
RMrun : peer-to-peer sharing of applications

Lúıs Pinto1, Tiago Santos1, Filipe Araujo2

1 CISUC, Dept. of Informatics Engineering, University of Coimbra, Portugal
{lpinto,tjsantos}@student.dei.uc.pt

2 CISUC, Dept. of Informatics Engineering, University of Coimbra, Portugal
filipius@dei.uc.pt

Abstract In this paper we describe the first steps we gave to construct
a prototype of RMrun, a peer-to-peer system where users share programs
they have with each other. We enumerate some of the problems we are
facing and some directions we are considering to take. RMrun uses standard
Unix tools, like the X protocol and Secure Shell (SSH) to run remote
programs pretty much as in any Unix system. The difference is that it does
not require a particular user account in server hosts. One single account
enables the user to run any program available in anonymous computers
inside its community.

We think that RMrun can fit two main trends of uses: utilization of pro-
grams by peers that do not have access to such programs or do not want
to configure them; and utilization of desktop CPU time in public volunteer
computer.

1 Introduction

In this paper we describe a peer-to-peer system, called RMrun, where we en-
hance standard services of Unix-like operating systems, to let users run programs
remotely without owing an account in the server machine. We use well-known
mechanisms, most noticeably, the Secure Shell (SSH) [13] and the X protocol [12].
One fundamental component of our architecture is provided by a Central Server,
which is responsible for authentication, accounting and keeping track of programs
available in the community3. With the aid of public and private keys of the SSH
protocol, the Central Server makes it possible to use a single account to run pro-
grams in all the machines of the community. In this way, users can run applications
they do not have, including applications installed in different operating systems or
applications requiring resources beyond user’s local capacity. While this is already
possible with standard technology, RMrun reaches further, by enabling users to get
applications from anonymous peers that they do not know and that may be under
different administrative control without any human intervention. Put in simple
terms, we want to make a peer-to-peer network where users share execution of
programs and consequently CPU time.

3 We have plans to decentralize the functionalities related to keeping and searching for
information currently held by the Central Server.



We believe that one of the most interesting uses of our work is for Desktop
Grid computing (also known as public volunteer computing). By enabling anony-
mous execution in remote computers, RMrun is somewhat similar to Desktop Grid
systems, like BOINC [2] or XtremWeb [7], but mainly to OurGrid [4]. In BOINC
and XtremWeb nodes use their idle time to compute tasks they pull from a central
server. OurGrid is a little bit different, as it lets labs submit jobs to each other
using a push-based approach. The main difference in RMrun is that we do not
require the use of virtual machines to support the sandboxes needed by OurGrid.
We are looking for a lighter approach, where the sandbox can run inside the oper-
ating system of the target machine. This approach also makes our system available
for other uses, because all services available by default in the operating system are
available for the remote running application. One of these services is the X proto-
col that will enable users to run interactive programs anonymously and without
actually installing them. This scenario can be especially appealing for clients using
non-Unix operating systems, namely for Windows users (as long as they install an
X server).

Naturally, RMrun raises important problems, specially security, because oper-
ating systems might run untrusted programs or trusted programs interacting with
untrusted users. Clearly, we must ensure that neither the client, nor the server can
damage each other. Another problem is scheduling, as CPUs become freely avail-
able to third parties. Without any protection, anyone could just flood the entire
system with their own jobs. Additionally, we must also ensure that each user has
access to its fair share of resources inside the system. In the rest of the paper,
we present the architecture of RMrun, we discuss problems that it raises and so-
lutions we adopted to some of these problems. This paper should be regarded as
work-in-progess, as we have not finished our system yet.

2 Related Work

In this section we overview the most relevant systems we are aware of, which have
similarities to RMrun. We focus on platforms that enable users to run interactive
programs. However, as we explained ahead our system also shares some goals with
Desktop Grid systems, such as BOINC [2], XtremWeb [7], or OurGrid [4].

SunTMSecure Global Desktop Software4 is an application sharing commercial
software that relies on a single Data Center, where all applications are installed and
maintained. Users are allowed only to run what the Central Systems has to deploy.
If clients need any new or different version of software they must ask or request its
installation on the Data Center. Despite being much easier to secure than RMrun,
this software also lacks the flexibility and scalability that a peer-to-peer approach
can bring. Citrix XenAppTM 5 (formerly Citrix MetaFrame Server) has server-side
application support for Microsoft WindowsTM, Linux and AppleTM’s Macintosh
Operating Systems. The disadvantage of this implementation is that it exports a
Terminal Server Client to provide the Operative System layer to the application

4 http://www.sun.com/software/products/sgd
5 http://www.citrix.com/pstrans



that the client wants to run. Moreover, the applications available are centrally
managed and users must consume an operating system license in addition to the
license of the software they want to use.

Another interesting and similar trend is to run and maintain the users’ desktop
in a remote server accessible with a particular program or even with a browser.
With this approach a user can transparently change from one machine to the next
and still access its own desktop space in the same state where it left. Usually, by
using some common protocol like X Windows Server Protocol [12] or by running
on a browser, the user can work on any operating system he or she wants. The
main limitation of these systems concerns the fact that users only have access
to applications existing in the central server. For instance, DOD — Desktop On
Demand6 — Online computing, uses Java technology to provide access to remote
storage and some pre-defined applications. Dektoptwo7 is similar to DOD, but the
remote desktop is presented within a browser, providing seamless access across all
operating systems. It shares most of the limitations observed in DOD. OpenNX8

is the platform that most resembles our solution. It uses SSH to encrypt and
exchange data and relies on an X environment to display and manage input and
output. However, it does not provide a peer-to-peer approach like our does and
requires the usual forms of authentication.

Finally, there are some frameworks that aim to simplify program development
for Grids. Although simple and powerful as a “gridifying” approach, goals of these
projects are fundamentally different from our own goals, as we want to run remote
(sequential) programs exactly as they are. For instance, GridGain9 is a software for
programmers who want to develop parallel applications for Local Area Networks
(LANs). To the best of our knowledge and given all the solutions we enumerated
here, we think that RMrun has some unique features, as it is decentralized with
respect to the applications that are available and it allows transparent access to
resources even over different administrative domains.

3 Architecture of RMrun

3.1 Overview

Figure 1 illustrates the RMrun architecture in its simplest form. It has three
components: client peer, host peer and Central Server. Client peer is the node
trying to run a remote application, while the host peer is the node that offers
that application. The distinction between both types of peers serves mainly for
illustration purposes. Usually any computer running RMrun can play both roles
simultaneously. The Central Server is the heart of the system as it is responsible
for setting up all the connections between peers. It holds all information of interest
in the system, like registered users, online users or existing applications.

6 https://desktopondemand.com
7 http://sapotek.com/
8 http://www.nomachine.com
9 http://www.gridgain.com



Host PeerClient Peer SSH Tunnel initiated from the Client

Server

RMI RMI

Figure 1. Overview of RMrun architecture

Typical interaction in the system takes place in four steps: i) each user registers
itself; ii) host peer gives a list of its application to the Central Server; iii) client
peer searches for an application and starts it; iv) with the help of the Central
Server, peers establish a direct connection and start interaction.

3.2 Central Server

In the current version of RMrun the Central Server plays a fundamental goal.
Although we intend to distribute some of its functions in the future to increase
scalability of the system, functions like authentication and accounting are much
easier and probably more reliable (in the sense that they are easier to control) if
we use a centralized approach, or at least some centrally controlled hierarchy of
servers. However, we will not follow this latter approach in the current state of
RMrun and we stick to the simpler approach of having a single Central Server.

Communication between client peers and Central Server uses Java Remote
Method Invocation [9] (RMI). When peers enter the network, they have to au-
thenticate in the central server. Then, at any point in time, if the user wants
to share an application, he or she has to register this application in the Central
Server. On the other hand, to know which applications exist in the community,
clients periodically pool the Central Server to request that information. As soon
as any peer finds out about the new available application it can start using it.
One issue that we can discuss here regards the best architecture to inform peers
about available applications. While pooling may have some scalability problems,
using something like a callback interface in the client peers was not considered for
the time being, because peers can sit behind network address translation schemes
(NATs) or firewalls (as we discuss in Section 5). Also, this would only work for
small networks with few users and applications, as we cannot afford to block the
Central Server for the time it is sending notifications to applications and then wait-



fs 
Directory

fs 
Directory

Host PeerClient Peer

i
iii

ii

SSH Tunnel initiated from the Client

Figure 2. Interaction between local and remote fs directories

ing for confirmations. A possibility here is to use publish-subscribe [6] techniques,
like the one-way CORBA invocation [5], for instance.

As we wrote before, one of the most fundamental characteristics of RMrun is
that it allows users to enter in each other’s machines without needing a password
for each machine. To do this we use a special user account. The scripts that install
RMrun create a special user, named bic10. All SSH connections use this account.
In the target bic account we create a directory called fs that serves as the remote
repository for the files needed by the client peer. In the current state of RMrun,
all the local files that reside in directory fs are copied to the same directory in
the remote bic account. Our system takes care of updating the local contents as
we describe ahead.

3.3 Connection of Peers

When a user wants to run a remote application, RMrun client peer will request
information of the host peer location from the Central Server. In response it gets
the IP address of the host peer. It is important to notice that the client peer does
not have any control on where is it going to run the application, as only the Central
Server is responsible for such decision.

During connection, peers must go through three phases: i) upload the local
directory to the remote machine (RMput); ii) run the application (RMrun) and iii)
periodically download the directory (RMget). Before the RMput phase initiation,
the Central Server must put the client public key in the host peer. In the RMput
phase, files that are in the local directory used by the application are copied to
the host peer using the Secure Copy11 (SCP) utility. This enables manipulation of
these files by the remote application, during the RMrun phase. In the transition
from RMput to RMrun phases, we must add the application name to the client
public key header. This ensures that any connection using the Secure Shell [13]
(SSH) protocol will only allow execution of the application specified in the header.
All interaction during RMrun phase takes place using the SSH and the X Window
System Protocol [12] forwarded through the SSH connection (shown in Figure 2).
We still need a third phase, the RMget. Has before, to initiate this phase, the key
must be changed to a simple client public key. The RMget phase allows to retrieve
the files back to the client’s local directory. This is made on a periodical basis
until the connection is broken or when the application is closed. This interaction
10 This name derives from the name of the scholarship that supports researchers involved

in this project: “Bolsa de Iniciação Cient́ıfica”.
11 http://support.real-time.com/linux/web/scp.html



is illustrated in Figure 2. One thing to notice is that although the communication
is made over secure channels, no clear text passwords are ever sent.

Currently during the several stages of tunnel establishment and file system
copy back and forth, we change the client public key header to ensure that only
the command to be executed can, in fact, be run, thus avoiding malicious code or
instruction execution even by third parties.

3.4 Resource accounting in RMrun GRID

One part of RMrun that remains to be done and that is of utmost importance is the
accounting mechanism. Accounting will keep track of all the resources used by each
peer in the system. To do this, the client peer has to pay some “virtual credits”
to the host peer in order to run programs there. To simplify the management
of this system, it is up to the Central Server to transfer credits from one peer
to the other (in fact, this operation never leaves the Central Server as all the
information is kept there). In a first approach, we will use a simple taxation based
on time of use, but we believe that the use of a credit-based system, enables the
use of arbitrarily complex markets (e.g. [1]) that can fully exploit all the resources
available in the RMrun community. With a successful market, we should not need
to run a scheduler to order accesses to available resources, as the adjustment
of prices should take care of that. Payment for each job submission, together
with some standard tools that force user intervention at registration time (e.g.,
identification of letters in a drawing) should also reduce the level of threat coming
from mischievous users trying to make the system unusable. For instance, anyone
willing to carry a denial of service attack would first need to subscribe a very large
number of users in the system. And to be successful it would first need to serve
the RMrun community for some time (to get payment credits).

4 Security

We are aware that our system raises significant security problems. However, most
if not all of these problems have been studied before and therefore, we can use
or adapt some existing solutions to our own architecture. Basically, RMrun can
cause security problems both to the client that will write contents sent by the host
peer, but also to the host peer itself, as it will be under control of the client.

4.1 Hosted Application Certification

The clients only execute whatever each host deploys as available, but due to the
universe of open source applications in existence, there is no easy way of checking
or asserting the reliability of a particular binary object about to be run. Even
by an MD5 check schema, the same application on different environments would
lead to different, yet valid, results. Verifying hosted applications would lead to an
immense overhead involving candidate binary objects submissions, denying use of
dynamic linked libraries, building a huge database for each of these specifications



and corresponding operating systems flavours. Another completely different ap-
proach would be to give reputation scores to peers. To minimize the danger of
running uncontrolled software, we limit the actions of such (remote) software to
the (local) fs directory.

4.2 Running Untrusted Applications in the Host Peer

Although the host peer can limit what the client can run, behavior of some ap-
plications can be basically unknown, which means that we cannot trust them. A
usual way to solve this problem is to use sandboxes, such as Xen [3] (as in Our-
Grid), jails or chroot. Unfortunately, none of these sandboxes fits our needs, as we
do not want to install a second operating system in user’s machines and we need
to let users access relatively arbitrary positions in the file system to run binaries
or code inside shared libraries. This problem was studied before. For instance,
in [10], Peterson defines a sandbox system call for Linux. In our work, we intend
to follow these steps, as we think that this is the level at which we need to protect
the system.

4.3 Communication

Another sort of problem concerns the existence of eavesdroppers in the system
that might be listening to some part of the communication that is ongoing in clear
text as it is the case of RMI. To overcome this problem, we can use RMI over SSH
communications using, for instance, RMISSH12.

5 Open Issues and Roadmap

5.1 Implementation Issues

In this Section, we review some implementation problems of our architecture and
we point out some possible solutions that we are considering to take in the near
future. In first place, in this version of RMrun, we were forced to do periodic
downloads of the remote fs directory, because we were unable to use “libfuse”13.
Our first option was to use libfuse to map the local fs directory in the remote bic
account, such that all the utilization of this directory would be in fact automat-
ically done in the local, client peer, instead of the remote host peer (although it
seemed as an operation on the local file system to the remote running application).
However, libfuse is not available in operating systems like Mac OS XTM and it re-
quires installation of kernel modules in Linux, something that we want to avoid.
Despite the fact that we are considering some improvements to the fs directory
scheme in the bic account, this problem remains largely unsolved, because we are
not considering to re-implement or port libfuse.

Another problem that we still need to solve is the well-known problem of reach-
ing peers sitting behind Network Address Translation (NAT) schemes or Firewalls
12 http://docs.huihoo.com/proactive/3.2.1/SSHTunneling.html
13 http://fuse.sourceforge.net/



fs 
Directory

fs 
Directory

Host PeerClient Peer

SSH Tunnel initiated from the Client

Super Peer

SSH Tunnel initiated from the Host

Figure 3. Overview of RMrun with super-peers

(see for instance [11]). In this case, communication between them must occur
through an intermediate node with connectivity from outside. We intend to use
an intermediate node with a public IP address and high capacity to serve as a
tunnel to enable communication between isolated nodes. Both, the client peer and
the host peer can use this scheme to traverse firewalls and NAT schemes. At the
present time, we are implementing a scheme that uses SSH remote port forwarding
to establish a tunnel to the host peer. This situation is illustrated in Figure 3.

The existence of multiple types of operating systems also raises a problem that
limits the construction of this architecture, as some of these usually do not have
any installation of the SSH protocol (e.g., Microsoft WindowsTM). To run RMrun
even as a client in a Microsoft WindowsTM machine we need to use an OpenSSH14

software provided either by the X Windows package or by a separate one. To
overcome this problem, we intend to resort to a solution that directly supports
OpenSSH in the Java Technology libraries. In this way we surpass the inconvenient
of having to install a possible add-on package for that sole purpose, with all the
overheads that come with this. Additionally, we also discard the need to use system
calls to provide the secure tunnelling operations. A library like SSHTools15 will
give OpenSSH encryption functions and operational security within RMrun itself,
ensuring more modularity to the code, more Operating System independence and
push even further away the chances of users accidentally changing private or public
keys rendering the current application session useless. Even a system administrator
could only stop RMrun from running, but could not tamper its generated keys or
commands. Both the client, host and super-peer bic accounts will no longer need
OpenSSH keys to log into the the peers. The user bic account will no longer
need execution privileges nor initialization files, as it will serve for storage and file
copying only.

14 http://www.openssh.com/
15 http://sourceforge.net/projects/sshtools



5.2 RMrun as a Volunteer Computing Platform

It is a well-know fact that some of the most powerful computing platforms on Earth
are formed by volunteers running projects based on the BOINC middleware [2]
(e.g., SETI@home, Rosetta@home, Climateprediction.net, among many others).
Other public and commercial volunteer computing platforms include XtremWeb [7]
or Google effort [8]. With RMrun we intend to reverse the usual approach of
Volunteer Computing. Instead of following a pull-based approach, as in BOINC or
XtremWeb, we want to let projects submit tasks on available resources. This means
that, while BOINC clients request tasks from the central supervisor whenever they
are free to compute new ones, we want to follow the reverse approach of letting the
server of a project submitting tasks in computers that are available. To some extent
this is similar to OurGrid [4]. However, we intend to follow a different approach: we
want to do sand-boxing inside the operating system as tasks should run as ordinary
RMrun remote processes. OurGrid uses the Xen virtual machine [3] and thus runs
an entire operating system. Another difference is that we want to go beyond the
tit-for-tat mechanism as we account resource usage in the Central Server. This
makes it possible for a popular project to receive donations from peers, thus being
allowed to run and, at the same time, it also enables a network of favors where A
lets B run a program, while B lets C and C lets A, in a cycle that can have any
length. In fact, since we use “virtual” credits, these can be used exactly as wished
by users in unpredicted ways.

6 Conclusions

In this paper we presented RMrun, which is a software that enables users to run
remote applications in machines where they do not have accounts. RMrun uses
standard protocols like SSH and X running in end user’s machines and is backed
by a dedicate central server for authentication, accounting and listing of available
applications. We foresee the use of RMrun either to run applications that do not
exist on the local machine (or operating system), but also to serve as the base for
volunteer computing.

While we have a running prototype of RMrun, we still have a long way to go,
before we can make our work publicly available. Although we still need to improve
some aspects of the architecture, we believe that the main issue we face is security.
As a consequence, our next steps will be devoted to work on sand-boxing solutions
capable of preventing or reducing the impact that unknown users can have when
they run untrusted applications.

Acknowledgements

This work was partially supported by Fundação para a Ciência e a Tecnologia
under the project GRID/GRI/81727/2006, “GRID para simulação e análise de
dados de ATLAS/LHC”.



References

1. David Abramson, Rajkumar Buyya, and Jonathan Giddy. A computational economy
for grid computing and its implementation in the nimrod-g resource broker. Future
Gener. Comput. Syst., 18(8):1061–1074, 2002.

2. Dave Anderson. BOINC: A system for public-resource computing and storage. In 5th
IEEE/ACM International Workshop on Grid Computing, Pittsburgh, USA, 2004.

3. Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization.
In SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating systems
principles, pages 164–177, New York, NY, USA, 2003. ACM Press.

4. Walfredo Cirne, Francisco Brasileiro, Nazareno Andrade, Lauro Costa, Alisson An-
drade, Reynaldo Novaes, and Miranda Mowbray. Labs of the world, unite!!! Journal
of Grid Computing, 4(3):225–246, 2006.

5. The common object request broker: Core specification, 2002.
6. Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec.

The many faces of publish/subscribe. ACM Comput. Surv., 35(2):114–131, 2003.
7. Gilles Fedak, C. Germain, V. Neri, and Franck Cappello. Xtremweb: A generic global

computing system. In 1st Int’l Symposium on Cluster Computing and the Grid (CC-
GRID’01), pages 582–587, Brisbane, 2001.

8. The google compute project.
9. JavaTM remote method invocation specification, 2004. Revision 1.10, JavaTM 2 SDK,

Standard Edition, v1.5.0.
10. David S. Peterson. A flexible containment mechanism for executing untrusted code.

Master’s thesis, University of California, Davis, 2003.
11. J. Rosenberg, J. Weinberger, and C. Huitema. Stun - simple traversal of user data-

gram protocol (udp) through network address translators (nats). Request for Com-
ments 3489, March 2003.

12. Robert W. Scheifler. X window system protocol, version 11: Alpha update. Request
for Comments 1013, April 1987.

13. T. Ylonen and C. Lonvick. The secure shell (ssh) protocol architecture. Request for
Comments 4251, January 2006.


