clear that entertainment will be one of the killer applications of future wireless

networks [3]. More specifically mobile gaming was predicted to be worth more than 1.2 billions of

American dollars in 2006 in the United States market alone. However mobile applications faces issues

that are different from fixed network applications, including fluctuating connectivity, network Quality of

Service and host mobility.

In the times before computers existed, the games people played were designed and played out in the

physical world with the use of real world properties, such as physical objects, our sense of space, and

spatial relations [30].

Pre-computer day’s game interactions consisted of two elements: human to human interaction and

human to physical world interaction. In the current times, due to their higher level of attractiveness to

game players, computer games have become the dominant form of entertainment.

Computer games motivate the players by bringing them more challenge, curiosity and fantasy, which

are the three main elements contributing to fun in games. They provoke curiosity because they are

usually designed with an optimal level of information complexity, they create fantasy by creating the

illusion of the player being immersed in an imaginative virtual world with computer sound and graphics,

and they create challenge by having goals typically more interactive than traditional games.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 2

However, there is a also a new tendency in gaming called pervasive games,, where the real world is

coming back to the computer entertainment field stressing the pervasive and ubiquitous nature of these

games: Pervasive games are no longer confined to the domain of the computer (the virtual domain), but

integrate the physical and social aspects of the real world.

Pervasive gaming is a relatively new field but we can already identify several unique types of pervasive

games, each focusing on different aspects of the gaming experience.

To our knowledge, there is no specialized network middleware solution for large-scale mobile and

pervasive augmented reality games, and we feel this is a field worth exploring. Not only pervasive

technology is becoming more and more important and its use widespread, but also pervasive games are

beginning to be built and used by gamers all around the world. Augmented reality is an interesting

concept for games and pervasive computing, bringing together the real world with a virtual world that

exists only in the game. Enabling it in large scale brings true mobility to the solution, enabling the

players to play alone or against one another wherever they are, as long as they are covered by the

system. Building a network middleware to help build this pervasive and mobile large scale augmented

reality game applications is important because in this way we hope to contribute with a solution that

solves most of the problems these applications face in terms of software, excluding the ones related to

graphic presentation.

OBJECTIVES

The main objective of this PhD is the creation of a network middleware for mobile communications that

enables integrated large-scale mobile and pervasive augmented reality applications to be built around it.

It should be a highly scalable middleware that should address issues related to network programming of

large scale augmented reality game applications for mobile and pervasive environments.

The middleware created evolves from previous work from the candidate in the area of interactive

distributed multimedia, more specifically in state transmission for a collaborative virtual environment

middleware platform, the Status Transmission Framework (STF)[7][8]. This platform extended ARMS -

Augmented Reliable CORBA Multicast System [9] -with capabilities for the handling of state transmission

for distributed collaborative virtual environments.

In this context mechanisms were studied, proposed and evaluated to deal with issues ranging from

Internet issues to architectural issues.

The internet issues are:

• Mobility, such as fluctuating connectivity, host mobility and handling of multiple

simultaneous network connections;

• Quality of Service (QoS), such as minimizing delay and jitter ,and reliability;

• security, such as authentication and prevention of cheating;

• management of networks and services;

• discovery;

• ad-hoc networking and dynamic configuration;

• geospatial location and orientation.

The architectural issues are

• scalability;

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 3

• consistency;

• multimedia data heterogeneity;

• data distribution and replication.

CONTRIBUTIONS

The main contribution of this thesis was the creation of a network middleware for mobile and pervasive

large scale augmented reality games, based in Java.

As sub contributions, we had:

• The development of the total architecture of the system. The general PhD vision was published

in [10] (see Annex 1), with the general architecture being published in [11] (see Annex 2), and

the detailed architecture with results published in [12] (see Annex5).

• The development of the SENSACT API, a API for sensors and actuators in a PAN based on

Bluetooth network and Java CLDC, in connection with the STF PAN API, published in [13] (see

Annex 3).

• The development of the Sixrm Reliable Multicast protocol (part of the STF Server API),

published in [14] (See Annex 4).

• The proof that the architecture chosen is the most scalable architecture from the set of

possible alternative architectures that could have been chosen to develop the middleware

system, published in [17] (See Annex 6).

• The development of the QoS API, for the distributed servers (part of the STF Server API) and for

the clients (part of the STF PAN API), published in [15] (See Annex 7).

• The development of the Security Architecture for the whole system, published in [16] (See

Annex8).

STRUCTURE OF THIS THESIS

This PhD thesis is structured as follows: First, we have an abstract (Resumo, in portuguese), then, the

introduction (this section), then we continue with the state of the art and related work chapter, and go

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 4

on with the proposal and experimental development chapter, the evaluation chapter, followed finally by

the conclusions, by the references, and, to close, the various annexes (which are the papers published

related to the thesis work, and the classes and interfaces of the various APIs of the middleware).

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 5

2. STATE OF THE ART AND RELATED WORK

2.1. PERVASIVE COMPUTING

2.1.1. INTRODUCTION

According to Mark Weiser, Pervasive computing is different from Ubiquitous Computing in many ways.

“Ubiquitous computing” in this context does not mean just computers that can be carried to the beach,

jungle or airport. Even the most powerful notebook computer, with access to a worldwide information

network, still focuses attention on a single box. By analogy with writing, carrying a super laptop is like

owning just one very important book. Customizing this book, even writing millions of other books, does

not begin to capture the real power of literacy, and although ubiquitous computers may use sound and

video in addition to text and graphics, that does not make them “multimedia computers.” Today’s

multimedia machine makes the computer screen into a demanding focus of attention rather than

allowing it to fade into the background.

Diametrically opposed to Mark Weiser’s vision of Pervasive Computing is the notion of virtual reality,

which attempts to make a world inside the computer. Users normally wear special goggles that project

an artificial scene onto their eyes; they wear gloves or even bodysuits that sense their motions and

gestures so that they can move about and manipulate virtual objects. Although it may have its purpose

in allowing people to explore realms otherwise inaccessible— the insides of cells, the surfaces of distant

planets, the information web of data bases—virtual reality is only a map, not a territory. It excludes

desks, offices, other people not wearing goggles and bodysuits, weather, trees, walks, chance

encounters and, in general, the infinite richness of the universe. Virtual reality focuses an enormous

apparatus on simulating the world rather than on invisibly enhancing the world that already exists.

Indeed, the opposition between the notion of virtual reality and ubiquitous, invisible computing is so

strong that many people use the term “embodied virtuality” to refer to the process of drawing

computers out of their electronic shells. The “virtuality” of computer-readable data—all the different

ways in which they can be altered, processed and analyzed—is brought into the physical world.

Still according to Mark Weiser, the technology for this will come in three parts: cheap, low-power

computers that include equally convenient displays, software for ubiquitous applications and a network

that ties them all together.

It’s clear to see that currently, we already have the cheap low power computers needed for pervasive

computing and can even easily build new ones for specialized purposes. Examples are the many PDAs

and mobile phones on the market. There is also software for ubiquitous applications that can be built.

The network that ties all things together is the internet or the various wireless networks that support

the IP protocol. One of these networks is the 3G (Third Generation) Mobile Network standardized by

3GPP.

Pervasive computing is all about making computers disappear in the background, while keeping or

increasing their usefulness. The implications in terms of application potential and in terms of security,

for example, are enormous.

But most importantly, while using pervasive computers, people will continue to place importance more

on other people than in computers, as it should be. Computers should be a tool, nothing more.

2.1.2. ESSENTIAL ISSUES

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 6

Essential issues for pervasive computing are location and scale [1]. Pervasive computers must know

where they are, to be able to adequately provide its service. Their scale (size) must also be adequate for

the service provided. There is no question that the scale of a mobile phone is adequate for its function,

or that the scale of an electronic board is adequate for its function.

Since Weiser’s vision, many pervasive computing projects have emerged at major universities and

industry thought the world.

Examples of these projects include Project Aura at Carnegie Mellon, Oxygen at MIT, Portolano at

University of Washington and Endeavour at the UC Berkley, besides many more other projects,

examples of some we include in the section of related work.

The evolution that led to pervasive computing started in the 1970’s. Two related and previous distinct

earlier steps in that evolution are distributed systems and mobile computing [18].

Some technical problems faced by pervasive computing are similar to the ones found previously and

solved successfully by these earlier steps, others are new and new solutions have to be found.

In the case of distributed systems, this field arose of the intersection between personal computers and

local networks [18].

Through the 1970’s to the 1990’s a conceptual framework and algorithmical base was created for all

work involving two or more computers interconnected by a network. This includes remote

communication, fault tolerance, availability, remote information access and security.

Mobile computing made its appearance in the early 1990’s as full function laptop computers joined

wireless LANs and led researchers to face the problems that arise when building a distributed system

with mobile clients.

Results achieved in mobile computing can be grouped in mobile networking, mobile information access,

support for adaptative applications, system level energy saving techniques, and location sensitivity

broad areas.

Pervasive computing includes the issues of distributed computing and mobile computing, but goes

further, including four more research issues [18]. These issues are smart spaces, uneven conditioning,

invisibility, and localized scalability.

A space is any physical space that can be defined and can be acted upon such as a room, corridor, or any

given area. By embedding computers in the physical space, one builds a smart space.

Invisibility means the complete disappearance of pervasive technology from user’s consciousness and

it’s the ideal for pervasive computing expressed by Weiser’s vision [1].

The smart space’s growth in terms of sophistication has implications in terms of bandwidth, energy and

distraction for the wireless mobile user that the presence of multiple users will only complicate further.

Scalability, and localized scalability, are thus important and critical problems in pervasive computing.

Uneven conditioning means developing methods of masking the different computing environments

available. Many levels of integration of technology will probably exist in different smart spaces

(pervasive computing environments) and ways of masking these differences must be developed at the

penalty of loosing invisibility.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 7

Other issues are pro-activity, the ability to actively look-ahead on a task before a user needs the result

of it, and self tuning, automatically adjusting the behaviour to fit the current circumstances.

Pro-activity must be balanced with transparency, to maintain the objective of invisibility of the whole

pervasive system.

It may be also necessary to use adaptation, when a resource (such as network bandwidth) is necessary

in a higher quantity than the one that it’s available. How the adaptation strategy is chosen and how the

client and user manage adaptation are questions that must be answered [18].

To manage energy use efficiently, it’s important for the hardware’s operating system to use high level

energy management since sophisticated capabilities such as proactivity and self-tuning increase the

energy demand of software. By itself, advances in battery technology and low-power circuit design

cannot be enough to compensate the needed energy.

For this, the operating system could use energy aware memory management and energy aware

adaptation. One has to take into account how much the energy management techniques influence the

invisibility of the system, for example.

Another question is how powerful has a mobile client to be for it to be useful in pervasive computing. It

must be a thick or a thin client? A thick client is a powerful client, and a thin client is a minimal client.

Many applications will require one or another. For a given application, the minimal acceptable thickness

of a client is determined by the worst case environmental conditions under which the application must

run satisfactorily [18]. A thin client may be enough if one can always count with a sufficient bandwidth,

low-latency wireless communication to a near computing infrastructure, and if batteries could be

recharged or replaced

Also, for a pervasive system to strive to be minimally intrusive, and therefore invisible, it must be

context aware. It must be able to modify its behaviour based on information about the user’s

environment and current attributes, such as its location, for example. And many other possible

attributes. Things that can be sensed by adequate hardware like sensors make part of the context.

Security is an important issue in pervasive computing, and it’s largely more important in pervasive

computing than in distributed and mobile computing.

The amount of information the pervasive system, because of its context awareness, has on its users it’s

enormous. The need for privacy and trust is as such greatly increased.

This decade we will see the merger of telecommunication and IT worlds, being that the current trend in

developing new telecommunication networks is to utilize the internet protocol (IP) [12]. An example of

this is the 3GPP specifications.

Issues under study on the internet community and in other standardization bodies include mobility,

Quality of Service (QoS), management of networks and services, discovery, ad-hoc networking and

dynamic configuration, and geospatial location.

An important implication of the introduction of various service application frameworks and platforms is

the requirement of fast service development and deployment, which can be achieved through the use

of specialized middleware.

2.1.3. MIDDLEWARE

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 8

The properties of pervasive middleware can be subdivided in properties referent to the pervasive

environment where the middleware runs and quality attributes of the middleware [14].

As for properties that refer to the pervasive environment, we have application aware adaptation (a part

of context awareness, it means the collaboration between system infrastructure and individual

applications), mobility (divided into actual, physical and virtual mobility [14]), integration architecture

(the way the system is integrated).

As for quality attributes of the middleware, we have interoperability, portability and adaptability,

robustness and agility, and fidelity.

2.1.4. CONTEXT AWARENESS

There are various research challenges and opportunities of instrumenting the physical world with

pervasive networks of sensor rich, embedded computation, fulfilling two of the objectives of pervasive

computing according to Weiser: Ubiquity (injecting computation into the physical world with high spatial

density), and Invisibility (By Having the nodes and sets of nodes operate in an autonomous fashion).

To make pervasive computing itself pervasive, we need reusable building blocks that can help us moving

away from the specialized instrumentation of each of particular service environment and build toward

building reusable techniques for sensing, computing and manipulating the physical world [19].

The physical world presents an incredibly rich set of input modalities, including acoustics, image,

motion, vibration, heat, light, humidity, pressure, ultrasound, radio, magnetic and many more exotic

modes.

Traditionally, the engineering required to collect and analyze all this data was complex.

The opportunity lies ahead in the ability to easily deploy flexible sensing, computation, and actuation

capabilities into our physical environments such that the devices themselves are general purpose and

can support a variety of application types.

2.1.5. SYSTEM CHALLENGES

There are of course, a number of system challenges in pervasive computing, which must be taken into

account.

The first one is the immense scale of the system. A vast number of small devices will make part of those

systems and to achieve dense instrumentation of these complex physical systems, these devices must

scale down to extremely small volume. Applications should be formulated in terms of immense

numbers of them.

It is expected that in 5 to 10 years, complete systems with computing, storage, communication, sensing,

and energy storage could be as small as a cubic millimeter [19]. Of course each aspects capacity will be

limited. Fidelity and availability will come from the quantity of partially redundant measurements and

their correlations, not the individual’s components quality and precision.

The second one is limited access. Many devices will be placed in environments where it is difficult to

connect them with wires or are plainly inaccessible.

These systems individual elements become unattended, and resource constrained. Much of the

communication used will be wireless and the nodes will have to use the energy they have on-board and

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 9

harvested (batteries or solar cells). If they are inaccessible, they must operate without human

intervention.

The third one is extreme dynamics. By virtue of the nodes and the system as a whole being closely tied

to the ever changing physical word, these systems will experience Extreme Dynamics. They are greatly

affected by the environment and, as a rule, when something happens, many changes happen at the

same time.

2.1.6. TAXONOMIES

It is possible to define taxonomy of pervasive systems and applications [19]. Taxonomies are one step

toward identifying common building blocks so that we can identify and foster reusable and

parametrizable features.

One can divide the space of physically embedded systems along the critical dimensions of space and

time. Within these dimensions, we are interested in scale, variability, and autonomy. One addresses

these dimensions with respect to the environmental stimulus being captured and the system elements.

 Starting with scale, the scale of special and temporal sampling and its extent are important factors in

determining system emphasis. The finer grain the sampling more important are innovative collaborative

signal processing techniques. Also, as the system extent grows, the ability to configure and control the

environment becomes impossible. So systems intended to operate over extended time frames and

regions of space must emphasize techniques for self-organization. With high density come many

challenges and opportunities for self-configuration, not encountered by low-density systems.

Continuing with sampling, sampling scale is ultimaly dictated by the physical phenomena measured. The

sampling scale is determined both by the phenomena and by the application.

As for extent, the spatial and temporal extent of systems also varies widely. At the top, there are the

environmental modelling systems, which can span on the order of tens of thousands of meters. Most

existing and planned pervasive computing systems are an order of magnitude, or smaller, such as what

are needed to cover a building or a room. There are also elements of pervasive computing systems that

extend to lower end of the spectrum, such as reconfigurable fabric, that a user can wear or that we can

deploy to monitor structure or machinery surfaces.

As for density, it is a measure of sensor nodes per footprint of input stimuli. Higher density systems

provide greater opportunities for exploiting redundancy to eliminate noise and extend system lifetime.

In a similar way, where density is enough, such as to allow oversampling to occur, nodes can go to sleep

for very long periods of time and thereby extend coverage over time.

As for variability, this is a differentiating characteristic of many systems and associated designs. It can

apply to system elements or the phenomena being sensed.

Relatively static systems put the emphasis on design time optimization while more variable systems

must use runtime self-organization and may be fundamentally limited since they are both varied and

long-lived.

As for structure, a structure may be ad-hoc or engineered. The difference lies in the variability of the

system composition. At one extreme (engineered) is a system that models things like buildings, bridges,

etc…, and on another, (ad-hoc), a system that models sensor networks deployed in remote regions to

study bio-diversity, for example.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 10

As for task, the variability in a system’s Task determines how much we can optimize a system for a single

mode of operation.

As for space, variability in space (or mobility), applies both to system nodes and phenomena. A system

designed to manage the physical environment of a stationary human user faces very different

challenges that a system designed to manage the physical environment of a human moving quickly.

As for autonomy, the higher the overall systems autonomy, the less the human involvement and the

greater the need for extensive and sophisticated processing in the system. We can have systems that

just process the sensorial stimulus and deliver them to the applications and to the user, systems that

sensor the stimulus and then activate a complete set of events in an event system for the applications to

consume and alert the user, up to full autonomy.

Perhaps more than any other dimension, autonomy is most significant in moving us from embedding

instruments to embedding computation in our physical world.

As for modalities, truly autonomous systems depend on multiple sensor modalities. Different ones

provide noise resilience to one another and can combine to eliminate noise and identify anomalous

measurements.

And then there is systems complexity, since greater system Autonomy also causes greater complexity in

the computational model.

2.1.7. DEVICES

A major theme in Weiser’s work [1] was the creation of small devices used in a larger intelligent

environment (Smart Space). The Xerox ParcTab [1] provided limited display, user input, and infrared

communication in a palm-sized unit.

Currently, we have many more capable gadgets for pervasive computing and can build specialized new

ones for specialized applications.

Small, attachable RF identification (RFID) tags helped determine the approximate position and identity

of the tagged object in a space equipped with specialized readers.

We see many consumer devices in the palm form factor possessing roughly the processing and storage

capabilities of the early 1990’s, some more. Personal Digital Assistants (PDAs), and pocket PCs have

gained wireless connectivity either as variations of pager networks or 802.11 wireless LANs. There is

now an increased tendency to incorporate Bluetooth short-range wireless technology in handheld

devices. Numerous other attractive radio technologies are on the horizon.

In recent times, these devices have gained a rich set of input modes besides user buttons and knobs

[19]. Most have acoustic input and output, and some incorporate accelerometers to detect gestures,

orientations or video input.

At the same time, many cell phones have gained internet browsing capabilities, and PDAs have gained

cell phone capabilities for data and voice access.

Soon all cell phones will know where they are thanks to a GPS, which will bring a degree of location

awareness into various personal computing devices.

Increased miniaturization raises the possibility that every tiny sensor and controller having its own

processing and communicating capabilities, such that the aggregate performs sophisticated functions.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 11

Sensors and actuators have undergone a revolution with the advent of the MEMS –

Microelectricomechanical Systems technology that allows for accelerometers, barometers, and movable

mirrors and many more such devices to be constructed at minute size on a silicon ship using lithographic

processes similar to those for integrated circuits.

Improved equipment and technology results in smaller MEMS devices, lower power consumption, and

improved device performance. A strong correlation exists between the improvements and feature size.

The node subsystems size and performance improvements reduce power consumption and allow a

corresponding decrease on the size and cost of the power supply as well.

Substantial improvements in battery technology, with improved form factor, storage density and

recharging, as well as the emergence of alternative storage devices, such as fuel cells and energy-

harvesting mechanisms, have also been happening.

Several research groups are exploring how to build intelligent, information-rich physical environments

by deploying many small, deeply integrated nodes.

Core challenges involve designing systems that operate at low power consumption, storing and

obtaining that power, organizing nodes to form larger networks, and deploying applications over fine-

grain networks.

At the far extreme, researchers have conducted design studies on the feasibility of building an entire

system, including power storage, processing, sensing, and communication, in a cubic millimeter [19].

In practice, this scale should be achievable five to ten years from now.

There have been some noticeable improvements in low-power CMOS radios at several performance

points. The research community now uses a one-inch scale platform which provides an opportunity to

explore the node system architecture. It must be extremely energy efficient and conveniently handle

event bursts. It must meet hard real time constraints, such as sampling the radio signal within bit

windows. At the same time, it must also handle asynchronous sensor events and support localized data

processing algorithms. It also must be robust and reprogrammable in the field.

2.1.8. OPERATING SYSTEMS

The growth in capabilities and complexity of these devices is so great that different operating systems

have emerged to make application design more manageable.

Examples of these operating systems are the real-time operating systems Vxworks [20], Geoworks [21],

and Chorus [22]. These three have scaled down their memory footprints and added TCP/IP capabilities.

Windows Mobile [23] has strived to provide a familiar windows PC environment in a subset of the

windows interface.

PalmOS [24] focused successfully on data element exchange with infrastructure machines, but it

provided little support for the concurrency needed for interactive communication.

UNIX variants (and more particularly, Linux variants) have come into the picture as soon as the devices

reached a processing and storage capability beyond the early workstations, and has gained substantial

popularity because it provides real-time support in a multi-tasking environment with well developed

networking.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 12

Another specialized tiny operating system for sensors was developed, the TinyOS [25], that provides a

framework for dealing with extensive concurrency and fine-grain power management while providing

substantial modularity for robustness and application specific optimization. The TinyOS framework

establishes rules for the construction of reusable components that can support extensive concurrency

on limited processing resources.

2.1.9. SENSING AND ACTUATING

Interfacing to the physical world involves exchanging energy between embedded nodes and their

environments. This takes two forms: Sensing and actuating. [19].

Sensing is transforming a particular form of energy (heat, light, for example) into information. Actuating

is converting information into an action.

Together, sensing and actuating are the means of physical interaction between the nodes and the world

around them.

A common problem in both sensing and actuating is uncertainty, since the physical world is a partially

observable, dynamic system and the sensors and actuators are physical devices with inherent accuracy

and precision limitations. There is also the problem of latency both in sensing and actuating.

To increase accuracy, we can use filtering (at the nodes) or redundancy (increasing accuracy and fault

tolerance of the system).

As for localization, for a system to operate on input from the physical world, nodes must know their

location in 3D space to provide context aware services to other system elements.

A static or mobile node must be able to answer the question “Where am I?” It might do so relative to a

map, relative to other nodes, or in a global coordinate system.

For a sensor network, this is particularly relevant, because we often tag the queries to which it will

provide answers based on some sort of location information.

Localization is the main part of registration between the physical and the virtual worlds.

To support an architecture where the sensor network does more than just output measurements, in

high-bandwidth bit streams, but instead output semantically higher meaningful attributes, already

processed, important system-oriented trends are emerging.

Two of those trends are self-configuring networks and data-centric systems. The objective of self-

configuring networks is to let the systems exploit node redundancy (derived from node density), in

order to achieve longer unattended lifetimes.

There are also emerging techniques for coordinating and adapting node sleep schedules to support a

range of trade-offs between fidelity, latency and efficiency.

Ad-hoc routing techniques were an even earlier example of self configuration in the presence of wireless

links and node mobility, but they still support the traditional IP model of shipping data from one edge of

the network to another [19].

A second trend is the increased reliance on tiered architectures in which fewer higher end elements

complement the somewhat limited capabilities of widely and densely dispersed nodes.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 13

And now, where are we headed? The tremendous progress through miniaturization means that we can

put instruments into the experiment, rather than conducting the experiment with an instrument.

The technical problems, the challenges and opportunities in pervasive computing are enormous.

2.1.10. PERVASIVE SOFTWARE ARCHITECTURE AND FUTURE EVOLUTION

We now focus on the software architecture of pervasive systems, and discuss future evolution.

2.1.10.1. BASE CHARACTERISTICS

Two base characteristics of ubiquitous systems are physical integration and spontaneous interoperation.

As for physical integration, a ubiquitous system involves some integration between computing nodes

and the physical world.

As for spontaneous interoperation, in an environment or ambient, there are components - units of

software that implement abstractions such as services, clients, resources or applications [26], that must

interoperate between each other.

Physical integration and spontaneous interoperation have major implications for software

infrastructure. These ubiquitous computing challenges include a new level of component

interoperability and extensibility, and new dependability guarantees, including adaptation to changing

environments, tolerance of routine failures or failure like conditions, and security despite a shrunken

basis of trust [26].

Ubiquitous software should have a clear notion of what will be decided by the software and what will be

decided by the user.

2.1.10.2. SOFTWARE CHALLENGES

Among the challenges for software for ubiquitous applications, there are discovery, adaptation, and

integration, programming frameworks, robustness and security.

Discovery concerns to how mutual discovery takes place between a device and other available services

or devices, and the determination of among which ones is interaction adequate.

Adaptation concerns to how we can use the device to display or manipulate data in other

heterogeneous devices near to it in the environment.

Integration concerns to what connects the device’s software and the physical environment and what

affects that connection.

As for the programming framework, how can we program the devices of the ubiquitous environment for

a specific application? Must we address adaptation, discovery and integration at the application level,

middleware or operating system level, language level, or a combination of these?

Robustness concerns to how we can shield a device and its user from transient faults and similar

failures.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 14

Security concerns thing like what operations can the user execute, and what operations can the device

execute (if in deed they are different), Whom the device or user trust and how does authentication

takes place, and how are threats to privacy minimized, have to be answered.

Considering a component that enters an environment, to satisfy spontaneous interoperation, the

component faces three issues: Bootstrapping, Service Discovery, and Interaction.

Bootstrapping is a largely solved problem. The component requires a priori knowledge of addresses and

any other parameters needed for network integration and service discovery. Protocols exist for joining

underlying networks, such as IEEE 802.11. Addresses can be dynamically assigned state fully using DHCP

or statelessly using IPv6.

A service discovery system dynamically allocates a service instance that matches a component’s

requirements, solving the association problem.

As for interaction, components must agree to a common interoperation model to be able to interact

with each other.

Another challenge is adaptation to the various situations that may exist in the various places where the

pervasive application or device may be used, with multiple conditions in terms of bandwidth available,

for example.

The Content challenge is also important since embedding computation in or linking general purpose

computing devices with the physical world implies heterogeneity across the devices, including devices

embedded in and those brought to the environment by the users. Content adaptation is important here.

The challenge of the human interface is also of extreme importance. To achieve the common scenario of

pervasive computing – a user walking into a smart space and being able to access and control various

aspects of its environment through his PDA – requires separating user interfaces from their applications,

which is a well understood problem in desktop systems. In ubiquitous (and in pervasive) computing the

goal may be to move the interface to a physically different device chosen on the fly.

To integrate the computing environments (virtual by definition) with the physical world, we need low

level application programming interfaces that let software deal with physical sensors and actuators, and

a high level software framework that lets applications sense and interact with their environment,

including physical sensors and actuators [26].

As for programming frameworks for pervasive computing it is important also to remember legacy

applications and operating systems. This is also a research challenge. It is important to leverage existing

applications because of the large investments in the applications, their data, and the knowledge on how

to use them. As for operating systems is important to assure legacy systems support in new operating

systems, since the volatility principle [26] tells us that ubiquitous environments will always change

incrementally and continuously over time. Today’s new systems are tomorrow’s legacy systems. Given

innovation’s current pace, obsolescence is happening faster than ever.

Robustness and routine failures are a challenge for pervasive system since their frequency increases

compared to a wired distributed system. Some of these failures are not literal failures but events that

are similarly difficult to recover from (Battery exhaustion, Interference, for example).

2.1.10.3. WIRELESS NETWORKING PROBLEMS

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 15

Wireless networks are much more exposed to interference and communication failures that it’s wired

counterparts. In spontaneous interoperations, associations are sometimes gained and lost in a way that

cannot be predicted.

Although the literature on distributed systems has many techniques for fault-tolerant computing, they

are often based on resource redundancy while what we have here is resource scarcity.

And, what’s more, under the current distributed system’s assumption failures are relatively rare and

could lead to expensive or ungraceful recovery, contrary to the expectation of calm behavior of

pervasive systems.

In ubiquitous computing scenarios, various transient failures may actually characterize steady state

operation. These scenarios have been characterized by the Internet Protocol and Distributed Systems

community. [26].

We take a look now to too techniques for these scenarios, whose common tie is the underlying

assumption that recovering from frequent transient failures basically means being always prepared to

reacquire lost resources.

These two techniques are: Expiration based schemes and soft state, and Separating failure free and

failure prone operations.

As for Expiration based schemes and soft state, when failure is a common case, identify what critical

static or dynamic state you must persistently store and consider reconstruct able state for everything

else.

As for separating failure free and failure prone operations, since not all operations are equally likely to

fail, clearly indicate which ones are more likely to fail because of dynamism and required spontaneous

interoperation, so developers can provide more effective error handling.

We can use group communication to help rediscover lost resources through the level of indirection it

provides. Although the approaches relying on group communication have been criticized by their poor

scalability, in ubicomp, we might be able to explore the Boundary principle.

2.1.10.4. SCALABILITY

Although ubicomp projects should certainly address scalability, the Boundary Principle can confound the

attempt. Sometimes observing the Boundary principle can help, by enabling solutions that favor

robustness over scalability. Other times, observing the principle can introduce complications, as in the

case when a physically range-limited networking technology still fails to capture other (cultural or

administrative) important boundaries. [26]

2.1.10.5. SECURITY

As for Security, how can we protect components from one another? Devices should have authorization

methods. Users require security for their resources and ultimately, privacy for themselves.

Mobile computing has exacerbated these needs, leading to an understanding of vulnerabilities such as

the openness of wireless networking. New challenges are also raised by physical integration and

spontaneous interoperation, requiring a new model of trust and authentication as well as new

technologies.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 16

As for trust, this is an issue in ubiquitous systems because of spontaneous interoperation. It’s difficult to

establish basis of trust between components that can associate spontaneously, since these components

may belong to disparate individuals or organizations and have no a priori knowledge of one another or

of any trusted third party.

The key here is trust human judgment. Humans can make judgments about the trustworthiness of a

particular environment they’re in, and the physical world offers mechanisms for boot-strapping security

based on that trust. For example users may exchange cryptographic keys with their environment or each

other over a physically constrained channel such as short-range infrared, once they have established

trust [26].

In resource poor devices, security protocols are influenced by physical integration. Even when using

elliptic Curve cryptograph, resource poor devices do not have the processing capabilities to do

asymmetric (public key) cryptography. And to worsen things its protocols must minimize battery

consumption.

One of the best known attacks on wireless networks of sensors powered by batteries it’s the “sleep

deprivation torture attack”, where an attacker can always deny service by jamming the wireless network

with a signal that rapidly causes the devices to run down their batteries.

Another problem in pervasive systems is access control, that is, how to control access to resources. It

would be interesting to exchange minimum or no information about the user when interacting between

devices.

2.1.10.6. LOCALIZATION

As for location, this has important security implications, which have to be taken into account when

designing security and privacy aspects of a pervasive system.

Of course, there are also challenges of location aware computing [27], a new class of computing created

mainly by the evolution of mobile computing, location sensing, and wireless networking.

2.1.10.7. MOBILE COMPUTING

Mobile computing is normally associated with small form factor devices such as PDAs, GSM phones,

etc…, not necessarily context aware. If context-aware it may be location-aware, and respond with a

user’s location either spontaneously or when active.

Four fundamental issues complicate the design and implementation of mobile computing hardware:

• Mobile elements are relatively resource-poor relative to static elements because of limitations

of power, size and weight.

• Mobile communications are inherently vulnerable to security violations because data is

transmitted through open airspaces

• Wireless connectivity is highly variable in reliability and performance

• Mobile elements must rely on limited energy resources

These issues are intrinsic to mobility.

We give more information about location technology on the technology section of this chapter.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 17

Underlying the goal of “geospatial everywhere” is the ability to obtain information on demand,

wherever the user is. For this we will need to develop methods to accommodate user mobility. It makes

sense to invest in developing portable , lightweight display technologies such as electronic paper,

foldable displays, handheld projectors (that can be pointed at any convenient surface), and augmented

reality glasses. We also must invest in appropriate interaction paradigms. [26].

2.2. AUGMENTED REALITY

Augmented reality tries to extend the real world with virtual objects while maintaining the computer in

an assistive, unobtrusive role, thus trying to keep in line with the pervasive computing objective of

invisibility.

Augmented Reality is a sub concept of Mixed Reality [4]. AR augments the real world with synthetic

electronic data. Augmented Virtuality (AV) enhances the virtual world with data from the physical (real)

world. Mixed reality is a term that covers a continuum from AR to AV.

An example project of Mixed Reality is exposed in [4] by the Mixed Reality Systems Laboratory.

Both Mixed Reality and Augmented Reality are different than Virtual Reality, which is not pervasive at all

(as we discussed in the previous section), and just deprives the user from the real world, completely

evolving it in a virtual world.

In many ways, the design of wearable computers and augmented reality systems has been motivated by

two primary goals: the first goal is driven by the need for people to access information, especially as

they move around the environment; the second goal is motivated by the need for people to better

manage information [28]. Until just recently, if a user needed to access computational resources, the

user had to go to where the computational resources were located, typically a desktop PC or a

mainframe computer. Once the user left the terminal, the flow of information stopped. Now networked

wearable computers along with other digital devices allow the user to access information at anytime

and at any location. However, the ability to access large amounts of information might not always be

beneficial – too much information presented too fast may result in information overload. For this

reason, the issue of information management is also important. In this regard, wearable computers and

augmented reality systems along with software acting as an intelligent agent can act as a filter between

the user and the information. Intelligent agents will allow only the relevant information for a given

situation to be projected on a head-mounted display, a hand-held computer, or an auditory display.

Wearable computer systems will likely be a component of other advanced information technology

initiatives as well. For example, in the area of “smart spaces” by embedding sensors and

microprocessors into everyday things, wearable computer and augmented reality systems will be able to

respond to and communicate with objects in the environment. In addition more and more wearable

computing medical devices will be implanted under the skin to regulate physiological parameters, or to

serve as cognitive or sensory prosthesis. One prototype wearable device in this area consists of an

electrode that is implanted in the motor cortex of the brain to allow speech incapable patients to

communicate via a computer. Gold recording wires pick up electrical signals from the brain and transmit

signals trough the skin to a receiver and amplifier outside the scalp. The system is powered by an

inductive coil placed over the scalp so that wires for powering the device do not have to pass through

the skull. Signal processors are used to separate individual signals from the multiple signals that are

recorded from inside the conical electrode tip.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 18

Over the past several thousand years, nature has provided humans the sensory systems that allow them

to detect and respond to visual, auditory, olfactory, haptic, and gustatory information. Nature has also

provided humans well developed cognitive abilities that allow decisions to be made under conditions of

uncertainty, patterns to be detected that are embedded in noise, and common sense judgments to be

made. However, even thought we can sense a broad range of stimuli, often over a wide range of energy

values, our senses are still limited in many ways. For example, we see images that represent only part of

the electromagnetic spectrum, detect tactile and force feedback sensations across a limited range of

energy values, and have marked decrements in spatializing images when sound is the primary cue.

Due to these limitations, several types of prosthesis have been developed to extend our sensory, motor

and information processing abilities. To extend the visual modality, we invented glasses, microscopes,

and telescopes. To extend the auditory modality we invented microphones, hearing aids, telephones,

etc... To extend the haptic modality we have invented sensors that detect forces, which then transmit

these forces back to the human.

We have also invented other types of sensory and motor prosthesis as well. Some of these include

artificial hearts and kidneys and artificial arms and legs. However, until only recently, the prosthesis that

have been developed were designed primarily to enhance the detection capability of our sensory

systems or to assist our motor capabilities, and to a far lesser extent, to enhance our cognitive

capabilities. With the invention of the computer and developments in digital technology,

microelectronics, and wireless networking, this is beginning to change. We are now able to wear digital

devices that contain considerable computational resources. These devices clearly enhance our decision

making capabilities. These devices may be worn on the skin (or body), as in the case of a wearable

computer, or under the skin, as in the case of medical devices. Digital devices worn on the skin have led

to exciting developments in the area of computational clothing and digital accessories. In this area of

research, computer scientists and interface design specialists are working with clothing designers as well

as experts in textiles and fabrics to build wearable computers that look more like clothing and less like

computers.

Advances in computers under the skin have also led to exciting developments in information

technology. In fact, in the near future we may be able to integrate computer chips directly into the

nervous system. Along these lines, researchers at Johns Hopkins University and North Carolina State

University have developed a computer microchip that is connected to the retina. The chip is designed to

send light impulses to the brain. Thus far the device has allowed fifteen test subjects with blindness

resulting from retinal damage to see shapes and detect movement.

We describe a wearable computer as a fully functional, self powered, self contained computer that is

were on the body.

Augmented reality can be thought of as an advanced human – computer interface technology that tries

to blend or fuse computer generated information with our sensations of the natural world. For example,

using a see-trough head-mounted display (HMD), one may project computer-generated graphics into

the environment surrounding the user to enhance the visual aspects of the environment.

Augmented reality is a technology to augment our senses and wearable computers are in general far

more mobile than augmented reality systems.

One of the primary display or output devices for wearable computer systems is a head mounted display.

Currently, there are three main application areas for HMDs, virtual reality, augmented reality and

wearable computers.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 19

In virtual reality, a participant uses an HMD to experiment an immersive representation of a computer-

generated simulation of a virtual world. In this case, the user does not view the real world and is

connected to the computer rendering the scene with a cable allowing about 3-4 meters of movement.

With augmented reality, a participant wears a see-trough display (or views video of the real world with

an opaque HMD) that allows graphics or text to be superimposed (projected) in the real world. As with

the virtual reality experience, the user is connected to the computer rendering the graphics or text with

a cable, again allowing about 3-4 meters of movement.

With wearable computers, the user actually wears the computer, and, as in virtual or augmented reality,

wears the visual display (hand-held or head-mounted). The wearable computer may be wirelessly

connected to a LAN or WAN, thus allowing information to be accessed whenever and wherever the user

is in the environment. Wearable computers allow free-hand manipulation of real objects as does

augmented reality displays.

There are several dimensions by which wearable computers and augmented reality systems can be

evaluated, two of which include the level of mobility, provided by the computing system, and the level

of scene fidelity afforded by the rendering platform. The level of scene fidelity refers to the quality of

the image provided either by the virtual reality simulation, real scene, or augmented world. One of the

primary differences between virtual reality and augmented reality is in the complexity of the projected

graphical objects. In basic augmented reality systems, only simple wire frames, template outlines,

designators and text are displayed and animated. An immediate result of this difference is that

augmented reality systems can be driven by microprocessors either worn on the body or integrated into

the workplace. Today’s processors have the computational power to transform and plot complex

graphics in real time. Unlike full virtual reality systems, augmented reality systems are generally not

attempting to generate a complete world or realistic scene. Instead, augmented reality systems tend to

rely on reality to simulate reality, only superimposing the necessary graphical objects necessary to

perform the task at hand. By doing so, many of the human factors issues found in full virtual reality

systems such as vertigo and simulation sickness are avoided. The person continues to receive all the

orientation cues from the physical visual scene. Display technology, input and output devices, computer

architectures, network communication, power supplies, and image registration and calibration

techniques are all important aspects of augmented reality systems.

Humans carry theirs sensors with them as they move around the environment, and they experience the

world with the resolution provided by these biological sensors. Wearable computers also allow a high

degree of mobility, but not quite that associated with our biological sensors. For example, currently we

cannot swim with wearable computers although our biological sensors easily allow this degree of

mobility. The weight of wearable computers and augmented reality systems further adds to their lack of

mobility. Wearable computers allow a high degree of scene fidelity because the real world is viewed

either directly with see-through optics or via live video. However, the level of scene fidelity may be less

than that associated with augmented reality because wearable computers currently do not have the

rendering capability of workstations that are often used to render graphics for augmented reality

environments.

Finally virtual reality in its present form is often low on scene fidelity and very low on mobility within the

real world.

There are different types of wearable visual display technologies, which may be used to combine real

world objects with computer generated imagery to form an augmented scene. The two main types of

visual display systems supporting wearable computers and augmented reality are optical based systems

and video based systems.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 20

Optical based systems allow the observer to view the real world directly with one or both eyes with

computer graphics or text overlaid onto the real world. Optical see-trough HMDs are worn like glasses

with an optical system attached at a location that does not interfere with visibility.

Video based systems can be used to view live video of real world scenes, combined with overlaid

computer graphics or text. Furthermore, monocular (one eye) or binocular (two eyes) displays can be

used. Video based see-trough displays are opaque displays that use cameras mounted near the user

eyes to present live video on the display. Using chrome or luminance keying techniques, the computer

then fuses the video with the virtual images to create a video based augmented reality environment.

When creating a wearable computer system that can be used to augment the environment with text or

graphics, an important visual requirement is that the computer generated imagery register at some level

of accuracy with the surroundings of the real world.

In terms of developing scenes for wearable computer systems, the problem of image registration or

positioning of the synthetic objects within the scene in relation to the real objects is both a difficult and

important technical problem to solve.

Image registration is an important issue regardless of whether one is using a see-trough HMD or a video-

based HMD to view the augmented reality environment. With applications that require accurate

registration, depth information has to be retrieved from the real world in order to carry out the

necessary calibration of the real and synthetic environments. Without an accurate knowledge of the

geometry of both the real world and computer generated scene, exact registration is not possible. To

properly align video and computer generated images with respect to each other, several frames of

reference must be considered. There are various techniques to achieve this. Although these

methodologies work reasonability well for systems that have a limited range of mobility, much more

research is needed before accurate registration of images using wearable computer systems can occur.

Other important issues for wearable computer systems using a video based HMD relates to optics of the

HMD and input / output devices.

Camera lenses that may be applied to augmented reality HMD may vary in field of view. The use of a

zoom lens that has the capability to change from wide angle to telephoto views of the scene is desirable

for video based wearable computers as this allows the viewer to match the field of view of the real

world scene to the field of view of the computer generated scene. In addition, depth of field, defined as

the distance from the nearest to the farthest parts of a scene that are rendered sharp at a given

focusing setting, is another important variable to consider for augmented reality displays. Depth of field

increases as the lens is stepped down (smaller lens aperture), when it is focused for distant objects, or

when the lens has a short focal length. Other important variables to consider when designing a video

based system that displays stereoscopic images include the horizontal disparity (horizontal offset) of the

two video cameras and its correspondent convergence angle.

If the video of the real world is to appear as if viewed through the user eyes, the two CCD cameras must

act as if they were at the same physical location as the user eyes. The interpupilary nodal distance is an

important parameter to consider for applications that require close to medium viewing distances for

depth judgements.

Placing the cameras in front of the user eyes may result in accurately registered video and computer

generated images, but the image of the outside world seen through the HMD will appear magnified and

objects will appear closer than they actually are.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 21

As for input devices, in the real world environment, the user is often used to using one or both hands to

perform a task. Therefore, the input devices used with wearable computers need to be designed with

this requirement in mind. Appropriate input devices need to be utilized to allow the user to efficiently

manipulate and interact with objects. For data entry or text input, body mounted keyboards, speech

recognition software, or hand held keyboards are often used. Devices such as IBM’s Intellipoint,

trackballs, data gloves, etc., are used to take the place of a mouse to move a cursor to select options or

to manipulate data. One of the main advantages of using a wearable computer is that it allows the

option of hands free use.

Common factors in the design of input devices are that they all must be unobtrusive, accurate, and easy

to use on the job.

In order for any digital system to have an awareness of and be able to react to events in its

environment, it must be able to sense the environment.

This can be accomplished by incorporating sensors, or arrays of various sensors (sensor fusion) into the

system. Sensors are devices that are able to take an analogue stimulus from the environment and

convert it into electrical signals that can be interpreted by a digital device with a microprocessor.

Table 1 shows the possible types of sensors and its use in intelligent environments [28].

Sensor type Stimulus Use

Mechanical Position, acceleration, force,

shape, mass, displacement

Detecting people’s/object’s

position, weight, movements

Biological Heart rate, body temperature,

neural activity, respiration rate

Measuring people’s mood,

mental state, physical state

Acoustic Volume, pitch, frequency, phase,

changes

Detecting sounds, interpreting

speech

Optical Emissivity, refraction, light

wave frequency, brightness,

luminance

Computer vision detection, IR

motion/presence detection

Environmental Temperature, humidity Monitoring the conditions of the

environment that people are in

Table 1 - Types of sensors

In general, there are two kinds of sensors: active and passive. Their characteristics impact their use in

wearable computer systems.

Active sensors require an external power source or excitation signal in order to generate their own

signal to operate. The excitation signal is then modified by the sensor to produce the output signal.

Therefore, active sensors consist of both a transmitting and a receiving system.

Passive sensors, in contrast, directly convert stimulus energy from the environment into an electrical

output signal without an external power source. Passive sensors consist only of a receiver.

When building and employing sensors in an intelligent environment like a wearable computer for

augmented reality, there are a number of variables inherent to the particular sensors that need to be

addressed. These are [28]:

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 22

• Accuracy (Resolution): The smallest change in magnitude a sensor can detect

• Range or field of view: The amount of area covered by the sensor

• Calibration error: The maximum amount of inaccuracy permitted by the sensor

• Power consumption: The amount of energy required by the sensor to operate

• Size: The physical dimensions of the sensor

• Saturation: The maximum amount of stimulus the sensor can respond to

• Repeatability: Ability to accurately recreate responses under identical stimuli

• Sample rate: The frequency at which the sensor samples the stimulus.

• Noise filtering: The ability of the filter to filter out unwanted environmental noise

Networks for wearable computing may be divided into two broad classes: Off body and On- or Near-

Body [29].

Off Body networks are networks that connect the wearable computer to other systems not worn or

carried by the wearable computer user.

On- or Near-Body networks are networks that connect the computers, peripherals, sensors, and other

devices that comprise a single user’s wearable computer system.

Connecting a wearable computer to an off body network demands a solution different from that used

for connecting desktop machines. The wearable user cannot be wired with an Ethernet or

telephone/modem cable and still maintain all the benefits expected of wearable computing systems.

Wireless solutions are needed to support the freedom of movement in the environment that motivates

wearable computing. Other factors, like minimum bandwidth needs, operational or mobility range,

tolerable infrastructure and usage costs, and the usual wearable constraints of power, size, and weight,

tend to vary with the specific application.

On body or near body networks are also important to wearable computing. These networks tie together

the computers, peripherals, sensors and other devices that are carried/worn on or relatively near the

body, and they contribute significantly to the ergonomics of the wearable system.

An on-body network can be thought of as a new level in the traditional WAN-MAN-LAN network

hierarchy: The personal area network, or PAN.

The concept of a PAN is more general than wearable computing but is especially important to wearable

systems because PANs enable the use of devices (CPU and peripherals) that are as small as possible and

conveniently placed, worn, and carried on the body.

Advances in mobile personal communications and wireless LAN technology are the primary technology

sources for off-body networking in a wearable computing system. The mobile personal communications

industry brings forward analogue and digital cellular technology, the paging infrastructure, and

commercial wide-area messaging services. Wireless LAN technology can also be exploited for off-body

communications in many environments, depending upon the needs of the wearable application.

The current state of the art does not present a single ideal off-body communications solution for

wearable computing. Options differ in respects that demand careful consideration to system level

requirements. Data rates, availability, operational range, infrastructure requirements, cost/pricing plans,

and other issues must be considered when selecting from the technology options available today.

The future will offer improved off-body communications for the wearable computing user.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 23

As for the IP architecture, there are three basic options for integrating an on-body network into the

global internet or private IP intranet. A number of other approaches are also possible, but most are

essentially just variations or combinations of these options.

The first option is that no device on the body has an IP address. All communications across the body and

across the off body link as well are carried in a non-IP format. These are translated to IP at a proxy

gateway computer which then acts as the application level go-between that glues the body network into

the Internet. This approach was the benefit of being simple, requiring little in the way of IP address

administration, avoiding the expense of sending IP headers across scarce radio resources, and avoiding

the power and computational resources needed to run an IP stack on the body.

It has the drawback of requiring a specialized proxy gateway, which tends to act as a bottleneck to the

introduction of a few features. All in all, however, this is the option most commonly adopted.

The second option is assign to each body a common IP address. IP datagrams can flow directly between

the internet and the body hub over the off body network, but communications across the body network

are not IP. This has the advantage of eliminating the proxy gateway and merging its functionality into

the body hub in favour of providing a full fledged Internet connection to the body, but still not requiring

every device to be able to run an IP stack. It retains the basic drawbacks of a proxy gateway, however.

The third option is that every device that is wearable has its own IP address, and IP datagrams can flow

directly between any body device and the internet. In general, this solution requires the body network

to have a distinct IP network address, and the body hub to have at least minimal IP router functionality.

This has the advantage of fully integrating the body network, and its devices, into the global internet.

The prime disadvantages, thought, are that every device must have enough power and computational

resources to be able to run an IP stack, that IP headers must be conveyed across perhaps thin radio

links, and that it requires a fairly large number of IP addresses.

A personal area network (PAN) is used to interconnect the computers and devices (peripherals, sensors,

actuators) used by an individual within their immediate proximity. These devices may be carried or worn

on the person or in some cases placed nearby.

There is an obvious need for PAN technology on wearable computer systems. A basic wearable

computing system comprises a main central processing module, a separate keypad or pointing device, a

display device, a voice input device, and a speaker for audio output. In addition to this basic set of

devices, application specific devices commonly added to the wearable system include bar-code

scanners, wearable printers, geo-location devices, off-body network connections, health monitoring

sensors, etc.

To effectively support wearable computing, a number of requirements must be satisfied by a personal

area networking technology [29]:

• It must be wireless without line of sight restrictions, since this kind of restrictions would

greatly complicate the placement of devices on the body.

• Have extremely low power consumption requirements (every device must be self powered,

so the PAN must consume minimal amounts of power)

• Small and lightweight: The PAN component must be a small contributor to the size of a

necessarily small and lightweight wearable device.

• It must be a solution supporting multiple devices and bidirectional communication

• It must provide cross-network interference tolerance, since every wearable user will have

his or her PAN, which must continue to operate when in proximity from one another

• Broad generality, having the capacity to integrate a broad range of devices

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 24

• Low cost, since some of the devices that are to be included in a wearable computing

system PAN are very inexpensive (like sensors, pointing devices, etc.) so the PAN must be

low cost in order to avoid becoming the principal cost component.

2.3. GAMES

It is quickly becoming clear that entertainment will be one of the killer applications of future wireless

networks [3]. More specifically mobile gaming was predicted to be worth more than 1.2 billions of

American dollars in 2006 in the United States market alone. However mobile applications faces issues

that are different from fixed network applications, including fluctuating connectivity, network Quality of

Service and host mobility.

In the times before computers existed, the games people played were designed and played out in the

physical world with the use of real world properties, such as physical objects, our sense of space, and

spatial relations [30].

Pre-computer day’s game interactions consisted of two elements: human to human interaction and

human to physical world interaction. In the current times, due to their higher level of attractiveness to

game players, computer games have become the dominant form of entertainment.

Computer games motivate the players by bringing them more challenge, curiosity and fantasy, which

are the three main elements contributing to fun in games. They provoke curiosity because they are

usually designed with an optimal level of information complexity, they create fantasy by creating the

illusion of the player being immersed in an imaginative virtual world with computer sound and graphics,

and they create challenge by having goals typically more interactive than traditional games.

However, there is a also a new tendency in gaming called pervasive games, where the real world is

coming back to the computer entertainment field stressing the pervasive and ubiquitous nature of these

games: Pervasive games are no longer confined to the domain of the computer (the virtual domain), but

integrate the physical and social aspects of the real world.

Pervasive gaming is a relatively new field but we can already identify several unique types of pervasive

games, each focusing on different aspects of the gaming experience.

One of the types is smart toys. Augmenting traditional toys with pervasive computing technology is a

first and simple step towards the realization of pervasive games.

Most realizations include traditional toys equipped with simple sensing technology linked to computer

logic, which reacts to changes in the toy’s physical state by displaying graphical information or playing

sounds. One common use is digital storytelling by small computers, encouraging use of computers by

small children.

Other type is affective gaming which goal is the capturing of how the player is feeling at any given

moment and integrating this very personal representation of context into the game. This falls into one

of the goals of pervasive computing which is creating context-aware applications that adapt their

behaviour to the information they collect from the environment.

This is different from previous games which goal was the where and who of the player context (location

aware pervasive games) or the what and the where (common elements of most traditional games).

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 25

Affective computing is described as “computing that relates to, arises from, or deliberately influences

emotions” [30]. Affective gaming aims to create a magical gaming experience by integrating the player’s

emotions into the game so the game environment can adapt to them.

While sensing a player’s emotional state is a complex research problem, sensing some aspects of human

emotions while it’s engaging in an entertainment experience is a more common scenario.

The most common method of doing this is using sensors to capture affective state measuring the user’s

physical activity. Once a player affective state has been determined, some personality can be made into

the game.

Augmented tabletop games are another type of game. Traditional tabletop games such as chess have

been popular for ages, and they are still popular, even with the arrival of computers. The success of

tabletop games can be explained by the directed communication and interaction of the players between

each other.

Augmented tabletop games introduce computing into the scenario using sensing technology and at the

same time social concepts.

A common type of context aware game is the location-aware game which uses the location of the user

to improve the gaming experience.

When an entire building, a block, or city become the game playing field and we need to track the

physical location of the human players a host of technical and conceptual challenges arise.

The player’s position can be determined technically by GPS signals (satellite), Wi-Fi, or GSM signal

strength and/or cell ID, short rage proximity sensing using RFID, infrared beacons, or ultrasonic emitters.

Due to the necessity for infrastructure, short-range proximity sensors are not ideal for implementing

pervasive games; thus GPS and Wi-Fi are used in most recent location aware games. Given the massive

market penetration of GSM phones, cell based games will probably become more common case in the

future.

GPS signal reception does not work very well indoors, but it allows us to cover a large playing field (up to

the entire planet).

Location determination using Wi-Fi triangulation requires an appropriate infrastructure and a careful

layout of stationary access points.

Finally, there is the augmented reality game type, the most technically advanced pervasive games. We

have already discussed augmented reality.

There are several characteristics augmented reality games have that differentiate them from other

types of games.

In augmented reality games, the social space through which users communicate is aligned with the task

space where they interact. The task space is further enhanced by a visualization space where

information may be presented. This allows users to communicate face to face, view content and work

with objects all the same time, with reduced context switching.

Augmented reality games (and all augmented reality systems) try to capture the user’s full range of

motion, using a wide range of physical interactions, including location, gestures, and posture. Physical

objects can also be tracked, allowing the use of props and sporting equipment.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 26

A common limitation of augmented reality is that is easy to affect virtual objects based on physical

interactions, but is difficult to affect physical objects based on virtual ones.

Augmented reality gaming is a new field of research and the first games are just now becoming to

appear (the first prototypes).

We present some of these prototype games in the section on related work.

One of the challenges of making pervasive games, especially location oriented ones, is dealing with

uncertainty [31].

Causes of uncertainty can be the location technology used itself (like GPS for example), which is only

accurate to a certain extent and so introduces a degree of uncertainty in the game, or the network

transmission technology used. Wireless communication can fail at unpredictable moments in time and

that causes uncertainty too.

It’s a job for the game designers and for the game programmers to take uncertainty into account when

making a pervasive game.

2.4. METHODS, PROTOCOLS AND TECHNOLOGIES

We now describe in more detail the specific methods, protocols and technologies that can be used in

mobile pervasive augmented reality gaming, and we divide these methods, protocols and technologies

in the following sections: security, geospatial location and orientation, service discovery, third

generation mobile networks, ad-hoc networking and dynamic configuration, scalability, consistency,

multimedia data heterogeneity, data distribution and replication, quality of service and management of

networks and services.

2.4.1. SECURITY

Pervasive computing promises a rich and seamless interaction with surrounding computing

environment, but it will be difficult to reconcile pervasive systems with social and legal trends that are

simultaneously underway [32]. There are regulatory trends that will only be exacerbated in the context

of pervasive computing.

To trust pervasive systems, one must be able to manage the privacy, confidentially, availability, and

controlled access to digital information as it flows through the pervasive system.

Data can be exchanged seamlessly trough the pervasive system. However, that does not mean it will

necessarily be.

The term security is normally used to describe techniques that control whom may use or modify the

computer system or the information contained in it, whereas the term privacy is normally used to mean

the ability of an certain entity to determine whether, when and to whom information a certain piece of

information is to be released.

The term trust normally means the grounds for confidence that a system will meet its security

objectives.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 27

There are five big problems related to trust in pervasive computing, these are:

• Knowing to whom one is talking too. The transient, ad-hoc nature of device interaction turns

difficult to one device to establish with certainty with physical device, among many, is it really

interacting with, which is especially true if interaction occurs over the wireless network.

• The way one’s privacy will be safeguarded, since pervasive systems can cause widespread

erosion of personal privacy, which places these systems at odds with legal and public-policy

safeguards that seek to protect privacy. Privacy-sensitive information in the context of

pervasive computing can be classified in two categories each requiring different approaches to

deal with the privacy problem:

1. Privacy of personal data that originates in digital form and its explicitly exchanged, a

category that applies to sensitive personal information that the user owns and willingly

exchanges with the pervasive infrastructure based on informed consent and mutually

agreed upon privacy policy. It may be possible for the infrastructure to selectively apply

privacy by, for example, applying privacy tags to the exchanged information.

2. Privacy of sensed information, that is, sensitive personal information that is sensed by the

infrastructure, without the control of the user. Preserving the privacy of this kind of

information requires the infrastructure to have special means of protecting privacy.

• The question of trusting the device we are communicating with. Dealing with this problem

requires the development of trust negotiating protocols where the trustworthiness of devices

can be assured by third parties.

• The question of recourse. Because pervasive systems will mediate everyday physical activity,

technical mechanisms to facilitate recourse must be built in from the start. Recourse is often

provided by risk-management techniques like insurance, liability and institutional guarantees. It

is more difficult to manage risk in pervasive systems than in traditional systems because of

their decentralized administrative ownership model

• The question of denial of service attacks. Will the pervasive system be reliably available ? The

immersive computing infrastructure of pervasive systems exposes a larger attack surface with

many points of failure if we compare it with traditional computing environments. Due to the

high degree of interdependency (connections) between components, the need for

decentralized administrative authority, and the wide variety of computing and communications

technologies involved, pervasive systems will be extremely vulnerable to deny of service (DoS)

attacks.

Having defined five fundamental problems of security on pervasive systems there are also six

fundamental challenges for secure pervasive computing [33]. These are:

• The need to integrate the socio-technical perspective. Issues such as usability and trust in

security technologies, and how these technologies relate to the larger sociological, economic,

cognitive and legal aspects of our lives, should be important considerations. Different security

profiles should be considered for the different roles we play in our daily routines.

• The need for models that break out of the classical concept of perimeter security and the need

to support dynamic trust relationships. In some pervasive environments, user identity may not

be known and the bounds of the system may also not be known, making identification and

authorization based on user identities and the use of network boundary firewalls useless.

• The challenge of balancing in the correct way security and non –intrusiveness. We should step

away from intrusive schemes such as asking the user a login and a password, and requiring

explicit user input. The required information should be able to be sensed or otherwise obtained

from the environment or context securely and automatically and exchanged with the

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 28

communicating devices and user in a seamless manner. For this to happen we need context

awareness, which was discussed in the section on pervasive computing.

• Security for pervasive computing has to be able to react according to the characteristics of

mobility and dynamism of pervasive systems. A user may be mobile and interact with multiple

devices and access multiple applications. Applications and data may migrate on behalf of

roaming users. The user may be frequently disconnected from networks.

• Pervasive computing introduces the need for resource constrained operations, severely limiting

the type of cryptographic operations, security protocols and security mechanisms that can be

supported.

• There is the need to balance security and other services, since pervasive computing includes a

series of other applications, usage scenarios, and data handling demands. To be successful,

each area of application of pervasive computing should offer the right set of tradeoffs between

a variety of service attributes which include privacy, security, usability, quality of service, and

cost.

Having discussed the challenges of pervasive computing security, there is the question of the models of

pervasive computing security, before we get into the details of the protocols, architectures and

mechanisms.

Models for authentication in pervasive computing should be able to handle user mobility across

networks, applications and devices, application migration across multiple execution platforms and

devices, and disconnected network operations requiring localized trust establishment.

Also, models for access and usage control must go beyond system centric subject-object models, where

the main abstractions are subjects, objects and rights. In pervasive computing, there is the need to

include the socio technical aspect. Attributes of users transfer in part to principals and further to

subjects, but principals and subjects also gain additional context attributes. There is a clear need to

formulate access control and usage models that exploit context information. Some preliminary work

using well known context information such as time of access and location of the user has been done by

a number of research projects.

Context information opens up the possibility of using proximity based access control or encounter based

access control schemes.

There is also the question of the models for privacy. For pervasive computing, these should include well

known privacy principles, legal requirements for specific application areas, as well as general society

expectations. Some of the principals that should be included are notice, choice, consent, anonymity and

pseudonimity, adequate security and access and recourse.

And finally there is the question of the models for dissemination control, which deals with how digital

objects dissemination will be controlled in a pervasive computing system ? Thought the digital world

makes it easy to copy and distribute multiple electronic copies, access control models typically do not

deal with copy protection and distribution. This has been study under the topic of Digital Rights

Management (DRM). A research challenge is how to understand how DRM models can be interfaced and

adapted to work with pervasive computing environments to provide dissemination controls (DCON).

About cryptographic algorithms, these can be subdivided in symmetric cryptographic algorithms and

asymmetric cryptographic algorithms, being that the first ones can be characterized by the fact that

both the sender and receiver use the same key to encrypt and decrypt data, while the second ones use

different keys to encrypt and decrypt data, while related [34].

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 29

The symmetric cryptographic algorithms can be characterized further by the way the data is processed

in block cipher and stream cipher algorithms.

In block cipher algorithms we include: DES (Data Encryption Standard), Triple DES, Advanced Encryption

Standard (AES) or Ryjandael, RC2, RC5.

In stream-cipher algorithms we may include for example RC4.

Since only block cipher algorithms are standardized in the industry, they are the ones used in most

situations.

The data encryption standard (DES) defines the data encryption algorithm (DEA). DEA and DES mean

exactly the same thing. The DES algorithm was developed by IBM in 1974, and was declared an official

standard by the USA government in 1977. DES is defined by the ANSI standard X9.32. Many experts have

studied DES in search of ways to break it, but no practical and instantaneous way was found until now.

However, a brute force attack is capable of decoding the data in no longer than a few hours today, due

to the computing power advances over the 1970’s [34].

DES uses a key length of 64 bits with 8 parity bits, so that the actual key size is 56 bits. The DES block

length is 64 bits. The algorithm operates in two modes: ECB (Electronic Codebook Mode) and CBC

(Cipher Block Chaining mode).

ECB encrypts each block separately, which means that the blocks can be encrypted or decrypted in

parallel, leading to a better performance.

In the CBC mode, each block is combined with the encrypted previous block using a XOR operation,

before the next block is encrypted. This has the advantage that the same plain text block results in

another encrypted block, depending on the text that was encrypted before. The first block is combined

with the Initiation Chaining Vector to start the encryption.

The Triple DES makes encryption with the DES algorithm even more secure by applying three DES

operations to the same data. There are four variations of triple DES: DES-EEE3, DES-EEE2, DES-EDE3 and

DES-EDE2

In the DES-EEE3 variation the input data is encrypted three times using the same key every time.

In the DES-EEE2 variation all is similar to the DES-EEE3 variation, but in the second encryption a different

key is used.

In the DES-EDE3 variation the data is encrypted, than decrypted, and then encrypted again using

different keys every time.

In the DES-EDE2 variation all is similar to the DES-EDE3 variation but now the keys for the first and third

encryption are equal.

The Advanced Encryption Standard (AES) or Ryjandael was published as FIPS (Federal Information

Processing Standards) Publication 197 in October 2000. It was created by two Belgium cryptographers

named John Damen and Vincent Rijmen as a block cipher with variable block and key length. Currently,

AES is standardized with key lengths of 128, 192, or 256 bits and block length of 128, 192 or 256 bits. All

combinations of key lengths and block lengths are possible.

The strengths of AES are good performance and low memory requirements, making it suitable for

pervasive environments.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 30

Currently it will take about a year to break the algorithm with a cluster of computers with a brute force

attack.

The algorithms RC2, RC4 and RC5 (RC stands for Rivest’s Cipher) were developed by Dr. Ronald L. Rivest

for RSA Data Security.

RC2 is a block-cipher algorithm working with a variable key length. So the strength of the encryption and

its performance can vary with the key length that is used. RC2 has better performance than DES.

RC4 is a stream cipher algorithm with variable key length needing 8 to 16 operations for each output bit.

RC5 is, as RC2, also a block cipher algorithm with variable key length and block length. It is better than

DES and better than RC2.

As for Asymmetric cryptographic algorithms, they were developed starting in 1976, when Withfield

Diffie and Martin Wellman developed the Diffie Hellman algorithm which is the base for today’s public

key systems, and its objective was to solve the key distribution problem that users of symmetric

cryptography have.

In asymmetric cryptography, and based on the concept of Diffie-Hellman, everybody has two keys, a

public and a private one. The public key is accessible for the public and can be requested from a known

and trusted third party, which guarantees that that specific key belongs to that person in fact. The

private key always stays with the owner of the key and should be kept as a secret, for example, in a

smartcard.

In a public key system, the information that was encrypted using a person’s or devices public key can

only be decrypted using the corresponding secret key.

The RSA (Rivest Shamir Adleman) algorithm is the most widely used asymmetric cryptographic algorithm

today. It was developed in 1977 by Ron Rivest, Adi Shamir and Leonard Adleman and its patent was

acquired by RSA Data Security, protecting the implementation until the 20th of September of the year

2000.

Today a key length of 1024 bits is used in most systems. RSA is the one of the possible cryptographic

algorithms in many security standards, like S/MIME, IPSec, TLS (Successor of SSL) and PKCS.

The Digital Signature Algorithm (DSA) was published as part of the Digital Signature Standard (DSS) by

the National Institute for Standards and Technology (NIST). It has a variable key length ranging from 512

to 1024 bits.

Using DSA, validation of signatures is slower than its generation. With RSA it’s the other way around.

Digital Signatures enable the recipient of electronic messages to verify the identity of the sender and the

origin as well as the integrity of the message, and are always based on asymmetric cryptography

algorithms. The messages are signed with the private key of the sender and verified with its public key,

which must be available to the receiver through a trusted third party.

There are two types of digital signatures used today: The ones that encrypt the whole message and the

ones based on a MAC (Message Authentication Code) that is attached at the end of the document,

which is transmitted unencrypted.

Elliptic Curve Cryptography (ECC) provides the same security as any other public key algorithm using a

shorter key length. It was first proposed by Victor Miller and Neal Koblitz in the mid-80s.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 31

ANSI is currently focusing on standardizing ECC as ANSI X9.62 for digital signatures and ANSI X9.63 for

key agreement, thought some of the most efficient implementations of ECC are patented by a company

called Certicom, which makes widespread adoption more difficult.

The MD2, MD4 and MD5 algorithms were developed by Rivest for RSA Data Security. While MD2 is

optimized for 8 bit platforms, MD4 and MD5 are optimized for 32 bit platforms. The MD5 algorithm is a

more secure version of MD4, and a little bit slower. It first splits the message in 512 bit blocks and

generates a hash of 128 bits in three steps.

The Secure Hash Algorithm (SHA) was standardized in the Secure Hash Standard (SHS), published by the

USA government as a “federal information processing standard”, and SHA-1 is an improved version of

this algorithm.

The SHA-1 algorithm is used to generate a 160-bit MAC (Message Authentication Code) from a message

that shouldn’t be longer than 2
64

 bit. The algorithm is a little slower than MD5, but it is more secure

from brute force attacks due to its longer MAC.

A MAC is an authentication tag or checksum that is computed by applying a secret key to a message. The

MAC is always verified using the same key. The MAC is generated using as a base a hash function, a

stream-cipher or block-cipher algorithm. It's very common to generate hashes on the Internet using the

MD5 algorithm.

A hash function is a one-way function that generates a fixed-length string out of a given input. That

string is called the hash. A one way function is a function that is hard to invert.

A certificate is a document distributed by a trusted third party that binds a public key to a specific

person, and which contents are guaranteed to be valid and correct by the trusted third party.

Certificates are standardized by X.509, and should at least contain the digital signature of the trusted

third party, the name of the person owning the public key and the public key itself.

The Secure Sockets Layer was developed by Netscape in 1995 was recently superseded by TLS

(Transport Level Security). It sits on top of TCP or other transport protocols and below the application

layer. The protocol consists of two parts: The handshake protocol and the record protocol. The

handshake protocol is needed to setup a session, and the record protocol is used to transfer the actual

data between the communication partners. During the handshake the two partners authenticate each

other and negotiate the security features for the data transfer that happens during the record protocol

phase.

GEOSPATIAL LOCATION AND ORIENTATION

2.4.2.1. LOCATION

Location systems are increasing their accuracy, coverage, and availability, and maintaining moderate

cost, which will rapidly make them pervasive. A number of candidate technologies are already in the

market place, and new ones are continuously being developed. In the future, the development of new

location systems is likely to be influenced by market trends in the hardware and software platforms of

mobile devices – most particularly mobile phones – as much as the technology options with location

systems itself.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 32

Privacy is clearly a major factor in location systems development and deployment. Networked

applications will appear to request location information from the user, suggesting that new techniques

must be developed that extends the user control beyond his device.

Developers of applications will have to accept variation in the accuracy and availability of location data

for some time.

Attempts have been made to alleviate many of today’s wide area location solutions disadvantages and

hurdles. There a number of variants of the basic GPS strategy that improve the accuracy and time to lock

for GPS handsets. Both ground based and satellite based versions of differential GPS improve accuracy

from 8m-10m to 5m for a non-enhanced unit. GPS chipsets are being integrated into mainstream mobile

phones and PDAs, lowering cost and decreasing the user‘s barrier to entry. To help meet the E911/E112

requirements cell phone manufacturers are now producing handsets that use a mix of location

technologies. When GPS is not available, the locations of nearby cell towers are used to produce a

course location estimate. Based on this course location, the phone can download the expected position

of the satellites, allowing the handset to lock on to the GPS much more quickly (on the order of the

seconds) instead of one minute or more, when GPS becomes available. By 2009 the European Union will

deploy Galileo, a next-generation GPS system that promises greater accuracy and operation covering

both indoors and out, due to stronger radio signals that should penetrate most buildings.

2.4.2.1.1. GPS

Already, GPS is fully operational. The GPS system provides continuous worldwide three dimensional

positions and velocity information to users with the appropriate receiving equipment.

GPS also disseminates a form of Coordinated Universal Time (UTC). The Satellite constellation consists of

24 satellites arranged in 6 orbital planes with 4 satellites per plane. A worldwide ground

control/monitoring network monitors the health and status of the satellites. GPS can provide service to

an unlimited number of users since the receivers operate passively (they only receive).

The system utilizes the concept of one way Time of Arrival (TOA) ranging. Satellite transmissions are

referenced to highly accurate atomic frequency standards on board the satellites, which are in

synchronism with an internal GPS system time base.

The satellites broadcast ranging codes and navigation data on two frequencies using code division

multiple access (CDMA). Those frequencies are L1 (1575,42 MHz) and L2(1227,6 MHz). Each satellite

transmits on these frequencies but uses different ranging codes than those employed by other satellites.

Those ranging codes were selected because they have low cross-correlation properties with respect to

one another [35].

The navigation data provides the means for the receiver to determine the location of the satellite at the

time of the signal transmission, while the ranging code enables the receiver to determine the transit (i.e.

propagation) time of the signal and thereby determine the satellite to user range. This technique also

requires that the user receiver also contains a clock.

Utilizing this technique to measure the user three dimensional positions requires that TOA

measurements be made to four satellites. If the receiver clock was synchronized with the satellite

clocks, only three satellites would be needed. However, a crystal clock is usually employed in navigation

receivers to minimize the cost, complexity, and size of the receiver.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 33

GPS provides two services: The Standard Positioning Service (SPS) and the Precise Positioning Service

(PPS). The SPS is designated for the civil community while the PPS is designated for the U.S. Authorized

military and select government agencies. Access to the GPS PPS is controlled trough cryptography.

Civilian use is only permitted trough special U.S. Department of Defence Approval.

The PPS is specified to provide a predictable accuracy of at least 22m (2 drms, 95%) in the horizontal

plane and 27.7 m in the vertical plane. The distance root mean square is a common measure used in

navigation. Twice the drms value, or 2 drms, is the radius of a circle that contains at least 95% of all

possible fixes that can be obtained with a PPS system at any one place. The PPS provides a UTC time

transfer accuracy of 200 nsec (95%) referenced in the time kept at the U.S. Naval Observatory and is

denoted as UTC (USNO). Velocity Measurement accuracy is specified as 0.2 m/sec (95%).

Access to the aforementioned PPS positions accuracies is controlled trough two cryptographic features

denoted as ant spoofing (AS) and select availability (SA). AS is a mechanism intended to defeat

deception jamming, a technique in which an adversary would replicate one or more of the satellite

ranging codes, navigation data signal(s), and carrier frequency Doppler effects with the intent of

deceiving the victim receiver.

AS Dithers the system clock, thereby corrupting TOA measurement accuracy to non AS capable users

(SPS users).

The PPS reached full operational capability in spring 1995, when the entire 24 production satellite

constellation was in place and extensive testing of the ground control segment and its interactions with

the constellation was complete.

The SPS is available to all users worldwide. There are no restrictions on SPS usage. This service provides

predictable accuracies of 100m (2 drms,95%) in the horizontal plane and 156m (95%) in the vertical

plane. UTC(USNO) time dissemination accuracy is within 340 nsec (95%). The accuracy of the service is

both US. DOD and DOT established based on US security interests. AS is usually a primary error source in

a SPS-derived position fix.

SPS initial operating capability was attained in December 1993, when a combination of 24 prototype and

production satellites were available and position determination/timing services complied with the

associated specified predictable accuracies.

The use of differential GPS (DGPS) enhances standalone GPS accuracy and removes common

(correlated) errors from two or more receivers viewing the same satellites.

In the basic form of DGPS, one of these receivers is called the monitoring or reference receiver and is

precise location is known. The other receivers are users and are denoted as “rovers” and are in line of

sight of the reference station. The reference station makes code-based GPS pseudo range

measurements, just as any standard GPS receiver, but because the monitoring station knows its precise

location, it can determine the biases in the measurements.

For each satellite in view of the monitoring station, these biases are computed by differencing the

pseudo range measurements and the satellite to earth station geometric range. These biases contain

errors incurred in the pseudo range measurement process, like ionospheric and troposheric delay,

receiver noise, and receiver clock offset from GPS system time. For real time applications, the reference

station transmits these biases, which are called differential corrections, to all users in the coverage area.

The users incorporate these corrections to improve the accuracy of their position solution. DGPS

achieves enhanced accuracy since the reference and user receivers experience common errors that can

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 34

be removed by the user. Position errors less than 10m are typically realized. To provide even greater,

sub meter accuracy, DGPS techniques that utilize phase information of the GPS satellite signal carrier

frequencies have been developed and are being refined. These techniques are based on interferometric

measurements of the satellite carrier frequencies and are occasionally referred to as carrier phase

tracking. Extremely high accuracies can routinely be achieved by processing the received signal Doppler

frequencies. We are talking about 20 cm for dynamic applications and millimetre level for static

applications.

The constant motion of the satellite constellation demands that the receiver, in general, be capable of

accounting for the changing Doppler frequency shift on L1. Where dual-frequency receivers are used,

both the L1 and L2 are tracked. The shift in frequency arises due to the relative motion between the

satellites and the receivers.

Typical satellite motion with respect to an earth fixed observer can result in Doppler frequencies

between +-5000Hz with respect to the L1 and L2 carriers. Integration of the Doppler frequency offset

results in an extremely accurate measurement of the advance in signal carrier phase between time

epochs. Interferometric techniques can be applied to take advantage of these precise phase

measurements, and, assuming sources of error can be mitigated, real-time positional accuracies in the

centimetre range can be achieved for L1 and L2. Most error sources can be eliminated but one

exception remains, and that is multipath – it can be mitigated, but not eliminated.

Several code based techniques have been proposed to enhance standalone GPS accuracy.

In local area DGPS, a LADGPS station typically serves receivers within close vicinity.

LADGPS accuracy depends on the fact that some of the pseudo range error components are common to

all the receivers within the local geographical area. If the receiver is close to the reference station, the

error components attributed to the space and control segments may be entirely removed while the

overall error induced by the user segment can be significantly reduced.

LADGPS is limited by spatial decorrelation of the errors, when the distance is large.

Local Area DGPS can improve system accuracy from 33.3 (rms) to 3.3 (rms).

Conceptually, the simplest way to implement LADGPS is to place the reference GPS receiver at a

surveyed location, compute the coordinate differences in latitude, longitude and height between the

GPS-derived position and the surveyed location, and transmit those differences to the users. The user

receivers employ these coordinate differences to correct their own GPS position solutions.

This technique requires that all receivers must coordinate their choice of satellites with the reference

station, or the reference station must transmit the position corrections for all combinations of satellites

in view. Better yet, it can transmit only the pseudo range corrections for all satellites in view, reducing in

such a way the number of combinations it has to treat.

As the user moves away from the reference station, those common errors that are spatially correlated

become increasingly decorrelated. So expressions were developed to deal with this issue.

For tropospheric and ionospheric delays, models are used to determine delays that depend on various

parameters that change over space and time.

For example, on the ionospheric model, the delay depends directly on the total electronic content (TEC),

which varies more than two orders of magnitude, so that we have to calculate either bound on the

delays of typical delays.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 35

Nevertheless, these expressions give us an idea of the magnitudes of the various error components that

we may expect as the user moves away from the reference station.

The equations themselves and a detailed discussion about them are available in [35].

The corrections needed for satellite perturbations, ephemeris prediction error, and the satellite position

errors all change with the viewing angle of the receiver. True many interactions, with the formulas

available in [35] we arrive at the following conclusion that the error increases directly with the

separation between the reference station measuring the error and the user receiver employing the

correction.

The speed of electromagnetic radiation varies, depending on temperature, pressure, and relative

humidity, as it passes through the troposphere. Because these factors depend on local conditions such

as cloudiness and precipitation, the correlations in the delays at two receivers due to the troposphere

usually decreases more rapidly than for delays caused by the ionosphere. At a receiver separation of 100

Km, the surface refractivity’s are uncorrelated, and consequently, the difference in troposheric delays

are uncorrelated.

Up until 100Km, again explained by the formulas in [35], the error in the correction of tropospheric

delays is proportional to the separation between the user and reference station.

Formulas derived in [35] also tell us that the difference in delays experienced by the reference station

and the user 100 km away due to errors from ionospheric delay is typically 0.03m.

We have that the difference in delays experienced by the user and reference stations owing to different

viewing angles and to tropospheric and ionospheric phenomena varies directly with the horizontal

distance between them. The rate at which the distances increase with distance depends on factors that

vary with time. Typical differences for separations of 100 km are found to be 1m, except for the effect of

the troposphere on altitude differences.

These differences in the delays translate to differences in pseudo range measurement errors with the

effect on the position solution also being a function of the dilution of precision.

To extend the range of accurate DGPS, reference stations may be distributed (three or more), along the

perimeter of the region of coverage. The user receiver then obtains a more accurate correction estimate

by a weighted average of the corrections from the stations.

Because the error in the estimated corrections varies with distance from the station, the weights may be

determined by geometric considerations alone to give the largest weight to the closest station, such as

by choosing those weights that describe the user position as the weighted sum of the station positions.

A common two step approach to using multiple monitoring stations to improve the accuracy of the user

position estimate is a two step process like this. In the first step, the pseudo range corrections from each

monitor are used to determine the position of the user individually. The second step entails computing a

weighted average of the individual position estimates to provide a more accurate estimate. Each weight

is formed from the inverse of the product of the distance of the monitor from the user and the standard

deviation from the average of the estimates from that station, normalized by the sum of the weights.

The error introduced by each monitor receiver is then diluted by its weight, so that if, for example, the

weights were all equal, then each monitor receiver error would be diluted by a factor of 1/n. But since

the errors are uncorrelated, the standard deviation of their sum is n/1 .Thus, the standard deviation

of the total error due to the monitors is decreased by a factor of n from that of one monitor.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 36

In addition, the components of the total pseudo range error due to tropospheric delay and ionospheric

delay can be calculated using tropospheric and ionospheric delay models.

These delays are then removed from the range residuals and the variance of the range residuals are

compared to a threshold to check for excessive magnitude. If the variance for any station is too large, its

measurements are not used in forming the weighted average of the position estimate. This test provides

a means of testing and isolating a faulty monitoring station.

WADGPS attempts to attain meter level accuracy over a wide region by using a fraction of the number

of reference stations that would be required by LADGPS to attain the same accuracy within the same

coverage region.

The general approach is to decompose the total pseudo range error into its components and to estimate

each component for the entire region, rather than just at the station positions. The accuracy, then, does

not depend on the closeness of the user to a single reference station.

The WADGPS concept is a network of reference stations that aid in the accurate determination of

satellite ephemerides, atmospheric delay, and discrepancies between GPS system time and satellite

system time tags.

Time synchronization amongst elements of the network of reference stations is essential to ensure

correction and measurement time-tagging.

There are three basic types of errors that must be dealt with: errors in the satellite ephemeris estimates,

errors in the reported satellite clock times (i.e. error between time reported by the satellite and GPS

system time), and errors due to atmospheric delays (both ionospheric and tropospheric).

Three sources of errors in the satellite ephemerides (satellite perturbations, satellite ephemeris

prediction errors, and SA epsilon) are included in the SPS error budget. These errors must be avoided by

having a network of reference stations predict and transmit their own more accurate determinations of

the satellite ephemerides, based on their own measurements. The reference stations then transmit the

three dimensional error in the reported ephemeris, or the ephemeris itself, so that the user receiver can

accurately determine the resulting pseudo range error at its own position.

One proposed approach to measuring satellite positions is to reverse the basic GPS algorithm. Here, four

or more ground stations whose positions are accurately known each calculate the pseudo range to a

given satellite after estimating and removing the atmospheric delays. If the ground stations have their

clocks closely synchronized, they can accurately determine both the range to the satellite and the

difference between the satellite time reports and their own system time. However, this technique

encounters some of the same error sources of standalone GPS. There are techniques that mitigate

errors in the ground station measurement process.

The double differencing technique removes errors arising in both the satellite and reference station to

enhance the accuracy of satellite position estimates. Measurements are made in sets, with each

requiring two satellites and two reference stations. By differencing the pseudo range measurements

made by each reference station to the same satellite, common satellite errors in the pseudo ranges are

eliminated.

To obtain even greater accuracy with the differencing technique, carrier phase tracking is used instead

of code tracking. As with the standard use of GPS, satellites may be tracked with more than the

minimum necessary for increased accuracy.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 37

Tropospheric and ionospheric propagation delays affect both the satellite position measurements made

by the ground monitoring network and the user pseudo range measurements. Compensating for them is

necessary if the greatest accuracy possible in the user position estimate is to be attained. The

dependency of tropospheric delay on the pressure, temperature, and water vapour pressure is reflected

in the various tropospheric delay models; thus, for the most accurate estimates of tropospheric delay,

estimates of these quantities need to be made at the user positions. These measurements decorrelate

quickly and are essentially uncorrelated at 100km.

Similarly, ionospheric delay depends on electron density, which may vary significantly over space and

time. Here, too, measurements are needed to complete the model, which must take into account both

the spatial and temporal variations of delay. Ionospheric delays are much larger than tropospheric

delays, so that in virtually all WADGPS systems a large effort is put into obtaining accurate ionospheric

delay corrections.

As an example of an ionospheric delay model, the ionospheric corrections in the FAA’s WAAS are made

from data that gives the vertical delays at a subset of a predefined set of 929 grid points, distributed

somewhat evenly in latitude and longitude. The delays at some subset of the grid points are transmitted

to the users. Each user receiver calculates the latitude and longitude of an ionospheric pierce point (IPP)

for each satellite and calculates its delay by interpolating the delays from the four nearest grid points.

The troposheric propagation delay is a function of temperature, pressure, and relative humidity.

Measurements of these quantities at widely spaced monitoring stations would be ineffective owing to

the short spatial correlations of these quantities.

Instead, as an example, the WAAS user receiver determines an average signal delay as a function of the

season (day of the year) that is valid at its position for elevation angles greater than 5º. WAAS does not

determine the positions of satellites with elevation angles less than 5º.

With accurate satellite ephemerides and an accurate atmospheric delay model, the reference stations

can accurately determine GPS system time or an internal monitoring network system time.

The pseudo range measurement contains errors in the satellite clock time, reference station clock time,

tropospheric delay, and ionospheric delay.

If the atmospheric delays are accurately modelled and the reference station clock carefully monitored,

the errors they introduce into the pseudo range measurement can be removed. And if the satellite

ephemeris is accurate, the true range is also known accurately.

Then, the discrepancy between the time reported by the satellite and the GPS system time can be

determined and reported by the reference station to the user.

GPS receivers can be thought of as discrete time position and velocity sensors with sampling intervals of

approximately 1 second. The need to provide continuous navigation between the update periods of the

GPS receiver, during periods of shading of the GPS receiver’s antenna, and trough periods of

interference, is the impetus of integrating GPS with various additional sensors. The most popular are

inertial sensors, but the list also includes dopplometters (Doppler velocity, altimeters), altimeters,

speedometers, and odometers to name a few.

The method most used for this integration is the kalman filter. The kalman filter is an estimator. It

estimates the instantaneous state of a linear system perturbed by Gaussian white noise. One of the key

attributes of the Kalman filter is that it provides a means of inferring information by the use of indirect

measurements. It does not have to read control variables directly, but it can read an indirect

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 38

measurement (including associated noise) and estimate the control variables. In the use of GPS, the

control variables are position, velocity and possible altitude errors. The indirect measurements are GPS

measurements.

2.4.2.1.2. GALILEO

Galileo, the European contender to GPS, is expected to be into full operation around 2009, with the first

satellites having been launched in 2006. In contrast to GPS system, Galileo is a civil operation, operated

under public control. The program is managed and financed by the European Commission and the

European Space Agency under a mandate from their member states. The basic features of Galileo are

worldwide coverage, four positioning services for different user groups, integrity reporting and

increased accuracy compared to GPS (at least to present GPS) [36].

Integrity refers to the capability of the system to recognize errors in terms of deviations of position fixes

from the true position and to report these errors immediately to the users, an important feature

especially for life-critical services like navigation or aviation.

Galileo works with 10 pilot signals that are emitted on three carrier frequencies , named E5a-E5b

(12,164-1,214 MHz), Eg (1,260-1,300 MHz) and E2-L1-E1(1,559-1,591Mhz), which can be used in various

combinations for offering positioning services tailored to special requirements of the different user

groups.

As we can see, some of the carriers overlay GPS carriers, and so it is possible to use Galileo and GPS in

conjunction in order to increase accuracy or availability of positioning services.

2.4.2.2. ORIENTATION

Orientation is normally achieved through the use of a digital compass. The Java Location API (discussed

next) can be used to obtain both location and orientation information on J2ME compliant devices.

However, the orientation given by a digital compass is only in one plane, while we need orientation in all

three degrees of freedom (roll, pitch, and yaw). For this, orientation sensors can be used (which may

involve the use of accelerometers, gyros, and magnetometers).

2.4.2.3. JAVA LOCATION API (FOR J2ME)

J2ME JSR 179 or LAPI (Java Location API) [37] is a Java API for use with Java for micro devices such as

java phones that provides a programming interface for getting information about current location and

orientation in devices with such capabilities. It is an ideal API for use in a middleware solution which

uses Java 2 Micro Edition as platform. It is independent of the technology used for location and

orientation information.

 Basically, the API consists in two interfaces, nine classes and two exceptions. The two interfaces are

respectively LocationListener and ProximetyListener.

The LocationListener interface represents a listener that receives events associated with a particular

location provider, which represents a source of location information., which contains information about

latitude, longitude, altitude and precision (horizontal and vertical).

The ProximityListener interface represents a listener that receives events associated with detecting

proximity to some previously registered coordinates.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 39

The AddressInfo class holds textual address information about a location, like street address, postal

code, number of door. If the value of a field is not available, it is set to null. The names of the fields use

terms and definitions that are commonly used e.g. in the United States. Addresses for other countries

should map these to the closest corresponding entities used in that country. This class is only a

container for the information. The getField method returns the value set for the defined field using

the setField method. When the platform implementation returns AddressInfo objects, it must

ensure that it only returns objects where the parameters have values set as described for their

semantics in this class.

The Coordinates class represents coordinates as latitude-longitude-altitude values. The latitude and

longitude values are expressed in degrees using floating point values. The degrees are in decimal values

(rather than minutes/seconds). The coordinates are given using WGS84.

The Criteria class defines the criteria for the selection of the location provider. It is up for the

implementation to choose the best location provider available. This takes into account parameters such

as cost, energy consumption, response time, accuracy and others.

The Landmark class represents a landmark, i.e. a know location with a name.

The LandmarkStore class provides methods to store, delete and retrieve landmarks from a

persistent landmark store.

The Location class represents the standard set of basic location information. This includes the time

stamped coordinates, accuracy, speed, course, and information about the positioning method used for

the location, plus an optional textual address. The Location gives the accuracy of the coordinates as

the radius of a circular area indicating the 1-sigma confidence level. The 1-sigma confidence refers to

the standard deviation of the distribution. Assuming a normal distribution (which is not necessarily the

case), this implies that the actual location is within the circle defined by the returned point and radius at

a probability of approximately 68%. The actual location may thus be also outside of the circle, which has

to be taken into account when using the location information in applications.

The LocationProvider class is the starting point for applications using this API and represents a source of

location information. This may be implemented using any possible location methods, for example,

satellite based methods like GPS, cellular network based methods, short-range positioning methods like

Bluetooth Local Positioning, etc. The implementation may also combine the methods in various ways to

get the optimal result.

The Orientation class represents the physical orientation of the terminal. Orientation is described by

azimuth to north (the horizontal pointing direction), pitch (the vertical elevation angle) and roll (the

rotation of the terminal around its own longitudinal axis).

It is not expected that all terminals will support all of these parameters. If a terminal supports getting

the Orientation, it must provide the compass azimuth information. Providing the pitch and roll is

optional. Most commonly, this class will be used to obtain the current compass direction. It is up to the

terminal to define its own axes, but it is generally recommended that the longitudinal axis is aligned

with the bottom-to-top direction of the screen. This means that the pitch is positive when the top of the

screen is up and the bottom of the screen down (when roll is zero). The roll is positive when the device

is tilted clockwise looking from the direction of the bottom of the screen, i.e. when the left side of the

screen is up and the right side of the screen is down (when pitch is zero). No accuracy data is given for

Orientation.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 40

The QualifiedCoordinates class represents coordinates as latitude-longitude-altitude values that are

associated with an accuracy value.

The LandmarkException is thrown when an error related to handling landmarks has occurred.

The LocationException is thrown when a location API specific error has occurred.

2.4.3. SERVICE DISCOVERY

For the past several years, competing industries and standard developers have been pursuing automatic

configuration, now called by the broader term service discovery. Jini, Universal Plug and Play (UPnP),

Salutation, Bluetooth Service Discovery Protocol, and Service Location Protocol are among the most

important protocols for this [38].

Service discovery has a lot of potential in mobile and pervasive computing environments.

Service discovery in general means that a subset of the following capabilities is supported by a device

[34]:

• The capability to make other devices aware of its own existence and presence in the network

• The possibility to make other devices in the network aware of the services offered by the

device and to describe these services to them.

• The ability to search for a service in the network

• Zero-administration

• Interaction with other devices in the network to fulfil a function.

2.4.3.1. JINI

Jini was introduced by Sun Microsystems in 1998 and is based on Java technology. Jini is based on three

protocols: Discovery, join and lookup [38].

Discovery and join occur when you plug a device into the network. Discovery when a service looks for a

lookup service with which it can register, join when a service locates a lookup service and wants to join

it.

Lookup occurs when a client or user locates and invokes a service described by its interface type and

possible other attributes.

An interface type is written in Java Language.

For a client in a Jini community to use a service, first, the service provider must locate a lookup service

by multicasting its request on the local network or locating a remote lookup service known to it a priori.

Secondly, the service provider must register a service object and its service attributes with the lookup

service. This service object contains the Java Programming language interface for the service, including

the methods that users and applications will call to execute the service, along with any other descriptive

attributes.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 41

Third, a client request a service by Java type and maybe other service attributes. The lookup server

sends a copy of the service object over the network to the client, which will then use it to talk to the

service.

Fourth, the client interacts directly with the service via the service object.

Jini consists of an infrastructure and a programming model that addresses how devices connect with

each other to form an ad-hoc community, using the Java Remote Method Invocation (RMI) protocol to

move code around the network.

We can view the Jini lookup service as a directory service or as a broker. When a service first becomes

active, the multicast request protocol finds lookup services in the vicinity.

Lookup services announce their presence to services in the community that might be interested by using

the multicast announcement protocol.

The unicast discovery protocol is used finally do establish communications with a specific lookup service

known a priori over a wide-area network.

A Jini lookup service also maps the interfaces that clients see to service proxy objects, and maintains

service attributes and processes match queries.

The clients normally download a service proxy, which is usually an RMI stub that can communicate back

with the server, and which lets clients use the service without knowing anything about it. So, there is no

need for device drivers in case the service provided is one for a device.

Jini only grants access to its services on a lease basis, that is, for limited time. A client request a service

for a desired time period, and Jini negotiates a lease for that period, which it will grant for the client.

This lease must be renewed before it expires. If not renewed Jini releases the resources associated with

the service when the lease expires.

Jini also supports remote events and transactions that help programmers write distributed programs.

Remote events notify an object when desired changes occur in the system. Recently published services

or state changes in registered services can trigger these events.

2.4.3.2. UPNP

Universal Plug and Play (uPnP) is a Microsoft initiated Standard that extends the Microsoft Plug-and-Play

peripheral model, aiming to enable advertisement, discovery and control of network devices, services

and consumer electronics.

The uPnP forum [39] oversees the standard’s developments, headed by Microsoft, in a similar process to

the Java Community Process.

In uPnP a device can dynamically join a network, obtain its IP address, describe its capabilities as

requested, and learn about the presence and capabilities of other devices. A device can leave a network

automatically without leaving any state behind.

UPnP uses the simple service discovery protocol (SSDP) for service discovery. This protocol announces a

device’s presence to others and discovers other devices or services, being analogous to the three

protocols of Jini.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 42

A joining device sends an advertisement multicast message to advertise its services to control points,

which function similar to Jini’s lookup services.

A control point, if present, can record the advertisement, or other devices might also directly see this

multicast message. UPnP can work with or without the control points, where’s Jini cannot live without

its lookup service.

A search multicast message is sent when a new control point is added to a network. Any device that

listens and hears this multicast responds with a unicast response message.

The advertisement message contains a URL pointing to a XML document in the network describing the

uPnP device’s capability. Trough this XML document, other devices can inspect the advertised device’s

features and device whether they are relevant to them.

XML is a more powerful description of a service compared to the attributes Jini uses.

After a control point has discovered a device, it learns more about how to use, control, and coordinate

with it by retrieving its XML description document. Control is described as a collection of SOAP (Simple

Object Access Protocol) objects and their URLs in the XML document.

To use a specific control, a SOAP message is sent to the SOAP control object at the specified URL, and

the device then returns action-specific values.

An uPnP description of a service includes a list of actions to which the service responds and a list of

variables that model the service state at the runtime. The service publishes updates when these

variables changes. A control point can subscribe to receive information about the changes of these

variables. These updates are published by sending event messages that contain the names and values of

one or more state variables. These messages are XML documents and are formatted using the General

Event Notification Architecture.

UPnP also includes an additional high level description of services in the form of a user interface. This

makes it possible for a user to directly control the service. If a service or device has a presentation URL,

then the control point can retrieve a page from the URL, load the page into a browser and let a user

control the device or view the status of the device, depending on the page capabilities.

AutoIP is an important feature o uPnP, and lets a device join the network without any explicit

administration. When a device connects to the network, it first tries to acquire an IP address from a

Dynamic Host Configuration Protocol server. If a DHCP server is not available an IP address is claimed

automatically from a reserved range for local network use. This is done by the device by randomly

choosing the IP from the reserved range and then making an ARP request to see if anyone else has

already claimed that address.

2.4.3.3. SALUTATION

Salutation is another standard for service discovery and use, of special importance for devices and

services of different capabilities. The architecture of Salutation provides a method for services and

applications as well as devices to describe and advertise their capabilities to other services, applications

and devices, enabling also search and discovery based on their capabilities.

The Salutation standard is managed by the Salutation consortium [40].

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 43

The Salutation manager and the transport manager are the two major components of the Salutation

architecture. Similar to the Jini lookup service or the uPnP control point, the Salutation manager is the

core of the Salutation architecture. It is a service broker. The service providers all register their

capabilities with the salutation managers. When a client asks the local Salutation manager for a service,

performing a service search, all the Salutation managers coordinate to perform the search. The client

can then use the resulting service that was returned. A salutation manager sits above the of the

transport managers that provide reliable communication channels, regardless of the underlying network

transports.

A transport independent interface to server and client applications is provided by the Salutation

Manager. This interface is called SLM-API (Salutation Manager API), and includes service registration,

discovery, and access functions.

Another interface, called SLM-TI (Salutation Manager Transport Interface), sits between the Salutation

Manager and the Transport Manager and works to achieve transport independence in Salutation.

The transport manager is an entity which is dependent on the network transport it supports. More than

one transport manager, attached to multiple physical networks, may be handled by the Salutation

Manager.

The Salutation manager sees the transport layer of the architecture trough SLM-TI performing the

service registration, service discovery, service session management and service availability functions.

In discovery, the Salutation manager discovers other Salutation managers and its registered services. In

doing that, it uses matching types and sets of attributes specified by the local Salutation Manager. This

feature is called capability exchange and is needed because services are registered with the local

Salutation Manager running in the same equipment.

While conceptually similar to Jini, this service works as a distributed lookup service while Jini’s lookup

service does not.

In registration, all registrations are done with the local Salutation manager or a near one connected to

the client. This Salutation manager contains a registry of services that are registered.

About service availability, the local Salutation manager can be asked by a local application to periodically

check the availability of services, a procedure that is done between the local manager and the

corresponding manager.

About service session management, the Salutation manager might not be involved at all in message

exchanges in the service session, depending on the mode of operation. There are three modes of

operation of the service session: native, emulated or salutation.

The native mode of operation exchanges messages trough a native protocol, so the Salutation manager

is never involved.

In the emulated mode of operation messages are exchanged by the Salutation manager protocol

between the client and service but their content’s are never inspected.

In the salutation mode, messages are exchanged by the Salutation manager protocol between the client

and service and their format is defined by the Salutation manager.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 44

2.4.3.3.1. SALUTATION LITE

Salutation lite is nothing more than a scaled down version of salutation for use in devices with small

footprints.

It is more adequate to devices like handheld computers or palm-size computers and networks like IR and

Bluetooth where bandwidth is low.

2.4.3.4. BLUETOOTH’S SERVICE DISCOVERY PROTOCOL

Bluetooth SDP (Service Discovery Protocol) is the service discovery protocol specific to Bluetooth

networks.

Contrary to Jini, uPnP, Salutation, or SLP (Service Location Protocol), it is specific only to Bluetooth

devices and networks. It primarily addresses the service discovery problem. It does not provide service

brokering, service access, service advertisement, or service registration, and there is no event

notification when services become unavailable.

Bluetooth SDP supports searching by service attributes or service class. It also supports service

browsing. Service browsing is used when the client does not have prior knowledge of the services that

are available in its vicinity.

Bluetooth SDP is structured as a Bluetooth profile and runs on a predefined connection oriented

channel of the L2CAP Logical Link Layer.

2.4.3.5. SERVICE LOCATION PROTOCOL

SLP (Service Location Protocol) [41] provides a scalable framework for the discovery and selection of

network services. Using SLP, computers using the Internet need little or no static configuration of

network services for network based applications.

SLP uses service URLs, which define the service type and address for a particular service. Based on the

service URL, users or applications can browse available services in their domain and select and use the

one they require.

There are three types of agents on SLP: The UA (User Agent), the DA (Directory Agent) and the SA

(Service Agent).

The UA sends service discovery requests on a user’s applications behalf. The SA broadcast

advertisements on behalf of a service. The DA is a centralized service information repository. It caches

advertisements from SAs and processes discovery queries from UAs. An SA makes itself known by

registering with a DA. The registration message contains the URL for the service and the service lifetime,

and a set of descriptive attributes of the service. This registration is periodically renewed and the DA

caches it, sending a acknowledge message back to the SA.

To discover a service, the UA sends a service request message to the DA in order to get the service’s

location. The DA then responds with a service reply message that includes the URLs of all services that

mach the request of the UA. The UA then access one of the services the DA has returned.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 45

In SLP, the existence of the DA is optional. In case the DA does not exist, as is common in small

networks, the service request messages are sent directly to the SAs.

SLP supports searching for attributes based on string queries and also service based browsing.

It is possible to use search query operators like AND, OR, comparators and substring matching, which is

more powerful than Jini or uPnP attribute searching, which can only search against equality.

2.4.4. THIRD GENERATION MOBILE NETWORKS

The 3
rd

 Generation Partnership Project (3GPP) [42] is working on standards for the 3
rd

 generation mobile

cellular networks based on the WCDMA radio access scheme and the UTRA (Universal Terrestrial Radio

Access) radio interface. 3GPP come into existence as the need for a certain degree of coordination was

evident between the different standardization bodies working on 3G systems, which was particularly

important because one of the goals of IMT-2000 was global roaming.

The term IMT-2000 refers to a set of radio interface standards that fulfill the requirements for 3G

networks.

The term 3G (3
rd

 Generation) is defined as “a term coined by the global cellular community to indicate

the next generation of mobile service capabilities in terms of bandwidth and network functions. These

service capabilities in turn allow advanced services and applications, including multimedia”.

2.4.4.1. WCDMA

WCDMA (Wideband Code division Multiple Access) evolved from the code division multiple access

scheme (CDMA) and offers high bandwidth (up to 2Mbps) to users of the mobile network.

WCDMA is a direct sequence CDMA (DS-CDMA) system [43]. It uses spreading codes to transform the

user signal into a spread spectrum coded signal. These spreading codes are used to provide access to

multiple users simultaneously. WCDMA uses Direct Sequence Spread Spectrum (DSSS), which is a

spreading technique that uses a carrier that remains fixed to a specific frequency band. The data signal

is then spread into a much larger range of frequencies using a specific encoding scheme, rather than

being transmitted into a narrow band. This encoding scheme is known as pseudo-noise sequence (PN

sequence).

WCDMA uses a carrier signal of approximately 5 MHz, while original DS-CDMA systems, like the IS-95,

used a carrier of about 1 MHz, being referred now as narrowband CDMA.

Third generation systems based on the 3GPP specifications use the asynchronous network based

scheme of WCDMA, where synchronization between base stations is not required.

WCDMA supports two basic modes of operation: one for paired spectrum and one for unpaired

spectrum. Here pairing refers to the frequency bands available for communication. The FDD mode

(Frequency Division Duplex) is used for the paired spectrum, while TDD (Time Division Duplex) is used

for the unpaired spectrum.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 46

In the FDD mode, separate 5 MHz carriers are used in the uplink and downlink directions. Information

transfer is then symmetric. Data can be exchanged in both directions simultaneously. This is the

traditional GSM mode of operation.

In the TDD mode, only one 5 MHz carrier is used for downlink and uplink. The benefit of the TDD mode

is that the uplink and downlink Bandwidths can be different. For example, the downlink bandwidth can

be substantially higher than the uplink bandwidth. The information transfer is said to be asymmetric.

2.4.4.2. ARCHITECTURE OF A UMTS NETWORK

A typical UMTS network can be modelled in three sub-systems: UE (User Equipment), AN (Access

Network) and CN (Core Network) [43].

The UE is a device used by a subscriber (user) to access network services. The UE is divided in two logical

parts: The ME (Mobile Equipment) and the USIM (Universal Subscriber Identity Module). The ME is

further divided into two distinct functional groups: the MT (Mobile Termination) and the TE (Terminal

Equipment). The MT performs functions radio transmission termination, authentication, and mobility

management. The TE manages the hardware and hosts user applications. The USIM contains the logic

required to securely identify the user. It contains the IMSI (International Mobile Subscriber Identity –

the permanent identity of the user), the shared secret key (used for authentication), phone book and

some other information. The USIM resides on a smart card that can be inserted or removed from the

ME. The smart card is called the UICC (UMTS Integrated Circuit Card). The USIM on the UICC card is

provided by the service provider.

The AN resides between the UE and the CN. It performs the functions specific to the access technique.

In case of the UMTS, the AN performs the functions specific to the WCDMA air interface. The CN,

however, may be used with any access technique.

The AN in UMTS allows two different types of AN systems to interface with the CN network: The BSS

(Base Station Subsystem) and the RNS (Radio Network Subsystem). BSS is the legacy of the GSM era, and

the RNS is the newly standardized access network for UMTS networks for release 99 and above of 3GPP

specifications.

Both BSS and RNS have similar structures. They are composed of a Base Station Controller (BSC) and one

or more Base Transceiver Stations (BTS). BTS and BSC are the names of the components in the BSS

system. In the RNS system they are named Node-B and RNC (Radio Network Controller) respectively.

RNS is also known as UTRAN (Universal Terrestrial Radio Access Network).

The CN consists of the entities that provide support for mobility management, call control, switching,

session management, routing, authentication and equipment identification.

There are two types of traffic handled by the CN: voice traffic and data traffic. While 2G networks where

designed primarily for voice traffic and GPRS introduced data traffic, the UMTS CN is an evolved

GSM/GPRS core network that is divided in two domains: the CS (Circuit Switch) domain for voice traffic

and the PS (Packet Switched) domain for data traffic.

We refrain here from discussing the CS domain in great detail since is the data traffic we are interested

about.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 47

The PS domain uses packet-switched connections for communication between the UE and the

destination. To route packets in the PS domain, a routing entity is required, so the PS domain has a SGSN

(Serving GPRS Support Node). The SGSN performs both functions of the database and the switching. The

PS domain also has the GGSN (Gateway GPRS support node) that provides connectivity to external

packet switched networks.

There are also entities common to both PS and CS domains. These are the HLR (Home Location Register)

located in the home network of the subscriber, the AuC (Authentication Center) which holds

authentication information, the EIR (Equipment Identity Register) which monitors the legitimacy of a UE

used in the network, the SMS-GMSC (SMS gateway MSC) and SMS-IWMSC (SMS Interworking MSC),

specific to SMS functions.

There are also some service specific entities like the GLMC (Gateway Mobile Location Center), some

Camel entities and the CBC (Cell Broadcast Center).

Apart from the CS and PS domain, the IMS (IP Multimedia Subsystem) subsystem is part of UMTS in

Release 5 and above of the 3GPP specifications. The IMS uses the services of PS domain to provide IP

based multimedia services.

The highest level of the hierarchy of the UMTS network is the PLMN (Public Land Mobile Network),

uniquely identified by the PLMN identifier. The PLMN identifier is composed of the MCC (Mobile

Country Code) and the MNC (Mobile Network Code).

The second level is the LA (Location Area), an area in which an MS (Mobile Station) can move freely

without updating its current location in the VLR (Visitor Location Register, a CS domain entity that holds

the database of subscribers). In case the MS moves outside the LA it informs the VLR of its new position

through location update procedures. Each LA is uniquely identified by a LAI (Location Area Identifier),

which includes, besides MCC and MNC, the LAC (Location Area Code).

The third level (inside a LA) is the cell. A LA as one or more cells and is the last level of the hierarchy. The

cell is identified by the CI (Cell Identity), unique within a LA. To identify a cell uniquely across PLMNs, the

CGI (Cell Global Identity) is defined, which is composed of the LA and the CI.

Mobility handling happens in the CS domain through the use of Location Areas, Cells, and the VLR. Since

the MS updates its location when changing LAs, the VLR always has accurate information on the LA of

the MS. Whenever the MS receives a call, the VLR pages the MS too seek the exact location of the MS

(its cell), which is then used to establish a connection.

The RA (Routing Area) is the correspondent entity in the PS domain to the LA in the CS domain, and it

too may include one or more cells. It is defined as an area in which an MS may move freely without

updating its current location at the SGSN. In case the MS moves outside of the current RA, it informs the

SGSN through the routing area update procedure. A major consideration here is that an RA is always

inside an LA, so an LA may contain one or more RAs, each one uniquely identified by the RAI (Routing

Area Identifier), which is the LAI plus a RAC (Routing Area Code).

A URA (UTRAN Registration Area) is defined by an area covered by a number of cells. It is nothing more

than an abstraction used between cells and the RA. A URA contains one or more cells and the RA

contains one or more URAs. The URA is used to track the location of the MS within the UTRAN, and is

uniquely identified by the URA identity.

In UMTS, a number of identifiers are used for the purpose of addressing and identification. A subscriber

is uniquely identified by the IMSI (International Mobile Subscriber Identity), composed by the MCC, the

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 48

MNC and the MSIN (Mobile Subscriber Identification Number). The combination of MNC and MSIN is

called NMSI (National Mobile Subscriber Identity).

The MSISDN (Mobile Subscriber ISDN) is the mobile number used to contact a person. A subscriber can

have multiple MSSIDNs, and so multiple services. MSISDN numbers are based on E.164 ITU-T

specification, and are composed of a CC (country code), a NDC (National Destination Code) and a SN

(Subscriber Number).

The Packet Data Protocol (PDP) address of the UE is the address used for communication between the

UE and entities of a PDN (Packet Data Network). This address is most commonly an IP address (ipv4 or

ipv6), since the most common PDN is based in IP (Internet Protocol). This address is attributed either

statically or dynamically trough the GGSN. A static PDP Address is allocated permanently by the network

operator of the home PLMN. Dynamic assignment is more used since IP address are a scarce resource.

A dynamic PDP Context address is allocated during the activation of PDP Context. A PDP Context can be

viewed as a set of information maintained by the UE, SGSN and GGSN. It contains a PDP type, identifying

the type of the PDN, like for example Ipv4 or Ipv6, QoS Information, and other session information.

Activating the PDP context refers to creating the PDP Context at the UE, SGSN and GGSN so that the UE

can communicate with an entity in the PDN using the PDP address that was attributed.

An MS (Mobile Station) is identified by the IMEI (International Mobile Equipment Identity), composed

by the TAC (Type Allocation Code) and the Serial Number (SNR).

A location number is also needed to provide location services (LCS). The location number is composed of

the CC, the NDC and a LSP (Locally Significant Part), which exact structure is a matter of agreement

between the PLMN operator and the national numbering authority in the PLMN’s country.

The core network entities, including MSC, GMSC, SGSN, GGSN, EIR, HLR and VLR, are identified using

E.164 numbers. Besides the E.164 number, the SGSN and GGSN also require a GSN address (an IP

address), because they communicate with each other using the IP protocol. In the UTRAN, the RNC is

globally uniquely identified by the global RNC identifier, composed by the PLMN identifier and a RNC

identifier.

There are some temporary identities like the TMSI, LMSI, MSRN and RNTI.

The TMSI (Temporary Mobile Subscriber Identity) is used to hide the IMSI for questions of security. The

TMSI is temporarily allocated by the VLR or by the SGSN. It is possible that two temporary identities be

used, one for CS domain and other for PS domain, in which case the one for PS domain is called P-TMSI.

The TMSI (or P-TMSI) has only local significance within the area controlled by the VLR (or SGSN).

The LMSI (Local Mobile Station Identifier) is a logical identifier allocated and used by the VLR to speed

up database search. The VLR sends the LMSI with IMSI/MSISDN to the HLR during message exchange

and the HLR stores it and uses it in further communications with the VLR, but does not use it further

than this.

The MSRN (Mobile Station Roaming Number) is a roaming number allocated by the VLR to facilitate

roaming. The MSRN has the same format as the MSISDN but is not the same. The MSRN is allocated by

the visited network according to the numbering plan of the visited PLMN. The MSRN may be equal to

the MSISDN when the MS is on the home network. It is used to route calls to the MS. When a mobile

terminated call is received by the GMSC, it queries the VLR (via HLR) for a number through which it can

route the call and the VLR allocates a MSRN for the MS and passes it to the HLR which forwards it to the

GMSC. The GMSC then uses the MSRN to route the call to the MS via MSC/VLR.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 49

The RNTI (Radio Network Temporary Identity) is allocated by the UTRAN, while TMSI,LMSI and MSRN

are allocated by the CN. The RNTI is used as a UE identifier to exchange signaling messages between UE

and UTRAN. There are various types of RNTI, one of which is the s-RNTI, allocated by the Serving RNC, in

charge of the radio connections between the UE and the UTRAN, for all UE that have a RRC (Radio

Resource Control) connection. There are also the d-RNTI, c-RNTI and u-RNTI and a few other identifiers

[43].

Traditionally, the signaling traffic generated by UMTS was carried by SS7 networks using protocols like

MTP (Message Transfer Part). The use of SS7 implies that a network entity has to support two

interfaces: one for signaling (SS7) and one for data (IP). If it were possible to join the two interfaces in

two one unique interface based on the IP protocol by developing a reliable transport protocol that could

remove some of the drawbacks of TCP (like support for multiple IP addresses on the same connection),

then the two networks could be converged. For this the SIGTRAN (Signaling and Transport) Working

Group of IETF has developed SCTP (Stream Control Transmission Protocol). It has also developed

adaptation protocols, designed in such a way that their users are unaware of the fact that SS7 protocols

have been replaced with IP protocols. In between the many adaptation layers introduced, the two

important protocols developed were M3UA (MTP3 User Adaptation Layer) and SUA (SCCP User

Adaptation Layer). 3GPP has chosen M3UA for IP signaling transport in the AN as well as in the CN.

2.4.4.2.1. THE SCTP PROTOCOL

The SCTP protocol [44] is a transport level datagram transfer protocol that operates on top of an

unreliable layer (IP). Like TCP, SCTP provides reliable transport service, ensuring all the data is

transported across the network without errors and in sequence.

SCTP works on the notions of associations and streams. An SCTP association is similar to a TCP

connection, but it can support multiple IP addresses at either receiving or transmitting ends. The SCTP

association is composed of multiple streams, and the sequenced delivery is guaranteed within a single

stream.

SCTP retransmits lost messages, like TCP, to establish its reliable service. However, unlike TCP, the

retransmission of lost messages in one stream does not block the sending of new messages in another

stream, thus solving the issue of head-of-the-line blocking of TCP.

2.4.4.2.2. THE IP MULTIMEDIA SYSTEM OF 3GPP

The IP Multimedia System was introduced in Release 5 of the 3GPP specifications [43][45][46]. The

standardization of IMS services, unlike the PS and CS domain, is deliberately kept outside the IMS

specifications. Only basic services are provided by IMS specifications. The IMS framework enables the

network operator to deploy IP multimedia applications in a network independent manner. It does not

have to depend on 3GPP to standardize services.

It is assumed that the standard services available on the internet will be reused and the PS domain is

used to provide underlying transport for both signaling and bearer channels. The AN (UTRAN) and PS

collectively provide the bearer for user and control plane.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 50

3GPP has chosen SIP (Session Initiation Protocol) [47] and related protocols for session establishment

and management. It is used for signaling between the UE and the IMS and between entities in the IMS.

It is also used by the IMS to terminate sessions in the Internet (voice and multimedia).

The IMS requires SIP components, a subscriber database, a service platform and interworking entities to

function.

In between SIP components, there is the UA (User Agent), which is the UE, the proxy or registrar which

is the CSCF (Call Session Control Function), which is of three types: P-CSCF (Proxy-CSCF), I-CSCF

(Interrogating CSCF) and S-CSCF (Serving CSCF). The S-CSCF acts as the registrar, to which the UE has first

to register.

The subscriber database is provided by the HSS (Home Subscriber Server), which is an evolved HLR,

including interfaces for CS and PS domains, and also for IMS database functions. The I-CSCF or S-CSCF

communicate with HSS to obtain subscriber data over the Cx interface (a DIAMETER [48] protocol

interface application cxdx [51]), and the AS (Application Server) communicate with it via the Sh interface

(another DIAMETER [48] protocol interface application sh [50]) to obtain data.

The service platform is where the service execution logic resides and is also called the AS (Application

Server). In IMS there are various AS: The SIP AS, the OSA SCS (Open Services Architecture Service

Capability Server), and the IM-SSF (IP Multimedia Service Switching Function). SIP AS hosts SIP based

services, OSA SCS hosts services based on OSA APIs, and IM-SSF hosts services based on CAMEL network

features.

Interworking entities include the BGCF (Breakout Gateway Control Function), MGW(Media Gateway)

and MGCF(Media Gateway Control Function), which are required for interworking with PSTN (Plain old

Switching Telephone Network) and other networks.

In the IMS the USIM is replaced by the ISIM, which holds the UE’s identity and other necessary

information, thought it is possible for a UE with an USIM to access the IMS.

The P-CSCF is the first contact point in the IMS. If the user is roaming, the P-CSCF is in the visited

network, while if the user is on the home network, the P-CSCF is also on the home network. The S-CSCF

in association with the AS provides the IMS services.

Once the SIP sessions are established, the transport bearer does not follow the signaling path. The

bearer path extends from the UE to the destination network via SGSN/GGSN, and this destination

network may be another GGSN, an IP network, or an MGW. Typically the RTP (Real Time Protocol) [49]

protocol is used on the user plane.

The I-CSCF is the first contact point within an operator’s network. It provides a single point of contact for

entry into the network hiding its configuration from other network operators.

There is another optional component called the SLF(Subscription Locator Function), which function is to

find the address of the HSS, if more than one HSS is present on the network. It is accessed by the I-CSCF

or S-CSCF by the DX interface (trough a DIAMETER[48] protocol interface application cxdx[51]).

The SGW (Signaling Gateway Function) carries out the signaling conversion between SS7 based transport

(at the transport level) used in pre-Release 4 networks and the IP based transport signaling, possibility

used in post-release 99 networks (between SIGTRAN SCTP/IP and SS7 MTP).

2.4.4.2.3. THE DIAMETER PROTOCOL

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 51

The DIAMETER [48] protocol is a protocol, like RADIUS, used for AAA (Authentication, Authorization, and

Accounting). DIAMETER is more comprehensive than RADIUS.

The DIAMETER protocol is unique in the sense it cannot be used alone. The protocol specified in [48] is

called the DIAMETER base protocol, which must be complemented by another protocol to be used. This

other protocol is referred to as the Diameter Application protocol.

The Diameter base protocol provides basic functionality while the application protocol provides specific

functionality. The generic functionality of the DIAMETER base protocol is the following:

• Exchange of AVP (Attribute Value Pairs)

• Exchange and negotiation of protocol capabilities so that only supported messages are

exchanged between peers.

• Establishing and terminating user sessions.

• Monitoring the state of peer connections.

• Exchanging accounting information.

The DIAMETER base protocol is developed by IETF. There is an application of DIAMETER for Cx/Dx

interfaces [51] and another for Sh interface[50].

Only a subset of the DIAMETER base protocol is needed for the Cx/Dx and Sh applications. Namely,

support only for the SCTP protocol, no use of sessions, and no support for accounting features.

2.4.4.2.4. SECURITY IN UMTS NETWORKS

We can subdivide the security in UMTS networks in user domain security, network access security and

network domain security [43].

The user domain security function ensures that only authenticated users can gain access to mobile

stations. This is assured by restricting access to USIM until the user has been authenticated by a PIN

shared between the user and the USIM.

Network access principles are applied to ensure that only legitimate users are allowed to use the

network. In this case, we have mutual authentication, the user authenticates the network and the

network authenticates the user.

The used scheme is called UMTS AKA (Authentication and Key Agreement). This scheme, besides mutual

authentication, also generates a cipher key and an integrity key. The integrity key is not used in the user

plane for performance reasons, but the cipher key is used to encrypt communications.

We also already have talked about how TMSI and P-TMSI are applied in hiding IMSI from the airwaves,

achieving identity confidentiality.

Included in network access security is also the mobile equipment identification function by its IMEI,

getting it from the MS and checking it in the EIR.

All the information needed for the security protocols for mutual authentication is in the USIM and the

AuC of the home environment.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 52

Network domain security can be obtained by using MAPSec or by using IPSec. MAPSec is the protocol

used to encrypt MAP (Message Application Part) protocol messages, and IPSec is the protocol used to

encrypt IP (Internet Protocol).

The CS and PS domains are protected using MAPSec. The IMS domain is protected using IPSec. We

discuss IMS security in the following section.

2.4.4.2.5. SECURITY IN IMS

The big difference between general UMTS security and IMS security is in the network domain security,

which uses IPSec.

NDS/IP(Network domain security for IP based protocols) refers to how the protocol suite specified by

IPSec is applicable to UMTS.

While IPSec defines the use of two security protocols, AH(Authenthication Header) and

ESP(Encapsulating Security Payload), only ESP is adequate according to 3GPP specifications for the

requirements of NDS/IP.

The architecture of NDS/IP uses the concepts of security domain and security gateway (SEG). A security

domain is a collection of networks managed by the same administrative authority. A SEG is responsible

for enforcing the security policy of a security domain towards other SEGs in the destination security

domain.

A security domain may have multiple SEGs to avoid single point of failure or to improve performance. In

that case the SEG may provide connectivity to all reachable security domain destinations or only to a

subset of them.

The interface between two SEGs uses the IKE (Internet Key Exchange) protocol to negotiate, establish

and maintain a secure tunnel between them. After the tunnel is established ESP is used to provide

authentication and encryption.

The interface between network elements (NE) and SEGs is optional but if it exists it uses ESP and IKE.

2.4.5. AD-HOC NETWORKING AND DYNAMIC CONFIGURATION

Ad-hoc networks are envisioned as infrastructure-less networks where each node is a mobile router,

equipped with a wireless transceiver. A message transfer in a ad-hoc network environment would either

take place between two nodes that are within the transmission range of one another or between nodes

that are indirectly connected via multiple hops trough some intermediate nodes [52].

Ad-hoc networks have dynamic topologies, asymmetric link characteristics, multi-hop communication,

decentralized operation, bandwidth constrained, variable capacity links and energy constrained

operation.

2.4.5.1. BLUETOOTH

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 53

One of the ad-hoc networking technologies more used in the market today is Bluetooth [53][54][34], a

technology for short range wireless connections between devices.

Major Bluetooth design points are low power, low cost, and the ability to support high speed ad hoc

networking, while providing for high levels of security.

Starting with a basic data rate of 1Mbps for versions up to 1.2, today the standard can support rates of

about 3Mbps for version 2.0 + EDR (Enhanced Data Rate).

Bluetooth enabled devices can connect and communicate in a wireless fashion with up to seven devices

in one piconet (a short range ad-hoc network), and can belong to several piconets simultaneously. These

piconets are established automatically as devices enter or leave radio proximity.

Bluetooth can handle voice and data traffic simultaneously and operates at a unlicensed frequency band

between 2.4 to 2.485 GHz using a spread spectrum, frequency hopping full duplex signal at 1600

hops/sec. Bluetooth achieves two-way communication trough TDD operation.

Within a Piconet, one device acts a master and the others as the slaves. The first device to initiate

communication will act as a master. The slave devices will synchronize their internal clocks and

frequency hopping sequences with those of the master.

A scatternet is formed by two or more overlapping piconets. It is possible for a master in a piconet to be

a slave in another piconet. Scatternets are not synchronized.

Devices within a piconet setup links for communication depending on need. Two types of

communication links have been defined: The SCO (Synchronous Connection-Oriented) link and the ACL

(Asynchronous Connection-Less) link.

The protocol stack of Bluetooth is composed on the top by the Application layer, then by the adopted

industry protocols (OBEX, WAP, AT commands, TCS BIN, UDP, TCP, IP, PPP, RFCOMM, SDP, Audio), then

by the Bluetooth specific protocols (L2CAP,LMP) and then by the Bluetooth baseband and the Bluetooth

radio layers, in order.

The LMP(Link Manager Protocol) defines messages that are exchanged between participating devices to

setup and maintain links. These messages control authentication and encryption also, and are

transported in the payload data field of a Bluetooth data packet.

The L2CAP (Logical Link Control and Adaptation Protocol) is used by upper layer protocols for data

transport, and can be defined as an adapter between lower and higher layers. L2CAP messages are

transported in the payload data field of Bluetooth data packets just as LMP messages are. L2CAP is

responsible for upper-level protocol data segmentation and reassembly as well as transport of QoS

information. L2CAP is a data link protocol that provides both connection oriented and connectionless

services.

2.4.5.1.1. SECURITY IN BLUETOOTH

In Bluetooth, security is implemented in the link layer.

Bluetooth provides device authentication as well as message confidentiality. In order to achieve this,

two kinds of keys are defined: The link key and the encryption key [55].

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 54

The link key is a 128 bit key, and is also known as the authentication key. It is used for device

authentication as well as for generating the encryption key. The link key can be one of four types:

• Unit key: This is a semi permanent key that is generated within a Bluetooth device (BD) without

interacting with other BDs. A unit key may be used as the link key between a pair of BDs if the

memory available in the BD does not allow creation/storage of a combination key.

• Initialization key: This is a temporary key that has significance for a pair of BDs. The initialization

key is deleted after creation of the combination key.

• Combination key: This is a semi permanent key that is created for every pair of interacting BDs.

• Master key: This is a key that is shared among several BDs in a piconet, and is useful in a

multicast configuration.

The encryption key is derived from the current link key and is used for message encryption. It can be

between 8 and 128 (in octet multiples) bits long.

A semi permanent key is one that is stored in non-volatile memory and is valid even after session

termination. A session is defined as the duration that a BD is connected to a piconet. A piconet is the set

of BDs that use the same channel. A temporary key, on the other hand, is only valid for the session

duration. Unit and combination keys are semi permanent, while initialization and master keys are

temporary.

The unit key is generated when the Bluetooth device is being operated for the first time. The BD

generates a 128 bit random number RAND, which is input to an algorithm E2 along with the 48 bit

BD_ADDR of the device to produce the 128 bit unique key.

The initialization procedure is needed when a pair of BDs (Say, BDA and BDB) do not share a link key or

when the link key is lost, and communication between the two is needed. Before initialization, a PIN is

entered securely into each of the BDs, either manually or by automated means.

The PIN (of length L octets) is augmented with BD_ADDRB (assuming that BDB is the claimant) to produce

PIN’ (of length 16 octets).

The verifier BDA generates a 128 bit random number RAND, which along with PIN’ is input to algorithm

E2, producing the 128 bit initialization key as output. RAND is transmitted by the verifier to the claimant,

which then computes the key as well.

The combination key is produced after the initialization key when two a pair of BDs need to

communicate. Once the combination key has been generated, the initialization key is no longer needed

and is discarded. The combination key can also be regenerated between a pair of BDs at a later time. In

order to generate a combination key, a pair of BDs, BDA and BDB first generate a temporary key (say,

KEYA and KEYB) using a procedure identical to that used to generate a unit key. RANDA and BD_ADDRA

are input to algorithm E2 by BDA to produce KEYA , while RANDB and BD_ADDRB are input to algorithm

E2 by BDB to produce KEYB. BDA then XORs RANDA with the current link key (which is the initialization key

soon after initialization) and transmits the result to BDA. Each BD regenerates the RAND used by the

other BD, and using the BD_ADDR of the other BD computes the KEY generated by the other BD.

Knowing KEYA as well as KEYB the two are XORed by each BD to compute the combination key.

The master key is generated when the same key needs to be used for several BDs (one master and two

or more slaves). The master generates two random numbers RAND1 and RAND2 , and passes them

trough algorithm E2 to produce the master key Kmaster. A third random number RAND3 is generated by

the master and passed on to each of the slaves. (Different slaves may receive different random

numbers, if so desired, but this is not necessary). The slave inputs RAND3 and the current link key with

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 55

the master through algorithm E2 to produce a temporary key Ktemp. The master does the same to

produce Ktemp as well. The master XORs Ktemp with Kmaster and transmits the results to the slave. The slave

computes Kmaster by XORing the received value with Ktemp.

The encryption key (8-128 bits) is generated using the current link key (128 bits), the RAND (a random

number with 128 bits), and the COF (a 96 bit ciphering offset number) which is input to algorithm E3.

Device authentication in Bluetooth is based on a challenge response mechanism. The verifier BDA

generates a random number RAND, and sends it to the claimant BDB. The verifier and the claimant

generate the authenticator SRES based on the E1 algorithm. The claimant transmits the authenticator

(SRES) to the verifier. If this matches the authenticator generated at the verifier, then the claimant has

been authenticated.

2.4.6. SCALABILITY

Taking into account we are talking about large scale games, the scalability problem is one to be taken

into account. The large number of users connected to the game network should not hinder its

performance significantly.

To that effect, distribution of the workload by a number of servers should prove to be effective.

A distributed system is scalable, if it works with large number of clients and objects. Ideally, the same

amount of work should be distributed by the different clients and servers and there should not be

points of congestion in the communication architecture.

In terms of communication protocols, it is customary to use multicast to increase system scalability.

However, common multicast is not reliable. Messages may be lost.

So, reliable multicast is a requirement of requirement of large scale distributed entertainment

applications. However, it has been shown that current solutions for that effect have significant problems

[56], examples of those being the nak or ack explosion problems. The reliable multicast transport

working group of IETF [57] has been addressing the problem of reliable multicast transport, but only in

the one-to-many approach, not in the many-to-many area. The experimental protocol PGM [58], the

only many-to-many protocol that has reached RFC status in IETF, requires support by network elements.

This is hard to get implemented in reality.

2.4.7. CONSISTENCY

The problem of guaranteeing consistency in synchronous applications is the focus of attention of many

research groups [59]. The biggest part of this work has been done in the area of distributed discrete

interactive media, media that changes its state only in response to operations made by the user. There

is also much research done in the area of distributed interactive continuous media. This type of media

changes not only through operations of the user, but through time too. Martin Mauve shows that

approximations utilized on the discrete case are not usable on the continuous case.

The mechanisms that exist to prevent problems of inconsistency divide them self’s in two great classes:

Optimistic and Pessimistic approaches.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 56

Optimistic approaches prevent inconsistencies trough the use of floor control or locking to prevent the

occurrence of simultaneous operations in conflict.

Optimistic approaches, make possible the existence of inconsistencies repairing them as soon as they

are detected in the most quick and efficient way.

Each of these types of mechanisms has its own advantages and disadvantages. In the case of optimistic

approximations, these have the advantage of supporting real collaboration between users, but also the

disadvantages of allowing for inconsistencies of short term, being rather complex in its implementation

and quite dependent of application. As for the pessimistic applications, these have the advantage of not

permitting real collaboration, but on the other side has the advantage of being real efficient and simple

of implement.

2.4.7.1. THE DEAD-RECKONING ALGORITHM

The algorithm of dead reckoning is normally utilized to guarantee the consistency in environments of

distributed virtual reality, with a combination of previewing of state and transmission of state.

The algorithm is based on the fact of the application knowing how the various objects in the virtual

world should behave themselves in the absence of perturbations caused by the user. Therefore, in the

absence of messages referring to a determined object, the application can preview its state, even if it

cannot confirm it.

Each object over which dead reckoning is applied possesses one only controlling application, which is

responsible for notifying the remaining applications when the state of the object is not what it should be

in determined point in time. If an application who visualizes the object receives such a message, it uses

the newly received state as the base for future previsions. To guarantee the correct functioning of the

algorithm when using mechanisms of transmission which are unreliable, a heartbeat message is

transmitted with the actual state of the object in pre-defined intervals.

This approximation to guarantee consistency possesses various advantages, of which the most

important ones are robustness and scalability. In the meanwhile, it actually has some disadvantages,

namely:

• It possesses a maximum number of short term inconsistencies, which implies its normal the

existence of visual illusions and actions based on inconsistent states.

• Requires that each object be transmitted for each operation in its entirety, which may lead to

great necessities in terms of bandwidth, especially when then size of the state exceeds the

dozens of bytes.

• It is just possible to exist one only controller per object, which makes it impossible collaborative

actions in which two or more users move one only object.

This approximation is adequate for distributed interactive simulations and for distributed virtual

environments, so it is valid for augmented reality, but it becomes inadequate when the media possesses

one or more of the flowing restrictions:

• The state of the media is complex

• The artefacts (or illusions) cannot be hided

• Its primordial true collaboration

• The actions which are based in inconsistent states are critical

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 57

2.4.7.2. THE LOCAL LAG

The local lag is a concept and mechanism used to attempt to reduce the number of short term

inconsistencies. It is based on a simple principle. Instead of executing immediately one operation

emitted by the user, this is delayed by determined period of time before its execution. This implies that

the time mark of the message is bigger that the point of time in which the message is emitted by the

user. The total local delay in this way introduced is called local lag. If this value is significantly higher, it

may reduce significantly the number of inconsistencies of short term.

The big problem with this approach is the determination of the correct value of the local lag to apply. A

too low value is ineffective and a too high value will have a too high impact on response time, which has

to be small.

To determine the correct value of local lag to apply, obviously dependent of the application, normally

three steps are followed:

• Step 1: A minimum value for the local lag is chosen, normally correspondent to the medium

delay which is estimated for the application. If it were this value the chosen one there will only

be short term inconsistencies when packets were lost on the net or were received with a delay

considerably superior to the average.

• Step 2: We chose a maximum acceptable value for the time of response. This is the maximum

interval time a user is prepared to lose between the operation it executes and its

consequences. This value is normally obtained through tests to the psychological reactions of

the users.

• Step 3: Finally, we choose a value for the local lag, somewhere between the obtained value in

step 1 and the obtained value in step 2, whichever is considered most important for the

application in consideration, being the response time or the number of short term

inconsistencies.

2.4.7.3. REPAIRING SHORT TERM INCONSISTENCIES

The existence of short term inconsistencies is unavoidable, even when we utilize algorithms like dead

reckoning or local lag, which significantly reduce, but not completely eliminate, this type of

inconsistencies. It becomes important to find mechanisms to correct this kind of situations. Three

approximations are known to solve this problem: Previewing and transmitting states, requesting states,

and the time warp algorithm.

2.4.7.3.1. PREVIEWING AND TRANSMITTING STATES

An obvious solution is to combine the mechanism of dead reckoning with the mechanism of local lag.

Instead of immediately executing an operation on the local object, the operation receives a time mark

equal to the time at which the operation was emitted by the user plus the value of the local lag. The

new state calculated for the object that is the result of the execution of the operation is transmitted to

every other participant, with the same time mark of the operation.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 58

When the physical time corresponds to the time mark of the operation, this operation is executed

locally. In the meanwhile, the other participants already would have received the new state,

immediately after it has been transmitted and will utilize it, without finding any type of short term

inconsistencies. Only participants, who receive this state late, as an effect of loosing packets on the

network or network delay above normal, will experiment a short term inconsistency while the state of

the object is not repaired.

This approximation has two of the disadvantages of the traditional approach without local lag (only with

dead reckoning):

• Is possible only one controller per object

• The state of the object must be small, because it is transmitted in its entirety in each operation

2.4.7.3.2. STATE REQUISITION

State requisition is a mechanism which objective is to avoid the need to transmit always the state in

each operation. This is to make possible using states that are more complex, of size significantly larger of

those permitted on the DIS (Distributed Interactive Simulation) protocol, which uses the combined

mechanism of dead reckoning and local lag.

To solve this problem, it becomes imperative to transmit the state only when it is necessary to repair a

short term inconsistency. For this, the mechanism has to:

• Identify which participants possess the correct state of the object in question

• Guarantee that at least a participant possesses the correct state of the object in question.

If those two rules are applied, whenever it happens to be a short term inconsistency on an object, the

participant asks the object controller the retransmission of the object state, to correct its local state.

These two rules are valid if only one controller exists for each object in determined point in time. If the

controller changes, it will have to be guaranteed the execution of all operations and the reparation of

short term inconsistencies provoqued from the last controller, before the new one can control the

object.

The main disadvantages of this approach are:

• True collaboration is not possible, because the existence of more than one controller for each

object at the same time is not possible.

• The process of repairing short term inconsistencies is more delayed, because of the roundtrip

time from the participant to the object controller, when the state is requested and received.

This approximation is adequate, in consequence, in cases where true collaboration is not required and

that the frequency of short term inconsistencies is low.

2.4.7.3.3. THE TIME WARP ALGORITHM

This method is adapted from the area of parallel simulation of discrete events, and does not need every

object to have its state transmitted, even in the case of an inconsistency of short term. The algorithm

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 59

allows more than one user to work with an object at the same time and uses only local information to

repair a state.

To use this mechanism, each participant records the state of the interactive media in determined point

in time, and holds a file where it records all operations executed since them. When a short term

inconsistency happens, the state of the interactive media is effectively turned back until the point in

time immediately before the operation that provoked the inconsistency. For that, the participant

restores the recorded state and applies again each of the operations recorded on the log file, until the

last operation before the operation that caused the inconsistency.

The great disadvantage of this approximation is the fact that it needs complex application logic and

spends a lot of memory and/or space on the disk. When the time warp algorithm is executed is also put

on the processor a great processing charge and significantly reduced the response time. The response

time diminishes also whenever the current state of the object is recorded in memory or disk.

2.4.8. MULTIMEDIA DATA HETEROGENEITY

Typically there are many different types of data exchanged in Collaborative Virtual Environments, and

the same happens in augmented reality environments. Real time audio and video data, scene

description data, typical 2D data, control data and state or update data. In addition to dealing with

various types of data, continuous distributed interactive media can change their state in response to

user operations as well as to the passage of time.

In response to this, is common to use or develop protocols to allow for multiple types of data or to use

multiple protocols at the same time for each kind of data.

An example of a protocol that handles multiple kinds of data is MPEG (Motion Picture Expert Group)

[60].

2.4.9. DATA DISTRIBUTION AND REPLICATION

Is essential in mobile computing to have the ability to replicate the data objects to increase availability

and performance. It is common for shared data items to have different synchronization constraints

depending on their semantics and particular use.

These constraints should be enforced on an individual basis. Replicated systems need to provide support

for disconnected mode, data divergence, application defined reconciliation procedures, optimistic

concurrency control, etc. Replication is a way in which the system ensures transparency for mobile users

by replicating data at various locations or at various computers. Mobility of users and services and its

impact on data replication and migration will be one of the main technical problems to be resolved.

There are many issues raised by the relocated data and mobility of users and services, such as:

• How to manage data replication, providing the levels of consistency, durability and availability

needed;

• How to locate objects of interest. Should information about location be also replicated and to

what extent;

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 60

• How the user moves affects the replication scheme. How should the copy follow the user? In

general, data should move closer to the user;

• Is a mobile environment requiring dynamic replication schemes?

• Do we need new replication algorithms or the proposed replication schemes for distributed

environment can be modified?

CORBA (Common Object Request Broker Architecture) is a specification of a distributed system. The

specifications of this distributed system has been drawn up by the OMG (Object Management Group),

which is a non profit organization with over 800 members, primarily from the industry. The most

important goal of the OMG with respect to CORBA was to define a distributed system that could

overcome many of the interoperability problems that occurs when integrating networked applications.

The first CORBA specifications become available in the beginning of the 1990s. Currently,

implementations of CORBA version 2.4 are widely deployed. The first first CORBA version system 3

systems are becoming available.

The specifications of corba are available at [61]. More information about implementations is in [62].

2.4.10. QUALITY OF SERVICE

Applications running over a pervasive network must support end-to-end Quality of Service (QoS) for

users and developers, for example, in terms of performance, availability, maintainability, and

survivability [52].

A pervasive network includes high speed networks, on one end of the spectrum, and limited bandwidth

wireless connections on the other end of the spectrum. The wireless portion that interconnects mobile

hosts / routers can change rapidly in unpredictable ways or remain relatively static over long periods of

time.

These bandwidth constrained wireless networks typically support best effort voice and data

communications, where the achieved “good put” is often lower than the maximum radio transmission

rate after encountering the effects of multiple access, fading, noise, and interference, etc...

In addition to being bandwidth constrained, components in pervasive networks may be power

constrained too because pervasive devices mostly rely on power (battery power) for energy. These

environments are also characterized by continuous topology changes that demand stable and

responsive system level adaptation.

Providing suitable QoS for the delivery of real-time audio, video and data in pervasive networks

represents a number of significant technical challenges. It needs a suitable QoS framework paying

particular attention to the performance of the signalling system under a variety of network, mobility and

traffic conditions in support of fast reservation, restoration and adaptation. The system will manage

resources according to the user specified QoS declarations and compete for these resources.

As many real time applications have been developed in the internet, the best effort delivery models

become inadequate for these new applications. Two different models are proposed to guarantee QoS in

the Internet by the Internet Engineering Task Force (IETF): The integrated services (IntServ) and

differentiated services (DiffServ) models. In the IntServ model, network resources are explicitly

identified and reserved. Network nodes classify incoming packets and use reservations to provide QoS.

In de DiffServ model, resources are not explicitly reserved. Instead, traffic is differentiated into a set of

classes, and a network of the most successful protocol, IPv4, allows DiffServ-style QoS to be applied.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 61

However, applications such as streaming audio and video would be much better served under the

IntServ model since they have a relatively constant bandwidth requirement for a known period of time.

TCP, used widely in the current internet, is not well suited to real time applications. Instead, Real time

transport protocol (RTP) is usually implemented on top of UDP, which is better adapted to real time

applications. This protocol mechanism is not enough to guarantee a specific quality of service (QoS) for a

session between a sender and a receiver. Resource Reservation Protocol (RSVP) [63] is an attempt to

provide real-time service through the use of virtual circuits. It is a resource reservation setup protocol

designed for the IntServ model. RSVP is not a routing protocol but a control protocol, which allows

Internet real time applications to reserve resources before they start transmitting data. That is, when an

application invokes RSVP to request specific end-to-end QoS for a data stream, RSVP selects a data path

relying on underlying routing protocols, and then reserves resources along the path. Since RSVP is also

receiver-oriented, each receiver is responsible for reserving resources to guarantee requested QoS

along its data path. The receiver sends a message to reserve resources along all the nodes on the

delivery path to the sender.

The DiffServ architecture aims at providing simple and scalable service differentiation by recognizing

that most data flows generated by most applications can ultimately be classified into a few general

categories (traffic classes). It does this by discriminating and treating the data flows according to their

traffic class, thus providing a logic separation of the traffic into the different classes.

2.4.10.1. QUALITY OF SERVICE IN 3GPP

UMTS (as also GPRS) defines four QoS classes. These are the Conversational, the Streaming, the

Interactive and the Background classes [68].

The conversational class is the class to where conversations belong, and applies to any application that

involves person-to-person communication in real-time such as video-conferencing and interactive video

games, besides speech.

The basic qualities of the conversational class as it refers to speech are low delay, low jitter (delay

variation), reasonable clarity (codec quality), and absence of echo. For multimedia applications it is also

necessary to maintain correct relative timing of the different media streams.

This class is tolerant of some errors, since the dropping or the corruption of a voice packet, for example,

lasting for a typical 20 ms is unlikely to be detected by the user.

The streaming class is to be used by real time applications that send information to a viewer or listener,

but without having a user response (stream the information).

Because of the absence of interaction, there is no need for low delay, but the need for low jitter and

media synchronization remains. The error tolerance remains, but higher quality is required.

Removal of the low delay criterion makes possible the use of buffering techniques in the end user

equipment to even out the delay variation. Because of this, the acceptable level of jitter is higher than

that for the conversational class.

The interactive class is to be used by devices and users that request data from another device. Examples

of its use include some games, network management systems polling for statistics, Web browsing or

searching databases.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 62

There is a requirement for reasonable delay for an application timeout or reasonable prompt for human

activities, but not as low as the conversational class. There is also a requirement for data integrity.

The background class is used by all applications that request data without any immediate need to

process it or that receive data passively. Examples are file transfers, email and SMS (Short Message

Service). The only requirement is data integrity.

In UMTS, QoS is established end-to-end depending on the policy of the network operator and the

capabilities of the UE, and the specified needs of the applications.

The precise services offered over UMTS will depend on both the policy of the network operator and the

capabilities of the ME. UMTS expects that an application used by the UE should be able to specify its

QoS needs but the mechanism for this is outside the UMTS specifications. A possibility is the use of SIP

[47] and SDP (Session Description Protocol) [81].

UMTS offers different scenarios for establishing end-to-end QoS and distinguishes between the

mechanism used for the original ATM-based CS and PS domains core on one hand and the IMS core on

the other.

The original method is the UMTS QoS mechanism where the QoS profile contained in the PDP context

activation method is translated into QoS parameters that are included in the initial address message and

ATM connection request, while IMS introduces the IP bearer service manager to handle QoS for IP.

Some possible scenarios are:

• The UE has no IP bearer service manager, although it may support UMTS QoS and include a QoS

profile in the PDP context activation request. In this case, the GGSN controls the QoS towards

the remote terminal, while the remote terminal (or its own GGSN) controls QoS towards the

UE. The GGSN will have DiffServ support and COPS support and can so interact with the P-CSCF

to authorize a flow based on a SIP SDP media description, user’s subscription rights, and

resources actually available in the UTRAN.

• The UE supports UMTS QoS mechanisms and has an IP bearer service manager but does not

support RSVP. In this case, the application QoS needs specified by SIP SDP parameters are

mapped to IP QoS needs and then to the QoS profile to put in the PDP context activation. If the

UE has received an authorization token from the CSCF, then this also goes into the activation

request for the session.

• The UE supports UMTS QoS mechanism, has an IP bearer service and supports RSVP. Here the

application needs are mapped to RSVP flowspec parameters and are included in the QoS profile

for the PDP context activation. If the UE has received an authorization token, then it includes it

in both the RVSP messages and the PDP context activation request.

2.4.11. MANAGEMENT OF NETWORKS AND SERVICES

Management of the network and management of its services are also important both for correcting

possible working errors and to collect statistics of system execution.

For this, there are standards commonly used in every network, like SNMP (Simple Network

Management Protocol) [69]. But, what changes when the network is UMTS (3GPP specified)?

What is defined and what is not defined in terms of network management?

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 63

In UMTS, the PLMN management objectives are the integrated operation of the elements of the PLMN

using standardized functionality, the inter-PLMN operation of the mobile system, and the information of

the QoS provided [70].

For this, there is a standardized OAM (Operations, Administration and Management) in the PLMN, so

there is operational standardization, multivendor environment standardization, PLMN management

facilities standardization.

Specific PLMN management facilities by operator and specific PLMN management or national

requirements are considered out of the scope of standardization.

The PLMN interworks with other networks (PSTN, other PLMNs, etc…).

In the service and business areas of the PLMN concern: the administration of subscribers, their billing,

the collection of revenue from other operators, maximization of revenue from network resources and

provision of support for subscribers.

Subscriber administration consists of connecting the service to a subscriber, test such service and

features, upgrade services and discontinue service.

The OAM in the 3GPP standards follow the architecture of a TMN (Telecommunication Management

Network).

The services implemented on top of, for example, IMS should have its own management system for

things not included in the basic system in the OAM (Subscribing a user is not needed to be programmed

since the basic OAM does that).

2.5. RELATED WORK

Through our research for mobile and pervasive large scale augmented reality network middleware, we

find none. So, to our knowledge, there is no network middleware specialized for mobile and pervasive

large scale augmented reality applications. However, we did find some interesting augmented (and

mixed) reality applications and platforms, and some other pervasive systems, that are related to the

general area of research and that we talk about here, in this section on related work.

The MR platform (Mixed Reality platform) build by the MR systems laboratory of Canon, Inc. [71] is an

example of a mixed reality platform (and so augmented reality). The platform includes a parallax-less

stereo video see-trough HMD (Head Mounted Display) and a SDK (Software Development Kit) for a

LINUX PC environment. The SDK is composed of a C++ class library for making runtime MR applications

and related utilities such camera calibration tools. The SDK makes available, by using it, the following

functions: Capturing video, handling a 6DOF(6 Degrees of Freedom) sensor, image processing such as

color detection, estimating head position and orientation, displaying the real world image, and

calibrating sensor placement and camera parameters of two cameras mounted on the HMD.

In [72], the authors introduce what they characterize as a scalable architecture for supporting

interactive games on the Internet. But the architecture was not for pervasive games, not for augmented

reality and was only for the internet, and was not really mobile. In their approach, the world is

subdivided in partitions, with each partition each being assigned to a server. A client will join a server

according to the position of the avatar it controls. Compared to a centralized architecture, this

architecture is more scalable. Comparable to a fully distributed peer to peer architecture, it provides the

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 64

means for detecting cheating in online games. Since interaction and accounting information must be

sent to one of the servers for qualification and for verification, cheating between distributed game

players will be minimized.

To speedup periodic updates and secure communication for interactions and accounting information, a

hybrid scheme of communication is used between clients and the associated server using both TCP and

IP multicast. Communication among servers is achieved using RTI (Runtime Infrastructure) services. The

HLA (High Level Architecture) DDM (Data Distribution Management) is also used to limit the amount of

communication between servers. The OM (Ownership Management) is also used to implement the

transferring of avatars between the servers.

In [73] communication architecture for MMPGs (Massive Multiplayer Games) is introduced. Massive

Multiplayer Games are multiplayer games that have a higher need for scalability, since they manage

massive numbers of users.

The introduced communication architecture is based on the publisher/subscriber model, and the key

issues addressed in the paper were scalability, ease of programming and dynamic system evolution.

This is also an internet based solution that does not take into account pervasiveness or mobility, not to

mention augmented reality.

The division of the communication load into distinctive channels allows for the decoupling of the

domains of the game enabling the overall system to scale flexibly with the underlying network

infrastructure, map size or number of players simultaneously online. The underlying

publisher/subscriber communication layer provides a high level API dramatically simplifying network

programming in the game engine.

Communication is content based and there is no fixed correlation between the game players and the

game backend servers, which permits the dynamic evolution of the system by adding or removing

players, game servers, or game content on the fly.

In [74] the authors write about a middleware for large scale pervasive computing environments,

however, it does not apply to augmented reality games.

They have built a distributed middleware to enable the construction and management of pervasive

environments. These environments are called “Active Spaces” and are the basic elements of the large

scale pervasive computing environment. In the paper the authors introduce the concept of “Super

spaces” that should be available in the future which are a collection of reflective and recursive spaces

(Active Spaces or other Super Spaces) that enable large scale management, operation and maintenance

of pervasive computing environments.

An example augmented reality game application (thought not very pervasive) is ARQuake [75], a first

person, indoor/outdoor augmented reality application. The authors of ARQuake presented architecture

for a low cost, moderately accurate, 6DOF tracking system based on GPS, digital compass, and fiducial

vision based tracking.

In [76] , the authors introduce the concept of distributing the load of the system in a massive

multiplayer online game (MMOG) according to regions both to increase scalability and decrease latency.

The middleware the authors talk about implements this through a distributed name service. This is done

in C++ and an internet oriented architecture. While it has the advantages of increasing scalability and

decreasing latency of internet online massive multiplayer games, and to an extent supporting internet

mobility, it does not support the kind of pervasive mobility we are used to when we use a UMTS

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 65

network with cellular phones or PDAs. It is also not a middleware specifically oriented to augmented

reality.

From our analysis of the state of the art and related work, we can conclude that there is a need for a

network middleware that supports the creation of large scale mobile and pervasive augmented reality

game applications, and this is the proposal we talk about in the next section.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 66

3. PROPOSAL AND EXPERIMENTAL DEVELOPMENT

3.1. PROPOSAL

3.1.1. INTRODUCTION

This work focuses on the creation of network middleware for mobile and pervasive entertainment,

applied to the area of large scale augmented reality games. There is a tremendous opportunity for

research and development in the area of massive multiplayer pervasive games applied to augmented

reality, from the point of view of multimedia and communications. The installed infrastructure of mobile

operators makes it possible to install distributed solutions directly linked to geographical locations

bounded by its transmission cells. Solutions extending the work envisioned in [77] and applying map

subdivision like in [73] may be useful. The need for killer applications to justify the overwhelming

investments made is another important factor to consider. But the difficulties exist, because of the

current characteristics of the mobile networks [78]. Bandwidth on mobile networks, though increasing,

is a scarce resource when compared to fixed networks. Adding to this, both transient and persistent

storage spaces on the mobile host are very limited. There are also the problems of mobility handling and

disconnected operation.

The middleware that we propose to be created will incorporate experiences and results obtained from

previous work from the candidate in the area of interactive distributed multimedia, more specifically in

state transmission for a collaborative virtual environment middleware platform, the Status Transmission

Framework (STF) [7][59]. This platform extended another platform, called ARMS – Augmented Reliable

CORBA Multicast System [8], for event distribution. Knowledge will be used from areas as diversified as

peer–to-peer computing, mobile and wireless networks, pervasive computing, embedded systems,

multimedia protocols and systems, interactive distributed multimedia, and network gaming theory and

protocols.

Figure 1 - Central level of the system

We may consider that distributed collaborative virtual environments have network requirements that

will in its majority be common to augmented reality environments. The fundamental problem for

collaborative virtual environments is how to maintain a consistent shared state of the virtual reality

world [7] [59]. Another research topic is, from a quality of service point of view, how to efficiently

transmit update messages so as to provide scalability, minimized delay, consistency and reliability.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 67

Collaborative virtual environments also have the requirement of being able to handle multiple types of

data, which may be multimedia data, state update and control data.

Figure 2 - Large scale network level of the system

The system that will be targeted by the middleware will be composed of 3 levels: the back-office central

level, depicted in Figure 1, the large scale network level, depicted in general in Figure 2, and the

personal area network level, depicted in general in Figure 3.

The back-office central will consist of one or more of a series of parallel servers and will serve as the

main controlling station of the game administrator: The person responsible for starting, stopping and

managing game performance and general maintenance tasks. This may be done for every specific game

running on the system.

The large-scale network is the 3GPP network as it is being built by the specifications, where servers will

be distributed according to some logic of spatial distribution and linkage of its location with specific

geographic locations. These may be, in the extreme, the cells of the mobile communications network.

Figure 3 - The personal area network level of the system

The personal area network level will consist of the network of pervasive devices dedicated to personal

communications and to augmenting reality that the person carries with it. These may be sensors,

actuators, and other devices that can communicate under Bluetooth or other means of communication.

All those communicate to the mobile host, probably just a cell phone or specialized device connected to

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 68

the large scale network, the 3GPP network. The player is so enabled to play games of augmented reality

wherever it is.

Figure 4 - Opting for network middleware architecture

Targeting this architecture will allow the study, evaluation and proposal of mechanisms to deal with

issues of scalability, multimedia data heterogeneity, data distribution and replication, consistency,

security, geospatial location and orientation, mobility, quality of service, management of networks and

services, discovery, ad-hoc networking and dynamic configuration.

We can consider that building the augmented reality applications using the network middleware (option

B of Figure 4) is better that building them standalone (option A of Figure 4). This is because with option

B many games applications may then use the same application programming interface (API) to leverage

network resources, giving it much faster service development and deployment.

The middleware produced will be build according to the characteristics of agile pervasive middleware

[75], such as application – awareness, mobility, integration, interoperability, scalability, portability,

adaptability, robustness and simplicity of evolution.

3.1.2. REQUIREMENTS SPECIFICATION

Is important to establish first the requirements needed to run our system. We are proposing to build a

middleware for mobile and pervasive large scale augmented reality gaming, targeting the three levels

described on the previous section.

The first thing we need to do is to establish the kind of devices, servers, programming languages and

platforms the system will run on.

Today, mobile devices and gadgets come with more than just a cool and cutting-edge design. They come

equipped with small brains and a common language, which makes them smarter and more powerful

than ever before [79]. That language is Java.

Since Java can now run in servers, mobile devices and even small devices it’s clearly a language of choice

for the programming of our middleware and its corresponding applications.

On the servers we will use the J2SE edition and on the small devices and mobile devices of the personal

area network we will use the J2ME edition.

The middleware will use as localization technology any localization technology that provides enough

precision and it’s available on the spot, using the Java Location API to abstract from location technology.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 69

To provide truly ubiquitous positioning with precision, outdoors GPS would be used with carrier based

techniques (which are already available commercially, thought at a price) and differential GPS

techniques (such as Assisted GPS), while indoors some other solution would be needed, like acoustic

tracking devices that employ ultrasonic sound waves that measure the position and orientation of the

entity being tracked (This can be done through time-of-flight tracking and phase-coherence tracking).

Galileu, because of the abstraction provided by the Java Location API, will be automatically used if it

provides the needed precision when it becomes available. Orientation (see state of the art chapter) can

also be obtained through the use of a digital compass and/or orientation sensors. Through the use of

the Java Location API is possible to the middleware to obtain both location and orientation, if available.

We require its availability in the main game device. So, we require both J2ME and Java LAPI and the

existence of both an orientation and location technologies of sufficient precision on the main game

device.

On the main game device, we feel we must demand an existing J2ME profile, and that profile is the

MIDP 2.0, that runs on the CLDC 1.1 configuration of J2ME, which provides us with the capability to do

floating point arithmetic. The main game device will be, preferably, a specialized device for the

management of a personal area network of devices dedicated to augmented reality gaming. However,

due to these specifications, there is nothing stopping it from being a common advanced mobile phone.

For the sensors and actuators, the requirements must not be so demanding, so we only require the

CLDC 1.1 configuration, and we do not require any profile at all. We just require the possibility to use

JSR-82 APIs (Bluetooth for Java) [84]. This for a sensor. For an actuator, optionally, it may have also the

JSR-184 API (Mobile Media API) [87] and JSR-135 API (Mobile 3D API) [86]. This for it to be possible to

build a multimedia actuator such as an augmented reality glasses device. An actuator that does not

need these APIs may live without them.

For the servers, central and distributed, we will use J2SE, and demand simply enough processing power,

memory capacity and disk capacity for the databases and the middleware and application that will run

the game, for the probable load of the system. Obviously, there should be enough distributed servers

for the dimension of the game area and the expected load of the game.

A basic requirement is the existence of a 3GPP (UMTS) network supporting IMS (IP Multimedia Service)

where to run the central and distributed servers) and where the main game device connects wirelessly,

that will be the main game network for the whole system.

3.1.3. PROPOSED GENERAL ARCHITECTURE

The system targeted by the proposed middleware is composed of 3 levels: the back-office central level,

the large scale network level, and the personal area network level.

The back-office central level consists of one or more of a series of parallel servers and serves as the main

controlling station of the game administrator, the person responsible for starting, stopping and

managing game performance and general maintenance tasks.

The large-scale network is the standard 3GPP network, where servers are distributed according to some

logic of spatial distribution, typically corresponding to aggregations of cells of the mobile

communications network.

The personal area network level consists of the network of pervasive devices dedicated to personal

communications and to augmenting reality, which the person carries. These may be sensors, actuators,

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 70

and other devices that can communicate using Bluetooth or other means of communication. All these

communicate with the mobile host, probably just a cell phone or specialized device connected to the

large-scale 3GPP network. In this way, the player is so enabled to play games of augmented reality

irrespective of his/her location.

Targeting this architecture allows the study, evaluation and proposal of mechanisms to deal with issues

of scalability, multimedia data heterogeneity, data distribution and replication, consistency, security,

geospatial location and orientation, mobility, quality of service, management of networks and services,

discovery, ad-hoc networking and dynamic configuration.

We consider that building augmented reality applications using a network middleware is better that

building them standalone. This is because then many games applications may then use the same

application programming interface (API) to leverage network resources, giving it much faster service

development and deployment.

The middleware presented in this thesis is being built according to the characteristics of agile pervasive

middleware [80], such as application-awareness, mobility, integration, interoperability, scalability,

portability, adaptability, robustness and simplicity of evolution.

3.1.3.1. CENTRAL LEVEL

At the central level, there is one server, which may be constituted by more than one parallel server,

running Java Standard Edition 1.5.0. There will also be database servers, which may or may not be

integrated with the same server.

This server or collection of servers will be connected to the HSS (Home Subscriber Server) of the 3GPP

Network by the DIAMETER protocol SH application and are, together, an IMS (IP Multimedia Subsystem)

application server.

All authentication, accounting, and authorization will happen through this interface. All management of

the game servers will happen through this server.

Status Transmission Framework version 2.0 APIs for the server side include a DIAMETER [48] API which

includes the base protocol, the CX and DX [51] applications and the SH application [51] of 3GPP. This

would communicate preferably through SCTP [44] (we also developed a java SCTP API that presently

only works under Linux, but can be easily extended to other platforms, as soon as those platforms

support SCTP natively) if available. If not, TCP will be chosen. The DIAMETER API implementation

supports TLS and works over IPSec.

The terminal (UE) from the personal area network will communicate with the central server through SIP

[47] to initiate the session, authenticate itself and get the details for the session through SDP [74]

negotiation.

 The SIP and SDP exchanges include enough information to choose a distributed server to communicate

with, according to the terminal’s geographical location. The terminal geographical location is acquired

through the use of the J2ME Location API (JSR 179) [84] on the mobile terminal.

The Status Transmission Framework Middleware on this level is called the STFSERVER API, which

includes ARMS communications APIs, works above ARMSV6 itself and Sixrm multicast.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 71

The schematics of the middleware architecture the central level are represented in Figure 5.

Figure 5 - Central level architecture

3.1.3.2. LARGE SCALE DISTRIBUTED LEVEL

At the distributed server level, there are multiple distributed servers, linked to geographical coverage

areas which in the extreme may even be linked to the cells of the mobile network, which will distribute

the load off the main server.

These servers run Java Standard Edition 1.5.0, also. They will have integrated database servers running

on the same or different computers.

These servers will be interconnected by a reliable multicast protocol capable of working in an IPv6

network, without the support of network elements, capable of working in the many-to-many scenario,

without the nak implosion problem but nak based, source ordered and avoiding duplicates: The Sixrm

Protocol [14]. This protocol will also connect these servers with the central server.

The Status Transmission Framework Middleware on this level is the STFSERVER API, which includes

ARMS communications APIs, works above ARMSV6 itself and Sixrm multicast.

The schematic of each of the distributed servers on the large scale distributed level is presented in

Figure 6.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 72

Figure 6 - Large Scale Distributed Level Architecture

3.1.3.3. PERSONAL AREA NETWORK LEVEL

At the personal area network level we will find the most diversified types of devices. The main device

will probably be a cell phone or a specialized device for game playing.

The required characteristics for this device is that it must support the Java language, more specifically,

Java Micro Edition, in its Connected Limited Device Configuration (CLDC) version 1.1 [82], and the MIDP

– Mobile Information Device Profile - version 2.0 [83].

This central device must support also the Java Bluetooth API (JSR-82) [84], the Java SIP (Session Initiation

Protocol) API for J2ME (JSR-180) [85] and the location API for J2ME (JSR-179) [37].

Other devices that are needed on the personal area network level are input and output devices. These

devices must also support at least Java (same version and configuration) and the Bluetooth API [84].

Output devices are essentially video and audio output devices. Video and audio output devices should

also support, besides Java (CLDC 1.1) and Bluetooth for Java Micro edition (JSR-82), the Mobile 3D

graphics API (JSR-184)[86], and the Mobile Media API for J2ME (JSR-135) [87].

As for input devices, in the real world environment, the user is often used to using one or both hands to

perform a task. Therefore, the input devices used with wearable computers need to be designed with

this requirement in mind. Appropriate input devices need to be utilized to allow the user to efficiently

manipulate and interact with objects. For data entry or text input, body mounted keyboards, speech

recognition software, or hand held keyboards are often used. Devices such as IBM’s Intellipoint,

trackballs, data gloves, etc., are used to take the place of a mouse to move a cursor to select options or

to manipulate data. One of the main advantages of using a wearable computer is that it allows the

option of hands free use.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 73

Common factors in the design of input devices are that they all must be unobtrusive, accurate, and easy

to use on the job.

In order for any digital system to have an awareness of and be able to react to events in its

environment, it must be able to sense the environment.

This can be accomplished by incorporating sensors, or arrays of various sensors (sensor fusion) into the

system. Sensors are devices that are able to take an analogue stimulus from the environment and

convert it into electrical signals that can be interpreted by a digital device with a microprocessor.

For a sensor or array of sensors to be supported by the Status Transmission Framework version 2.0, it

must be accompanied by hardware that translates its electrical impulses to digital signals transmitted

over Bluetooth communications over the personal area network to the central device.

The central device will coordinate all the augmented reality experience for the user, using all the

multimedia capacities of the other devices and eventually, even own multimedia capacities of the

central personal area network device.

Here, we have developed the Status Transmission Framework version 2.0 PAN API and the SENSACT API

[13].

Figure 7 shows the minimum required architecture for a sensor, Figure 8 shows the minimum required

architecture for an actuator, and Figure 9 shows the minimum required architecture for the central

game playing device.

Figure 7 - Sensor architecture (Personal Area Network level)

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 74

Figure 8 - Actuator architecture (Personal Area Network level)

Figure 9 - Central Game Device Architecture (Personal Area Network level)

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 75

3.2. EXPERIMENTAL DEVELOPMENT

3.2.1.. THE SENSACT API

The SENSACT API, which was introduced in [13], is the part of the system which enables the sensors and

actuators to be deployed with the help of java CLDC 1.1 and communicate by Bluetooth with the help of

JSR-82. This API and correspondent protocols make part of the personal area network level of the

system.

The SENSACT API is a small footprint set of classes occupying less than 60KBytes, constituted by 5 java

packages, with the functions shown in Table 2.

In order to deploy one sensor/actuator, one has to have the respective hardware, a CLDC 1.1

implementation that runs on the hardware, a Bluetooth API (JSR-82) implementation for that hardware

and platform, and the SENSACT API.

pt.uc.dei.lcst.stf.sensact.main

Main package of the SENSACT API. Contains classes that

can and should be used to create new sensors or new

actuators.

pt.uc.dei.lcst.stf.sensact.pack

Contains a pack of discovery messages, sensor and actuator

classes already implemented that greatly simplify building the

most common types of sensors and actuators.

pt.uc.dei.lcst.stf.sensact.net

Creates a general channel architecture that can be used to

abstract from the communication system, be it Bluetooth or

other (in the future, for example, ZigBee could be supported

by simply extending classes).

pt.uc.dei.lcst.stf.sensact.link

Implements communication channels and helper classes

(Bluetooth)

pt.uc.dei.lcst.stf.sensact.persist

Extends persistence to the world of J2ME CLDC with a

low bandwidth alternative to the standard Java 2 SE

persistence classes.

Table 2- SENSACT API Packages

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 76

The SENSACT API on the sensors and actuators and the STF PAN API (see below) on the main game

device work as a whole to organize an ad-hoc network of sensors and actuators around a main game

device in a way that the main game device works as a coordinator for the sensors and actuators.

The SENSACT API contains classes that allow us to build sensors and actuators, to control a network of

sensors and actuators and interact with these sensors and actuators, all through a Bluetooth network.

To create a sensor, we may create a class that implements the Sensor interface, from the package

pt.uc.dei.lcst.stf.sensact.main. This interface has three methods, with the functions shown in show in

Table 3.

Method Function

activate(GenericChannel c) Activates the sensor

discover() Discovers all sensors in this device

stopSensor() Stops the sensor

Table 3 - Methods of the SENSACT Sensor interface

We must also implement for the same sensor, in order to implement the discover method of the Sensor

interface correctly, a class that extends the SensorDiscoveryMessage class, from the same package. To

implement the value read from the sensor, we must create a class that implements the SensorValue

interface, again from the same package.

To create an actuator, we may create a class that implements the Actuator interface, from the package

pt.uc.dei.lcst.stf.sensact.main. This interface has three methods, with the functions shown in Table 4.

Method Function

actuate(ActuatorValue s) Actuate based on the value given

discover() Discovers all actuators on this device

startActuator() Starts the actuator

stopActuator() Stops the actuator

Table 4 – Methods of the SENSACT Actuator interface

We must also implement for the same actuator, in order to implement the discover method of the

Actuator interface correctly, a class that extends the ActuatorDiscoveryMessage class, from the same

package To implement the value written to the actuator, we must create a class that implements the

ActuatorValue interface, again from the same package.

If our sensor or actuator is one of the predefined types of sensors and actuators supported by the

SENSACT API, then we can use the sensor and actuator and correspondent SensorValue, ActuatorValue

implementing classes and SensorDiscoveryMessage and ActuatorDiscoveryMessage derived classes

from the package pt.uc.dei.lcst.stf.sensact.pack.

To implement a sensor, we must manage it. For this, we use a class that implements the interface

SensactManager, from the package pt.uc.dei.lcst.stf.sensact.main. Typically, there will be one such class

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 77

for each supported network technology. For Bluetooth, this class is the class BTSensactManager, from

the same package. In the future, if other technologies are to be supported, different such classes need

to be created and used. Methods of SensactManager are shown in Table 5.

Method Function

Send(SensorValue s,GenericChannel c) Sends a sensor value on a generic channel

Send(SensorValue s,GenericChannel c,String receiver) Sends a sensor value on a generic channel

for a specific receiver

Table 5 - Methods of SENSACT interface SensactManager

It is important to note that for the sensor or actuator to work on the STF PAN API, the sensor and

actuator also need to be implemented on this API, this for new sensors or actuators. For supported

actuators and sensors, it is enough to use the supplied classes. See the STF PAN API section for details.

3.2.2. THE STF PAN API

The STF – Status Transmission Framework – version 2.0 PAN – Personal Area Network level API is the

correspondent API on the central game device of the user that communicates with the SENSACT API on

the sensors and actuators and that communicates with the distributed and central servers.

We describe here the packages responsible for the personal area network communications, which are

responsible for communicating with the SENSACT API on the sensors and activators, and which functions

are listed in Table 6.

Session Description Protocol [81] is used in SIP [47] messaging to the central server and to the IMS – IP

Multimedia Subsystem of 3GPP to negotiate session parameters and QoS. For this, we make use of Java

SIP-API (JSR-180) [85] and the help of our developed SDP helper classes in pt.uc.dei.lcst.stf.pan.sdp.

The QoS API classes are excluded from this table because we discussed them in detail in a specialized

section more ahead. But they also pertain to STF PAN.

pt.uc.dei.lcst.stf.pan

Main package of the STF PAN API. Main

services like session control, late join, state

receiving and transmitting, state representation,

time warp support, checkpoint and distributed

checkpoint support. Location and orientation

support.

pt.uc.dei.lcst.stf.pan.comms.area

Contains a pack of discovery messages, sensor

and actuator classes already implemented that

greatly simplify building the most common

types of sensors and actuators, and classes to

create more sensors and actuators, and

managers for the Personal Area Network. Is

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 78

effectively, the Personal Area Network API for

small devices.

pt.uc.dei.lcst.stf.pan.comms.link

Implemented channels of communication and

helper classes (including Bluetooth, but also

ways of communicating with the servers)

pt.uc.dei.lcst.stf.pan.comms.sdp

Contains an API for SDP (Session Description

Protocol [24]) representation in Java.

pt.uc.dei.lcst.stf.pan.net

Creates a general channel architecture that can

be used to abstract any communication mean,

be it Bluetooth or other (in the future, for

example, ZigBee could be supported by simply

extending classes). It also contains

implementations of communication means to

reach the distributed servers (TCP).

pt.uc.dei.lcst.stf.pan.persist

Extends persistence to the world of J2ME

CLDC with a low bandwidth alternative to the

standard Java 2 SE serialization and

externalization mechanisms.

Package exactly equal to the SENSACT of

persistence.

Table 6 - Packages of the STF PAN API

To develop an interface for a sensor, to communicate with a sensor not supported by default by the API

and already developed in SENSACT API, it is necessary to develop a class that implements the Sensor

interface, implementing the methods shown in Table 7.

Method Function

SensorValue sense() Sense a value

void setChannel(GenericChannel c) Sets the channel for communication

void startSensing() Starts sensing

void stopSensing() Stops sensing

Table 7 - STF PAN Sensor interface of package pt.uc.dei.lcst.sft.pan.comms.area

For this, it is also necessary to develop a class that extends the SensorDiscoveryMessage class for the

sensor to be discoverable by the STF PAN API. It is also necessary to develop a class that implements the

interface SensorValue to describe the value transmitted by the sensor.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 79

To develop an interface for an actuator, to communicate with an actuator not supported by default by

the API and already developed in SENSACT API, it is necessary to develop a class that implements the

Actuator interface, implementing the methods shown in Table 8.

Method Function

void actuate(ActuatorValue value) Actuate on a value

void setChannel(GenericChannel s) Sets the channel for communication

void startActuator() Starts the actuator

void stopActuator() Stops the actuator

Table 8 - STF PAN Actuator interface from package pt.uc.dei.lcst.sft.pan.comms.area

For this, it is also necessary to develop a class that extends the ActuatorDiscoveryMessage class for the

actuator to be discoverable by the STF PAN API. It is also necessary to develop a class that implements

the interface ActuatorValue to describe the value transmitted to the actuator.

The package pt.uc.dei.lcst.stf.pan contains the main STF PAN API. This includes main services like session

control, late join, state receiving and transmitting, state representation, time warp support, checkpoint

and distributed checkpoint support, and also location and orientation support.

To manage the session on the side of the main game device, the class to use is STFSessionManager,

from which we can use the methods which are shown in Table 9, with corresponding functions.

Method Function

void addSessionListener(STFSessionListener s) Adds a new STFSessionListener to the session

void endSession() Ends the session

float getLastKnownAzimuth() Get last known value of orientation’s Azimuth

boolean getLastKnownIsMagnetic() Get last know value of flag of magnetic Azimuth

float getLastKnownPitch() Get last known value of orientation’s pitch

float getLastKnownRoll() Get last known value of orientation’s roll

float getLastKnownX() Get last known value of position’s X coordinate

float getLastKnownY() Get last known value of position’s Y coordinate

float getLastKnownZ() Get last known value of position’s Z coordinate

void startSession() Starts the session

Table 9 - STF PAN STFSessionManager class of package pt.uc.dei.lcst.stf.pan

To manage the communication channel open after the session is initialized, the class to use is

STFChannelManager, which implements the interfaces STFMessager, STFPartitioner, STFLatejoin and

STFStatistics. These interface’s methods are shown in Table 10, Table 11, Table 12 and Table 13.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 80

Method Function

boolean

removeAllFromKeySinceMessage(STFStateMessage

m)

Removes all messages since this one from the

transmitting queue of the entity, if possible

boolean removeAllSinceMessage(STFStateMessage

m)

Removes all messages sice this one from the

transmitting queues, if possible

boolean removeMessage(STFStateMessage m) Removes a message from the transmitting

queues, if possible

void sendMessage(STFStateMessage m) Sends a new state transmission message through

the framework

Table 10 - STF PAN STFMessager interface of package pt.uc.dei.lcst.stf.pan

Method Function

void disablePartitioning() Disables partitioning

void enablePartitioning(double radious,

STFSessionManager session, int updateInterval)

Turns on partitioning for a spherical space around

the UE.

boolean isPartitioningActive() Checks to see if partitioning is active

Table 11 - STF PAN STFPartitioner interface of package pt.uc.dei.lcst.stf.pan

Method Function

void disableStats() Disables statistics collecting

void enableStats() Enables statistics collecting

Enumeration getAllStreamKeys() Gets a enumeration of all stream entity keys with

statistics collected

STFStatisticsData getGeneralStats() Get the general statistics data object

STFStatisticsData getStats(STFKey key) Gets the stream specific statistics data object

void resetStats() Resets the statistics collected

void resetStats(STFKey key) Resets the statistics collected for the specified

entity key

void setStats(boolean enabled) Enables or disables statistics collecting

Table 12 - STF PAN STFStatistics interface of package pt.uc.dei.lcst.stf.pan

The main game device application class has to implement the STFApplication interface, which has the

methods shown in Table 13.

Method Function

void endLateReceiving() Signals the end of late join message receiving

void receive(STFStateMessage) Receives a state transmission framework message

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 81

void receiveLate(STFStateMessage) Receives a late join protocol state transmission

framework message

void startAllGameActivity() Starts all game activity

void startLateReceiving() Signals the start of late join message receiving

void stopAllGameGameActivity() Stops all game activity

void timeWarpReceive(STFStateMessage) Receives a time warped state transmission

framework message

Table 13 - STF PAN STFApplication interface of package pt.uc.dei.lcst.stf.pan

3.2.3. THE STFSERVER API

The middleware that runs on the central level and on the large scale distributed server level is the

STFServer API. This API makes use of ARMSV6 (and so, Sixrm).

It is an API that runs on top of J2SE 1.5.0 and its objective is to run on the IMS – IP Multimedia

Subsystem core – as an Application Server.

The central server is an application server, the distributed game servers are also application servers.

Table 14 shows the STFServer API packages and corresponding functions.

pt.uc.dei.lcst.stf

Main package of the Status Transmission Framework

version 2.0 Server Side. It contains the logic that

complements the functions that the Status Transmission

Framework version 2.0 provides to the mobile part of

applications and also the logic that STF v2.0 provides to

the server side of the application. That includes state

representing, late joining, state receiving and transmitting,

time warp support, checkpoint and distributed checkpoint

support. Location and orientation support.

Pt.uc.dei.lcst.stf.applications

Package that implements some applications. Namely, the

central game server, the distributed game server, and

some partially simulated components of 3GPP IMS for

testing.

pt.uc.dei.lcst.stf.applications.manager

Package that implements the manager application, which

manages and presents execution statistics for all levels of

the system.

pt.uc.dei.lcst.stf.applications.messages

Messages specifically used by the applications of

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 82

pt.uc.dei.lcst.stf.applications.

pt.uc.dei.lcst.stf.arms

Interface package for working with ARMSV6.

pt.uc.dei.lcst.stf.diameter

Package that implements the base diameter protocol [15]

in java.

pt.uc.dei.lcst.stf.diameter.cxdx

Package that implements the 3GPP CXDX Diameter

Application [16] protocol in java.

Pt.uc.dei.lcst.stf.diameter.sh

Package that implements the 3GPP SH Diameter

Application [17] protocol in java.

pt.uc.dei.lcst.stf.net

Creates a general channel architecture that can be used to

abstract any communication mean.

Pt.uc.dei.lcst.stf.persist

A low bandwidth alternative to the standard Java 2 SE

serialization and externalization mechanisms.

pt.uc.dei.lcst.stf.sctp

Implements support for the SCTP [18][19] protocol in

java in platforms that support it (java.net style). SCTP is

the default protocol for communications in the

DIAMETER[15] AAA protocol. Currently, Linux is

supported.

Pt.uc.dei.lcst.stf.uelink

Implements specific channels of communication with the

UE (mobile terminal – the personal area network central

game machine).

Table 14 - STFServer API Packages

3.2.4. CHANGES IN STF FROM VERSION 1 TO VERSION 2

Status Transmission Framework version 2 (STF2), our middleware for large scale mobile and pervasive

augmented reality games, is an evolution of a previous middleware for distributed collaborative virtual

worlds (DCVE), the Status Transmission Framework Version 1 (STF), that was the subject of a Master

Thesis publication by the same author [59].

Besides the division into three parts (SENSACT, STFPAN and STFSERVER), and the other developments

we describe in this phd thesis (Sixrm, security, management, QoS, ArmsV6 and the SENSACT and STFPAN

sensor and actuator network architecture), there are some other changes we need to describe. We do

this on this section.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 83

First, there are changes in the representation of the very basic states that are transmitted by the

framework. This is done to enable location and orientation support by the middleware. Now, the

interface STFState (that represents a State) includes methods to return the location and orientation of

an object. There are no changes to the STFKey interface, which represents a key for identifying an

object.

The Table 15 represents the methods of the STFState interface, part of packages pt.uc.dei.lcst.stf.pan

(on STFPAN) and pt.uc.dei.lcst.stf (on STFSERVER).

Methods Functions

Int getRedundancy(); Redundancy information. A state may be

REDUNDANT or ESSENTIAL.

Int getVolatility(); Volatility information. A state may be VOLATILE

or NON_VOLATILE.

Int getIndependency(); Independency information. A state may be

INDEPENDENT or CUMULATIVE with respect

to latejoining.

double getPositionX(); Get X coordinate of object’s position.

double getPositionY(); Get Y coordinate of object’s position.

Double getPositionZ(); Get Z coordinate of object’s position.

Float getOrientationPitch(); Get the pitch orientation value of the object.

Float getOrientationRoll(); Get the roll orientation value of the object.

Float getOrientationAzimuth(); Get the azimuth orientation value of the object.

Table 15 - STFState methods and correspondent functions

Message transmission works in a similar way in STF2 as it worked in STF1. The State classification

scheme is the same, as also bandwidth adaptation. Now we have two possible transports. The STF

protocol can now be transported over TCP or over ARMSV6 (Sixrm multicast). If transmitting to or from

a UE, then TCP is used, while if transmitting between distributed servers, ARMSV6 (Sixrm multicast) is

used.

That means that while doing SDP negotiation, the media protocol negotiated is STF (our own media

protocol), which must be appropriately authorized by the network. Of course any other media can be

used additionally to this, such as media for audio and video, additionally to state and virtual 3D

information.

The partitioning method also has changed. While in STF version 1 we had to specify the STFKey set we

defined as the partition that was active for each node, now that is not necessary. This has various

consequences. The first is that a particular partitioning method is always choosed for us, and the second

is that this method is always available and optimized by the middleware.

The partitioning method is spatial partitioning. We choose only to enable partitioning and choose a

particular partitioning radius, beyond which no state messages will be considered or transmitted. This

works for STFPAN or STFSERVER, and the adequate changes are done on the methods of the

STFPartitioner interface.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 84

The latejoining method has changed a little to improve scalability. The change was to include the

consideration of spatial partitioning. Now, if spatial partitioning is active, latejoining takes that into

account and only includes states coming from users and servers in the spatial partitioning area.

The optional time synchronization method (which is active by default in STFPAN and STFSERVER), has

some changes to accommodate the architectural differences between STF and STF2. When active on

STFPAN, the method to vote for a new main time server is never activated. This is because in this case

the main time server is always considered to be the current distributed server. So, a voting process is

never required. All the other mechanisms function the same way as STF.

When working in STFSERVER, the time synchronization mechanism, if active, works the same way as STF,

a main time server is automatically choosed. If the main time server fails, a new one is choosed by

distributed voting. The system maintains a common virtual time synchronized by all servers. This virtual

time is also sent to the UEs running STFPAN. The system takes into account network delay the same way

as STF1 would.

3.2.5. THE SIXRM RELIABLE MULTICAST PROTOCOL

We felt it was necessary to create a protocol capable of working in the many-to-many scenario, without

the nak implosion problem but nak based, source ordered and that avoided duplicates. We also needed

a protocol that could work in ipv6, and that does not require the support of network elements. So, we

created Sixrm.

The Sixrm protocol consists of six types of packets. These are: Data packets (TYPE_DATA), Open packets

(TYPE_OPEN), Close packets (TYPE_CLOSE), nak packets (TYPE_NAK), information packets (TYPE_INFO),

and error packets (TYPE_ERROR). It is a nak based protocol, in which the destinations, when they detect

that they did not received a packet from certain source, transmit a nak for the group that only that

source will listen to and repeat the transmission of the lost packet. If that is not possible, an error packet

will be transmitted for the destination. A source first opens the channel for communication sending a

packet for all destinations in the multicast group, an open packet (TYPE_OPEN), that all currently

listening destinations will receive. This corresponds to the Open operation on the Sixrm node. The

packet contains the source identity and source ip address. All currently open destinations (those that

already have executed the Open operation), when receiving the open packet, perform initialization for

that source, and respond to the open packet with an information packet containing the destination (and

possible source) identity and ip address. The source (or destination) identities are Java long data types.

When receiving the information packets, the source performs the same initialization that the

destinations did when they received the open packet.

For the close operation, the source transmits the close packet and removes itself from the group. All

destinations, when they receive the close packet, perform cleanup operations for that source.

As for data transmission, data is transmitted sequentially. Each new byte buffer that is handled to the

Sixrm protocol for transmission is buffered for transmission and subsequently transmitted, in the next

available time slot. When the data is transmitted, it is given a monotonically increasing sequence

number, packed in a packet of type data (TYPE_DATA) and send to the group for all destinations to

listen.

It must be mentioned by now that every packet transmitted by Sixrm contains the source transmit

memory buffer state (send window), which includes all messages since the last one memorized until the

newest one that was sent (the biggest sequence number). The newest and oldest sequence numbers are

transmitted with each message.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 85

Each destination maintains a receiving window, for each source, that is smaller than the source transmit

window and which has is greatest sequence number always equal to the source transmit window

newest sequence number and its oldest sequence number adjusted to be that number minus some

minimum value.

Each time a source transmits a value, it puts that value in its sent buffer (transmit window), and if

necessary, if the buffer cannot grow anymore, discards the oldest message that was in the buffer. The

value is transmitted and stored in the buffer in a packet of type data (TYPE_DATA).

Each time a destination receives a packet, it verifies witch kind of packet it is. Depending on the kind of

packet, the destination acts differently.

3.2.5.1. PACKETS OF TYPE NAK

When a destination (which is also a source) receives a Nak packet, it means someone did not receive a

packet. The Nak packet contains the source address, the source identity, the sequence number, the

target address, and the target identity.

We can tell if the nak packet is for us by comparing the target address and target identity with our ip

address and identity. If equal, it was our packet that was not received, if not equal, it was someone

else’s packet that was not received, but we still need to memorize the nak. Our answer will depend on

the fact that the nak was direct to us or not.

3.2.5.1.1. NAK DIRECTED TO US

If the Nak was directed to us, then we must try to resend the packet that was lost. Unfortunately, that

may not always be possible. Given the sequence number of the nak, we access the sent memory

(transmit window), and verify if we have the packet.

If we have the packet, then, we resend the packet to the group. We do not memorize the nak.

If we do not have the packet, then we cannot recover from the error and must send an error packet to

the destination informing the destination that we do not have the packet with that sequence number.

We also send an error packet to the application telling the application that a data packet with a

determined sequence number did not reach all destinations.

3.2.5.1.2. NAK DIRECTED TO SOMEONE ELSE

If the nak was directed to some other destination (and source) then we must memorize the nak to

prevent us from, in the near future, transmitting a nak for the same packet. For this effect, we memorize

the nak and a time value that is equal to the current time plus a random back off time value during

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 86

which we cannot transmit a nak for this packet. We do not prevent the transmission forever because

even naks can be lost. In this way, probably we will receive the packet related to the nak if it is missing

and clear the nak before the need to transmit it again arises.

3.2.5.2. PACKETS OF TYPE ERROR

When a destination (which is also a source) receives an error packet, it means a source could not

retransmit a packet for a destination. The error packet contains the source address, the source identity,

the sequence number of the packet that generated the error, and the target address and target identity.

We can tell if the error packet is for us by comparing the target address and target identity with our ip

address and identity. If equal, it was our packet that wasn’t available, if not equal, it was someone else’s

packet that wasn’t available. Only if the error is for us do we deliver it to the application.

3.2.5.3. PACKETS OF TYPE DATA

When receiving a packet of type data, the destination first verifies if it did already initialize the memory

structures for that source.

Then, if the packet sequence number is within the receiving window, it buffers the data packet. It also

removes from memory any naks for that data packet that may exist.

A data packet contains the source address, the source identity, the sequence number, the data buffer,

the transmit window newest sequence and the transmit window oldest sequence.

Taking for granted that the memory structures were already initialized, they are altered by the data

packet, namely the receiving window. The newest element in the receiving window is always the

transmit window newest sequence number.

After buffering the data packet, the destination verifies that the receiving window oldest sequence

number is below the minimum difference with the newest and a packet with that sequence number

exists. In that case, the packet is handed to the application. The process repeats while possible until the

receiving window oldest sequence number aligns with the minimum configured difference from the

newest sequence number.

After this, the receiving buffer is verified for missing packets in between the receiving window. Naks are

transmitted for each missing packet if is not forbidden to do so. It is forbidden to do so if the nak is

memorized and its associated time value is greater than the current system time.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 87

3.2.5.4. PACKETS OF TYPE OPEN

Packets of type open means a source has executed the open operation and expects us to execute

initialization of internal memory structures and respond with information packets with our information

(source address and identity).

Open packets contain the source address and the source identity. When receiving an open packet, the

destination (and source) will initialize its memory structures for that source, and send an information

packet containing its information (that would be sent on an open packet) on an information packet.

3.2.5.5. PACKETS OF TYPE CLOSE

Packets of type close means a source has executed the close operation and will not be sending or

receiving more packets with sequence numbers bigger than the latest.

3.2.5.6. PACKETS OF TYPE INFORMATION

Packets of type information means a destination (and source) is responding to a request from a source

open packet. It expects us to execute initialization of internal memory structures, if we did not that

already for it.

Information packets contain the source address and identity. When receiving an information packet, the

destination (and source) will initialize its memory structures for that source, if it did not already did so.

3.2.6. THE SIXRM API

The Sixrm API is a simple API with only 4 classes, all on the package pt.uc.dei.lcst.stf.sixrm .These classes

are the following: SixrmEntity, SixrmFileKey, SixrmListener and SixrmPacket. We now describe in more

detail each of these classes.

3.2.6.1.. CLASS SIXRMENTITY

This class SixrmEntity takes care of communication for a Sixrm node (entity). A Sixrm node acts

simultaneously as a source and destination of Sixrm packets.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 88

A Sixrm entity is constructed from the identifier (long), the address (ip address – Java InetAddress), the

group (ip address – Java InetAddress), the port (int), the ttl (time to live – int), the profile (Java

Properties), and the listener (SixrmListener).

 The profile contains configuration parameters summarized in Table 16.

Configuration Meaning

maxOutBufferSize Maximum size of an output packet

maxInBufferSize Maximum size of an input packet

maxSentBufferSize Maximum size of the sent buffer

(transmit window)

maxQueuedBufferSize Maximum size of the queue of

messages to transmit

maxRecvBufferSize Maximum size of the receive

buffer

minRecvWindowSize Minimum size of the receive

window

maxRecvWindowSize Maximum size of the receive

window

minRandomBackoff Minimum random back off time of

nak packets

maxRandomBackoff Maximum random back off time of

nak packets

minIntervalTime Minimum interval time between

transmissions (adaptive

throughput)

maxIntervalTime Maximum interval time between

transmissions (adaptive

throughput)

intervalSteppingDown Interval stepping down the interval

time when there is no error or nak.

intervalSteppingUp Interval stepping up the interval

times when there is an error for us

(2 xs) or a nak for us (1x).

Table 16 - Sixrm profile settings

When the SixrmEntity receives data packets or error packets, methods of SixrmListener are called.

Important methods of the SixrmEntity class are summarized on Table 17.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 89

Method Operation

void setListener(SixrmListener

listen)

Sets the listener for

received packets.

void sendMessage(byte[] b) Sends a message (a data

packet)

void Open() Open operation

void Close() Close operation

Table 17 - Methods of class Sixrm Entity

3.2.6.2. CLASS SIXRMPACKET

The class SixrmPacket represents a Sixrm packet. A Sixrm packet may contain a data buffer, a source ip

address, a sequence number, a packet type, a source identity, a target identity, a target ip address, a

source transmit window newest sequence number and a source transmit window oldest sequence

number.

Basically, this class has constructors for the various types of packets that exist (TYPE_DATA, TYPE_OPEN,

TYPE_INFO, TYPE_CLOSE, TYPE_NAK and TYPE_ERROR), and getter and setter methods for the data

fields it contains.

3.2.6.3. CLASS SIXRMLISTENER

The class SixrmListener contains only one method, summarized in Table 18.

Method Operation

Void receive(SixrmPacket

pack)

Receives a packet (error or

data).

Table 18 - Methods of class SixrmListener

This is the interface that applications must implement.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 90

3.2.6.4. CLASS SIXRMFILEKEY

The Class SixrmFileKey is a helper class used to uniquely identify a source by its address and identity. A

SixrmFileKey contains an ip address and an identity (long).

A SixrmFileKey instance identifies a source or destination of Sixrm packets (a Sixrm node).

3.2.7. THE ARMSV6 SYSTEM

ARMS – The Augmented Reliable corba Multicast System [8] [9] – was extended to work in IPV6 in large

scale networks by substituting, in its new version ARMSV6, the reliable multicast protocol it used by the

Sixrm protocol.

Now, the distributed servers communicate using ARMSV6, and so, the Sixrm reliable multicast protocol.

ARMS [8][9] is a improvement for the corba event service that, maintaining compatibility with the

standard corba event service, adds reliable multicast communication to it. ARMSV6 does the same thing

but now supporting ipv6 through Sixrm reliable multicast protocol.

3.2.8. THE QOS APIS

We now discuss the general architecture of the Status Transmission Framework version 2 QoS API on

J2ME (that is, on the UE, the central coordinating device of the personal area network).

3.2.8.1. GENERAL ARCHITECTURE

The general architecture is based on two APIs for QOS: The PDP Context Handler API and the RSVP API.

Both are used at the same time to guarantee quality of service on a 3GPP network with RSVP support

(witch is optional) and that may or may not use uses Service Based Local Policy between the PDF (Policy

Decision Function) and the GGSN as specified on [88].

3.2.8.2. THE PDP CONTEXT HANDLER API

The PDP Context handler API is an Application Programming Interface that allows us to activate and

deactivate PDP contexts with all its characteristics including QoS characteristics.

Table 19 shows the classes of package pt.uc.dei.lcst.stf.pan.qos, the package of the PDP Context handling

API and corresponding functions.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 91

3.2.8.3. THE RSVP API

The RSVP API on the UE (J2ME) is based on the RSVP specifications [63][64][65][66][67] and is used to

alter the way the GGSN in particular (if it supports RSVP) and other routers on the way to the distributed

servers (which are located on the IP Multimedia Subsystem) allocate resources to the connection in

question.

The GGSN affects, if supporting RSVP, the PDP context traffic handling.

Table 20 shows the classes of package pt.uc.dei.lcst.stf.pan.qos.rsvp, the package of the RSVP API and

corresponding functions. This package belongs to the bigger STFPAN API.

Class Function

DestinationPortRangeType Defines a port

range

FlowLabelType Defines a Ipv6 flow

label

IPV4SourceAddress An Ipv4 Source

Address

IPV6SourceAddress An Ipv6 Source

Address

PDPContext A PDP Context per

se

PDPContextListener Listener for event

related to PDP

Contexts

PDPContextManager The manager of

PDPContexts

PDPPacketFilter Base class of all

Packet filters

PDPTrafficFlowTemplate A PDPContext

traffic flow

template

QoSException An exception

occurred

QoSProfileIE The QoS

Specification

ProtocolIDNextHeaderType A Protocol ID

NextHeader

SecurityParameterIndexType A Security

Parameter Index

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 92

SingleDestinationPortType A single destination

port.

SingleSourcePortType A single source

port.

SourcePortRangeType A source port

range.

TypeOfServiceTrafficClassType A type of service

traffic class.

Table 19 - Classes of pt.uc.dei.lcst.stf.pan.qos

3.2.8.4. GENERAL ARCHITECTURE OF THE STF QOS API ON THE DISTRIBUTED SERVERS

On the distributed servers, we use RSVP (Resource Reservation Protocol) and related standards

[63][64][65][66][67].

3.2.8.4.1. THE RSVP ARCHITECTURE

The RSVP architecture on the distributed servers is very similar to the architecture on the UE clients,

with differences in implementation and in configuration of course. But the list of classes is the same as

in Table 20, except that the package is now pt.uc.dei.lcst.stf.qos.rsvp that is part of the bigger STFServer

API.

Class Function

RSVPMessage Base message

RsvpException A

RsvpException

RsvpExceptionNoService RsvpException:

No service

available

RsvpListener Listener of

messages

RsvpManager Rsvp manager

RsvpObject Base object

RsvpObjectForwarded Forwarded

object

RsvpObjectIgnored Ignored object

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 93

RsvpObjectIntServAdSpec AdSpec object

RsvpObjectIntServFlowSpecObject FlowSpec object

RsvpObjectIntServerSenderTSpec TSpec object

RsvpObjectIntegrity Integrity object

RsvpObjectIpv4ErrorSpec Ipv4 Error Spec

object

RsvpObjectIpv4FilterSpec Ipv4 Filter Spec

object

RsvpObjectIpv4ResvConfirm Ipv4

ResvConfirm

object

RsvpObjectIpv4RsvpHop Ipv4 RsvpHop

object

RsvpObjectIpv4ScopeList Ipv4 ScopeList

object

RsvpObjectIpv4SenderTemplate Ipv4

SenderTemplate

object

RsvpObjectIpv4UDP Ipv4 session

object

RsvpObjectIpv6ErrorSpec Ipv6 ErrorSpec

object

RsvpObjectIpv6FilterSpec Ipv6 FilterSpec

object

RsvpObjectIpv6ResvConfirm Ipv6

ResvConfirm

object

RsvpObjectIpv6RsvpHop Ipv6 RsvpHop

object

RsvpObjectIpv6ScopeList Ipv6 ScopeList

object

RsvpObjectIpv6SenderTemplate Ipv6

SenderTemplate

object

RsvpObjectIpv6UDP Ipv6 Session

object

RsvpObjectList List of objects

RsvpObjectNull Null object

RsvpObjectPolicyData PolicyData

object

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 94

RsvpObjectStyle Style object

RsvpObjectTimeValues TimeValues

object

RsvpPATH PATH message

RsvpPathErr PATHERR

message

RsvpPathTear PATHTEAR

message

RsvpRESV RESV message

RsvpResvErr RESVERR

message

RsvpResvTear RESVTEAR

message

RsvpResvConf RESVCONF

message

Table 20 - classes of package pt.uc.dei.lcst.stf.pan.qos.rsvp

3.2.9. THE SECURITY ARCHITECTURE

Security and privacy are issues of significant importance on our middleware architecture for mobile and

pervasive large scale augmented reality games.

Many times the information that is passed on the system should be kept secret for any other purpose

other than gaming, and for anyone else than the appropriate other players.

A striking example of this information is the location and orientation context information of the central

device on the personal area network.

Of course this information needs to circulate on the system, but needs to be kept secure from outside

attack.

So, we need encryption on the system. We also need authorization and authentication, to know which

players and which devices can be connected.

It’s all that architecture we be discussing in this section, for all the levels of the system.

We have built architecture of security on our system that goes a step beyond and effectively extends the

3GPP security architecture (it is meant to work alongside with it).

3.2.9.1. PERSONAL AREA NETWORK LEVEL SECURITY

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 95

 In the personal area network level of the system, we have a network of sensors and actuators that is

connected to the central device through Bluetooth and a central device that is connected to a large

scale distributed level server through the use of TLS/SSL over TCP.

So, the security we apply here is the following, we demand that all the Bluetooth connections be

authenticated and encrypted. We apply security certificates do ensure authentication and authorization

in TLS/SSL over TCP and the encryption itself (witch is RSA).

This is all possible without using nothing more than Java capacities in J2ME and J2SE, including the

capacity to install security certificates.

In doing so, we secure communications in the personal area network and in the communications

between the personal area network and the large scale distributed server level.

3.2.9.2. LARGE SCALE DISTRIBUTED LEVEL SECURITY

On the large scale distributed server level, we communicate between servers using Sixrm reliable

multicast using ipv6, trough the use of our updated ARMSV6 corba event system using multicast, that

evolved from previous work in ARMS – Augmented reliable corba Multicast System [8][9].

To be secure, we now symmetrically encrypt all communications that go through ARMSV6 (and Sixrm),

in RCA5.

Communications are symmetrically encrypted (and not asymmetrically) because Sixrm is an any-to-any

multicast protocol and so there is no direct correspondence between the sender and the receiver.

The key of encryption is distributed by the central server to the distributed servers in the authentication

process.

3.2.9.3. CENTRAL LEVEL SECURITY

The central level is responsible for distributed server authentication and authorization.

Every distributed server must know a login and password to the distributed server so that it can access

this server trough TLS/SLL over TCP so it can receive the encryption key to use on symmetric encryption.

The key is passed encrypted over the secure channel. Certificates for this are pre-installed on the Java

Virtual Machines the servers run on (J2SE).

3.2.10. MANAGING THE SYSTEM

3.2.10.1. OBJECTIVES OF MANAGING THE SYSTEM

The main objective of building a managing subsystem and management application for our middleware

for mobile and pervasive large scale augmented reality gaming is, primarily, a system that is able to

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 96

work in the most autonomous way possible and at the same time able to get its management orders

from outside the system.

In this way, in our system, we want the system to generate and report statistics automatically, but only

report the statistics to the outside application when it requests them.

In the same way, the system must be able to do all that is necessary to authorize users and revoke user’s

authorization, including stopping users running in a clean way, automatically, but only when requested

by the management application.

The management application must be able to enable, disable statistics, and to reset statistics, and have

the middleware do that on the complete system automatically.

In this way, we have the maximum of self-management combined with the most controllability.

3.2.10.2. THE MANAGEMENT ARCHITECTURE

The management architecture is based on a distributed way of passing messages and on a direct way of

passing messages. The distributed way is used for communication between the central server and the

distributed servers and between these and the UE, and the direct way is used for communication

between the central or distributed server and the management application.

All communication is message based and uses on the direct way, SSL over TCP, and on the distributed

way, ARMSV6 (which uses Sixrm reliable multicast) between central server and distributed servers, and

SSL over TCP between these and UE.

The management architecture supports the collecting of statistics of the UE, the distributed server, and

the central server, and also supports aggregating the statistics of all the UEs of one distributed server,

aggregating the statistics of all distributed servers, aggregating the statistics of all UEs of all distributed

servers, and aggregating the statistics of all UEs and all distributed servers (global aggregation).

Aggregation of central server statistics with those is not supported because they are fundamentally

different.

Because of maintaining the scalability, it is not possible to get a specific UE statistics. Only aggregated

statistics of all UE of a distributed server are possible to get.

This kind of statistics generation is done in the UEs by the middleware in its various tasks, and

communicated periodically in a message (STFStatisticsReportedMessage) to the currently connected to

distributed server.

The distributed server middleware generates its own statistics as it operates in its various tasks, and

communicates it periodically to the central server in a message (STFStatisticsReportedMessage). The

distributed server middleware also aggregates the received UE statistics into one report, and also

periodically sends this report in a message (STFStatisticsReportUEMessage) to the central server.

The central server middleware generates its own statistics and stores it, and aggregates the received

distributed server statistics into one report. It also stores the received aggregated UE statistics per

distributed server.

The central server, the distributed server and the UE middleware has ways to enable and disable

statistics generating, and to reset the values of statistics that are being generated.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 97

When the central server receives a message DisableStatistics on the direct way channel (from the

management application) it disables statistics generating itself and sends a DisableStatistics message to

all distributed servers.

The distributed servers, when they receive the DisableStatistics message from the central server, disable

statistics generation and reporting, and send a DisableStatsUE message to all UEs connected to the

distributed server. When the UEs receive this message they stop generating statistics and reporting

them.

When the central server receives a message EnableStatistics on the direct way channel (from the

management application) it enables statistics generating itself and sends a EnableStatistics message to

all distributed servers.

The distributed servers, when they receive the EnableStatistics message from the central server, enable

statistics generation and reporting, and send a EnableStatsUE message to all UEs connected to the

distributed server. When the UEs receive this message they start generating statistics and reporting

them.

When the central server receives a message ResetStatistics on the direct way channel (from the

management application) it resets the statistics generated itself and sends a ResetStatistics message to

all distributed servers.

The distributed servers, when they receive the ResetStatistics message from the central server, reset

statistics generated, and send a ResetStatsUE message to all UEs connected to the distributed server.

When the UEs receive this message they reset generated statistics.

The central server also has the capability to stop and start the game. Every UE and distributed server

implements the STFApplication interface, witch, between other methods, include stopGame() and

startGame() methods, that indicate when to start and when to stop interacting to the application.

When the central server receives a StartGameActivity message in the direct way channel (emitted by the

management application), the central server emits a StartGameActivity message to all connected

distributed servers that in turn send a StartUEGameActivity message to all connected UEs. This will

cause the method startGame() to be called in all UEs and distributed servers.

When the central server receives a StopGameActivity message in the direct way channel (emitted by the

management application), the central server emits a StopGameActivity message to all connected

distributed servers that in turn send a StopUEGameActivity message to all connected UEs. This will cause

the method stopGame() to be called in all UEs and distributed servers.

When a new UE connects itself to the system, or a new distributed server connects itself to the system,

startGame() or stopGame() will be called, depending on the last known status of the game, started or

stopped. On initial central server starting condition, the game is started. As part of initial

communications of the distributed server a new step is added to ask the central server in witch status

the game is on. This is done after the initial setup of the communication channels and before any

control is handled to the application. Basically the distributed servers just send to the central server on

the ARMSV6(Sixrm) multicast channel a AskForGameStatusMessage and the server respond with

GameStatusStartedMessage or GameStatusStoppedMessage if the game is started or stopped,

respectively. Based on the response, the distributed server knows the function to call, startGame() or

stopGame().

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 98

As for authorization of user and revoking the authorization of users, this can also be handled by the

central servers and distributed servers in a coordinated fashion.

This requires not only the central server and distributed server coordination, but communication with

the UEs, and that the central application server communicates with the HSS (Home Subscriber Server) of

the 3GPP network to see if it can authorize the user.

So, to authorize a user to use the system, the application tries to do so by sending a message UserAuth

to the central server containing the SIP identity to authorize. If the server, for any reason, cannot

authorize this user, it returns an error code in the resulting response message UserAuthError, else it

returns a code in that message indicating that all is right.

To revoke a user authorization it is not needed for the central server to consult the HSS, but may be

needed to the system to disconnect a running user of the system (emitting a SIP BYE message and

terminating the session).

To revoke a user authorization, the manager application tries to do so by sending a message

UserRevokeAuth to the central server, containing the SIP identity to revoke authorization to, to which

the server verifies if it exists and if it is running. If it does not exist, it returns an error in the message of

response, UserRevokeAuthError, else it returns a code in that message that says all is ok. If the user was

running a BYE SIP message is emitted to the UE, and the session is terminated, along with all open

communication channels and QoS reservations.

Table 21 shows the messages and corresponding functions between the manager application and the

central server, Table 22 shows the messages and corresponding functions between the manager

application and the distributed server, Table 23 shows the messages and corresponding functions

between central and distributed servers and Table 24 shows the messages and corresponding functions

between distributed servers and UEs. The messages belong to the packages pt.uc.dei.lcst.stf.pan on the

STFPAN UE and pt.uc.dei.lcst.stf and pt.uc.dei.lcst.stf.applications.messages on the STFSERVER central

and distributed servers.

For the communication between central server and HSS, the 3GPP SH DIAMETER[19] application

protocol is used.

Message class Function

LocateServer Locates a server given managed

coordinates

LocatedServer Returns the located server

StartGameActivity Starts all game activity

StopGameActivity Stops all game activity

AskForAggregateGlobalStatsMessage Asks for aggregate global statistics

excluding central server

AskForAggregateDistServerUEStatsMessage Asks for UE aggregate statistics from

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 99

all distributed servers

AskForAggregateDistServerStatsMessage Asks for aggregate distributed servers

statistics

AskForCentralServerStats Asks for central server statistics

DisableStatistics Disables statistics

EnableStatistics Enables statistics

ResetStatistics Resets statistics

CheckRunning Verifies if user is running

CheckAuthorized Verifies if user is authorized

UserRevokeAuth Revokes user authorization

TerminateManagerCommunications Terminates the manager

communications

AllServerNames Contains all distributed server names

AggregateGlobalStatsMessage Aggregate global statistics excluding

central server

AggregateDSTUEStatsMessage Aggregated UE stats from all

distributed servers

AggregateDSTStatsMessage Aggregate distributed server statistics

CentralServerStats Central server statistics

CheckAuthorizedResult Result from check authorized

CheckRunningResult Result from check running

AskForAllServerNames Asks for all distributed server names

UserAuthError Result from UserAuth

UserRevokeAuthError Result from UserRevokeAuth

Table 21 - Messages between central server and management application

Message class Function

STFStatisticsReportMessage Asks for statistics for the server

STFStatisticsReportedMessage Returns statistics (UE aggregate or

server)

STFUEStatisticsReportMessage Asks for statistics for UE (aggregate for

the server)

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 100

CheckRunning Check if user is running using server

CheckRunningResult Result of checking if user is running

TerminateManagerCommunications Terminates the manager communications

Table 22 - Messages between distributed server and management application

Message class Function

EnableStatistics Enables statistics

ResetStatistics Resets statistics

DisableStatistics Disables statistics

STFStatisticsReported Reports statistics for a distributed server

RemoveUserRunning Removes a user running. Stops it

running.

StopGameActivity Stops game activity.

StartGameActivity Starts game activity.

STFStatisticsReportedUEMessage Reports aggregate UE statistics for a

distributed server

Table 23 - Messages between central and distributed servers

Message class Function

DisableStatsUE Disable statistics on a UE

EnableStatsUE Enable statistics on a UE

ResetStatsUE Reset statistics on a UE

StartUEGameActivity Start a UE game activity

StopUEGameActivity Stop a UE game activity

STFStatisticsReportedMessage Reports UE statistics

Table 24 - Messages between distributed servers and UEs

3.2.10.3. THE MANAGEMENT APPLICATION

The management application is a Java 2 Standard Edition Application that runs with the help of the

STFSERVER middleware and that connects by SSL over TCP to a known port of the central server, and

may also connect to a known port again by SSL over TCP, to any of the distributed servers, the addresses

and ports of witch it gets from the central server.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 101

The interface of the application is based on the Swing framework of J2SE and has a system of menus

that we can choose to do the manager work.

First, we must connect to the central server, for witch there is a menu option. When we do this, we can

then obtain statistics for the central server, statistics for all distributed servers, statistics for the UEs of

all distributed servers, statistics for all distributed servers and UEs (Global Statistics), and statistics for all

distributed servers. We can only do that if statistics generating and reporting is enabled of course. For

that, there are menu options to enable statistics, to disable statistics and to reset statistics.

When connected to the central server there are also menu options enabled that allow us to authorize

users, revoke user’s authorization, check if a user is authorized and check if a user is running.

There is another menu option to connect to a distributed server, which gets a list of distributed servers

which can be connected to from the central server and allow us to choose one. When we choose one

and connect to it, by SSL over TCP, other menu options are available, the distributed server statistics and

the distributed server UE statistics. Menu options are described schematically in Figure 10.

Connect

Disconnect

Users

Statistics

Servers

File

Help

Central Server

Distributed Server

Central server

Distributed server

Authorize users

Revoke users authorization

Check if user is authorized

Check if user is running (central)

Check if user is running (distributed)

Statistics for central server

Statistics for distributed server

Aggregated statistics for the UEs of the distributed server

Aggregated statistics for all distributed servers

Aggregated statistics for all UEs of all distributed servers

Global aggregated statistics

Reset all values

Enable statistics collecting

Disable statics collecting

Stop all game activity

Start all game activity

Locate distributed server

Save statistics

About

Figure 10 - Management application menu structure and available menu options

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 102

4. EVALUATION

To evaluate our network middleware for mobile and pervasive large scale augmented reality games, we

first evaluate its scalability analytically considering all levels of its architecture, and then evaluate first

the SENSACT and STFPAN technologies (personal area network), the SIXRM protocol (on the distributed

and central server level), the QoS APIs (both on the personal area and on the distributed server level),

the management architecture (present on all levels of the system) and the security architecture (present

on all levels of the system) and also evaluate a common API (persistence). Finally to evaluate the

middleware in general we demonstrate building and executing a concept application.

4.1. EVALUATING SCALABILITY

To analyse the scalability of our architecture, we are going to analyse the network traffic that is probably

going to be generated in an analytical way. The network traffic generated also affects the processing

time at the nodes so all aspects of scalability are affected in this way. To do this, we must analyse all

levels of the system and the way they work together.

4.1.1. THE PERSONAL AREA NETWORK LEVEL

The first level that is analysed is the personal area network level. Within this level are sensors, actuators

and the main game device. All sensors and actuators communicate with the game device that

communicates with the large scale distributed level servers of the system. The API for sensor and

actuator communication with the central game device is the SENSACT API on the sensors and actuators

and the API on the game device is the STF PAN API. The STF PAN API coordinates all sensors and

actuators and sends and receives only one stream of data to the current distributed server.

If we note by Ai and Si the messages (its size in bytes) sent from a sensor i to the central game device on

the PAN and the messages sent to actuator i from the central game device, and we suppose that set of

actuators and sensors the central game device can process that data so that only the minimal messages

Mk ,in bytes, get transmitted or received from the distributed servers, we get that Tm, the total

maximum number of messages (its size in bytes) handled by the central game device on a period of time

between instants t0 and t1 is:

∑∑ ∑
== =

++=

Lk

k

Ni Mj

ji MSATm
..1..1 ..1 . (1)

Where N is the number of sensors active, M is the number of actuators active and L is the number of

messages received from the distributed server on that period of time, which depends on the number of

objects we are getting updates from, which is limited by partitioning. So we can consider L

approximately equal to the number of objects in a period of time sufficiently small between t0 and t1

multiplied by 2, because we both send and receive.

So we have that:

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 103

1. The maximum number of messages from the sensors increases linearly with the number of sensors

active;

2. The number of messages to the actuators increases linearly with the number of messages relevant

received from the distributed servers (objects in view that trigger the activators) and the number of

sensors active.

3. The number of messages to the distributed servers increases not with sensor number, but with the

number of objects in view, and this is limited by partitioning the virtual world.

4.1.2. THE LARGE SCALE DISTRIBUTED SERVER LEVEL

At the large scale distributed server level each distributed server, at the same time interval, will be

responsible for the users in its area and only minimal communication will be maintained between the

servers. We can denote that minimal communication by MCi, in bytes. We can denote the user

communication at each server by Mk, in bytes, as we did on the personal area network level. Note that

this user communication depends on the number of objects in its view, but that largely is limited, due to

partitioning that is made by the system of the virtual world. So the messages are even further minimized

in that way in a location oriented dependent manner. As we communicate through ARMSV6 and Sixrm

reliable multicast, the formula for the maximum number of messages TDm (its size in bytes), which each

distributed server will handle, will be approximated by:

∑∑
==

+=

Mj

j

Ni

i MCMTDm
..1..1 . (2)

Where N is the number of users and M is the number of distributed servers. We have that the total

number of messages handled by the distributed server will:

1. Increase linearly with the number of users on that distributed server.

2. Increase linearly but in a much slower rhythm with the number of distributed servers (because MCj is

really a small amount).

4.1.3. THE BACK OFFICE CENTRAL LEVEL

The back office central level will be handling management and session initiation and termination. In

management, messages exchanged depend linearly on the number of distributed servers on the

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 104

network. In session initiation and termination messages, as also mobility handling messages, the total

number of messages also depends linearly on the total number of users on the system. But these kinds

of messages happen infrequently, only when users join or leave the system, or when the manager wants

to look, examine data or change things.

4.1.4. ANALYSING THE SCALABILITY OF POSSIBLE ALTERNATE ARCHITECTURES

4.1.4.1. THE TOTALLY CENTRALIZED ARCHITECTURE

We assume that by the totally centralized architecture we mean that the central game device on the

PAN will do no processing on sensors and activator messages and send all to a central server to do all

processing related to the user and send the result back to this user sensors and activators.

This would be of course a situation where the server would be a major bottleneck, as the equation for

the total number of messages on the server clearly shows, for the time between instants t0 and t1:

2
..1 ..1 ..1

xASTm
Ni Mj Lk

kj 






















+= ∑ ∑ ∑

= = =

. (3)

We use here the same notation used until now with Tm being the total maximum number of messages,

in bytes, handled by the central server. We multiply the sum by 2 because we both receive and send

messages. N is the number of users, M the number of sensors per user and L the number of actuators

per user.

We now have the entire load on one component, and loose the benefits of distributing the load for

more than one component.

Here we are not counting with session initiation, session termination, mobility handling, and

management messages. These tend to happen infrequently.

4.1.4.2. THE TOTALLY DISTRIBUTED ARCHITECTURE

In the total distributed architecture, we would have only the large scale distributed level of the system

doing all the processing. There would be no processing on the PAN and no processing on the Central

BackOffice Level.

This leads to problems of finding the correct server to connect to in the first place, we would have to

build a list of servers in each user central device. And these lists must be maintained synchronized with

the configuration of the network, which would be no easy task.

Mobility and management will also be moved to the distributed level completely, complicating things a

little more. On our architecture mobility and management have a distributed component, but are

centrally coordinated, which does not happen in this scenario.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 105

But, seeing things in number of messages transmitted and using the same notation we have in each

distributed server, between instants t0 and t1, taking that the PAN central device does not do any

processing, TDm the total maximum number of messages (its size in bytes) processed in one distributed

server is:

∑∑ ∑ ∑
== = =

+























+=

Ol

l

Ni Mj Lk

kj MCxASTDm
..1..1 ..1 ..1

2

 (4)

Where N is the number of users on this distributed server, M is the number of sensors by user, L is the

number of actuators per user and O is the number of distributed servers on the system.

We have that the total number of messages handled by the distributed server will:

1. Increase linearly with the number of distributed servers

2. Not increase linearly but in a faster rhythm with the number of users, sensors, and actuators on the

users of this distributed server.

So we have that the solution is more scalable than the totally centralized one, but less scalable than our

solution, because the load on the distributed servers is much more.

4.1.4.3. THE PURE PEER-TO-PEER ARCHITECTURE

By the peer-to-peer architecture, we aim to analyse a situation where the central game device has all

the work of the system, communicating only with other central game devices through the 3GPP

network. It has processing capabilities and processes the sensor and actuator messages. It only sends

and receives messages from all other nodes on the system. We denote by Si the sensor messages, Ai the

actuator messages and Mi the node messages to and from other nodes. We have that TPm, the total

maximum number of messages (it’s size in bytes), on the main game device, the main device on the

personal area network, is, on the time between t0 and t1:

∑∑∑
−===

++=

1..1..1..1 Mk

k

Nj

j

Oi

i MSATPm

. (5)

Where N is the number of sensors active on the PAN, M is the number of users on the system and O is

the number of actuators active on the PAN. We see that this formula is very similar to our formula in our

3 levels system for the PAN level, but now the Mk factor depends on the number of users and not on

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis

the number of distributed servers, which clearly is worse than in our case. So, the totally peer

architecture is not as scalable as ours.

4.1.5. GRAPHICAL CASE STUDY

For a more visually appealing comparison, we will do a graphical comparison between de various

alternatives. For this, we will fix the number of sensors in 5 and the number of actuators in 3. We will

start with 100000 users and work our way up to 3000000 users in steps of 100000. We will analyse a

network, in our case, with 100 distributed servers uniformly distributed and with users uniformly

distributed, on the three levels architecture and on the totally distributed archite

output variables. We will fix the size of messages in 50 bytes for the sensors, 300 bytes for the actuators

(in reality this maybe more depending on the kind of actuator but for our study this will do), 300 bytes

for MCi and Mk. We will fix the number of objects in view to 10. We will build a program to run the

simulation and output the results to a CSV file that then gets analysed by Microsoft Excel to output the

graphs shown here.

Figure 11 - Personal Area Network level

ddleware for mobile and pervasive large scale augmented reality games

the number of distributed servers, which clearly is worse than in our case. So, the totally peer

architecture is not as scalable as ours.

GRAPHICAL CASE STUDY OF THE ALTERNATIVE ARCHITECTURES

For a more visually appealing comparison, we will do a graphical comparison between de various

alternatives. For this, we will fix the number of sensors in 5 and the number of actuators in 3. We will

nd work our way up to 3000000 users in steps of 100000. We will analyse a

network, in our case, with 100 distributed servers uniformly distributed and with users uniformly

distributed, on the three levels architecture and on the totally distributed architecture. We will analyse

output variables. We will fix the size of messages in 50 bytes for the sensors, 300 bytes for the actuators

(in reality this maybe more depending on the kind of actuator but for our study this will do), 300 bytes

ill fix the number of objects in view to 10. We will build a program to run the

simulation and output the results to a CSV file that then gets analysed by Microsoft Excel to output the

Network level

ddleware for mobile and pervasive large scale augmented reality games

Página 106

the number of distributed servers, which clearly is worse than in our case. So, the totally peer-to-peer

ARCHITECTURES

For a more visually appealing comparison, we will do a graphical comparison between de various

alternatives. For this, we will fix the number of sensors in 5 and the number of actuators in 3. We will

nd work our way up to 3000000 users in steps of 100000. We will analyse a

network, in our case, with 100 distributed servers uniformly distributed and with users uniformly

cture. We will analyse

output variables. We will fix the size of messages in 50 bytes for the sensors, 300 bytes for the actuators

(in reality this maybe more depending on the kind of actuator but for our study this will do), 300 bytes

ill fix the number of objects in view to 10. We will build a program to run the

simulation and output the results to a CSV file that then gets analysed by Microsoft Excel to output the

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis

Figure

Figure

ddleware for mobile and pervasive large scale augmented reality games

Figure 12 - Large Scale Distributed Server Level

Figure 13 - Totally centralized architecture

ddleware for mobile and pervasive large scale augmented reality games

Página 107

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis

Figure

Figure

Notice how the PAN level on our architecture does not depend on the number of users, contrary to

what happens on the totally peer to peer architecture. Notice on how on the totally distributed

architecture when the users go up to 3000000, we go exponentially to 6E+11 bytes in each server

(corresponding to 30000 users on each server), contrary to only 214560000 bytes linearly in our

solution in each of the distributed servers. In the fully centr

ddleware for mobile and pervasive large scale augmented reality games

Figure 14 - Totally distributed architecture

Figure 15 - Totally peer-to-peer architecture

Notice how the PAN level on our architecture does not depend on the number of users, contrary to

what happens on the totally peer to peer architecture. Notice on how on the totally distributed

architecture when the users go up to 3000000, we go exponentially to 6E+11 bytes in each server

(corresponding to 30000 users on each server), contrary to only 214560000 bytes linearly in our

solution in each of the distributed servers. In the fully centralized architecture, the maximum number of

ddleware for mobile and pervasive large scale augmented reality games

Página 108

Notice how the PAN level on our architecture does not depend on the number of users, contrary to

what happens on the totally peer to peer architecture. Notice on how on the totally distributed

architecture when the users go up to 3000000, we go exponentially to 6E+11 bytes in each server

(corresponding to 30000 users on each server), contrary to only 214560000 bytes linearly in our

alized architecture, the maximum number of

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 109

messages linearly increases to a maximum of 6900060000 bytes, when we have a maximum of 3000000

users, which is much more than any of our distributed servers on our large scale network.

We may have had better results yet if we had allowed our distributed servers to grow to accommodate

the ever growing user base, but that was not the scenario envisioned. In reality, probably we will have

more distributed servers with a growing user base. Even so, when comparing our solution to the totally

distributed one, our solution has linear increase with the number of users and the totally distributed

solution has exponential increase with the number of users. Our solution would be better none the less.

4.2. EVALUATING SENSACT AND STF PAN

The SENSACT API combined with the STF API were subject to extensive functional and performance

tests, with various kinds of simulated sensors and actuators and a simulated reading and actuating

application using Java Wireless Toolkit from Sun Microsystems running in a series of emulators in a

Pentium 4 3.6 GHz System with 1 Gb Memory.

Figure 16 - Delay in milliseconds from messages received at the game controller device from a sensor

0

5

10

15

20

25

30

35

40

45

50

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

M
il

li
s

e
c

o
n

d
s

Messages

DELAY

DELAY

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 110

Figure 17 - Jitter in milliseconds from messages received at the game controller device from a sensor

Figure 18 - Delay in milliseconds from messages received at the actuator from the main game controller device

0

2

4

6

8

10

12

14

16

18

20

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

M
e

s
s

a
g

e
s

Milliseconds

DELAY

DELAY

0

5

10

15

20

25

30

35

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

M
il

li
s

e
c

o
n

d
s

Messages

JITTER

JITTER

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 111

Figure 19 - Jitter in milliseconds from messages received at the actuator from the main controller game device

We present here extracts from the results for delay and jitter for two of those tests, one for a simple

simulated position sensor, and another for a simple force actuator.

The tests show that the combined sensor-middleware delay varies from 0 to 16 milliseconds with jitter

from 0 to 16 milliseconds, while the combined actuator-middleware delay varies from 15 to 16

milliseconds with jitter from 0 to 1 millisecond. These values prove that the solution is adequate for

small sensor and actuator networks around a central coordinating device, such as the ones found in

mobile and pervasive augmented reality scenarios.

4.3. EVALUATING THE SIXRM PROTOCOL

The Sixrm protocol API as it is implemented was subject to various functional and stress tests, with

several profile settings. It was demonstrated that, according to the profile settings, one can have many

instances of Sixrm running on the same computer (over 10 instances, if the settings are right). It was

demonstrated also, that according to the settings, many more instances could be run on different

computers. This is because they will not consume all CPU time, like we did on these stress tests, but only

a minimum, and the sources will try to adapt to the slowest computer and weakest link (because of nak

throughput adaptation, and error throughput adaptation, within the limits set forth in the profile).

We did tests on two computers connected by a 100 Mbit full duplex switch configured in a IPv6

network, and tests in one only computer configured to run in a ipv6 network.

Those were real tests, not simulated tests. The test results presented here are extracts from the tests

with one computer, because they show the delay and jitter introduced solely by the responsibility of the

Sixrm protocol.

We present here graphics for delay and jitter for one of the nodes (received at the first node) of a Sixrm

network witch achieved twelve nodes in the same computer without errors. When the thirteen’s node

was added, there were briefly some errors that were handed to the test application by the Sixrm

0

2

4

6

8

10

12

14

16

18

20

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

M
il

li
s

e
c

o
n

d
s

Messages

JITTER

JITTER

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 112

protocol, in a period when the computer’s processor was at a peak load of 100% and availability was

arriving at its physical limits, which we believed were the causes of the inability of the node to handle

processing data.

The profile settings for these tests are described in Table 25.

The Figure 20 represents delay for the second node on the system as received on the first node. The

Figure 21 represents jitter for the same situation.

Profile value Setting

maxOutBufferSize 3000 messages

maxInBufferSize 3000 messages

maxSentBufferSize 1000 messages

maxQueuedBufferSize 5 messages

maxRecvBufferSize 1000 messages

minRecvWindowSize 10 messages

maxRecvWindowSize 250 messages

minRandomBackoff 10 millisecond

maxRandomBackoff 50 millisecond

minIntervalTime 25 milliseconds

maxIntervalTime 250 milliseconds

intervalSteppingDown 1 millisecond

intervalSteppingUp 16 millisecond

Table 25 - Profile settings for the tests

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 113

Figure 20 - Delay from second node on first node

Figure 21 - Jitter from second node on first node

We do not show here results from more nodes because the results are in all cases similar to these.

From these results we can conclude that the delay is normally always approximately 150 milliseconds

and that the jitter normally varies between 0 and approximately 17 milliseconds. This happens

consistently except some exceptions, which occur exactly on the moments where we were adding nodes

0

500

1000

1500

2000

2500

3000

0

2
1

0

4
2

0

6
0

0

8
1

0

9
9

0

1
2

0
0

1
4

1
0

1
6

2
0

1
8

3
0

2
0

4
0

2
2

5
0

2
4

6
0

2
6

7
0

2
8

8
0

3
0

9
0

3
3

0
0

3
5

1
0

3
7

2
0

3
9

3
0

4
1

4
0

4
3

5
0

4
5

6
0

4
7

7
0

4
9

8
0

5
1

9
0

5
4

0
0

5
6

1
0

5
8

2
0

6
0

3
0

6
2

4
0

6
4

5
0

6
6

6
0

6
8

7
0

7
0

8
0

7
2

9
0

M
il

li
s

e
c

o
n

d
s

Message sequence number (samples)

Delay

Delay

-500

-400

-300

-200

-100

0

100

200

0

2
1

0

4
2

0

6
0

0

8
1

0

9
9

0

1
2

0
0

1
4

1
0

1
6

2
0

1
8

3
0

2
0

4
0

2
2

5
0

2
4

6
0

2
6

7
0

2
8

8
0

3
0

9
0

3
3

0
0

3
5

1
0

3
7

2
0

3
9

3
0

4
1

4
0

4
3

5
0

4
5

6
0

4
7

7
0

4
9

8
0

5
1

9
0

5
4

0
0

5
6

1
0

5
8

2
0

6
0

3
0

6
2

4
0

6
4

5
0

6
6

6
0

6
8

7
0

7
0

8
0

7
2

9
0

M
il

li
s

e
c

o
n

d
s

Message sequence number (samples)

Jitter

Jitter

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 114

to the Sixrm network and the network was adjusting itself. We can see that in these moments the delay

and jitter briefly increase and then stabilise in acceptable values again. In fact, they stabilize in the same

values as the number of nodes increases.

These numbers for delay and jitter (the stable ones) are adequate for most interactive delay sensitive

applications.

As the server network will mostly be a stable one, as probably all nodes will be functioning since the first

few minutes when integrated into the large scale network, the Sixrm protocol is, we think, adequate for

the purpose we create it for.

4.4. EVALUATING THE QOS APIS

To test our architecture we have made some functional tests, on a simulated implementation of the PDP

context Handler architecture and on a protocol implementation of RSVP.

4.4.1. EMULATION OF THE PDP CONTEXT HANDLER ARCHITECTURE

We did not have access to a platform where we could implement real PDP context activation and

deactivation, in a way that we could test it, in Java. So, we emulated the API, implementing all its

functionality internally in such a way that applications can be made in the emulator using this API and in

the future, a real implementation (not emulated), probably using a native interface to the native

features of real UEs, can really allocate and deallocate PDP contexts.

Using this emulation environment, functional tests were made to the proposed API, enabling us to

confirm its operational capabilities.

4.4.2. RSVP IMPLEMENTED BY UDP ENCAPSULATION WITH A SIMULATED ROUTER

IN BETWEEN

As for RSVP, we implemented RSVP, both on the emulated UE and on the distributed server using UDP

encapsulation, which is a feature of the protocol [63].

Our implementation does not support the features of integrity checking (optional in all messages), and

policy data (stated in the RFC as further study item).

A future alternative implementation could implement these items.

For testing, we built a program that simulated a router with UDP encapsulation support and tested in an

isolated fashion the communications of the RSVP protocol between a program that sent and received

data (so it needed reservations), an RSVP simulated router, and a similar program (actually the same

program) running on another machine.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 115

The functional tests consisted of, considering both computers as senders and receivers at the same

time, setting up reservations in RSVP having a router in between the two (actually, the simulated

router).

The tests only targeted the protocol, no real reservations at the network layer were made.

The tests were successful and we proceeded with the integration of the API with the rest of the Status

Transmission Framework Middleware.

4.5. EVALUATING THE SECURITY ARCHITECTURE

To test our security architecture, we are going to test its usability for our target middleware objectives,

which are mobile and pervasive large scale augmented reality games.

These objectives put scalability constraints on security architecture and also QoS constraints such as

delay and jitter.

We can test the security architecture for delay and jitter targets, and we can analyse it to derive

conclusions about its scalability.

We can divide these tests into the various parts of the system, namely in the personal area network, on

the link between the personal area network on the large scale network level, and in the large scale

network level itself.

This is because the central level works essentially as a key distribution level and so does not get itself

involved in any real-time communications.

4.5.1. PERSONAL AREA NETWORK LEVEL SECURITY TESTING

The personal area network part of the system, both the STF PAN API and the STF SENSACT API, was

subject to extensive functional and performance tests, with various kinds of simulated sensors and

actuators and a simulated reading and actuating application using Java Wireless Toolkit 2.5 Beta from

Sun Microsystems running in a series of emulators in a Pentium 4 3.6 GHz System with 1 Gb Memory.

These tests give the same results as the tests run in [13] as nothing has changed, we still use Bluetooth

encryption and authentication. So, we do not present graphics here due to the fact that the results are

the same as presented before. So, we did not add any delay or jitter to the previous architecture.

4.5.1.1. TESTING THE COMMUNICATIONS BETWEEN THE PAN AND THE LARGE SCALE

DISTRIBUTED LEVEL SERVER

Between the personal area network central device, that runs Java 2 Micro edition Mobile Information

Device Profile 2.0 over the Connected Limited Device Configuration 1.1 (MIDP 2.0 and CLDC 1.1), and

the distributed server where it happens to be connected there is a TLS connection over TCP where STF

messages are exchanged according to our protocol.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 116

To be able to test for delay and jitter on this connection, which is handled by specialized classes of

STFPAN (the library of classes for the central device of the personal area network) and STFServer (the

library of classes for the distributed servers and central server), we implemented time stamping of

messages with the current time when sending the message, and automatically calculating the delay

based on that timestamp and the current time on the receiving machine when receiving the messages.

For the test to be meaningful, both machines must be synchronized through NTP, preferably to a

common timeserver.

We also implemented logging to a file both on STFPAN and STFServer of the received delay values so

that we can calculate the delay and jitter values for the various UE (mobile terminals or central devices

of the personal area network), and elaborate graphics.

Figure 22 - Delay received at PAN from distributed server

0

50

100

150

200

250

300

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301

M
il

li
s

e
c

o
n

d
s

Message number

Delay from dist. server to PAN

Delay

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 117

Figure 23 - Jitter received at PAN from distributed server

0

20

40

60

80

100

120

140

160

180

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301

M
il

li
s

e
c

o
n

d
s

Message number

Jitter from dist. server to PAN

Jitter

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 118

Figure 24 - Delay received at the distributed server from the PAN

We then made the tests with only one UE connected to one distributed server working in connection to

one central server. In this situation, even if we do not have a working application to test messaging,

there are messages exchanged between the distributed server and the central device of the personal

area network, between the central device of the personal area network and the central server and

between the distributed server and the central server.

0

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87

M
il

li
s

e
c

o
n

d
s

Message number

Delay from PAN to dist. server

Delay

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 119

Figure 25 - Jitter received on the distributed server from the PAN

The messages we are interested in are the messages between the central device of the personal area

network and the distributed server. At this stage, those messages are only messages of virtual time

synchronization of STF’s internal virtual time synchronization mechanism, which keeps a virtual clock

synchronized between the central device of the personal area network and the distributed server. Is the

delay and jitter of those messages that is evaluated in the graphics shown on this section.

Figure 16 shows the delays for all the messages received at the central personal area network device

that were sent from the distributed server, and Figure 17 shows the jitters for the same messages,

calculated as the difference between current and previous delay.

Figure 18 shows the delays for all the messages received at the distributed server that were sent from

the central personal area device, and Figure 19 shows the jitters from the same messages.

From these figures we can see that the delay from the messages received at the central device of the

PAN is always between 9 and 218 milliseconds. The Jitter from the same messages is always between 0

and 160 milliseconds.

We can also see that the delay from the messages received at the distributed server from the central

device of the PAN is always between 7 and 215 milliseconds and the jitter varies from 0 to 134

milliseconds.

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87

M
il

li
s

e
c

o
n

d
s

Message number

Jitter received from PAN on dist. server

Jitter

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 120

4.5.2. TESTING COMMUNICATION BETWEEN LARGE SCALE DISTRIBUTED LEVEL

SERVERS

For testing communications between the large scale distributed level servers, we also implemented time

stamping of messages the same way we implemented on the connection between the central device of

the personal area network and a distributed server.

Figure 26 - Delays received from the distributed server Gillian on distributed server Julian

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289 305 321 337 353 369 385 401 417 433 449 465 481 497

M
il

li
s

e
c

o
n

d
s

Message number

Delay received at Julian

Delay

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 121

Figure 27 - Jitter received from the distributed server Gillian on the distributed server Julian

The message is marked with a timestamp equal to current time when sending and is marked again with

the delay when receiving the message at the receiving end.

We also implemented logging of the received message delays (from which we can also derive the jitter),

on the distributed servers.

Because we still do not have a concept application to run on the architecture, the only messages running

on the distributed servers are the virtual time synchronization messages. And is the delay and jitter of

these messages that’s shown on the graphics below.

So, Figure 26 represents the delays of all the messages transmitted from distributed server Gillian to

distributed server Julian, while Figure 27 represents the jitters for the same messages.

Figure 28 represents the delays for messages received at distributed server Gillian transmitted from

distributed server Julian, while Figure 29 represents the jitters for the same messages.

We only tested with two distributed servers, because that were sufficient for testing the effects of

cryptography on communication and we are not full of resources.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289 305 321 337 353 369 385 401 417 433 449 465 481 497

M
il

li
s

e
c

o
n

d
s

Message number

Jitter received at Julian

Jitter

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 122

Figure 28 - Delay received from the distributed server Julian on the distributed server Gillian

Figure 29 - Jitter received from the distributed server Julian on the distributed server Gillian

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289 305 321 337 353 369 385 401 417 433 449 465 481 497

M
il

li
s

e
c

o
n

d
s

Message number

Delay received at Gillian

Delay

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289 305 321 337 353 369 385 401 417 433 449 465 481 497

M
il

li
s

e
c

o
n

d
s

Message number

Jitter received at Gillian

Delay

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 123

From these figures we can see that the delay from distributed server Gillian to distributed server Julian

is always between 7 and 62 milliseconds, in fact most below 30 milliseconds, with the exception of some

isolated values in the order of 4-5 seconds which are obviously due to network loss or to processor

overload or some other external factor. Jitter is normally between 0 and 50 (normally below 30), with

the same isolated values.

Values for delay and jitter for the case where the transmission was from Julian to Gillian are similar.

4.6. EVALUATING COMMON APIS

We have also tested the persistence sub-package on its own in order to estimate network bandwidth

usage. For this, we designed a program to compare the savings made in relation to java Serialization and

Externalization mechanisms and to allow us to calculate the size of a message for a common case. This

common case was chosen to be the transmission of a position update (position sensor, for example).

Then we ran a program to evaluate the size of the message that is produced applying each of the three

methods, and printed the results. The obtained results were 92 bytes for Serialization, 83 bytes for

externalization and only 22 bytes for SENSACT persistence.

4.7. EVALUATING THE MANAGEMENT ARCHITECTURE

For the testing phase of the management architecture, we configured the system with one UE

(emulated with a program made over the middleware STFPAN on Java Wireless Toolkit 2.5), one central

server (running on another computer), and one distributed server (running in the same computer as the

central server). The HSS was emulated by one program of ours, that makes part of our middleware and

that emulates essential function of the HSS that our application servers need. This is the minimum

configuration.

First we started the central server, then the distributed server, then the UE. The UE connected to the

central server by SIP and by SSL over TCP to the distributed server, after it had negotiated the session

and the respective QoS properties.

We then, after some time, started the management application on the same computer where the

servers were running.

First we connected to the central server. Then we connected to the distributed server (the only one).

Then we tested every menu option. The results were acceptable for the scenario.

4.7.1. SCALABILITY ANALYSIS

As for scalability, we can analyze it in the following way. When the statistics are disabled, there are no

messages going around in the system. Scalability is not a problem. Authorization of users only involves

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 124

the central server and management application. Revoking of authorization only involves the central

server and management application. Scalability is not a problem.

When generating statistics, the various UE (can be many of them per distributed server) periodically

send their reports to the distributed server, which aggregates it into one only report and sends it

periodically to the central server. Therefore, the central server only receives each aggregated UE report

from the distributed server and each distributed server report. The number of reports received by the

central server depends on the number of distributed servers, not on the number of UEs (i.e. the number

of users on the system). Generated reports from the central server are generated and kept on the

central server. The management application connects to the central server and possibly to a distributed

server. The system is therefore scalable.

As for resetting statistics, only one message is diffused only one time for the entire system. As for

checking if the user is running, only the central server and management application are involved. As for

enabling statistics and disabling statistics, only one message is diffused by the entire system one only

time. So the system is kept scalable.

Of course there is a performance penalty in enabling statistics generating and collecting over not having

the system generating statistics generation and collecting, but this is unavoidable, and tells the manager

that he should use this capacity sparingly, mostly to test the system while still in alpha or beta testing

and occasionally, to track some bugs that may exist.

4.8. BUILDING A CONCEPT APPLICATION

Having built the Status Transmission Framework 2.0 Network Middleware for Large-Scale Mobile and

Pervasive Augmented Reality Games, and tested its functions in isolated fashion, it is now time to

demonstrate it working with a concept application.

4.8.1. THE OBJECTIVE

The objective of programming and executing this concept application, which is made of various

modules, is to demonstrate that it is really possible, given the right hardware, to use the Status

Transmission Framework Software to build the kind of mobile augmented reality applications it was

conceived for.

4.8.2. THE CONCEPT

The concept of the game is assumedly simple: you enter a world (real/virtual) where in the middle of the

real world you will find unreal structures, enemies, possibly firings, and other real players. Real players

are your friends. The objective is to kill enemies and do not get killed by them. If you do get killed by the

enemies, you get out of the game (you get disconnected after GAME OVER).

The apparatus of each player is as follows: Each player carries with him a central gaming device (possibly

a mobile phone, but the requirement is that it must support 3GPP and MIDP 2.0 and CLDC 1.1). This

device has installed STF PAN with the Concept Application Main Game Device Application, which have to

be activated by the user when it wants to play.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 125

The user also carries with him a pointing device called a “VirtualLightRay” device, a Bluetooth sensor

with STF SENSACT installed, supporting orientation sensors and Bluetooth technology, besides CLDC 1.1.

Finally, the last concept device is the Glass/Camera apparatus, which is really two devices on one: A

camera, which is a imaging sensor (CLDC1.1, Bluetooth, SENSACT), which sends images to the central

device, and the Glasses, a output device, which display the real and imaginary data to the user’s eyes,

which are an actuator (CLDC1.1,Bluetooth,M3D,MMAPI). In the example in hand, all the devices are

emulated using Java Wireless Toolkit 2.5 from Sun Microsystems, so they are also using MIDP 2.0, even

if, in some situations, it was not needed. But this is the only emulator at hand.

4.8.3. THE ARCHITECTURE

The distributed game database contains all the data for the imaginary part (the part not on the real

world) of the scenery, including positions, vertices, faces, appearances (such as colours, materials, etc.),

and is located at each of the distributed servers.

The distributed game database filler is a program we have made to fill the database for testing purposes

with structures, lights, enemies, etc..., and with the correct appearances for the initial start of a

demonstration game.

The central game application is responsible for session initiation and termination and basically extends

the basic central server that the STFServer middleware provides.

The distributed application is responsible for the application main logic at the distributed level and does

so by extending functions provided by some classes of the base STFServer middleware.

The main game device application is responsible for the application logic at the terminal level including

late join, initialization and communication and final termination, and does so by extending functions

provided by some classes of the base STFPAN middleware.

There are two sensor applications in the concept application: The imaging camera on the glasses and the

“VirtualLightRay”.

Those imaging camera simply uses MMAPI to take pictures of the real world and transmit them through

Bluetooth through the central device using SENSACT.

The VirtualLighRay simply gets the current orientation (where we are pointing at) and if we press the

button, sends the indication via SENSACT to the central game device.

The actuator application is the glasses, which display the mix of real and virtual world based on the

image they receive by SENSACT from the central game device and the virtual world info they receive

also by SENSACT also from the central game device.

Note that the central game device knows the location of the user and transmits this location to the

glasses.

4.8.10. RUNNING THE CONCEPT APPLICATION

To run the concept application, first you need to run the HSS (Home Subscriber Server) simulator

included in the package of the STFServer API. Then you run on another or the same computer the

STFConceptCentralServer. Then you run the STFConceptDistributedServer. You may run more

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 126

distributed servers. Then you run the clients. In any order, you run the MIDP clients:

ConceptLookingGlasses, ConceptLookingCamera, ConceptVirtualLightRay, and ConceptCentralMidlet.

You may do this for each user you want to connect to each distributed server.

When testing a user, activate (Press the button to activate) the sensors or actuators before you start the

session setup process in the ConceptCentralMidlet MIDP Application.

Figure 30 is a screenshot of the ConceptCentralMidlet MIDP application running in a mobile phone

emultator (Java Wireless Toolkit from Sun Microsystems) whit the session already initiated. The function

of the ConceptCentralMidlet is to run on the central device of the personal area network and manage

the session,report status to the user, and let the user control when and how to enter and leave the

game.

Figure 31 is a screenshot of a camera sensor (ConceptLookingCamera driver application) with a MIDP

display. Normally we would join this with the glasses in Figure 32 and will have only the glasses display,

but for simulation purposes we have chosen to separate the camera from the glasses. The function of

the sensor is to provide images of the real world to the glasses. In a real driver we would not use MIDP.

Figure 32 is a screenshot of the ConceptLookingGlasses driver application which implements a simulated

(obiously on a Java Wireless Toolkit from Sun Microsystems) 3D augmented reality glasses display using

as camera input the images from the camera in Figure 31.

Figure 33 represents the ConceptVirtualLightRay sensor which represents a virtual pointing device,

which uses 3D orientation sensors to point to objects in the augmented reality world and so permit

interaction.

 The reason because even the sensors and actuators are implemented as MIDP applications is that no

emulation platform exists, at least to our knowledge, that allows us to test in a sandbox consisting only

of CLDC 1.1 and Bluetooth APIs, and the Mobile Media and Mobile 3D APIs. These are only available in

conjunction with emulators for mobile phones (which include MIDP 2.0), such as the one used, the Java

Wireless Toolkit, from Sun Microsystems. However, ConceptLookingCamera, ConceptVirtualLightRay

(the sensors) and ConceptLookingGlasses(the actuator) do not need MIDP 2.0, only CLDC 1.1. The only

application which needs MIDP 2.0 is ConceptCentralMidlet, which runs on the central game device.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 127

Figure 30 - ConceptCentralMidlet working with a session active

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 128

Figure 31 - ConceptLookingCamera working with a session active

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 129

Figure 32 - ConceptlookingGlasses working with a session active

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 130

Figure 33 - ConceptVirtualLightRay working with a session active

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 131

5. CONCLUSIONS AND FUTURE WORK

In this thesis we have proposed, built and evaluated a network middleware for large-scale mobile and

pervasive augmented reality games, which works over a 3GPP network. As such, we have fulfilled our

primary objective, stated in the introduction chapter.

This middleware has evolved from previous work in the area of interactive distributed multimedia, more

specifically in state transmission for a collaborative virtual environment middleware platform, the Status

Transmission Framework (STF)[7][8]. This platform extended ARMS - Augmented Reliable corba

Multicast System [9] -with capabilities for the handling of state transmission for distributed collaborative

virtual environments.

We also achieved all the other we have proposed ourselves in the introduction chapter. Mechanisms

were proposed, built and evaluated that dealt with network issues of:

• Mobility: Host mobility is handled by the system not only by mechanisms specific of 3GPP but

also by the distributed servers. The main game device moves from server to server depending

on its location.

• Quality of Service (QoS): Architecture for QoS in Java for 3GPP networks was developed as part

of our network middleware for mobile and pervasive large scale augmented reality games.

• Security: A whole architecture for security was built as part of our middleware for mobile and

pervasive large scale augmented reality games, including authentication and authorization and

encryption, and in doing so, increasing the difficulty of cheating and improving the privacy of

user data.

• Management of Networks and Services: A management architecture specific to our middleware

for mobile and pervasive large scale augmented reality games was built to enable management

of the behaviour specific to the middleware and the analysis of execution statistics. The

management of the 3GPP (UMTS) network may be done through the tools available to the

network operator.

• Discovery: The sensors and actuators are dynamically discovered by the main game device

using a messaging architecture that extends the Bluetooth SDP protocol, through the use of the

SENSACT and STF PAN APIs.

• Ad-hoc networking and dynamic configuration: An ad-hoc network constituted of sensors,

actuators and a main game device is formed and auto configured by the SENSACT and STF PAN

APIs, according to orders from the application, using service discovery, and then configured

with the main game device emitting values for the actuators and receiving values from the

sensors.

• geospatial location and orientation: The middleware enables the application to use location

and orientation in any way it sees fit and supports location and orientation in base messages

and protocols. For example, partitioning is based on location.

• Also mechanisms were also proposed, built and evaluated that deal with architectural issues of:

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 132

• scalability: All the architecture (the three levels, and the distribution of the load and data) was

though taking scalability as target. We have proved the architecture is the most scalable one

from the possible alternatives in the evaluation chapter;

• consistency: Consistency algorithms were used and supported to guarantee consistency.

• multimedia data heterogeneity: The system supports 3D data and state, which may be mixed

with audio and video by the applications and with real data from the real world. As such, we

have real multimedia data heterogeneity.

• data distribution and replication: The system distributes data trough the central server,

distributed server, databases at the central and distributed server sites which may have

replication, main game device and sensors and actuators.

As such, we can conclude that all the objectives of this work were fulfilled.

As for papers published and the contributions they have made, we have already stressed in the

introduction that the main contribution of this PhD was the building, testing and evaluation of a

network middleware for mobile and pervasive large scale augmented reality games. To our knowledge,

there no other similar middleware in existence. However, as sub contributions, several papers were

writed and published about aspects of the middleware architecture, protocols and components. These

were:

• The paper published on CoNext 2005 [10], which contributed with a general view about

what we were planning to do with this PhD and consequently, with this middleware

(basically, a position paper).

• The paper published on EuroCon 2005 [11], which contributed with a general architecture

for the system we were planning to build for the middleware.

• The paper published on InfoCom 2006 [13], which contributed with an API (the SENSACT

API), which allows sensors and actuators to speak to each other through a Bluetooth ad-

hoc network which is then organized so that the STFPAN API running on the central device

can control all sensors and actuators running on the personal area network of the user.

• The paper published on SOFTCOM 2006 [14], which contributed with a new reliable

multicast protocol that works over IPv4 or IPv6, nak based, source ordered and many-to-

many communications based and that avoided duplicates, which avoided the nak

implosion problem and reported errors to the application when these are unavoidable.

• The paper published in CSNR 2007 [12], which contributed with the full architecture for the

basic system of the middleware (including SENSACT, STFPAN and STFSERVER), with results

from testing.

• The paper published in WORLDCOMP 2007 [17] in the conference IWCN 2007, that

contributed with an analysis of the scalability of the system and that proves that our

system architecture is the most scalable from the many alternate architectures we may

have choosed.

• The paper published in NGMAST 2007[15] that contributes with QoS APIs for the system

(both for the UE and for the distributed servers), based on PDP Context activation and

RSVP protocol, to allow the system to be correctly used with the IP Multimedia Subsystem.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 133

• The paper published in SOFTCOM 2007 [16], that contributes with a security architecture

that complements the security already provided by 3GPP(UMTS) and allows our system to

guarantee privacy, authentication and authorization.

As with any work, we can never say the work is complete. It is always possible to make improvements. It

is the case with this work also.

5.1. FUTURE WORK

Future work in the Status Transmission Framework possibly will include new kinds of sensors and

actuators included by default on the SENSACT API and the STF PAN equivalent API, and further testing of

this API on real devices (not simulated ones) if that becomes possible.

Also in the SENSACT API and correspondent communication layer on the STFPAN API, it would also be

interesting to implement support for other personal area network communication technologies like

ZIGBEE, for example, which is a direct contender of Bluetooth, but not so much implemented on the

mobile world.

We also should, of course optimize and extend the API as required as future research is made.

A bottleneck which in the future, if possible, we should investigate ways to remove is the fact that we

use TCP to make the communications between the UE (STFPAN API) and the current allocated

distributed server (STFSERVER API), though through a message oriented protocol we created especially

designed for augmented reality and that utilizes available bandwidth adaptively.

The fact that we use TCP and not any form of multicast protocol on these connections is a fact that

hinders performance of the whole system, but that is justified that is impossible, due to current J2ME

specifications, which do not give us the possibility to use multicast for mobile network connections.

As for mobility support, the system supports mobility through the moving of the user, besides at the

level of the UMTS network, between the various cells using the UMTS network technology and related

methods, at the distributed game application server level through switching the gaming server that is

currently communicating with the user. Each gaming server is responsible for a different gaming area.

Currently, there is no direct connection between the two levels. It would probably be beneficial to the

system if we find a way in the future to integrate these two levels.

For example, instead of managing a rectangular area, the application server could manage a group of

cell coverage areas. Communication between the 3GPP(UMTS) layer and the middleware layer should

make that operation simpler.

As for system security, we could research ways to further improve the security architecture of the

middleware. If we, as already mentioned, implemented other communication technologies into

SENSACT and STFPAN we would need to integrate security also with these technologies. We could also

introduce new encryption algorithms into STFPAN and STFSERVER, but, because of maintaining high

software compatibility, we should maintain J2SE compatibility, so, it is better to wait for J2SE support for

these algorithms before actually supporting them.

For system manageability, in the future we could research ways in which to integrate closer the

management architecture of our middleware for mobile and pervasive large scale augmented reality

with the management architecture of UMTS.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 134

Future work on the QoS APIs will include implementing, testing and evaluating those APIs on real

devices and not on emulated or simulated ones.

Finally, it should be interesting to see a real-life proof-of-concept application, with real augmented

reality devices, speciality built, instead of a simulated one. That would require the collaboration of a

hardware builder.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 135

REFERENCES

[1] M. Weiser, “The Computer for the Twenty - First Century”, Scientific American, pages 94–104, Sept.

1991.

[2] Kimmo Raatikainen, Henrik Bærbak Christensen, Tatsuo Nakajima, “Application Requirements for

Middleware for Mobile and Pervasive Systems”, Mobile Computing and Communications Review,

Volume 6, Number 4, October 2002, pp. 16 – 24 , ACM Press

[3] Keith Mitchell, Duncan McCaffery, George Metaxas, Joe Finney, Stefan Schmid and Andrew Scott,

“Six in the City: Introducing Real Tournament – A Mobile IPv6 Based Context-Aware Multiplayer Game”,

Proceedings of NetGames'03, May 22-23, 2003, Redwood City, California, USA, pp. 91-100, ACM Press

[4] Hideyuki Tamura, Hiroyuki Yamamoto, and Akihiro Katayama, “Mixed Reality:Future Dreams Seen at

the Border between Real and Virtual Worlds”, Virtual Reality, November/December 2001, pp. 64 –70,

IEEE

[5] Nokia – Developer resources (Forum Nokia), http://www.forum.nokia.com/, Accessed April 2004

[6] Sony Ericsson Developer World, http://developer.sonyericsson.com/, Accessed April 2004

[7] João Orvalho, Pedro Ferreira and Fernando Boavida, “State Transmission Mechanisms for a

Collaborative Virtual Environment Middleware Platform”, Springer-Verlag, Berlin Heidelberg New York,

2001, pp. 138-153, ISBN 3-540- 42530-6 (Proceedings of the 8th International Workshop on Interactive

Distributed Multimedia Systems – IDMS 2001,Lancaster, UK, September 2001)

[8] João Gilberto de Matos Orvalho, “ARMS – Uma plataforma para aplicações multimédia distribuídas,

com qualidade de serviço”, Phd Thesis, December 2000, DEI-FCTUC

[9] João Orvalho, Fernando Boavida, “Augmented Reliable Multicast CORBA Event Service (ARMS): a

QoS-Adaptive Middleware”, in Lecture Notes in Computer Science, Vol. 1905: Hans Scholten, Marten J.

van Sinderen (editors), Interactive Distributed Multimedia Systems and Telecommunication Services,

Springer-Verlag, Berlin Heidelberg, 2000, pp. 144-157. (Proceedings of IDMS 2000 – 7th International

Workshop on Interactive Distributed Multimedia Systems and Telecommunication Services, CTIT /

University of Twente, Enschede, The Netherlands, October 17-20, 2000).

[10] Pedro Ferreira, “Network Middleware for Large Scale Mobile and Pervasive Augmented Reality

Games” in Proc. of the CoNext 2005 - ACM Conference on Emerging Network Experiment and

Technology, pp. 242-243, CoNext 2005 - ACM Conference on Emerging Network Experiment and

Technology, Toulouse, France, October-2005

[11] Pedro Ferreira, João Orvalho, Fernando Boavida, ”Large Scale Mobile and Pervasive Augmented

Reality Games”, in Proc. of the EUROCON 2005 - The International Conference on "Computer as a Tool",

pp. 1775-1778, Vol. 1, # 1, EUROCON 2005 - The International Conference on "Computer as a Tool",

Belgrade, Serbia and Montenegro, November-2005

[12] Pedro Ferreira, João Orvalho and Fernando Boavida, “A middleware architecture for Mobile and

Pervasive Large Scale Augmented Reality Games”, to be published in Proceedings of the Conference on

Networks and Services Research (CSNR) 2007, Fredericton, New Brunswick, Canada, May 2007

 [13] Pedro Ferreira, João Orvalho and Fernando Boavida, “Middleware for embedded sensors and

actuators in mobile pervasive augmented reality”, in Proc. of the INFOCOM 2006 (IEEE XPLORE),

INFOCOM 2006 Student Workshop, Barcelona, April 2006

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 136

[14] Pedro Ferreira, João Orvalho and Fernando Boavida , “ Sixrm: Full Mesh Reliable Source Ordered

Multicast” , in Proc. of the SoftCom2006 - 14th International Conference on Software,

Tellecommunications & Computer Networks, SoftCom2006 - 14th International Conference on Software,

Tellecommunications & Computer Networks, Split, Croatia, September 2006

[15] Ferreira, P. and Orvalho, J. , "Quality of Service APIs for a 3GPP Mobile and Pervasive Large Scale

Augmented Reality Gaming Middleware", in Proc. of the 2007 Internation Conference on Next

Generation Mobile Applications, Services and Technologies (NGMAST 2007), pp. 179-184, Next

Generation Mobile Applications, Services and Technologies 2007 (NGMAST 2007), Cardiff, Wales, UK,

September 2007

[16] Ferreira, P. and Orvalho, J. and Boavida, F. , "Security and Privacy in a Middleware for Large Scale

Mobile and Pervasive Augmented Reality", in Proc. of the 2007 International Conference on Software ,

Telecommunications and Computer Networks (SOFTCOM 2007), The 2007 International Conference on

Software , Telecommunications and Computer Networks (SOFTCOM 2007), Split-Dubrovnik, Croatia,

September 2007

[17] Ferreira, P. and Orvalho, J. and Boavida, F. , "Scalability and Mobility in a Network Middleware for

Large Scale Mobile and Pervasive Augmented Reality Games", in Proc. of the 2007 International

Conference on Wireless Networks (ICWN2007), Part of WORLDCOMP 2007, pp. 304-310, WORLDCOMP

2007, The 2007 International Conference on Wireless Networks (ICWN2007), Part of WORLDCOMP

2007, Las Vegas, Nevada, USA, June 2007

[18] Satyanarayanan M., “Pervasive computing: Vision and Challenges”, IEEE Personal Communications,

Vol. 8, No. 4, pp. 10-10, August 2001

[19] Deborah Estrin, David Culler, Kris Pister, Gaurav Sukhatme, “Connecting the Physical World with

Pervasive Networks”, IEEE Pervasive Computing, January-March 2002, pp. 59-69

[20] Vxworks, http://www.windriver.com/

[21] Geoworks, http://www.geoworks.com/

[22] Chorus, http://www.sun.com/chorusos/

[23] Windows Mobile, http://www.microsoft.com/windowsmobile/software/default.mspx

[24] PalmOS, https://pdn.palm.com/regac/pdn/index.jsp

[25] TinyOS, http://sourceforge.net/projects/tinyos/

[26] Tim Kindberg, Armando Fox, “System Software for Ubiquitous Computing”, IEEE Pervasive

Computing, January-March 2002, pp. 70-81

[27] Cynthia A. Patterson, Richard R. Muntz, Cherri M. Pancake, “Challenges in Location-Aware

Computing”, IEEE Pervasive Computing, April-June 2003, pp. 80-89

[28] Woodrow Barfield, Thomas Caudell, “Basic Concepts in Wearable Computers and Augmented

Reality”, in “Fundamentals of Werable Computers and Augmented Reality”, edited by Woodrow Barfield

and Thomas Caudell, ISBN 0-8058-2901-6 (cloth), ISBN 0-8058-2902-4 (pbk), Lawrence Elrbaum

Associates, 2001

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 137

[29] Rick LaRowe and Chip Elliot, “Computer Networks for Wearable Computing”, in “Fundamentals of

Werable Computers and Augmented Reality”, edited by Woodrow Barfield and Thomas Caudell, ISBN 0-

8058-2901-6 (cloth), ISBN 0-8058-2902-4 (pbk), Lawrence Elrbaum Associates, 2001

[30] Cartsten Magerkurth, Adrian David Cheok, Regan L. Mandrik, Trond Nilsen, “Pervasive Games:

Bringing Computer Entertainment Back to the Real World”, ACM Computers in Entertainment, Vol. 3,

No. 3, July 2005, Article 4A.

[31] Steve Benford, Rob Anastasi, Martin Flintham, Adam Drozd, Andy CrabTree, Chris Greenhalgh, Nick

Tandavanitj, Matt Adams, Ju Row-Farr, “Coping with Uncertainty in a Location-Based Game”, IEEE

Pervasive Computing, July-September 2003, pp.34-41

[32] Kumar Ranganathan, “Trustworthy Pervasive Computing: The hard security problems”, Proceedings

of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops

(PERCOMW’04), IEEE Computer Society, 2004

[33] Roshan K. Thomas, Ravi Sandhu, “Models, Protocols and Architectures for Secure Pervasive

Computing: Challenges and Research Directions”, Proceedings of the Second IEEE Annual Conference on

Pervasive Computing and Communications Workshops (PERCOMW’04), IEEE Computer Society, 2004

[34] Uwe Hansmann, Lothar Merk, Martin S. Nicklous, Thomas Stober, “Pervasive Computing”, Second

Edition, Springer, ISBN 3-540-00218-9, 2003

[35] Elliot D. Kaplan, “Understanding GPS Principles and applications”, Artech House Publishers, Boston,

London, 1996

[36] Axel Küpper, “Location-Based Services – Fundamentals and Operation”, John Wiley & Sons Ltd, ISBN

978-0-470-09231-6, 2005

[37] Java Community Process, “Location API for J2ME”, http://www.jcp.org/en/jsr/detail?id=179

[38] Sumi Helai, “Standards for Service Discovery and Delivery”, IEEE Pervasive Computing, July-

September 2002, pp. 95-100

[39] The uPnP Forum , http://www.upnp.org/

[40] The Salutation Consortium, http://www.salutation.org/

[41] E. Guttman, C. Perkins, J. Veizades, M. Day, “Service Location Protocol, version 2”, RFC 2608,

Network Working Group, IETF, June 1999

[42] The 3
rd

 Generation Partnership Project (3GPP), http://www.3gpp.org/

[43] Sumit Kasera, Nishit Narang, “3G Mobile Networks – Architecture, Protocols and Procedures”,

McGraw Hill, ISBN 0-07-145101-3, 2004

[44] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Swarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang, V.

Paxson, “Stream Control Transmission Protocol”, RFC2960, Network Working Group, IETF, October 2000

[45] Miikka Poikselkä, Georg Mayer, Hisham Khartabil, Aki Niemi, “The IMS – IP Multimedia Concepts

and Services in the Mobile Domain”, John Wiley & Sons Ltd, ISBN 978-0-470-87113-3, 2005

[46] Gonzalo Camarillo, Miguel A. Garcia-Martin, “The 3G IP Multimedia Subsystem – Merging the

Internet and the Cellular Worlds”, John Wiley & Sons Ltd, ISBN 978-0-470-87156-0, 2005

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 138

[47] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley, E.

Shooler, “SIP: Session Initiation Protocol”, RFC3261, Network Working Group, IETF, June 2002

[48] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, J. Arkko, “Diameter Base Protocol”, RFC 3588,

Network Working Group, IETF, September 2003

 [49] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, “RTP: A Transport Protocol for Real-Time

Applications”, RFC 1889, Network Working Group. IETF, January 1996

[50] 3GPP TS 29.329 V7.0.0, “ 3RD generation Partnership Project; Technical Specification Group Core

Network and Terminals; Sh interface based on the Diameter protocol; Protocol details (Release 7)” ,

December 2005

[51] 3GPP TS 29.229 v7.0.0 , “ 3rd Generation Partnership Project; Technical Specification Group Core

Networks and Terminals; Cx and Dx interfaces based on Diameter protocol; Protocol details (Release 7)”

, January 2006

[52] Debashis Saha, Amitava Mukherjee, Somprakash Bandyopadhyay, “Networking Infrastructure for

Pervasive Computing – Enabling technologies and Systems”, Kluwer Academic Publishers, ISBN 1-4020-

7249-X, 2003

[53] “Bluetooth Specification Version 2.1 + EDR”, available online at http://www.bluetooth.com/

 [54] http://www.bluetooth.com/

[55] Sudhir Dixit, Ramjee Prasad(Editors), “Wireless IP and Building the Mobile Internet”, Universal

Personal Communications, 2001

[56] M. Pullen, M. Myjack, C. Bouwens, “Limitations of Internet Protocol Suite for Distributed Simulation

in the Large Multicast Environment”, RFC 2502, IETF, February 1999

[57] Reliable Multicast Transport (IETF Working group), http://www.ietf.org/html.charters/rmt-

charter.html, Acessed April 2006

[58] T. Speakman, J. Crowcroft, J. Gemmell, D. Farinacci, S. Lin, D. Leshchiner, M. Luby, T. Montgomery,

L. Rizzo, A. Tweedly, N. Bhaskar, R. Edmonstone, R. Sumanasekera, L. Vicisano, “PGM Reliable Transport

Protocol Specification”, RFC 3208, IETF, December 2001

[59] Pedro Ferreira, “Transmissão de estados em ambientes de realidade virtual distribuídos e

colaborativos”, M.Sc. thesis, Universidade de Coimbra - FCTUC - Departamento de Engenharia

Informática, October-2002

[60] MPEG, http://www.chiariglione.org/mpeg/

[61] OMG, http://www.omg.org/

[62] CORBA, http://www.corba.org/

[63] R. Braden (Ed.), L.Zhang, S. Berson, S. Herzog, S. Jamin, “Resource Reservation Protocol – version 1

Fuctional Specification”, RFC 2205, IETF Network Working Group, September 1997

[64] J. Wroclawski, “The Use of RSVP with IETF Integrated Services”, RFC2210, IETF Network Working

Group, September 1997

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 139

[65] S.Shenker, J. Wroclawski, “General Characterization Parameters for Integrated Service Network

Elelements”, RFC 2215, IETF Network Working Group, September 1997

[66] J.Wroclawski, “Specification of the Controlled-Load Network Element Service”, RFC 2211, IETF

Network Working Group, September 1997

[67] S.Shenker, C.Partridge, R. Guerin, “Specification of Guaranteed Quality of Service”, RFC2212, IETF

Network Working Group, September 1997

[68] Robert Lloyd-Evans, “QoS in integrated 3G networks”, Artech House Publishers, ISBN 1-58053-351-

5, 2002

[69] J. Case, M. Fedor, M. Schoffstall, J. Davin, “A Simple Network Management Protocol (SNMP)”,

RFC1157, Network Working Group, IETF, May 1990

[70] “Digital cellular telecommunications system (Phase 2); Network management (NM); Part 1:

Objectives and structure of Network Management (GSM 12.00)”, ETSI, December 1997

[71] Shinji Uchiyama, Kazuki Takemoto, Kiyohide Satoh, Hiroyuki Yamamoto, and Hideyuki Tamura, “MR

Platform: A Basic Body on Which Mixed Reality Applications Are Built”, Proceedings of the International

Symposium on Mixed and Augmented Reality (ISMAR’02), IEEE, 2002

[72] Wen tongCAI, Percival XAVIER, Stephen J. TURNER, Bu-Sung LEE, “A Scalable Architecture for

Supporting Interactive Games on the Internet”, Proceedings of the 16th Workshop on Parallel and

Distributed Simulation (PADS.02), IEEE, 2002

[73] Stefan Fiedler, Michael Wallner, Michael Weber ,“A Communication Architecture for Massive

Multiplayer Games”, Proceedings of NetGames2002, April 16-17, 2002, Braunschweig, Germany.

[74] Jalal Al-Muhtadi, Shiva Chetan, Anand Ranganathan and Roy Campbell, ”Super Spaces: A

Middleware for Large-Scale Pervasive Computing Environments”, Proceedings of the Second IEEE

Annual Conference on Pervasive Computing and Communications Workshops (PERCOMW’04), IEEE

Computer Society, 2004

[75] Bruce Thomas, Ben Close, John Donoghue, John Squires, Phillip De Bondi and Wayne Piekarski

,“First Person Indoor/Outdoor Augmented Reality Application: ARQuake”, Personal and Ubiquitous

Computing (2002), No. 6, pp. 75–86, Springer-Verlag London Ltd, 2002

[76] P. Beskow, P. Halvorsen, and C. Griwodz. Latency Reduction in Massively Multi-player Online Games

by Partial Migration of Game State, In: Second International Conference on Internet Technologies and

Applications, ed. by Vic Grout, Denise Oram and Rich Picking, pp. 153--163, University of Wales, NEWI,

Wrexham, UK., Centre for Applied Internet Research (CAIR) (ISBN: 978-0-946881-54-3), 2007.

[77] Tino Pissysalo, Petri Pulli, “A Picocell-Based Architecture for a Real-Time Mobile Virtual Reality”,

Proceedings of the 9th Euromicro Workshop on Real Time Systems (EUROMICRO-RTS '97), pp. 144-151,

1997, IEEE

[78] Taesoon Park, Namyoon Woo, and Heon Y. Yeom, ”An Efficient Optimistic Message Logging Scheme

for Recoverable Mobile Computing Systems”, IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 1,NO.

4, OCTOBER-DECEMBER 2002, pp. 265 – 277, IEEE

[79] Sumi Helal, “Pervasive Java”, IEEE Pervasive Computing, January-March 2002, pp. 82-85

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 140

[80] Eila Niemelä, Teemu Vaskivuo, “Agile Middleware of Pervasive Computing Environments”,

Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications

Workshops (PERCOMW’04), IEEE, 2004

[81] M. Handley, V. Jacobson, C. Perkins, “SDP: Session Description Protocol”, RFC 4566, Network

Working Group, IETF, July 2006

[82] CLDC – Common Limited Device Configuration 1.1, http://jcp.org/en/jsr/detail?id=139

[83] MIDP – Mobile Information Device Profile 2.0, http://jcp.org/en/jsr/detail?id=118

 [84] Java APIs for Bluetooth (JSR-82), http://jcp.org/en/jsr/detail?id=82

 [85] SIP API for J2ME, http://jcp.org/en/jsr/detail?id=180

[86] Mobile 3D Graphics API for J2ME, http://jcp.org/en/jsr/detail?id=184

[87] Mobile Media API, http://jcp.org/en/jsr/detail?id=135

[88] 3GPP TS23.207 V6.0.0, “3rd Generation Partnership Project; Technical Specification Group Services

and System Aspects; End to End Quality of Service (QoS) concept and architecture (Release 6)”,

September 2005

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 141

ANNEXES

ANNEX I – LIST OF PUBLISHED PAPERS

1. Pedro Ferreira, “Network Middleware for Large Scale Mobile and Pervasive Augmented Reality

Games” in Proc. of the CoNext 2005 - ACM Conference on Emerging Network Experiment and

Technology, pp. 242-243, CoNext 2005 - ACM Conference on Emerging Network Experiment

and Technology, Toulouse, France, October-2005

2. Pedro Ferreira, João Orvalho, Fernando Boavida, ”Large Scale Mobile and Pervasive Augmented

Reality Games”, in Proc. of the EUROCON 2005 - The International Conference on "Computer as

a Tool", pp. 1775-1778, Vol. 1, # 1, EUROCON 2005 - The International Conference on

"Computer as a Tool", Belgrade, Serbia and Montenegro, November-2005

3. Pedro Ferreira, João Orvalho and Fernando Boavida, “A middleware architecture for Mobile

and Pervasive Large Scale Augmented Reality Games”, to be published in Proceedings of the

Conference on Networks and Services Research (CSNR) 2007, Fredericton, New Brunswick,

Canada, May 2007

4. Pedro Ferreira, João Orvalho and Fernando Boavida, “Middleware for embedded sensors and

actuators in mobile pervasive augmented reality”, in Proc. of the INFOCOM 2006 (IEEE

XPLORE), INFOCOM 2006 Student Workshop, Barcelona, April 2006

5. Pedro Ferreira, João Orvalho and Fernando Boavida , “ Sixrm: Full Mesh Reliable Source

Ordered Multicast” , in Proc. of the SoftCom2006 - 14th International Conference on Software,

Tellecommunications & Computer Networks, SoftCom2006 - 14th International Conference on

Software, Tellecommunications & Computer Networks, Split, Croatia, September 2006

6. Ferreira, P. and Orvalho, J. , "Quality of Service APIs for a 3GPP Mobile and Pervasive Large

Scale Augmented Reality Gaming Middleware", in Proc. of the 2007 Internation Conference on

Next Generation Mobile Applications, Services and Technologies (NGMAST 2007), pp. 179-184,

Next Generation Mobile Applications, Services and Tecnhologies 2007 (NGMAST 2007), Cardiff,

Wales, UK, September 2007

7. Ferreira, P. and Orvalho, J. and Boavida, F. , "Security and Privacy in a Middleware for Large

Scale Mobile and Pervasive Augmented Reality", in Proc. of the 2007 International Conference

on Software , Telecommuncations and Computer Networks (SOFTCOM 2007), The 2007

International Conference on Software , Telecommuncations and Computer Networks

(SOFTCOM 2007), Split-Dubrovnik, Croatia, September 2007

8. Ferreira, P. and Orvalho, J. and Boavida, F. , "Scalability and Mobility in a Network Middleware

for Large Scale Mobile and Pervasive Augmented Reality Games", in Proc. of the 2007

International Conference on Wireless Networks (ICWN2007), Part of WORLDCOMP 2007, pp.

304-310, WORLDCOMP 2007, The 2007 International Conference on Wireless Networks

(ICWN2007), Part of WORLDCOMP 2007, Las Vegas, Nevada, USA, June 2007

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 142

ANNEX II – SENSACT API INTERFACES AND CLASSES

The Table 26, Table 27, Table 28, Table 29 and Table 30 all show the classes and respective functions of

the several packages of the SENSACT API.

Class or interface Function

BluetoothChannel A Bluetooth communication channel implemented using L2CAP

communications.

Table 26 - SENSACT package pt.uc.dei.lcst.stf.sensact.link classes and functions

Class or interface Function

Actuator An interface that defines a new actuator

ActuatorValue This interface defines an actuator value to be acted upon

SensactManager This interface defines a manager for a sensor or actuator

Sensor This interface defines a new sensor

SensorValue Defines a sensor value for the sensor to transmit values

ActivateSensorMessage A message that activates the sensor

ActuatorDiscoveryMessage An actuator discovery message

ActuatorStartMessage A message that starts the actuator

ActuatorStopMessage A message that stops the actuator

BTSensactManager Main sensor or actuator manager class for Bluetooth technology.

SensorDiscoveryMessage A sensor discovery message

SensorStopMessage A message that stops the sensor

StatisticsLog A statistics logger.

Table 27 - SENSACT package pt.uc.dei.lcst.stf.sensact.main classes and functions

Class, interface or exception Function

GenericChannel A generic communications channel interface

GenericChannelListener A generic communications channel listener interface

GenericChannelData A generic channel data message

ChannelException Base exception for all exceptions related to generic channels of

communication.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 143

ChannelReadException Exception reading a generic channel

ChannelWriteException Exception writing to a generic channel

Table 28 - SENSACT package pt.uc.dei.lsct.stf.sensact.net classes and functions

Classes and interfaces Function

PersistentObject Interface for objects that want to be persistent on

STF and CLDC 1.1

PersistentNameArchive Contains an archive of all ids and names of classes

persisted at the moment by this persistence

framework

PersistentObjectInputStream A persistent object input stream for reading

persistent objects

PersistentObjectOutputStream A persistent object output stream for writing

persistent objects.

Table 29 - SENSACT package pt.uc.dei.lcst.stf.sensact.persist classes and functions

Class Function

AccousticFrequencySensorDiscoveryMessage An acoustic sensor (Frequency) discovery

message

AccousticFrequencySensorValue An acoustic sensor (Frequency) value

AccousticPhaseSensorDiscoveryMessage An acoustic sensor (Phase) discovery message

AccousticPhaseSensorValue An acoustic sensor (Phase) sensor value

AccousticPitchSensorDiscoveryMessage An acoustic sensor (Pitch) sensor discovery

message

AccousticPitchSensorValue An acoustic sensor (Pitch) sensor value

AccousticVolumeSensorDiscoveryMessage An acoustic sensor (Volume) sensor discovery

message

AccousticVolumeSensorValue An acoustic sensor (Volume) sensor value

BiologicalBodyTemperatureSensorDiscoveryMessage A biological sensor (Body temperature)

discovery message

BiologicalBodyTemperatureSensorValue A biological sensor (Body temperature) value

BilogicalHeartRateSensorDiscoveryMessage A biological sensor (Heart rate) discovery

message

BilogicalHeartRateSensorValue A biological sensor (Heart rate) sensor value

BiologicalNeuralActivitySensorDiscoveryMessage A biological sensor (Neural activity) discovery

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 144

message

BiologicalNeuralActivitySensorValue A biological sensor (Neural activity) value.

BiologicalRespirationRateSensorDiscoveryMessage A biological sensor (Respiration rate) discovery

message.

BiologicalRespirationRateSensorValue A biological sensor (Respiration rate) value.

EnvironmentalHumiditySensorDiscoveryMessage A environmental sensor (Humidity) discovery

message

EnvironmentalHumiditySensorValue A environmental sensor (Humidity) value

EnvironmentalTemperatureSensorDiscoveryMessage A environmental sensor (Temperature)

discovery message

EnvironmentalTemperatureSensorValue A environmental sensor (Temperature) value

MechanicalAccelerationSensorDiscoveryMessage A mechanical sensor (Acceleration) discovery

message

MechanicalAccelerationSensorValue A mechanical sensor (Acceleration) sensor

value

MechanicalDisplacementSensorDiscoveryMessage A mechanical sensor (Diplacemement)

discovery message.

MechanicalDisplacementSensorValue A mechanical sensor (Displacement) value

MechanicalForceActuatorDiscoveryMessage A mechanical actuator (Force) discovery

message

MechanicalForceActuatorValue A mechanical actuator (Force) value

MechanicalForceSensorDiscoveryMessage A mechanical sensor (Force) discovery message

MechanicalForceSensorValue A mechanical sensor (Force) value

MechanicalMassSensorDiscoveryMessage A mechanical sensor (Mass) discovery message

MechanicalMassSensorValue A mechanical sensor (Mass) value

MechanicalPositionSensorDiscoveryMessage A mechanical sensor (Position) discovery

message

MechanicalPositionSensorValue A mechanical sensor (Position) value

MechanicalShapeSensorDiscoveryMessage A mechanical sensor (Shape) discovery

message

MechanicalShapeSensorValue A mechanical sensor (Shape) value

OpticalBrightnessSensorDiscoveryMessage A optical sensor (Brightness) discovery

message

OpticalBrightnessSensorValue A optical sensor (Brightness) value

OpticalEmissivitySensorDiscoveryMessage A optical sensor (Emissivity) discovery

message

OpticalEmissivitySensorValue A optical sensor (Emissivity) value

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 145

OpticalLightWaveFrequencySensorDiscoveryMessage A optical sensor (Light wave frequency)

discovery message

OpticalLightWaveFrequencySensorValue A optical sensor (Light wave frequency) value

OpticalLuminanceSensorDiscoveryMessage A optical sensor (Luminance) discovery

message

OpticalLuminanceSensorValue A optical sensor (Luminance) value

OpticalRefractionSensorDiscoveryMessage A optical sensor (Refraction) discovery

message

OpticalRefractionSensorValue A optical sensor (Refraction) value

Table 30 - SENSACT package pt.uc.dei.lcst.stf.sensact.pack classes and functions

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 146

ANNEX III – STFPAN API INTERFACES AND CLASSES

The Table 31, Table 32, Table 33, Table 34, Table 35 and Table 36 show the classes and corresponding

functions for each of the packages of the STF PAN API.

Class, interface or exception Function

STFApplication Interface UE main game device applications must

implement

STFKey Interface for message keys

STFLatejoin Interface for latejoining methods

STFMessager Interface for messaging methods

STFPartitioner Interface for partitioning methods

STFSessionListener Interface for UE main game device applications

that manage sessions must implement

STFState Interface for message state including positioning

information

STFStatistics Statistics collecting interface

DisableStatsUE Message that disable statistics collecting in an UE

EnableStatsUE Message that enables statistics collecting in an UE

ResetStatsUE Message that resets statistics collecting in an UE

StartUEGameActivity Starts Game activity in an UE

STFChannelManager Media communications channel manager.

Implements messaging, latejoining, partitioning

and statistics.

STFLateJoinBeginMessage Message that starts late joining process.

STFLateJoinCheckpointMessage Message that starts a checkpoint process.

STFLateJoinEndMessage Message that ends a latejoin process.

STFLateJoinMessage Base message of all latejoin messages

STFLateJoinPartMessage A latejoin message (a retransmitted state message)

STFLateJoinRequestMessage A latejoin request message.

STFLateJoinStreamMessage A message indicating the latejoin streaming

process is about to begin

STFLocalCache A class that implements the local cache of

messages

STFPartitionMessage A Message indicating we are going to start

partitioning

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 147

STFProperties The configuration properties of STF.

STFSessionManager The STF session manager. Manages the session

through SIP.

STFStateMessage A STF state message. Includes key and state.

STFStatisticsData Statistics data.

STFStatisticsReportedMessage A message that includes statistics data

STFStatisticsReportMessage A message requesting statistics data

STFTime A class implementing time sync.

STFTimeHeartBeatMessage A time sync heart beat message

STFTimeMessage The base message for all time sync messages.

STFTimePingMessage A time net sync ping message.

STFTimePongMessage A time net sync pong message

StopUEGameActivity Stops all game activity.

SwitchServersMessage Message to switch game servers.

Table 31 - Classes of STFPAN package pt.uc.dei.lcst.stf.pan

Class, interface or exception Function

Actuator This class is to be implemented by all actuators

ActuatorValue This interface is meant to be implemented by

classes that which to represent values to be

actuated upon

Sensor An interface that every class that communicates

with a sensor must implement.

SensorValue Interface that all sensor values for specific sensors

must implement.

AccousticFrequencySensor A class to communicate with an acoustic sensor

(Frequency).

AccousticFrequencySensorDiscoveryMessage An acoustic sensor (Frequency) discovery

message

AccousticFrequencySensorValue An acoustic sensor (Frequency) value

AccousticPhaseSensor A class to communicate with an acoustic sensor

(Phase)

AccousticPhaseSensorDiscoveryMessage An acoustic sensor (Phase) discovery message

AccousticPhaseSensorValue An acoustic sensor (Phase) sensor value

AccousticPitchSensor A class to communicate with an acoustic sensor

(Pitch)

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 148

AccousticPitchSensorDiscoveryMessage An acoustic sensor (Pitch) sensor discovery

message

AccousticPitchSensorValue An acoustic sensor (Pitch) sensor value

AccousticVolumeSensor A class to communicate with an acoustic sensor

(Volume)

AccousticVolumeSensorDiscoveryMessage An acoustic sensor (Volume) sensor discovery

message

AccousticVolumeSensorValue An acoustic sensor (Volume) sensor value

ActivateSensorMessage This message activates a sensor

ActuatorDiscoveryMessage This is the base class from which all actuator

discovery messages must derive

ActuatorStartMessage This message starts an actuator

ActuatorStopMessage This message stops an actuator

BiologicalBodyTemperatureSensor A class to communicate with a biological sensor

(Body temperature)

BiologicalBodyTemperatureSensorDiscoveryMess

age

A biological sensor (Body temperature) discovery

message

BiologicalBodyTemperatureSensorValue A biological sensor (Body temperature) value

BilogicalHeartRateSensor A class to communicate with a biological sensor

(Heart rate)

BilogicalHeartRateSensorDiscoveryMessage A biological sensor (Heart rate) discovery

message

BilogicalHeartRateSensorValue A biological sensor (Heart rate) sensor value

BiologicalNeuralActivitySensor A class to communicate with a biological sensor

(Neural activity)

BiologicalNeuralActivitySensorDiscoveryMessage A biological sensor (Neural activity) discovery

message

BiologicalNeuralActivitySensorValue A biological sensor (Neural activity) value.

BiologicalRespirationRateSensor A class to communicate with a biological sensor

(Respiration rate)

BiologicalRespirationRateSensorDiscoveryMessag

e

A biological sensor (Respiration rate) discovery

message.

BiologicalRespirationRateSensorValue A biological sensor (Respiration rate) value.

BTPANManager This class manages a Bluetooth Personal Area

Network of sensors and actuators (SENSACT

based)

EnvironmentalHumiditySensor A class to communicate with an environmental

sensor (Humidity)

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 149

EnvironmentalHumiditySensorDiscoveryMessage A environmental sensor (Humidity) discovery

message

EnvironmentalHumiditySensorValue A environmental sensor (Humidity) value

EnvironmentalTemperatureSensor A class to communicate with an environmental

sensor (Temperature)

EnvironmentalTemperatureSensorDiscoveryMessa

ge

A environmental sensor (Temperature) discovery

message

EnvironmentalTemperatureSensorValue A environmental sensor (Temperature) value

MechanicalAccelerationSensor A class to communicate with a mechanical sensor

(Acceleration)

MechanicalAccelerationSensorDiscoveryMessage A mechanical sensor (Acceleration) discovery

message

MechanicalAccelerationSensorValue A mechanical sensor (Acceleration) sensor value

MechanicalDisplacementSensor A class to communicate with a mechanical sensor

(Diplacemement)

MechanicalDisplacementSensorDiscoveryMessage A mechanical sensor (Diplacemement) discovery

message.

MechanicalDisplacementSensorValue A mechanical sensor (Displacement) value

MechanicalForceActuator A class to communicate with a mechanical

actuator (Force)

MechanicalForceActuatorDiscoveryMessage A mechanical actuator (Force) discovery message

MechanicalForceActuatorValue A mechanical actuator (Force) value

MechanicalForceSensor A class to communicate with a mechanical sensor

(Force)

MechanicalForceSensorDiscoveryMessage A mechanical sensor (Force) discovery message

MechanicalForceSensorValue A mechanical sensor (Force) value

MechanicalMassSensor A class to communicate with a mechanical sensor

(Mass)

MechanicalMassSensorDiscoveryMessage A mechanical sensor (Mass) discovery message

MechanicalMassSensorValue A mechanical sensor (Mass) value

MechanicalPositionSensor A class to communicate with a mechanical sensor

(Position)

MechanicalPositionSensorDiscoveryMessage A mechanical sensor (Position) discovery message

MechanicalPositionSensorValue A mechanical sensor (Position) value

MechanicalShapeSensor A class to communicate with a mechanical sensor

(Shape)

MechanicalShapeSensorDiscoveryMessage A mechanical sensor (Shape) discovery message

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 150

MechanicalShapeSensorValue A mechanical sensor (Shape) value

OpticalBrightnessSensor A class to communicate with a optical sensor

(Brightness)

OpticalBrightnessSensorDiscoveryMessage A optical sensor (Brightness) discovery message

OpticalBrightnessSensorValue A optical sensor (Brightness) value

OpticalEmissivitySensor A class to communicate with a optical sensor

(Emissivity)

OpticalEmissivitySensorDiscoveryMessage A optical sensor (Emissivity) discovery message

OpticalEmissivitySensorValue A optical sensor (Emissivity) value

OpticalLightWaveFrequencySensor A class to communicate with a optical sensor

(Light wave frequency)

OpticalLightWaveFrequencySensorDiscoveryMes

sage

A optical sensor (Light wave frequency) discovery

message

OpticalLightWaveFrequencySensorValue A optical sensor (Light wave frequency) value

OpticalLuminanceSensor A class to communicate with a optical sensor

(Luminance)

OpticalLuminanceSensorDiscoveryMessage A optical sensor (Luminance) discovery message

OpticalLuminanceSensorValue A optical sensor (Luminance) value

OpticalRefractionSensor A optical sensor (Refraction) discovery message

OpticalRefractionSensorDiscoveryMessage A class to communicate with a optical sensor

(Refraction) discovery message

OpticalRefractionSensorValue A optical sensor (Refraction) value

SensorDiscoveryMessage Base class for all sensor discovery messages

SensorStopMessage This message stops a sensor

StatisticsLog Statistics logger for testing and debugging

Table 32 - Classes of STFPAN package pt.uc.dei.lcst.stf.pan.comms.area

Class, interface or exception Function

BluetoothChannel A Bluetooth communication channel implemented

using L2CAP connection

STCPChannel A Secure TCP (SSL) Communications channel

Table 33 - Classes of STFPAN package pt.uc.dei.lcst.stf.pan.comms.link

Class, interface or exception Function

SDP Represents a full protocol string SDP, with

possibly multiple session descriptions

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 151

SDPBandwidthInformation Bandwidth information in SDP

SDPConnectionInformation A SDP Connection Information Element

SDPMediaDescription A SDP Media Description

SDPSessionDescription Describes a session in SDP

SDPSessionRepeatTimes Describes session repeat times

SDPSessionTime Represents a SDP session time

SDPTimeDescription A SDP Time Description

SDPException An exception that is thrown when there is an error

in interpreting SDP protocol strings

Table 34 - Classes of STFPAN package pt.uc.dei.lcst.stf.pan.comms.sdp

Class, interface or exception Function

GenericChannel A generic channel interface

GenericChannelListener Generic channel listener interface

GenericChannelData A generic channel data message

ChannelException Base exception for all channel operations related

STF channels

ChannelReadException The channel could not be read

ChannelWriteException The channel could not be written to

Table 35 - Classes of STFPAN package pt.uc.dei.lcst.pan.net

Class, interface or exception Function

PersistentObject A persistent object

PersistentNameArchive Archive of names and correspondent ids of

persistent object classes

PersistentObjectInputStream A persistent object input stream

PersistentObjectOutputStream A persistent object output stream

Table 36 - Classes of STFPAN package pt.uc.dei.lcst.stf.pan.persist

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 152

ANNEX IV – STFSERVER API INTERFACES AND CLASSES

The Table 37, Table 38, Table 39, Table 40, Table 41, Table 42, Table 43, Table 44, Table 45, Table 46,

Table 47 and Table 48 show the classes and corresponding functions for each of the packages of the STF

Server API.

Class, interface or exception Function

STFApplication Interface for STF supported applications

STFKey Interface for the transmitted state key classes

STFLateJoin This is the interface used by applications that want

to late join the channel, that is, receive old

recorded state transmission messages to rebuild the

current state of the distributed application

STFMessager Interface for the classes that can transmit STF

messages

STFPartitioner Interface for partitioning message handlers

STFState Interface for the transmitted STF State classes

STFStatistics Statistics collecting interface

DisableStatsUE Message that disable statistics collecting in an UE

EnableStatsUE Message that enables statistics collecting in an UE

ResetStatsUE Message that resets statistics collecting in an UE

StartUEGameActivity Start all game activity in a UE.

STFLateJoinBeginMessage Message that starts late joining process.

STFLateJoinCheckpointMessage Message that starts a checkpoint process.

STFLateJoinEndMessage Message that ends a latejoin process.

STFLateJoinMessage Base message of all latejoin messages

STFLateJoinPartMessage A latejoin message (a retransmitted state message)

STFLateJoinRequestMessage A latejoin request message.

STFLateJoinStreamMessage A message indicating the latejoin streaming

process is about to begin

STFLocalCache A class that implements the local cache of

messages

STFPartitionMessage A Message indicating that a UE is going to start

partitioning

STFProperties The configuration properties of STF.

STFServerChannelManager The STFServer media manager. Manages the

media channel.

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 153

STFStateMessage A STF state message. Includes key and state.

STFStatisticsData Statistics data.

STFTime A class implementing time sync.

STFTimeHeartBeatMessage A time sync heart beat message

STFTimeMessage The base message for all time sync messages.

STFTimePingMessage A time net sync ping message.

STFTimePongMessage A time net sync pong message

STFTimeVoteDecidedMessage A time sync distributed vote decided message.

STFTimeVoteMessage A time sync distributed vote message

STFTimeVoteRequestMessage A time sync distributed vote request message

StopUEGameActivity Stops all game activity in a UE.

UEConnectionPool A UE connection pool.

Table 37 - STFSERVER classes of package pt.uc.dei.lcst.stf

Class, interface or exception Function

HSS A partially emulated Home Subscriber Server

(HSS) for testing purposes.

RoutingTableEntry A routing table entry for the HSS Diameter server.

SLF A partially emulated SLF (Subscription Locator

Function) for testing.

STFCentralGameAppServer A base central game application server.

STFGameAppServer A base distributed game application server

Table 38 - STFSERVER classes of package pt.uc.dei.lcst.stf.applications

Class, interface or exception Function

STCPChannel A SSL/TLS (over TCP) channel of

communications

STFManagerApplication A STF manager application

STFManagerMainForm The STF manager application’s main form.

Table 39 - STFSERVER classes of package pt.uc.dei.lcst.stf.applications.manager

Class, interface or exception Function

AggregateDSTStatsMessage Aggregate distributed server statistics message.

AggregateDSTUEStatsMessage Aggregate distributed statistics of UEs message

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 154

AggregateGlobalStatsMessage Aggregate global statistics message

AllowARMessage Allow AR message

AllServerNames All server names message

AskForAggregateDistServerStatsMessage Ask for aggregate distributed server statistics

message

AskForAggregateDistServerUEStatsMessage Ask for aggregate distributed statistics of UEs

message

AskForAggregateGlobalStatsMessage Ask for Aggregate global statistics message

AskForAllServerNames Ask for all server names message

AskForCentralServerStats Ask for central server statistics message

AskForServerAddressMessage Ask for server address message

CentralServerStats Central server statistics message

CheckAuthorized Check if authorized message

CheckAuthorizedResult Check if authorized result message

CheckRunning Check if running on distributed server

CheckRunningResult Check if running result

DisableStatistics Disable statistics message

EnableStatistics Enable statistics message

LocatedServer Located server message

LocateServer Locate server message

RemoveUserRunning Remove user running on distributed server

ReservationCompletedMessage Reservation completed message

ResetStatistics Reset statistics message

ServerAddressMessage Server address message

ServerNotifyMessage Server notify message

StartGameActivity Start all game activity

StartReservationMessage Start the reservation message

STFStatisticsReportedMessage STF Statistics reported message

STFStatisticsReportedUEMessage STF statistics reported for a UE message

STFStatisticsReportMessage STF statistics report message

STFUEStatisticsReportMessage STF UE statistics report message

StopGameActivity Stop all game activity

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 155

TerminateManagerCommunications Terminate manager communications

UserAuth User authorization message

UserAuthError User authorization error message

UserRevokeAuth User revoke authorization message

UserRevokeAuthError User revoke authorization error message

Table 40 - STFSERVER classes of package pt.uc.dei.lcst.stf.applications.messages

Class, interface or exception Function

COSEVChannel A ARMS normal Corba Event Service Channel of

communications

COSEVChannelData Represents generic channel data representation for

transmission in ARMS interface related channels

of communications.

MulticastCOSEVChannel An ARMS Sixrm based multicast corba event

service channel of communications.

MulticastToStandardCOSEVChannel An ARMS multicast to standard corba event

service channel of communications.

SMulticastCOSEVChannel A secure multicast ARMS Sixrm based event

channel

StandardToMulticastCOSEVChannel An ARMS standard to multicast corba event

service channel of communications.

Table 41 - STFSERVER classes of package pt.uc.dei.lcst.stf.arms

Class, interface or exception Function

DiameterApplication The interface that applications that want to receive

Diameter messages have to implement.

AccountingRealtimeRequiredAVP Accounting real time required Attribute Value Pair

AccoutingRecordNumberAVP Accounting record number Attribute Value Pair

AccountingRecordTypeAVP Accounting record type Attribute Value Pair

AccountingSubSessionIDAVP Accounting sub session ID Attribute Value Pair

AcctApplicationIDAVP Accounting application ID Attribute Value Pair

AcctInterimIntervalAVP Accounting interim interval Attribute Value Pair

AcctMultiSessionIDAVP Accounting multi session ID Attribute Value Pair

AcctSessionIDAVP Accounting session ID Attribute Value Pair

AuthApplicationIDAVP Authorization application ID Attribute Value Pair

AuthGracePeriodAVP Authorization grace period Attribute Value Pair

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 156

AuthorizationLifetimeAVP Authorization lifetime Attribute Value Pair

AuthRequestTypeAVP Authorization request type Attribute Value Pair

AuthSessionStateAVP Authorization session state Attribute Value Pair

AVP Represents a base attribute value pair (AVP).

AVPHeader A Attribute Value Pair header

AVPResolver Resolves AVPs for the diameter base protocol

AVPSequence Represents a sequence of Attribute Value Pairs

ClassAVP Class Attribute Value Pair

DestinationHostAVP Destination host Attribute Value Pair

DestinationRealmAVP Destination realm Attribute Value Pair

DiameterACA Accounting answer

DiameterACR Accounting request

DiameterASA Abort session answer

DiameterASR Abort session Request

DiameterBaseResolver Resolves Diameter Messages for the diameter base

protocol.

DiameterCEA Capabilities Exchange Answer (CEA)

DiameterCER Capabilities Exchange Request (CER)

DiameterCommand Represents a Diameter Command

DiameterDPA Disconnect Peer Answer

DiameterDPR Disconnect Peer Request

DiameterDWA Device Watchdog Answer

DiameterDWR Device Watchdog Request

DiameterERROR Diameter Error

DiameterHeader A diameter header

DiameterManager The Diameter manager. Manages the diameter

protocol for a diameter application.

DiameterPeer Represents a diameter peer.

DiameterRAA Re-authorization answer

DiameterRAR Re-authorization Request

DiameterSTA Session Termination answer

DiameterSTR Session Termination Request

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 157

DisconnectCauseAVP Disconnect cause Attribute Value Pair

E2ESequenceAVP End to End sequence Attribute Value Pair

ErrorMessageAVP Error message Attribute Value Pair

ErrorReportingHostAVP Error reporting host Attribute Value Pair

EventTimeStampAVP Event timestamp Attribute Value Pair

ExperimentalResultAVP Experimental result Attribute Value Pair

ExperimentalResultCodeAVP Experimental result code Attribute Value Pair

FailedAVP Failed Attribute Value Pair

FirmwareRevisionAVP Firmware revision Attribute Value Pair

HostIpAddressAVP Host IP Address Attribute Value Pair

InBandSecurityIDAVP In-band security ID Attribute Value Pair

MultiRoundTimeOutAVP Multi-round timeout Attribute Value Pair

OriginHostAVP Origin Host Attribute Value Pair

OriginRealmAVP Origin Realm Attribute Value Pair

OriginStateIDAVP Origin state ID Attribute Value Pair

ProductNameAVP Product Name Attribute Value Pair

ProxyHostAVP Proxy host Attribute Value Pair

ProxyInfoAVP Proxy information Attribute Value Pair

ProxyStateAVP Proxy state Attribute Value Pair

RealmRoutingTableEntry Realm routing table entry

ReAuthRequestTypeAVP Re-authorization request type Attribute Value Pair

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 158

RedirectHostAVP Redirect host Attribute Value Pair

RedirectHostUsageAVP Redirect host usage Attribute Value Pair

RedirectMaxCacheTimeAVP Redirect maximum cache time Attribute Value

Pair

ResultCodeAVP Result code Attribute Value Pair

RouteRecordAVP Route record Attribute Value Pair

SessionBindingAVP Session binding Attribute Value Pair

SessionIDAVP Session id Attribute Value Pair

SessionServerFailoverAVP Session server failover Attribute Value Pair

SessionTimeoutAVP Session timeout Attribute Value Pair

SupportedVendorIDAVP Supported Vendor ID Attribute Value Pair

TerminationCauseAVP Termination cause Attribute Value Pair

UserNameAVP User Name Attribute Value Pair

VendorIDAVP Vendor ID Attribute Value Pair

VendorSpecificApplicationIDAVP Vendor Specific Application ID Attribute Value

Pair

DiameterException A Diameter Exception

Table 42 - STFSERVER classes of package pt.uc.dei.lcst.stf.diameter

Class, interface or exception Function

AsociatedIdentitiesAVP Associated identities Attribute Value Pair

ChargingInformationAVP Charging information Attribute Value Pair

ConfidentialityKeyAVP Confidentiality key Attribute Value Pair

CXDXAVPResolver A AVP resolver for the CXDX diameter

application

CXDXAVPSequence A CDDX diameter application AVP sequence

CXDXExperimentalResultAVP A CXDX Experimental result Attribute Value Pair

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 159

DeregistrationReasonAVP De-registration reason Attribute Value Pair

DiameterCXDXResolver A CXDX diameter application command message

resolver

FeatureListAVP Feature list Attribute Value Pair

FeatureListIDAVP Feature list id Attribute Value Pair

IntegrityKeyAVP Integrity key Attribute Value Pair

LocationInfoAnswerCommand Location Information Answer (LIA) command

LocationInfoRequestCommand Location Information Request (LIR) command

MandatoryCapabilityAVP Mandatory capability Attribute Value Pair

MultimediaAuthAnswerCommand Multimedia Authorization Answer (MAA)

command

MultimediaAuthRequestCommand Multimedia Authorization Request (MAR)

command

OptionalCapabilityAVP Optional capability Attribute Value Pair

PrimaryChargingCollectionFunctionNameAVP Primary charging collection function name

Attribute Value Pair

PrimaryEventChargingFunctionNameAVP Primary event charging function name Attribute

Value Pair

PublicIdentityAVP Public identity Attribute Value Pair

PushProfileAnswerCommand Push Profile Answer (PPA) command

PushProfileRequestCommand Push Profile Request(PPR) command

ReasonCodeAVP Reason code Attribute Value Pair

ReasonInfoAVP Reason information Attribute Value Pair

RegistrationTerminationAnswerCommand Registration Termination Answer (RTA)

command

RegistrationTerminationRequestCommand Registration Termination Request (RTR)

command

SecondaryChargingCollectionFunctionNameAVP Secondary charging collection function name

Attribute Value Pair

SecondaryEventChargingFunctionNameAVP Secondary event charging function name Attribute

Value Pair

ServerAssignmentAnswerCommand Server Assignment Answer (SAA) command

ServerAssignmentRequestCommand Server Assignment Request (SAR) command

ServerAssignmentTypeAVP Server assignment type Attribute Value Pair

ServerCapabilitiesAVP Server capabilities Attribute Value Pair

ServerNameAVP Server name Attribute Value Pair

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 160

SIPAuthDataItemAVP SIP authorization data item Attribute Value Pair

SIPAuthenthicateAVP SIP authenticate Attribute Value Pair

SIPAuthenthicationContextAVP SIP authentication context Attribute Value Pair

SIPAuthenthicationSchemeAVP SIP authentication scheme Attribute Value Pair

SIPAuthorizationAVP SIP authorization Attribute Value Pair

SIPItemNumberAVP SIP item number Attribute Value Pair

SIPNumberAuthItemsAVP SIP Number of Authorization Items Attribute

Value Pair

SupportedApplicationsAVP Supported applications Attribute Value Pair

SupportedFeaturesAVP Supported features Attribute Value Pair

UserAuthorizationAnswerCommand User authorization answer (UAA) command

UserAuthorizationRequestCommand User authorization request (UAR) command

UserAuthorizationTypeAVP User authorization type Attribute Value Pair

UserDataAlreadyAvailableAVP User data already available Attribute Value Pair

UserDataAVP User data Attribute Value Pair

VisitedNetworkIdentifierAVP Visited network identifier Attribute Value Pair

Table 43 - STFSERVER classes of package pt.uc.dei.lcst.stf.diameter.cxdx

Class, interface or exception Function

CurrentLocationAVP Current location Attribute Value Pair

DataReferenceAVP Data reference Attribute Value Pair

DiameterSHResolver A SH Diameter application command message

resolver

ExpiryTimeAVP Expiry time Attribute Value Pair

IdentitySetAVP Identity set Attribute Value Pair

MSISDNAVP MSISDN Attribute Value Pair

ProfileUpdateAnswerCommand Profile update answer (PUA) command

ProfileUpdateRequestCommand Profile update request (PUR) command

PushNotificationRequestCommand Push notifications request (PNR) command

PushNotificationsAnswerCommand Push notifications answer (PAN) command

RequestedDomainAVP Request domain Attribute Value Pair

ServiceIndicationAVP Service indication Attribute Value Pair

SHAVPResolver A SH diameter application AVP resolver

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 161

SHAVPSequence A SH diameter application AVP sequence

SHExperimentalResultAVP SH Experimental result Attribute Value Pair

SubscribeNotificationsAnswerCommand Subscribe notifications answer (SNA) command

SubscribeNotificationsRequestCommand Subscribe notifications request (SNR) command

SubsReqTypeAVP Subscribe notifications request type Attribute

Value Pair

UserDataAnswerCommand User data answer (UDA) command

UserDataAVP User data Attribute Value Pair

UserDataRequestCommand User data request (UDR) command

UserIdentityAVP User identity Attribute Value Pair

Table 44 - STFSERVER classes of package pt.uc.dei.lcst.diameter.sh

Class, interface or exception Function

GenericChannel A generic channel interface

GenericChannelListener Generic channel listener interface

GenericChannelData A generic channel data message

ChannelException Base exception for all channel operations related

STF channels

ChannelReadException The channel could not be read

ChannelWriteException The channel could not be writed to

Table 45 – STFSERVER classes of package pt.uc.dei.lcst.stf.net

Class, interface or exception Function

PersistentObject A persistent object

PersistentNameArchive Archive of names and correspondent ids of

persistent object classes

PersistentObjectInputStream A persistent object input stream

PersistentObjectOutputStream A persistent object output stream

Table 46 - STFSERVER classes of package pt.uc.dei.lcst.stf.persist

Class, interface or exception Function

SCTPSocketOptions Represents SCTP protocol socket options

SCTPInputStream A sctp input stream

Network Middleware for mobile and pervasive large scale augmented reality games

Phd thesis Página 162

SCTPOutputStream A sctp output stream

SCTPServerSocket A sctp server socket

SCTPSocket A sctp socket

SCTPSocketImpl A sctp socket implementation

SCTPSocketImplFactory A sctp socket implementation factory

Table 47 - STFSERVER classes of package pt.uc.dei.lcst.stf.sctp

Class, interface or exception Function

ConnectionVerifiyer A connection verifier (verifies if authorized).

STCPChannel A SSL/TLS (over TCP) channel

Table 48 - STFSERVER classes of package pt.uc.dei.lcst.stf.uelink

