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Abstract

Data warehousing applications typically involve
massive amounts of data that push database management
technology to the limit. A scalable architecture is crucial,
not only to handle very large amount of data but also to
assure interactive response time to the users. Large data
warehouses require a very expensive setup, typically
based on high-end servers or high-performance clusters.
In this paper we propose and evaluate a simple but very
effective method to implement a data warehouse using the
computers and workstations typically available in large
organizations. The proposed approach is called data
warehouse striping with approximate query answering
(DWS-AQA). The goal is to use the processing and disk
capacity normally available in large workstation
networks to implement a data warehouse with a very
reduced infrastructure cost. As the data warehouse shares
computers that are also being used for other purposes,
most of the times only a fraction of the computers will be
able to execute the partial queries in time. However, as
we show in the paper, the approximated answers
estimated from partial results have a very small error for
most of the plausible scenarios. Moreover, as the data
warehouse facts are partitioned in a strict uniform way, it
is possible to calculate tight confidence intervals for the
approximated answers, providing the user with a measure
of the accuracy of the query results. A set of experiments
on the TPC-H benchmark database is presented to show
the accuracy of DWS-AQA for a large number of
scenarios.

1. Introduction

During the last decade, data warehouses have become
increasingly important in many applications areas such as
decision support, banking and financial services.
However, one of the aspects that most restrict the
introduction of data warehouses in the organizations is the
large investment in powerful servers needed to support
large amount of data and to assure the interactive response

time necessary to the ad-hoc querying typically used in
decision support activities.

With the advent of fast networking technologies, many
organizations have today large networks of computers
(typically, personal computers and workstations) in which
only a small fraction of the processing power and disk
capacity are normally used. The parallel processing
community has been seduced by the huge processing
power available in many networks for quite a long time.
However, this potentially available processing power has
proved to be very hard to be used, even for the most
favorable parallel applications.

We decided to investigate the possibilities of using the
processing power and disk capacity normally available in
large networks to implement a data warehouse at very low
infrastructure cost. To achieve this we propose a new
method called DWS-AQA (Data Warehouse Striping with
Approximate Query Answering) based on the clever
combination of two simple ideas: 1) uniform data striping
to partition the data warehouse facts over an arbitrary
number of computers, in such a way that queries can be
executed in a true parallel fashion (a query is actually split
into many partial queries), and 2) an approximate query
answering strategy to deal with the momentary
unavailability of one or more computers in the network.

The data striping technique is in fact the well-known
round-robin partitioning applied to the very low level of
the data warehouse facts in such a way that assures
uniform distribution of the partitioned data. This very
simple and old partitioning technique proved to be very
effective for the typical queries in data warehouses. In
fact, using this partitioning technique we can convert one
query into queries that compute partial results, and the
global result can be computed very fast from these partial
results. The (partial) queries are executed independently
in the different computers, which is the necessary
condition to achieve optimal load balance and
performance scaleup. This partitioning technique, called
“Data Warehouse Striping” (DWS), was thoroughly
evaluated in a previous work [5].

The key aspect that makes it possible to use the
available processing power and disk capacity in a network



to implement a data warehouse is the combination of the
DWS technique mentioned above with an approximated
query answering scheme. Tight confidence intervals for
the approximated answers are calculated, providing the
user with a measure of the accuracy of the query results.

The main contributions of this paper are as follows:
•  Proposes a framework to implement a large data

warehouse in an affordable way. This approach
has a very good scalability, as more computers can
be added to the system as needed, and a nearly
linear speedup can be obtained.

•  Proposes methods that allow the computation of
the different types of aggregation queries on an
environment formed by a large number of
computers. An efficient way to distribute the
queries by all computers and merging the results is
also presented.

•  An exploration interface is proposed providing
continuously feedback to the user and offering
accurate estimates of the results, together with
confidence intervals. This interface receives the
partial answers from different nodes
asynchronously, taking into account the
unavailability of DWS-AQA.

•  Presents an extensive set of experiments to
establish the accuracy of DWS-AQA and provide
statistical bounds for the errors contained in the
estimations of final results.

The remainder of the paper is organized as follows. In
the next section we review related work and discuss the
problems associated with parallel and distributed data
warehouses. Section 3 describes the different components
of a DWS-AQA system. We present an experimental
evaluation in Section 4 and the final section summarizes
the conclusions from this work.

2. Related work

Today’s commercial database systems support creation
and use of indexes and materialized views. Materialized
views are based on pre-computed answers to queries and
are probably the most effective way to accelerate specific
queries in a data warehouse. However, it only works when
user queries can be correctly anticipated, which is not
often possible [15]. Indexes also have limitations in what
concerns their usage by the optimizer [9]. More recently,
commercial systems have also added support for
automatically picking indexes, provide tools to tune the
selection of materialized views for a workload, and also
tools that can recommend both indexes and materialized
views [3]. It is worth noting that these techniques (indexes
and materialized views) are general techniques that can
(and should) be used with the data warehouse striping
approach proposed in this paper.

There is a vast literature on query processing and load
balancing in parallel database systems [e.g. 1, 14] and
distributed databases [e.g. 17]. Many DBMS vendors
claim to support parallel data warehousing to various
degrees, e.g. Oracle8 [16], Red Brick Warehouse [20],
IBM DB2 Universal Database [6], and the Advanced
Decision Support Option of Informix Dynamic Server
[13]. Similarly to our proposal Teradata system’s parallel-
processing architecture [7] divide a query workload
among its processing nodes, which then execute the query
in a true parallel and independent way.  However, our
approach is unique in what concerns the ability of
using/sharing heterogeneous nodes and solving the
unavailability of part of the nodes through the use of
approximate answering techniques. Recently, there has
been a significant amount of work on approximate query
answering [2, 8, 11] where the main focus is to provide
fast approximate answers to complex queries that can take
minutes, or even hours to execute.

The technique presented in this paper - data warehouse
striping - provides a flexible approach for distribution,
inspired in both distributed data warehouse architecture
and classical round-robin partitioning techniques. The
data is partitioned in such a way that the load is uniformly
distributed to all the available computers and, at the same
time, the communication requirements between computers
is kept to a minimum during the query computation phase.

This paper marries the concepts of distributed
processing and approximate query answering to provide a
fast and reliable relational data warehouse implemented
with the existing computers of an organization.

3. The DWS-AQA System

The proposed technique uses the basic star schema
approach to represent multidimensional data, distributing
it over a set of computers that are available in the
organization. This section discusses the major issues
related to this topic. First, we describe the approaches
used in DWS-AQA for setting up the environment and the
minimal requirements that a computer must meet to be
usable in DWS-AQA. Next, we discuss data loading,
query distribution and result merging phases. These are
very important aspects of DWS-AQA, as they support the
distributed processing that lies in the kernel of the system,
resulting in a very good speedup (typically DWS-AQA
achieves a linear speedup of N, the number of computers
in the system). The policy to manage the list of computers
catalogued in DWS-AQA and to manage their
inaccessibility or unavailability is also discussed.
Furthermore, we show how DWS-AQA computes results
to deliver fast early estimations of the final result using the
partial results as they arrive from the computing nodes on
the network. Additionally, to present the aggregation



results we propose an exploration interface that permits
users to observe the progress of their aggregation queries.
Statistical confidence intervals are also shown helping the
user assess the proximity of estimated result to the final
result. A periodic data load strategy is proposed,
providing 24x7 availability which is an important
requirement in some applications areas. Finally, we point
out some of the limitations of the proposed technique.

3.1. Setting up the environment

The data warehouse administrator is responsible for
creating the setup in all computers that compose the
DWS-AQA environment. First, s/he must catalogue the
computers that will be used in DWS-AQA, inserting their
address in a hot list. Second, s/he is responsible to create
the same star schema in all DWS-AQA computers.

The hot list contains relevant information about the
DWS-AQA environment. Basically, each computer must
fulfill two major conditions in order to be used in the
DWS-AQA system:

•  Memory, processor, and disk should have enough
capacity to support a database engine. Modern
computers can easily meet this condition.

•  The normal computer utilization profile should not
use all the resources (memory and processor)
during all the time. It is worth noting that typical
users normally use only a relatively small fraction
of computer resources. Furthermore, most of the
time the computers are simply not being used,
either because the users are not connected or
because the computer is idle waiting for user
keystrokes.

One important aspect is that the use of the available
processing capacity should not slow down the normal
activity of the computer user. In principle, this can be
achieved by a correct administration of the priorities given
to the database background processes.

Another important aspect is that even when the
computer user agrees to share the computer resources with
DWS-AQA, there are still no guarantees that the computer
will be available when a query is issued. There are many
reasons for the momentary unavailability of a computer: it
may be disconnected, have a failure, be temporarily too
busy to provide a quick answer or network problems
occur. The approximate query answering technique
proposed in this paper solves these problems.

3.2. Data Loading Phase

In this section we show how DWS-AQA approach
distributes the warehouse data over the catalogued
computers. The data distribution used here is basically the
same proposed originally in [5] and is summarized here to

make this paper self-contained. The data is disseminated
over the available computers according to the following
guidelines:

•  Dimension tables are replicated in each machine
(i.e., each dimension has exactly the same data in
all the computers).

•  The fact data is distributed to the fact tables of
each computer using a strict row-by-row round-
robin partitioning approach (see also Figure 1).
Each computer has 1/N of the total amount of fact
rows in the star schema, with N being the number
of computers.

Computer 1

…
FACT  TABLE Dimension_1

ComputersN

rowsn

_

_

 Dimension_K

…
FACT  TABLE Dimension_1

ComputersN

rowsn

_

_

 Dimension_K

…

Computer N
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This data partitioning for star schemas balances the
workload by all computers supporting parallel query
processing as well as load balancing for disks and
processors. The replication of dimension tables doesn’t
represent a serious overhead because usually the
dimensions only take less than 5% of the total required
storage [18]. With this approach typical OLAP queries are
executed in parallel by all the computers that constitute
the DWS-AQA system.

An important aspect of the DWS technique is that it
ensures a uniform distribution of fact data over all
computers as this distribution is in fact a random sample
method called systematic sampling [10]. The systematic
sampling method has as sample basis one file or the
elements list of the population, satisfying the hypothesis
M=N.n, where M is the population size and N is a number
that belongs to the natural number set (in our case
represents the number of computers used by DWS-AQA
system) and n is the sample size.

The procedure to apply the systematic sample method
consists in choosing randomly one number k in the
interval [1,N], which serves as seed and the first element
of the sample. The systematic sample is composed by the
elements with the following numbers k,  k+N,  k+2N, …,
k+(n-1)N. If we have a population X1, X2, …, XM and if
we want to choose a systematic sample of this population
(M=N.n), we can write

X1 X1+N X1+2N … X1+(n-1)N

X2 X2+N X2+2N … X2+(n-1)N

… … … … …

XN XN+N XN+2N … XN+(n-1)N



Each line is a systematic sample draw with n elements,
selected from every Nth element. In our case, each of these
lines represents the fact rows in each one of the N
computers of the DWS-AQA system. This means the
DWS technique uses a probabilistic sample method that is
not biased due to its theoretical characteristics based on
probabilistic theory. Another advantage is the possibility
to compute the degree of uncertainty, i.e. the error of the
estimate, in the form of confidence intervals. This is only
due to the fact we have uniform random samples.

In [4] we have used real data from Dow-Jones stock
index to show the round-robin data partitioning technique
of DWS is uniform, i.e., the data is uniformly distributed
over the computers. In the next section, we will see the
query modifications required to distribute the queries over
all the computers.

3.3. Query Distribution

DWS-AQA is a three-tier-architecture consisting of (1)
Clients, (2) Query distribution and processing layer and
(3) the various computers that represent the database
nodes. The three-tier architecture is shown in Figure 2.
Clients issue queries to the DWS-AQA system in SQL.
The query distribution and processing layer is the heart of
DWS-AQA system that provides a transparent interface to
the data warehouse computing nodes. It is responsible for
the following processes: query rewriting, query
distribution and merging of partial results. The third layer
consists of the set of computers that run the database
independently of each other. In a DWS-AQA system the
database nodes can also acts as clients, simultaneously.

Queries are distributed through all the computers that
constitute the DWS-AQA system and their parallel
execution by the available computers maintains the best
load balance because the number of fact rows stored in
each computer is about the same.

ResultSQL Query

Clients

…

…

Database
nodes

Query Distribution and Processing Layer

Partial
query 1

Partial
query  2

Partial
resu lt  1

Partial
result 2 Part ial

query n

Partial
resu lt n
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Most of the queries over a star schema can be
transformed into N independent partial queries due to their
nature (and because the fact rows are partitioned in a
disjoint way: i.e., the rows stored in a computer are not
replicated in the other computers). In a star schema,
typical OLAP queries join and aggregate a large number
of rows in the fact table and return few groups as final
result. These queries use aggregation functions sum,
count, average, standard deviation, and variance as
operators. These are the functions that we study in our
experiments.

3.4. Result merging of aggregation functions

In DWS-AQA system a query q is converted into a set
of partial queries that compute partial results. These
partial results are obtained independently in the different
computers and sent to a coordinator computer where they
are used for result merging. The result merging phase
collects the partial results and computes running and final
results for the user. The running results are estimations of
the final result that are computed as soon as partial results
arrive from each computer catalogued in DWS-AQA.
These running results provide very accurate estimations
even when some computers are temporarily busy or
inaccessible. This section describes the merging strategy
and the approach used to compute current estimations.

•  Computing SUM and COUNT functions
If the original query contains the sum or count

aggregation functions, then it is sent to all computers
without modification (i.e. partial queries are exactly the
same as the original query).

Now, we will see how DWS-AQA computes the
approximate aggregation values when one or more
computers cannot contribute to the final result. Consider
the number of computers used in DWS-AQA to be N =
Nu + Na, where Nu is the number of computers that are
unavailable and Na is the number of computers that are
available, contributing to compute the estimated
aggregation value. The running results for the SUM and
COUNT aggregation functions are basically computed as:

a
a

a

a
uaestimated N

N
SUM

N

SUM
NSUMSUM =+=

a
aestimated N

N
COUNTCOUNT =

where N is the number of computers used in the DWS-
AQA system, 

aSUM and 
aCOUNT  are the results of SUM

and COUNT computed from the available computers. The
attributes of the functions are not shown for simplicity.
These formulas will be used in the experiments to
compute the estimated value of final result.



•  Computing AVERAGE function
Additionally, if the original query contains the

aggregation function AVG, it must be modified before
being sent. The modification are illustrated in this simple
example:

select AVG(atr) Í select SUM(atr), COUNT(atr)

from table  from table

If the aggregation function to compute is average and
one or more computers are unavailable the running
average is simply given by

a

a

a

a
ua

a

a
ua

estimated COUNT

SUM

N

COUNT
NCOUNT

N

SUM
NSUM

AVG =
+

+
=

where SUMa and COUNTa represents the partial sum and
count from the available computers. Intuitively, the
overall estimated average is the average taken from the
available nodes.

•  Computing VARIANCE and STDDEV functions
In order to compute the variance, the original query is

transformed into a sum, count and average that is sent to
each database node.

As before, the queries containing STDDEV and
VARIANCE aggregation functions have to be rewriting
following the rules illustrated in this example:

select stddev(atr)Íselect count(atr),var(atr),avg(atr)

from table    from table

select var(atr)Íselect count(atr),var(atr),avg(atr)

from table from table

The running variance and standard deviation functions
are simply evaluated from the partial results of the
computers that respond or

aestimated VARVARIANCE =

aestimated STDDEVSTDDEV =

The previous formulas reveal us the modifications
suffered by the original query before it is sent to all
computers. While queries containing the aggregation
functions SUM and COUNT, didn’t require any modification
the others functions (AVG, STDDEV and VARIANCE) need
rewriting. The query distribution and processing layer is
responsible for the transformation of the original queries
and the merging of all the partial results, according to the
operation, to obtain the final result.

•  GROUP  BY and HAVING clauses
The final result of queries containing GROUP BY and

HAVING clauses is computed from the partial results by
applying a query similar to the original to the partial

results. The HAVING clause can be used to specify a
further restriction over the groups. This clause only exists
if we have the GROUP BY clause. In that case the HAVING

clause is removed from the original query and is only
applied after regrouping the partial results from all DWS-
AQA nodes.

•  ORDER BY clause
The final result of queries containing ORDER BY clause

is computed from the partial results by applying a query
similar to the original to the partial results. The ORDER BY

clause, when it exists in the original query can also be sent
to the DWS-AQA nodes. This means that each computer
orders its partial set and the merging phase runs a faster
algorithm to find the overall order from the partially
ordered sets. This option means that each computer has
more processing time but the merging phase has less
work. In another way, sending the original query without
ORDER BY clause meaning the result is only ordered in the
merging phase. This has the disadvantage of more
processing at final (merging phase). In both cases the
results must be ordered when we merge the partial results.

3.5. Management of computer accessibility in
DWS-AQA

DWS-AQA systems have a special computer, the
controller, which has special requirements. The controller
computer is used for specific tasks as to coordinate the
operations in this environment but also acts as one of the
nodes of the system. We describe how the controller
manages a dynamic list of catalogued computers that can
enter or leave the system as time evolves and how it
manages the accessibility and availability of the DWS-
AQA computers. The major tasks of the controller are
described next.

•  Management of the list of computers catalogued in
DWS-AQA

The controller computer manages the list of computers
catalogued in a DWS-AQA system. It is responsible to
evaluate the accessibility of each computer during the
query distribution and the loading phase and to manage
these phases (it verifies if a computer is accessible or not).
The inaccessibility circumstances are managed differently
depending if it is a query distribution or loading phase. If
a computer is not accessible during query distribution, the
controller simply doesn’t send the query to it. If this
inaccessibility is verified during the loading phase, the
controller is responsible to continue trying to load the
data. The controller computer keeps track of the
computers that are updated and where updates are not
possible at this moment.



•  Management of the inaccessibility and
unavailability of DWS-AQA computers

The controller is responsible to check the accessibility
of DWS-AQA computers before sending the queries and
the hot list is updated accordingly. After that, the query is
only sent to those computers that are accessible and the
controller waits for the partial results. In this way, when
partial results are presented, the estimations (running
results) are computed. When new partial results are
obtained these estimations are updated, providing
increasingly more accurate results. At each point, the
number of computers that have already contributed to the
estimations is always pointed out (as will be described in
the next section). For the “lazy” computers, we propose a
timeout mechanism. This timeout can be set with a waiting
time double to the last query response time. The user can
always stop the processing or wait for the new partial
results from the computers that didn’t answer yet. If the
user requests to stop the progress of execution, the
controller sends a message to lazy computers to stop.

3.6. Exploration interface

In a DWS-AQA environment we expect the computers
to answer the queries at different speeds. It is therefore
necessary to offer an exploration interface, which shows
current estimations continuously as the overall result is
being computed. These estimations are more accurate
each time a new computer contributes with new partial
results. This exploration interface (see Figure 3) shows at
least the query groups, the different estimations for each
aggregation function and the respective confidence
interval with a given probability, together with the
indication of the fraction of computers which contributed
and the corresponding degree of completeness of the
query.

Such interface has some similarities with the one
proposed in [12], which also provided continuous
feedback to the user as the result is being computed.
However, while their interface is continuously estimating
the results as rows are fetched from one single source,
DWS-AQA uses the interface to return early answers from
the computers that have completed the processing while
lazy ones are still working on the query. Furthermore, the
user does not need to wait for the lazy computers, as the
system typically returns very accurate estimations even
when only a small set of computers have already answered
(as we will see in section 4.3).

DWS-AQA online aggregation interface provides
running aggregation results (RESULT column), i.e., an
estimate of the final result based on the values returned by
the computers that have finished their computation. The
Interval column gives a probabilistic estimate of the
current running aggregate to the final result.

  GROUP RESULT RESULT

36278.12China

Japan

India

Vietnam

Na / N 39/65
% Processing

STOP

1760506.13 (3.24%)

56029334.78 36626.99

36251.271766303.81 (3.46%)

1165.90 (3.21%)

1251.22 (3.45%)

 % Confidence

  absolute

 percentage  Interval

  90   95   99

  absolute

  SUM   AVG

54262908.26

Indonesia

51015558.06

  Interval   99%
  absolute

  Interval   99%

41690517.24

54249923.57

34975.90

36722.30

1855570.65 (3.31%)

1561618.22 (3.74%)

1838094.80 (3.39%)

1219.43 (3.33%)

1303.16 (3.72%)

1240.56 (3.38%)
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At each time, the user knows how many computers
answer (Na) and the total number of DWS-AQA
computers (N). For example, according to Figure 3, the
current average of India’s revenue is within ±1251.22 of
the exact result with 99% confidence. The interval
36251.27±1251.22 is called a running confidence interval.
The size of such confidence intervals can be used as a
measure of the precision of the estimator. We also give
the possibility to display those intervals as a percentage,
which approximately indicates the error that can be
contained in the given approximate answer (these are the
values shown within parenthesis in Interval columns). To
compute confidence intervals we use formulas based in
the standard central limit theorem that are based on the
ones proposed in [4, 11].

3.7. Running the periodic load strategy that
allows permanent availability

The controller computer runs a periodic data load
strategy that allows permanent availability. Traditionally,
data warehouses are refreshed periodically (for example,
nightly) by extracting, transforming, cleaning and
consolidating data from several data sources. During this
period the data warehouse is unavailable for querying.
However, there are business intelligence applications in
telecommunications, electronic commerce, and other
industries, that are characterized by very high data
volumes and data flow rates, and that require continuous
analysis and mining of the data. In the DWS-AQA
environment we could provide a 24x7 availability. We
propose a strategy where only one fraction of computers is
updated each time and not all computers simultaneously.
Two situations can be dealt with. First, if availability is
not one of the main concerns in the organization, then all
computers are loaded simultaneously (e.g. nightly loading
without analysis). Second, if the organization
requirements are 24x7 availability, then only 50% of the
computers are updated each time, so that the system can
still provide approximate answers during the update. This
can also be done during the night where only the



computers that are being refreshed are offline but this
requirement is not essential because DWS-AQA system
continues working normally providing approximate query
answering.

The controller computer keeps the information if a
computer belongs to the fraction that is answering the
queries or not (a query can be answered by either the
computers already updated or the ones that are waiting to
be updated). In those cases where the accuracy of the
query result may be very important and approximate
aggregates are not the solution, a mechanism that can be
employed is the use of mirrored nodes.

3.8. Limitations of DWS-AQA technique and
aspects not addressed in the present work

The proposed DWS-AQA approach seems to provide a
very promising contribution to the scalability and efficient
processing of huge data warehouses. However, the
technique has some intrinsic limitations:

•  DWS-AQA is specifically targeted to data
warehouses organized as star schemas. This means
that this technique cannot be arbitrarily adapted to
other type of databases, in particular operational
databases (OLTP). DWS-AQA is suitable
essentially for those data warehouses that are
predominantly dominated by one or more very
large fact tables;

•  Typically, the dimensions of a star schema are
small in size when compared with the big fact
table. However, there are exceptions to this rule, in
which case the space overhead of DWS-AQA
becomes more significant;

•  Correlated queries and queries having sub-queries
which use references from outer query blocks
cannot be handled directly by this approach. To
overcome this problem one solution is to use query
de-correlation, as proposed in literature [19].
Using these techniques it is possible to rewrite the
correlated query in such a way that outer
references no longer exist. One problem with the
rewriting strategy is that query de-correlation is
not always possible and in some cases, although
possible, it may not be efficient.

•  The use of the available computers in a network
raises very important security problems that are
not addressed in this paper. Although this is not an
intrinsic limitation of the DWS-AQA technique, as
the use of security techniques to assure
confidentiality is an orthogonal aspect of DWS-
AQA (i.e., it does not interfere with the basic
mechanisms of DWS-AQA), the actual use of
DWS-AQA is clearly dependent on the assurance
of the adequate level of security.

We are currently working further on these issues.
Particularly, the security problem is one of the issues that
is intensively being investigated, with particular emphasis
on the study of the impact of the different security
mechanisms on the DWS-AQA performance.

4. Assessing the speedup and accuracy of
DWS-AQA

In this section, we present the results of an
experimental evaluation of the DWS-AQA system. Using
data from TPC-H benchmark [21], we show the
effectiveness of DWS-AQA in providing speedup and
highly accurate answers.

The rest of this section is organized as follows. We
begin by describing our experimental testbed. We then
evaluate the speedup of DWS-AQA and the accuracy of
the approximate query answers as more computers
contribute to the final result.

4.1. Experimental testbed

We ran the experiments on data from the TPC
Benchmark  H, with Oracle 8 as the back-end DBMS.
TPC-H benchmark models a realistic business data
warehouse, with sales data from the past seven years. It
contains a large central fact table called Lineitem and
several much smaller dimension tables. We used a scale
factor of one for generating our test data. This results in a
database size of approximately 1 GB. Table 1 summarizes
some of the important features of the tables of TPC-H
database used in the experiments.
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Table name # of columns # of rows

Customer 8 150,000
Lineitem 16 6,001,215
Nation 4 25
Orders 9 1,500,000
Region 3 5
Supplier 7 10,000

In the experiments we apply our technique to 100
computers, which corresponds to DWS-100. The use of N
computers was simulated by dividing the n_fact_rows
(6,001,215) of the fact table, using DWS-AQA technique,
into N partial fact tables (LINEITEM_1,…, LINEITEM_N).
Each computer has n_fact_rows/N rows and the
dimensions are replicated in each computer. For example,
DWS-100 simulates the use of 100 computers (N=100)
having 100 partial fact tables (LINEITEM_1,…,
LINEITEM_100) with each one having 60,012±1 fact rows,
while the dimensions are equivalent to those of a



centralized data warehouse system. This simplification
doesn’t influence the results presented.

We are interested in typical queries that perform
multiple aggregations and joins, processing a large
number of rows of the fact table and returning a very
small number of rows as result. We are also interested in
analyzing the influence of group-by queries where the
groups have different sizes. Therefore, in accordance with
these criteria, we have chosen to implement query Q5 of
TPC-H benchmark.

4.2. Speedup of DWS-AQA

Although this is not the main point of this paper, it is
important to mention that DWS-AQA achieves an optimal
speedup. We have made comprehensive experiments
using 3, 5 and 10 computers with the same hardware
characteristics [5]. Comparing the query execution time
for a set of typical queries of a benchmark, we obtain an
average speedup of 3, 5.1 and 11 using 3, 5 and 10
computers, respectively. In fact, the speedup is higher
than the theoretical value, because the centralized data
warehouse that was used as the reference experiment
worked near the workstation memory and I/O limits.
These results show that this technique can be applied to an
arbitrary number of computers improving query execution
speedup by almost N, the number of computers used. This
is due to the fact that when we distribute the data we are
working on more manageable data sets that could be more
treatable in computers usually limited by memory space.

4.3. Accuracy of DWS-AQA

In this section, we consider a set of aggregate functions
that are computed on the result of a complex select-join
query. The query used is based on query Q5 of TPC-H
benchmark that lists the revenue volume done through
local suppliers. We modify it to return also the average,
standard deviation and count of revenue. The query lists
for each Nation in a Region the revenue volume (plus
average, standard deviation and count) that resulted from
Lineitem transactions in which the Customer ordering
parts and the Supplier filling them were both within that
Nation. The query considers only Parts ordered in a given
year, displaying the Nations, and revenue volume,
average, standard deviation and count ordered by nation
name. The SQL statement for the query is:

select
n_name,
sum(l_extendedprice * (1 - l_discount))

as sum_revenue
avg(l_extendedprice * (1 - l_discount))

as avg_revenue
stddev(l_extendedprice * (1 -

l_discount)) as stddev_revenue
count(*) as count

from
customer, orders, lineitem, supplier,
nation, region

where
c_custkey = o_custkey
and l_orderkey = o_orderkey
and l_suppkey = s_suppkey
and c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’ASIA’ and o_orderdate >=

’1994-01-01’
and o_orderdate < ADD_MONTHS(’1994-01-

01’,12)
group by

n_name
order by

n_name;

This query is a 5-table join of large and small tables,
where the data aggregated is reduced down to 1/5 of the
Customers and Suppliers (representing one Region out of
five) and 1/7 of the Lineitems (one year out of seven). The
largest detail table has no direct selection applied to it.
Five rows are returned constituting the revenue for each
nation in the selected region:

N_NAME SUM_REVENUE  AVG_REVENUE  STDDEV_REVENUE  COUNT
------------------------------------------------------
CHINA   53724494.26   36005.2483    21539.2708   1502
INDIA   52035512.00   36138.2886    22249.3627   1438
INDONESIA  55502041.17  36643.7337  22213.3269   1509
JAPAN   45410175.70   35227.3708    22113.7948   1288
VIETNAM 55295087.00   36755.0601    22519.8905   1506

In our experiments we evaluated the error obtained
with this query for the SUM, AVG, STDDEV, and COUNT

aggregation functions, when the number of computers that
contribute to the final result is variable.

•  Error in estimated values
When a query is sent to DWS-AQA system some of the

computers could be too busy to answer or some problems
in network arise. To simulate these situations we made
experiments where the percentage of computers that are
on-line varies from 10 to 90 percent and compute the
relative error of the running results.

At each point the relative error of the running result is
computed as:

100
_

__
×

−
=

valueexact

valueestimatedvalueexact
errorrel

The relative error obtained for Q5 query of TPC-H
benchmark using DWS-100 and considering only the SUM

aggregation function is shown in Figure 6 for each group
(Nation). The x-axis represents the percentage of
computers that are contributing to the final result.

In these experiments, the error decreases with the
increment of the number of computers that are on-line (as
expected). However, this error is not very large, as it does
not exceed 15% with SUM aggregation function (not
shown) and less than 20% with COUNT function.
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These are worst case results because only 10% of the
computers have contributed with values. Furthermore,
these errors are obtained for the smallest group, Japan,
which aggregates only 104 elements. This also explains
the oscillations in the error for this group.

Figure 7 shows the revenue error for Q5 query for all
groups (Nations) when we are applying AVG function.
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In these cases the error obtained is even small, not
exceeding 11%. And if we assume that half of the
computers contribute to the result we can see from the
figure that the error is always less than 2%.

The experimental results empirically demonstrate that
DWS-AQA can give extremely quick answers with high
precision for many queries and the user is also informed
of errors incurred in the estimations by means of
confidence intervals. Similar results were obtained for
other TPC-H queries but due to space limitations we only
show a synopsis of those results. Figure 8 shows the
typical results obtained for queries Q1, Q6 and Q7 of
TPC-H.
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The queries Q1 and Q6 present better results due to the
large number of tuples in the aggregated groups. The
average number of tuples by group in queries Q1 and Q6
is 38,854 and 114,160 respectively, while in query Q7 the
group only contains 1512 tuples. Since the groups are
randomly distributed over 100 computers, it means that
for query Q7, the individual computers only have 15
tuples in average, which results in less accuracy.
Consequently, the accuracy of approximate query answers
is highly dependent on the number of “samples”
consisting of tuples from each group in individual
computers.

•  Confidence intervals
The confidence intervals give valuable feedback on

how reliable an answer is. In the results we show four
curves: the confidence interval limits (lower_limit and
upper_limit curves), the estimated value of the
aggregation function (estimated_FUNCTION curve) and
also the exact value (exact_FUNCTION). The confidence
interval indicates that the exact value (exact_FUNCTION
curve) lies between the values represented by the
lower_limit and upper_limit curves, with probability 95%
or 99% (user choice). Figure 9 shows the 99% confidence
interval for the China group of query Q5 using the sum
aggregation function.
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Figure 9 shows that the exact value is always within the
limits of the confidence interval. The results also show
that the magnitude of the confidence interval decreases,
which means better precision, as the number of computers
contributing to the running result increases. Figure 10
shows the results for the Japan group using variance
aggregation function.

These experiments confirmed the effectiveness of using
confidence bounds with the approximate results. The
exact values (exact_FUNCTION curve) of the aggregation
functions are always within the limits defined by the
confidence interval and are very close to the estimated
value (estimated_FUNCTION curve). Even when a large
fraction of the computers didn’t contribute to the results
we obtain accurate approximate query answers.
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In summary, using the techniques proposed in this
paper, one can design a query answering system within the
framework of the DWS-AQA system which not only
produces accurate approximate query answers for
complex join aggregates but also provides good error
bounds using statistical techniques.

5. Conclusions

In this paper we proposed DWS-AQA as a technique to
implement a large data warehouses using the available
computers in the organizations. This approach, called data
warehouse striping with approximate query answering
(DWS-AQA), is based on the combination of two simple
ideas: 1) uniform data striping to partition the data
warehouse facts over an arbitrary number of computers, in
such a way that queries can be executed in a true parallel
fashion (a query is actually split into many partial
queries), and 2) an approximate query answering strategy
to deal with the momentary unavailability of one or more
computers in the network. As the data warehouse shares
computers that are also being used for other purposes,
most of the times only a fraction of the computers will be
able to execute the partial queries in time. However, as we
show in the paper, the approximated answers estimated
from partial results have a very small error for most of the
plausible scenarios. Given the specific nature of the
decision support activities, a small error is normally
acceptable. Moreover, as the data warehouse facts are
partitioned in a strict uniform way, it is possible to
calculate tight confidence intervals for the approximated
answers, providing the user with a measure of the
accuracy of the query results. We also proposed an
exploration interface to produce statistical confidence
intervals for the estimated results, helping the user
assessing the accuracy of the estimations. A periodic data
load strategy that allows permanent data warehouse
availability is also discussed. Experimental results show
that the system returns fast and very accurate query
results, while taking full advantage of available and
inexpensive processing power in enterprise networked
computers.
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