
IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 1

Progressive Parametric Query Optimization
Pedro Bizarro, Nicolas Bruno and David J. DeWitt

Abstract— Commercial applications usually rely on pre-compiled parameterized procedures to interact with a database.

Unfortunately, executing a procedure with a set of parameters different from those used at compilation time may be arbitrarily

sub-optimal. Parametric query optimization (PQO) attempts to solve this problem by exhaustively determining the optimal plans

at each point of the parameter space at compile time. However, PQO is likely not cost-effective if the query is executed

infrequently or if it is executed with values only within a subset of the parameter space. In this paper we propose instead to

progressively explore the parameter space and build a parametric plan during several executions of the same query. We

introduce algorithms that, as parametric plans are populated, are able to frequently bypass the optimizer but still execute

optimal or near-optimal plans.

Index Terms— Parametric Query Optimization, Adaptive Optimization, Selectivity Estimation.

—————————— � ——————————

1 INTRODUCTION

N many applications, the values of run-time parame-

ters of the system, data, or queries themselves are un-

known when queries are originally optimized. In these

scenarios there are typically two trivial alternatives to

deal with the optimization and execution of such parame-

terized queries. One approach, termed here Optimize-

Always, is to call the optimizer and generate a new execu-

tion plan every time a new instance of the query is in-

voked. Another trivial approach, termed Optimize-Once, is

to optimize the query just once, with some set of parame-

ter values, and reuse the resulting physical plan for any

subsequent set of parameters. Both approaches have clear

disadvantages. Optimize-Always requires an optimiza-

tion call for each execution of a query instance. These

optimization calls may be a significant part of the total

query execution time, especially for simple queries. In

addition, Optimize-Always may limit the number of con-

current queries in the system, as the optimization process

itself may consume too much memory. On the other

hand, Optimize-Once returns a single plan that is used for

all points in the parameter space. The chosen plan may be

arbitrarily sub-optimal for parameter values different

from those for which the query was originally optimized.

1.1 Parametric Query Optimization

An alternative to Optimize-Always and Optimize-Once is

Parametric Query Optimization (PQO). At optimization

time, PQO determines a set of plans such that, for each

point in the parameter space, there is at least one plan in

the set that it is optimal. The regions of optimality of each

plan are also computed. Later, when an instance of the

query is submitted, PQO chooses the best pre-computed

plan for the query instance and executes it without mak-

ing a new optimization call. PQO proposals often assume

that the cost formulas of physical plans are linear or

piece-wise linear with respect to the cost parameters and

that the regions of optimality are connected and convex.

However, in reality, the cost functions of physical plans

and regions of optimality are not so well-behaved. A

more important problem results from the fact that PQO

has a much higher startup cost than optimizing a query a

single time (PQO usually requires several invocations of

the optimizer with different parameters [8, 9]). When a

previously unseen query arrives, it is therefore not clear

to determine whether PQO should be used: it may not be

cost-effective to solve the full PQO problem if the query is

not executed frequently or if it is repeatedly executed

with values covering a small sub-space of the entire pa-

rameter space. Most previous work (see Section 6) ignores

this dilemma and instead solves the full PQO problem,

potentially wasting more resources than necessary.

1.2 Contributions

In this paper, we propose an alternative approach to han-

dle parametric queries that addresses the shortcomings

described above. Our contributions are as follows:

- In Section 2 we propose Progressive Parametric

Query Optimization (PPQO), a novel framework to

improve the performance of processing paramete-

rized queries. We also propose the Parametric Plan

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————

• Pedro Bizarro is with the CISUC/DEI, University of Coimbra, DEI – Polo 2,

3030-290 Coimbra, Portugal. E-mail: bizarro@dei.uc.pt
• Nicolas Bruno is with Microsoft Research, One Microsoft Way, Redmond,

WA 98052. E-mail: nicolasb@microsoft.com
• David J. DeWitt is with the University of Wisconsin – Madison, 1210 W

Dayton Str, Madison, WI 53706 E-mail: dewitt@cs.wisc.edu

Manuscript received (insert date of submission if desired).

I

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

interface as a way to incorporate PPQO in DBMS.

- In Sections 3 and 4 we propose two implementa-

tions of PPQO with different goals. On one hand,

Bounded has proven optimality guarantees. On the

other hand, Ellipse results in higher hit rates and

better scalability.

- Finally, in Section 5 we present an extensive per-

formance evaluation of PPQO using a prototype

implementation on Microsoft SQL Server 2005.

2 PROGRESSIVE PARAMETRIC QUERY

OPTIMIZATION

The main idea of Progressive Parametric Query Optimiza-

tion, or PPQO for short, is to incrementally solve (or ap-

proximate) the solution to the PQO problem as successive

query execution calls are submitted to the DBMS. Fig 1

shows a high-level architecture of our approach. Given a

query and its parameter values, a traditional optimizer

returns the optimal execution plan along with its esti-

mated cost (� and � in the figure). In contrast, a PPQO-

enabled optimizer introduces a data structure called Pa-

rametric Plan (PP), which incrementally maintains plans

and optimality regions, allowing us to reuse work across

optimizations. As the Parametric Plan data structure be-

comes populated, it is possible to completely bypass the

optimization process without hurting the quality of the

resulting execution plans.

Fig 1 – Using Parametric Plans to process a query.

When a new instance of a parametric query arrives (� in

Fig 1), PPQO tries to obtain an optimal (or near-optimal)

plan by consulting the parametric plan data structure. If it

is successful, it returns such plan and a full optimization

call is avoided (� in Fig 1). Otherwise, it makes an opti-

mization call (� in Fig 1) and both the resulting optimal

plan and cost are added to the parametric plan for future

use (� in Fig 1). Due to the size of the parameter space,

parametric plans should not be implemented as exact

lookup caches of plans because there would be too many

“cache misses”. Also, due to the non-linear and disconti-

nuous nature of cost functions, parametric plans should

not be implemented as nearest neighbor lookup struc-

tures as there will be no guarantee that the optimal plan

of the nearest neighbor is optimal or close to optimal for

the point in the parameter space being considered [3, 16].

We now describe the PPQO problem in more detail, bor-

rowing notation and definitions from the classic parame-

tric optimization problem.

2.1 Definitions and Preliminaries

A parametric query Q is a text representation of a relational

query with placeholders for m parameters vpt = (v1, …,

vm). Vector vpt is called a ValuePoint. Examples of parame-

ter values are system parameters (e.g., available memory)

and query-dependant parameters (e.g., constants in pa-

rametric predicates). In the rest of the paper we focus on

query-dependant parameters since they cover the most

common scenarios. We note, however, that our tech-

niques can also be adapted to other kinds of parameters.

Using vpt directly to model the parameter space and

characterize regions of optimality for plans is in general

difficult (see below for an example). To address this prob-

lem, we use a transformation function φ, which is opti-

mizer-specific and transforms ValuePoints into what we

call CostPoints. A CostPoint is a vector cpt = (c1, …, cn)

where each ci is a cost parameter with an ordered domain.

A well-known implementation of φ, which we justify

below and use in the rest of the paper, is transforming

parametric predicate values into the corresponding predi-

cate selectivities. For instance, consider predicate age<X,

with parameter X. Function φ would then map a specif-

ic constant c for X into the selectivity of the non-

parametric predicate age<c.

Let p be some execution plan that evaluates query Q

for a given vpt. The cost function of p, denoted p(cpt),

takes a CostPoint cpt as an input and returns the cost of

evaluating plan p under cpt. For every legal value of the

parameters, there is some plan that is optimal. Given a

parametric query Q, the maximum parametric set of plans

(MPSP) is the set of plans, each of which is optimal for

some point in the n-dimensional cost-based parameter

space. The region of optimality for plan p, denoted r(p), is

defined as:

r(p) = {(t1, …, tn) | p is optimal at (c1=t1, …, cn=tn)}

Finally, a parametric optimal set of plans (POSP) is a mi-

nimal subset of MPSP that includes at least one optimal

plan for each point in the parameter space.

 Query output

Executor

Optimal plan

addPlan

Parametric Plan

(Near-)optimal plan

no

�

�

�

�

Optimizer

�

yes

getPlan?

�
Query/Parameters Query/Parameters

Optimal plan

AUTHOR ET AL.: TITLE 3

Having introduced this basic terminology, we next jus-

tify the need for the transformation function φ, and then

define the PPQO framework in detail.

2.2 The Parameter Transformation Function φ

Recall that a value parameter refers to an input value of

the parametric SQL query to execute. On the other hand,

a cost parameter is an input parameter in the formulas

used by the optimizer to estimate the cost of a query plan.

Cost parameters are estimated during query optimization

from value parameters and from information in the data-

base catalog. (Physical characteristics that affect the cost

of plans but do not depend on query parameters, such as

the average tuple size or the cost of a random I/O are

considered physical constants instead of cost parameters.)

A crucial cost parameter that is used during optimiza-

tion is the estimated number of tuples in (intermediate)

relations processed by the query plan: most query plans

have cost formulas that are monotonic in the number of

tuples processed by the query. On the other hand, there is

no obvious relationship between the value parameters

and the cost of the query plans. Thus, it becomes much

easier to characterize the regions of optimality using a

cost-based parameter space than using a value-based

parameter space. In Example 1, below, and in what fol-

lows, we use a cost-based parameter space whose dimen-

sions are predicate selectivities. (Note that the estimated

number of tuples of each relation processed by a query is

typically derived from selectivities of sub-expressions

computed during query optimization.)

Fig 2 – Age distribution in table FRESHMEN

Example 1: Table FRESHMEN(NAME, AGE) succinctly describes

1st-year graduate students. The age distribution of stu-

dents is showed in Fig 2. Consider queries of the form:
 SELECT *

 FROM FRESHMEN

 WHERE AGE=X OR AGE=Y

Assume that the optimal plan for queries that retrieve less

than 5% of FRESHMEN tuples is PIDX, a plan using an index

on column AGE. For all other queries, the optimal plan is

PFS, a full-table scan on FRESHMEN. The parameters of this

query can be represented as the absolute values used for

parameters X and Y or as the selectivities of predicate

age=X and predicate age=Y. Accordingly, the costs of

physical PIDX and PFS can be represented in value-based

parameter spaces, shown in Figure 3, or in selectivity-

based (also referred to as cost-based) parameter spaces,

shown in Figure 4. Clearly, the selectivity-based represen-

tation results in a much more manageable parameter

space than the (seemingly chaotic) value-based represen-

tation. The reason is that selectivity-based representations

are better aligned to the optimizer cost model, tend to be

represented by monotonic cost functions, and therefore

the regions of optimality of plans tend to cluster together.

Fig 3 – Value-based parameter space

Fig 4 – Selectivity-based parameter space

In the rest of this paper, we assume that function φ takes

query Q and its SQL parameters, vpt, and returns cpt as a

vector of selectivities. Computing the selectivities in cpt

corresponds to the task of selectivity estimation, a sub-

routine inside of query optimization. Other components

of query optimization –e.g., plan enumeration, rule trans-

formation and costing– need not be part of the implemen-

tation of function φ. In general, computing selectivity

values from actual values is done by manipulating in-

memory histograms, which is very efficient, and a neglig-

ible fraction of the full query optimization task.

We note that the arity of the value-based parameter space

and that of the selectivity-based parameter space are not

necessarily the same. On one hand, it is possible to have

predicates of the form age>X and age<Y, where two

2% 3%

35%

16%

4%
1%

4%

10%

20%

4%
1%

0%

10%

20%

30%

40%

20 21 22 23 24 25 26 27 28 29 30
Age

% of students
1%

2%
4%

4%
16% 35%

1%

3%

4%
20%

Selectivity

of age=Y

Selectivity

of age=X

20
22

24
26

28
30

20

23

26

29

Values of X

PIDX is optimal

PFS is optimal

PIDX is optimal

Values of Y

PFS is optimal

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

value predicates are collapsed into a single selectivity

value for the combined predicate. Similarly, a query that

contains a predicate of the form R.age<X and also a join

between tables R and S might require two selectivity pa-

rameters to capture the optimizer’s cost model: one for

the selectivity of the predicate on the base table, and

another for the selectivity of the predicate on the join. In

our prototype and experimental evaluation, we use a

simple one-to-one mapping between parametric predi-

cates and selectivity values (i.e., we do not consider join

predicates nor combine atomic predicates over the same

column). The reasons behind our choice are (i) this is the

mapping used in previous work on parametric optimiza-

tion, (ii) it can be implemented without deep knowledge

about the underlying query optimizer, and (iii) our expe-

riments show that this simple model is very competitive.

2.3 The Parametric Plan Interface

We now give an operational description of the Parametric

Plan (PP) component of PPQO by describing its two main

operations (also see Figure 1):

- addPlan(Q, cpt, p, c): registers that plan p, with esti-

mated cost c, is optimal for query Q at CostPoint cpt.

- getPlan(Q, cpt) – returns the plan that should be

used for query Q and cost values cpt, or returns null

if no plan is considered good enough for Q.

function processQuery (

 inputs: Query Q, ValuePoint vpt

 input/output: ParametricPlan pp)

01 CostPoint cpt ← φ(Q, vpt); // ValuePoint to CostPoint

02 Plan p ← pp.getPlan(Q, cpt); // what plan to use?

03 if (p == NULL)

04 Cost cost; // cost is output param below

05 p ← optimize(Q, vpt, cost);// finds optimal plan & cost

06 pp.addPlan(Q, cpt, p, cost);// stores plan & cost in pp

07 execute(p);

Fig 5 – Using Parametric Plans

Implementations of the PP interface are used during

query processing as shown in Figure 1 and in the pseudo-

code in Figure 5. When parametric query parameter in-

stances are required to execute, the DBMS calls the para-

metric plan’s getPlan method. If getPlan returns plan p1,

then p1 is used for execution and an optimization call is

avoided. If getPlan returns null (we call this situation a

getPlan miss), then the optimizer is called and a potentially

new plan, p2, is obtained from the optimizer. Plan p2 is then

executed. The parameter values, plan p2 and its cost are

then added to the Parametric Plan using addPlan.

Optimize-Always implements PP

 addPlan(inputs: Query Q, CostPoint cpt,

 Plan p, Cost cost)

 return; // does nothing

 getPlan(inputs: Query Q, CostPoint cpt;

 outputs: Plan p)

 return null;

Fig 6 – Optimize-Always implementation

As we show in sections 3 and 4, the PP interface can be

used to implement various PPQO policies. However, it

can also implement simple policies like Optimize-Always

and Optimize-Once. Fig 6 shows the Optimize-Always im-

plementation of the PP interface, in which addPlan is emp-

ty and getPlan always returns null, forcing an optimiza-

tion for every query. Fig 7 shows the Optimize-Once im-

plementation of the PP interface, in which addPlan saves

the first plan it is given as input and getPlan returns such

plan in all subsequent calls.

Optimize-Once implements PP

 private Plan p = null;

 addPlan(inputs: Query Q, CostPoint cpt,

 Plan plan, Cost cost)

 if (p == null) p = plan; // saves first plan

 getPlan(inputs: Query Q, Cost-Point cpt;

 outputs: Plan plan)

 return p; // returns first plan

Fig 7 – Optimize-Once implementation

2.4 Parametric Plans: Requirements and Goals

The main tradeoff in PPQO is to avoid as many optimiza-

tion calls as possible as long as we are willing to execute

sub-optimal -but close to optimal- plans (note that this

goal has also been proposed in [5] and [11] in the context

of classical PQO). Thus, PP implementations must obey

the Inference Requirement below.

Inference Requirement: After a number of addPlan calls,

there must be cases where getPlan returns a (near-) op-

timal plan p for query Q and parameter point cpt, even if

addPlan(Q, cpt, p, cost) was never called.

Given a sequence of execution requests of the same

query with potentially different input parameters, PPQO

has therefore two conflicting goals:

Goal 1: Minimize the number of optimization calls.

Goal 2: Execute plans with costs as close to the cost of

the optimal plan as possible.

Consider a trivial cache implementation of the PP in-

terface, which stores (Q, cpt) pairs as the lookup key and

(p, cost) as the inserted value. This implementation cannot

fulfill the inference requirement because it would return

AUTHOR ET AL.: TITLE 5

hits only for previously inserted (Q, cpt) pairs. In the next

sections we propose two PPQO implementations, each

giving priority to one of the above goals. Bounded-PPQO,

described in Section 3, gives priority to Goal 2. Ellipse-

PPQO, described in Section 4, gives priority to Goal 1.

3 THE BOUNDED-PPQO IMPLEMENTATION

We now describe the first of two proposed PPQO imple-

mentations, termed Bounded-PPQO or simply Bounded.

This implementation provides guarantees on the quality

of the plans returned by getPlan(Q, cpt), thus focusing on

Goal 2 of PPQO (see previous section). Either the re-

turned plan p is null (and an optimization call cannot be

avoided) or p has a cost guaranteed to be within a user-

specified bound of the cost of the optimal plan. Specifical-

ly, the cost of plan p returned by getNext is guaranteed to

be bounded by OptCost*M+A, where OptCost is the cost of

the optimal plan, and M≥1 and A≥0 are user-defined con-

stants. Both M and A can be used to specify different

bounds on sub-optimality and are generally application-

specific. (We report, however, the effects of varying pa-

rameters M and A in the Experimental Evaluation.)

The intuition for the Bounded-PPQO implementation is

as follows. Consider a parametric query with two para-

meters. If plans pi and pj are optimal in some CostPoints

cpti and cptj, which delimit a box as shown in the 2-

dimensional example of Fig 8, then we can provably

bound the cost of plan pj in all points within that box if

the cost functions are monotonic along all dimensions

(e.g., if the cost of the query increases whenever the selec-

tivity of any parameter increases). Specifically, the cost of

plan pj in the box will be between the cost of plan pi at cpti

and the cost of plan pj at cptj.

Fig 8 – Overview of Bounded-PPQO

3.1 Preliminaries

We now introduce some definitions required to describe

the Bounded PPQO implementation:

- Relationship equal (≡≡≡≡): Given cpt1=(c1,1, …, c1,n) and

cpt2=(c2,1, …, c2,n), cpt1 ≡ cpt2 iff ∀i c1,i=c2,i.

- Relationships below (�) and above (�): Given cpt1=(c1,1,

…, c1,n) and cpt2=(c2,1, …, c2,n), cpt1� cpt2 (cpt1 �cpt2) iff

∀i, c1,i≤c2,i (c1,i≥c2,i), and ∃i, c1,i≠c2,i. Note that both �

and � are transitive. That is, if cpt1� cpt2 (cpt1 �cpt2)

and cpt2� cpt3 (cpt2 �cpt3) then cpt1� cpt3 (cpt1 �cpt3).

- Opt(cpt): It is the cost of an optimal plan at cpt.

- Triples ti=(cpti, plani, costi) and tj=(cptj, planj, costj) are

a bounding pair if plan plani (planj) is an optimal plan

at cpti (cptj) with cost costi (costj), cpti � cptj and pla-

ni(cpti)≤ planj(cptj)≤ plani(cpti)*M+A, where M and A

are, respectively, any user-defined multiplicative

and additive factors, with M≥1 and A≥0. The pair (ti,

tj) is also said to bound cpt, if cpti � cpt � cptj .

We additionally rely on the intuitive Monotonic Assump-

tion (or MA), stated as follows: given plan p and Cost-

Points cpt1 and cpt2, if cpt1 ���� cpt2 then p(cpt1)≤p(cpt2).1

3.2 Implementation of AddPlan for Bounded

Function addPlan(Q, cpt, p, cost), shown in Fig 9, associates

with each parametric query Q a list TQ of triples (cpt, p,

cost) ordered by cost, where p is an optimal plan at cpt

with an estimated execution cost (at cpt), of cost=p(cpt).

addPlan (inputs: Query Q, CostPoint cpt,

 Plan p, Cost cost) {

 01 List TQ ← getList(Q); // Gets the list of triples for Q

 02 if (TQ ==null)

 03 TQ = new List(); // If no list, create one

 04 TQ.insert(cpt, p, cost); // Inserts triple in cost order

 05 setList(Q, TQ);} // adds/replaces TQ into catalog

Fig 9 – Bounded’s addPlan Implementation

3.3 Implementation of GetPlan for Bounded

For user-defined constants M≥1 and A≥0, Bounded’s get-

Plan(Q, cpt) searches for a pair ti=(cpti, plani, costi) and

tj=(cptj, planj, costj) that bounds cpt (i.e., with costi≤ costj≤

costi*M+A and with cpti � cpt � cptj). If it finds no such

bounding pair, getPlan returns null. Otherwise, it returns

such plan (see Fig 10 for a high-level description).

getPlan(inputs: Query Q, Cost-Point cpt;

 outputs: Plan plan)

01 List TQ ← getList(Q); // gets list of triples for Q

02 for each (t1, t2) in TQ // look any pair of triples

03 if (t1.cost≤t2.cost≤t1.cost*M+A and

 t1.cpt � cpt � t2.cpt)

04 return t1.p;

05 return null;

1 All cost parameters we use are selectivities. Since higher selectivities imply more tuples to

process, the monotonic assumption follows the intuition that plans that process more tuples likely

cost more than plans that process less tuples. Although not true for all queries–e.g., queries using

SQL clause NOT EXISTS may have non-monotonic costs–plans with non-monotonic costs are less

common than plans with costs monotonic with the number of processed tuples.

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Fig 10 – Bounded’s getPlan Implementation

We next show that if getPlan returns plan p, it guaran-

tees under the Monotonic Assumption, that the cost of ex-

ecuting p at cpt satisfies Opt(cpt) ≤ p(cpt) ≤ Opt(cpt)*M+A.

We first show in Lemma 1 that if the Monotonic Assump-

tion holds for every plan considered, then the cost of the

optimal plan at any point (regardless of what the optimal

plan is at any single point) also increases monotonically

with the parameters.

Lemma 1: If cpt1� cpt2, cost1=p1(cpt1)=Opt(cpt1), and

cost2=p2(cpt2)=Opt (cpt2) then cost1 ≤ cost2.

Proof: We note that if p2 is optimal at cpt1, then

cost1=p2(cpt1). Otherwise, p2 is not optimal at cpt1, and

therefore cost1<p2(cpt1). In any case, we have that cost1≤

p2(cpt1), which, coupled with the monotonic assumption

and cpt1 � cpt2, it implies that p2(cpt1)≤ p2(cpt2)=cost2. Puting

the last two inequalities together, we obtain cost1≤cost2. ■

Lemma 2: If M≥1, costx≤costz≤costx*M+A, and

costx≤costy≤costz, then costy≤ costz≤costy*M+A.

Proof: Since M≥1 and costx≤costy, it follows that

costx*M+A≤costy*M+A. Also, since costx≤costz≤costx*M+A it

follows that costz≤costx*M+A ≤costy*M+A. Finally, since

costx≤costy≤costz it follows that costy≤costz≤ costy*M+A. ■

Finally, Theorem 1 establishes our desired result.

Theorem 1: If ti=(cpti, plani, costi) and tj=(cptj, planj, costj)

are a bounding pair for some M≥1 and A≥0, then, under

the Monotonic Assumption, the cost of planj can be tightly

bounded such that Opt(cpt)≤planj(cpt)≤Opt(cpt)*M+A, for

all cpt such that cpti � cpt � cptj.

Proof: By Lemma 1 and cpti � cpt � cptj it follows that

costi≤Opt(cpt)≤costj. Also, by Lemma 2, and costi

≤costj≤costi*M+A, we get Opt(cpt)≤ costj≤Opt(cpt)*M+A. ■

Example 2: For some query Q, assume that addPlan was

already called for the points (and associated triples)

showed in Fig 11 (i.e., assume that the parametric plan

stores information about the optimal plans and costs for

the triples in TQ=(t1, t2, t3, t4, t5, t6, t7)). Given cpt (showed

as a black circle) in the cost-based parameter space,

M=1.5, and A=0, which plan would getPlan(Q, cpt) return?

There are six pairs (cpti, cptj) such that cpti � cpt � cptj: (cpt1,

cpt5), (cpt1, cpt6), (cpt1, cpt7), (cpt3, cpt5), (cpt3, cpt6), and (cpt3,

cpt7). From those pairs, only two triples bound cpt: pair

(t3, t5), because c3≤c5≤c3*1.5+0⇔6≤8≤9, and pair (t3, t6),

because c3≤c6 ≤c3*1.5+0⇔6≤9≤9. Thus, either plan p5 and

plan p6 can be safely returned by getPlan. ■

3.4 Efficient Implementation of getPlan

The naïve implementation of getPlan in Fig 10 enumerates

all pairs of tuples (ti, tj) ∈TQ x TQ, ti≠tj that were intro-

duced by addPlan and tests if any pair bounds cpt. If some

pair (ti, tj) bounds cpt, then plan pj can be returned as the

answer to getPlan. The complexity of this procedure is

clearly quadratic in the size of TQ. To avoid the enumera-

tion of all of pairs of triples that have to be checked, we

apply an optimization that allows us to choose a single

pair of triples (t1, t2) to be checked.

Definition [���� (below) and ���� (above) operators]. Given a

list, TQ, of k triples (cpti, pi, costi) ordered by costi, with

i=0...k-1, where cpti is a CostPoint and costi represents the

cost of executing the optimal plan pi at cpti and given cpt,

another CostPoint we define the following operations:

1- TQ�cpt is the list of triples (cpti, pi, costi) from TQ,

ordered by costi, such that cpti � cpt.

2- TQ�cpt is the list of triples (cpti, pi, costi) from TQ

ordered by costi, such that cpti � cpt.

Example 3: Let TQ=(t1, t2, t3, t4, t5, t6, t7), be triples shown in

a 2-dimentional cost-based parameter space of Fig 11.

Then TQ�cpt=(t1, t3) (the triples in the light gray area) and

TQ�cpt=(t5, t6, t7) (the triples in the dark gray area). ■

Fig 11 – TQ=(t1, t2, t3, t4, t5, t6, t7)

As shown in Example 2 in the previous section, there is

potentially more than one solution to getPlan(Q, cpt). We

next show that, if there is a solution, we only need to

check if costlast≤costfirst≤costlast*M+A, where cfirst is the cost of

the first triple in TQ �cpt and clast is the cost of the last triple

in TQ� cpt. In such situation, then the plan in the first triple

of TQ�cpt, pfirst is returned. Theorem 2 proves the

correctness of this approach.

Theorem 2: If ∃cptb:tb=(cptb, pb, costb), tb∈TQ�cpt,

∃cpta:ta=(cpta, pa, costa), ta∈TQ�cpt, and costb ≤ costa ≤

costb*M+A, then costlast ≤ costfirst ≤ costlast*M+A, where costfirst

is the cost of the first triple in TQ�cpt and costlast is the cost

of the last triple in TQ�cpt.

t1=(cpt1, p1, c1=3)

cpt

t2=(cpt2, p2, c2=5)

t4=(cpt4, p4, c4=7) t5=(cpt5, p5, c5=8)

t6=(cpt6, p6, c6=9)

t3=(cpt3, p3, c3=6)

t7=(cpt7, p7, c7=13)

Cost parameter 2

Cost parameter 1

AUTHOR ET AL.: TITLE 7

Proof: By definition, the CostPoint of any triple that

belongs to the below list is below the CostPoint of any

triple that belongs to the above list. Formally,

∀cptb:tb=(cptb, pb, costb) ∈ TQ�cpt, ∀cpta:ta=(cpta, pa, costba)∈

TQ�cpt we have that cptb � cpt � cpta. Then, by Lemma 1 we

have that costb≤costlast≤Opt(cpt)≤costfirst≤costa. By

costb≤costa≤costb*M+A and Lemma 2, it follows that costlast≤

costa≤costlast*M+A. Also, if costx≤ costz≤costx*M+A and

costx≤costy≤costz, then costx≤ costy≤costx*M+A. Putting all

together, it follows that costlast≤costfirst≤costlast*M+A. ■

The optimized implementation of getPlan is shown in Fig

12. We can see that given the properties of TQ�cpt and

TQ�cpt, it is possible to select a single triple t1 from TQ�cpt

and a single triple, t2 from TQ�cpt such that only pair (t1,

t2) needs to be checked. Note that the implementation of

getPlan in Fig 12 makes at most a single pass over TQ;

thus, it has O(|TQ|) time complexity, where |TQ| is the

number of elements in TQ. (Note that the search condition

depends on multiple attribute values –the cost

parameters- and therefore more sophisticated search

procedures such as binary search are not applicable)

Before addPlan is called the first time, any getPlan call

returns null. As new triples are added, the hit rate of

getPlan is expected to increase. Intuitively, as more triples

are added, the more likely it is that getPlan returns a plan

because it is more likely that any two triples fulfill the

requirements of Theorem 2. Note also that the lower the

values of M and A, the less likely it is to find pairs of

triples that fulfill the requirements of Theorem 2, and

thus, more added triples are needed to obtain higher hit

rates.

getPlan(inputs: Query Q, Cost-Point cpt;

 outputs: Plan plan)

01 List TQ ←getList(Q); // gets list of triples for Q

02 if (TQ ==null) return null;

03 Triple last=null; // last triple of TQ�cpt

04 for Triple t in TQ // in cost order

05 if (t.cpt ≡≡≡≡ cpt) return t.p; // exact match

06 else if (t.cpt � cpt) // keep track of last triple of TQ�cp

07 last = t;

08 if (t.cpt � cpt) // first triple of TQ�cpt

09 if (last == null) return null;

10 if (last.c ≤ t.c ≤ last.c*M+A)

11 return t.p;

Fig 12 – Bounded’s getPlan Implementation

4 THE ELLIPSE-PPQO IMPLEMENTATION

Bounded’s getPlan provides strong guarantees on the cost

of plans returned. However, we expect low hit rates of

Bounded’s getPlan for small values of M and A, or before

Bounded’s TQ has been populated. In this section we

propose the Ellipse-PPQO (or simply Ellipse)

implementation of the PP interface, designed to address

Goal 1 of Section 2.2 (i.e., having high hit rates). For that

purpose, Ellipse’s getPlan returns ∆-acceptable plans rather

than guaranteed near-optimal costs.

Definition [∆∆∆∆-Acceptable Plans]: For ∆∈[0, 1], if plan p is

known to be optimal at points cpt1 and cpt2 in the cost-

based parameter space, then plan p is ∆-acceptable at

point cpt in the cost-based parameter space if and only if:

�|���1 − ���2|�

�|��� − ���1|� + �|��� − ���2|�
≥ ∆

where �|� − q|� is the Euclidian distance between p and q.

It follows from the definition of ∆-acceptable that if p is

optimal at cpt1 and cpt2, then p is 1-acceptable only on

points between cpt1 and cpt2 and p is 0-acceptable at all

points. Note that in a 2-dimentional space, the area where

p is ∆-acceptable is equivalent to the definition of an

ellipse; if p is optimal for cpt1 and cpt2, then p is ∆-

acceptable at cpt if cpt is on or inside an ellipse of foci cpt1

and cpt2 such that the distance between the foci, ||���1 −
���2||, over the sum of the distances between cpt and the
foci, ||��� − ���1|| + ||��� − ���2||, is at least ∆. Fig 13
shows the areas where p is 0.5-acceptable, 0.8-acceptable,

and 1-acceptable if p is optimal at cpt1 and cpt2.

Fig 13 - Areas where p is ∆∆∆∆-acceptable

Ellipse-PPQO encodes the heuristic that if a plan p is

optimal in two points cpt1 and cpt2, then p is likely to be

optimal or near-optimal in a convex region that encloses

cpt1 and cpt2. Note that a nearest-neighbor algorithm

could be used as an alternative to Ellipse-PPQO.

However, since regions of optimality are frequently long

and narrow [16], for any given cpt point, the closest

known plan could very well be from another region of

optimality (which we verified in practice). In addition, ∆-

acceptable areas can easily encode both small and large

regions of optimality.

4.1 Implementation of addPlan for Ellipse

The implementation of addPlan for Ellipse proceeds as

follows. For each query Q and for each plan p that is

optimal in some point of the parameter space, Ellipse’s

0.8-acceptable

cpt1 cpt2

1-acceptable

p is optimal at

these points

0.5-acceptable

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

addPlan(Q, cpt, p, cost) essentially maintains a list of (cpt,

cost) pairs where p is optimal for Q (see Fig 14).

addPlan(inputs: Query Q, CostPoint cpt,

 Plan p, Cost cost)

01 PointList L ← getPointList(Q, p);// where is p optimal?

02 if (L==null) // if no PointsList

03 L = new PointList(); // create new one

04 PlanList P ← getPlanList(Q); // optimal plans for Q

05 if (P==null)P=new PlanList(p);

06 else P.insert(p); // add new optimal plan to list

07 setPlanList(Q, P); // adds/replaces list P in catalog

08 L.insert(cpt, cost); // adds information about p.

09 setPointList(Q, p, L) // adds/replaces list L in catalog

Fig 14 – Ellipse’s addPlan Implementation

4.2 Implementation of getPlan for Ellipse

Ellipse’s getPlan (see Fig 15) consists in the following. For

each optimal plan p, it iterates over pairs of points where

p is optimal for the given query, Q. For each pair of points

(cpt1, cpt2), it tests if p is ∆-acceptable at the given point

cpt. If it is, getPlan returns p, otherwise getPlan keeps

trying other points and plans. If all pairs of plans for Q

are exhausted without an ∆-acceptable plan being found,

getPlan returns null. Note that we return the first ∆-

acceptable plan and therefore getPlan depends on the

order on which points are enumerated. Instead of

returning the first match, we can consider all ∆-acceptable

plans and return the one with the largest distance from ∆,

which might improve the quality of the resulting plans at

the cost of a slower implementation of getPlan.

getPlan(inputs: Query Q, Cost-Point cpt;

 outputs: Plan plan) {

01 PlanList P ←getPlanList(Q); // gets optimal plans

02 if (P ==null) // tests for empty list

03 return null;

04 for Plan plan in P

05 PointList L ← getPointList(Q, plan);

06 for PointPair (cpt1, cpt2) in L // enums point pairs

07 if (∆ <= dist(cpt1, cpt2) /

 (dist(cpt, cpt1) + dist(cpt, cpt2)))

08 return plan; // found ∆-acceptable plan

09 return null;

Fig 15 – Ellipse’s getPlan Implementation

5 EXPERIMENTAL EVALUATION

In this section we report an experimental evaluation of

PPQO using Microsoft SQL Server 2005. The client

application implements the pseudo-code described in

sections 3 and 4 , and Microsoft SQL Server is used to

obtain estimated optimal plans and estimated costs of

plans.

5.1 Dataset, Metrics, and Setup

The TPC-H benchmark [17] was used to evaluate the

PPQO implementations. Table 1 shows which tables are

joined by each query. The tables are lineitem (L), orders

(O), customer (C), supplier (S), part (P), partsupp (T),

nation (N), and region (R).

Table 1 – Description of TPC-H queries used

As in Reddy and Haritsa [16], and unless otherwise

noted, we added two extra selections to the TPC-H

queries to more easily explore the parameter space (see

Section 5.7 for experiments with more than two selection

predicates). The two selections are of the form coli≤vali,

i=1,2, where, for each query, coli is one of the two columns

shown in Table 1 and vali is a random value from the

domain of the column.

For each query tested, we generated 10,000 random

val1 and val2 values. (A (val1, val2) pair is a ValuePoint.) To

guarantee that random parameter values uniformly

explore the parameter space, we altered the values in the

columns subject to the extra selections to such that those

values are uniformly distributed in their domains instead

of using the non-uniform TPC-H generated distributions.

For each query and each ValuePoint vpt we make a

getPlan lookup call (see Fig 5), where PP is either

Optimize-Once, Optimize-Always, Bounded, or Ellipse. If

getPlan returns a plan we call it a hit and check if the plan

is optimal; if it is not optimal we check how its estimated

cost compares with the estimated optimal cost. These give

rise to the following metrics:

- HitRate: Fraction of getPlan calls that return a plan.

- OptRate: The percentage of plans that are optimal.

- SO: Measure of suboptimality: phit(cpt)/Opt(cpt), with

phit= getPlan(Q, cpt). SO≥1.

- AvgSO: The average of all SO values.

- MaxSO: The maximum of all SO values; reflects how

risky a PP implementation can be.

- Number of points: Number of (cpt, plan, cost) triples

stored in a ParametricPlan (i.e., number of misses).

- Number of plans: Number of distinct optimal plans.

- QP: Number of queries processed.

The experiments were run on a lightly loaded Pentium M

at 1.73GHz with 1GB of RAM and using TPC-H scale

Query Tables Joined Column 1 Column 2

7 LOCSNN c_acctbal o_totalprice

8 LOCPSNNR s_acctbal l_extendedprice

9 LOTPSN s_acctbal l_extendedprice

18 LLOC c_acctbal l_extendedprice

21 LLLOSN s_acctbal l_extendedprice

AUTHOR ET AL.: TITLE 9

factor 1. Indexes and statistics were built on all columns

subject to selections and on all primary and foreign key

columns. To estimate the cost of sub-optimal plans

returned by PPQO, each sub-optimal plan was forcibly

cost by SQL Server [13]. Unless otherwise stated,

Bounded used M=1.1 and A=0 and Ellipse used ∆=0.95.

5.2 Variation on HitRate and OptRate

The first experiment consisted in processing queries using

10,000 different random ValuePoints (value vectors) for

each query and observing how HitRate and OptRate

varied for Bounded and Ellipse. This experiment was

performed for the five TPC-H queries listed in Table 1

and the results for three are shown in Figures 16–18 .

Several trends can be observed:

- Ellipse always has a higher HitRate than Bounded;

- Except for Query 8 (more on this below), Bounded

always has a higher OptRate than Ellipse.

- HitRate converges quickly, but OptRate converges

slightly faster.

- HitRate monotonically increases as a function of QP

(more processed queries imply more misses and

each miss adds information to the ParametricPlan,

therefore increasing the likelihood of future hits).

- OptRate naturally varies up and down, as the initial

random (cpt, plan, cost) triples are added to the

ParametricPlan object, until it converges.

Fig 16 – HitRate and OptRate for Query 7

Fig 17 – HitRate and OptRate for Query 8

Fig 18 – HitRate and OptRate for Query 21

5.3 Number of Plans, of Points, Space, and Time

Fig 19 shows the number of plans and number of points

for the experiments of the previous section. Bounded has

a higher number of plans and number of points because it

has a lower HitRate; for every miss there will be a new

point stored in the ParametricPlan object.

Storing the number of plans and the number of points

took only between ~600Kbytes to ~1300Kbytes using the

original uncompressed XML plan representations

provided by SQL Server. Storing zip-compressed XML

plans instead would decrease the size of the plan

representation by a factor of 10. (Plans do not need to be

understood, zipped, or unzipped by addPlan or getPlan

functions.)

Fig 20 reports the time and space taken by the

Bounded and Ellipse approaches during optimization.

Time (in seconds) includes time elapsed during

optimization (if there is a miss), during addPlan, and

during getPlan, but not execution time nor time consumed

by function φ. For comparison purposes, the time taken

for Optimize-Once and Optimize-Always is also

included.

Fig 19 – Number of plans and points for 10,000 QP

After 10,000 queries have been processed, Optimize-

Always took between 5.2 and 13.6 times longer than

Bounded and between 10.7 and 18.5 times longer than

Ellipse. Thus, although Bounded only used between 7%

and 20% of the optimization time, it still returned plans

that were, as shown in section 5.4, on average just 1%

more costly then the optimal plan. Ellipse used between

5% and 9% of the optimization time and returned plans

that were 6% more costly than the optimal plan. Ellipse

was always faster than Bounded because it had less

0%

20%

40%

60%

80%

100%

0 2000 4000 6000 8000 10000

HitRate Bounded
HitRate Ellipse
OptRate Bounded
OptRate Ellipse

Queries Processed (QP)

0%

20%

40%

60%

80%

100%

0 2000 4000 6000 8000 10000

HitRate Bounded
HitRate Ellipse
OptRate Bounded
OptRate Ellipse

Queries Processed (QP)

0%

20%

40%

60%

80%

100%

0 2000 4000 6000 8000 10000

HitRate Bounded
HitRate Ellipse
OptRate Bounded
OptRate Ellipse

Queries Processed (QP)

#umber of plans

0

20

40

60

80

Q7 Q8 Q9 Q18 Q21

Bounded

Ellipse
#umber of points

0

1000

2000

3000

4000

Q7 Q8 Q9 Q18 Q21

Bounded

Ellipse

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

optimize and addPlan calls (due to higher HitRates) and

faster getPlan calls (because it has less information stored

in its parametric plans).

Fig 20 – Optimization time and space for 10,000 QP

Note that although Optimize-Once spends the least

optimization time, it is not the best overall approach (as

seen in Fig 24 below). In fact, the entire Parametric Query

Optimization research area aims to overcome the

performance problems of using Optimize-Once.

5.4 Quality of Returned Plans

The quality of the returned plans is described in this

section. The sub-optimality of each plan returned by

Bounded, Ellipse, and Optimize-Once was measured in

the same experiments of the previous two sections.

Figures 21–23 show the quality of the returned plans

(hits) for Bounded, Ellipse, and Optimize-Once in the

form of cumulative distributions. The X axis represents

how much the cost of a returned plan is above optimal,

and the Y axis represents the cumulative percentage of

plans that correspond to that sub-optimality level. For

example, about 77% of the plans returned by Bounded for

Query 7 are within 1% of the cost of optimal and 99.9%

are within 10% the cost of optimal. The quality of most

plans returned by Ellipse and Bounded is very good, and

the quality of the plans returned by Bounded is higher.

To complete the picture, Figure 24 shows the average

and maximum sub-optimality for the three policies and

five queries. While both Bounded and Ellipse have very

good average cases, Ellipse, can have as bad worse cases

as Optimize-Once (but less frequently). Overall,

Bounded’s most sub-optimal plan was 5 times worse than

the optimal plan, while the most sub-optimal plan chosen

by both Ellipse and Optimize-Once was 412 times more

costly than the optimal plan (MaxSO graph of Fig 24).

Fig 21 – Quality of returned plans (Q7)

Fig 22 – Quality of returned plans (Q9)

Fig 23 – Quality of returned plans (Q21)

An interesting observation is that although Bounded

(with M=1.1) is supposedly guaranteed to return plans no

more than 110% the cost of the optimal plan, in some

experiments that guarantee was violated. Indeed, for

queries 7, 8, 9, and 21, the most sub-optimal plan returned

by Bounded was, respectively, 155%, 499%, 172%, and

177% the cost of the corresponding optimal plan. Further

analysis showed that the problem lied with the tool that

forces plans and that obtains the estimated cost of those

plans. In some very rare cases, for a specific CostPoint cpt,

the tool returned a plan, say, p1 with cost c1 at cpt, as if it

was optimal, but some other plan, say, p2, had an

estimated cost c2 at cpt lower than c1. This lead to two

problems: 1) Bounded stored plans and costs in its data

structures that were not optimal; 2) the costs of the

(presumed) optimal plan appeared non-monotonic. Other

than those very rare occasions, Bounded guaranteed its

sub-optimality specifications. (Arguably, this issue

affected Ellipse less because the Ellipse implementation

does not rely on monotonic cost functions.)

Secs

(log scale)

0.1

1.0

10.0

100.0

1000.0

10000.0

Q7 Q9 Q21

OptAlways Bounded
Ellipse OptOnce KBytes

0

500

1000

1500

Q7 Q9 Q21

Bounded Ellipse

0%

20%

40%

60%

80%

100%

1% 10% 100% 1000%
% cost above optimal

Cumulative distribution of sub-optimalities

Bounded
Ellipse
OO

0%

20%

40%

60%

80%

100%

1% 10% 100% 1000%
%cost above optimal

Cumulative distribution of sub-optimalities

Bounded

Ellipse

OO

0%

20%

40%

60%

80%

100%

1% 10% 100% 1000%
% cost above optimal

Cumulative distribution of sub-optimalities

Bounded

Ellipse

OO

AUTHOR ET AL.: TITLE 11

Fig 24 – MaxSO and AvgSO

Another surprise was how well Optimize-Once did in the

AvgSO metric. On average, across all queries, Optimize-

Once returned plans with costs ~140% the cost of optimal

(the same average was ~101% for Bounded and ~106% for

Ellipse). One possible explanation is the following.

Optimize-Once obtains the optimal plan for the first of

the 10,000 random parameter values and reuses that plan

for all other values. If that first plan is also the plan with

less cost variation in the plan space, then there is a high

chance that that plan will do well in many other points in

the space. Consider Fig 25, which shows a conceptual

representation of the costs of four different plans, each

optimal in different regions of the parametric space.

Fig 25 – Typical costs of optimal plans

Executing either plan p3 or plan p4 for all points of the

parameter space would yield costs, on average, not much

higher than the cost of optimal. Coincidently, the

likelihood that any given point lies in the space where

either p3 or p4 are optimal is very high, and thus, by

random chance, Optimize-Once is likely to use a plan that

is not catastrophic. However, Optimize-Once can and will

return catastrophic plans eventually. We will explore this

issue further in Section 5.6 - Vary Query Order.

5.5 Vary Bounded’s M and Ellipse’s ∆

In this experiment the value M of Bounded was varied

from 1.1 to 3 for query 21. The values of OptRate and

HitRate are shown in Fig 26 and Fig 27. As expected, a

lower value for M (tighter optimality bound) results in a

higher OptRate (because returned plans cannot be much

worse than the corresponding optimal plans due to the

tight optimality bound M) but a lower HitRate (because

tight values of M result in small regions with quality

guarantees and therefore a larger number of calls do not

return any plan). Because the HitRate for M=1.5 is already

so close to 100% (Figure 27), increasing M to 3 barely

improves HitRate or change change OptRate much.

Alternatively, it could have resulted in a small change in

HitRate but a larger change in OptRate (as it does not

happen, there might be a correlation between HitRate and

OptRate in this scenario). The same query 21 with the

same random parameter values was run using Ellipse

while varying ∆ from 0.9 to 0.99 (see Figures 28 and 29).

As expected, a higher ∆ results in a higher OptRate but a

lower HitRate (the reasons are similar to those above).

Due to space constraints, we do not report experiments

varying Bounded’s A parameter. (Results, however, were

similar to the ones for M, i.e., larger values of A increase

HitRate and decrease OptRate).

Fig 26 – OptRate for Bounded, vary M, Q21

Fig 27 – HitRate for Bounded, vary M, Q21

Fig 28 – OptRate for Ellipse, vary ∆, Q21

Fig 29 – HitRate for Ellipse, vary ∆, Q21

5.6 Vary Query Order

This experiment assessed the impact of the order of the

incoming queries on the performance of the algorithms.

MaxSO

(log scale)

1

10

100

1000

Q7 Q8 Q9 Q18 Q21

Bounded
Ellipse
OptOnce

AvgSO

1

2

Q7 Q8 Q9 Q18 Q21

Bounded
Ellipse
OptOnce

M =1.1

M =1.5

M =3.0

0%

25%

50%

75%

100%

0 2000 4000 6000 8000 10000

Queries Processed

M=1.1
M=1.5
M=3.0

0%

25%

50%

75%

100%

0 2000 4000 6000 8000 10000

Queries Processed

0%

25%

50%

75%

100%

0 2000 4000 6000 8000 10000

Queries Processed

∆=.90

∆=.95

∆=.97

∆=.99

0%

25%

50%

75%

100%

0 2000 4000 6000 8000 10000

Queries Processed

∆=.99

∆=.97

∆=.95

∆=.90

Cost

1-dimensional parameter

space

p1 p2

p3

p4

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

The same 10,000 random values used for Query 21 were

used again, but the order in which those 10,000 queries

were processed was chosen randomly. Six random orders

were generated and processed with Bounded (M=1.1,

A=0), Ellipse (∆=0.9), and Optimize-Once.

The results are shown in Figures 30–33 and

summarized in Table 2. Note that in Figures 30–33 it is not

possible to tell apart which line is which. That is precisely

the point: except for Ellipse’s OptRate, query order

essentially had no effect on the values of HitRate or

OptRate.

Table 2 – Effects of Different Query Orders

Fig 30 – HitRate for Bounded, vary query order, Q21

Fig 31 – OptRate for Bounded, vary query order, Q21

Fig 32 – HitRate for Ellipse, vary query order, Q21

Fig 33 – OptRate for Ellipse, vary query order, Q21

Note that although query order had no impact in the

final values of Bounded’s OptRate, Bounded’s HitRate,

and Ellipse’s HitRate, query order did have a medium

impact on the final value of Ellipse’s OptRate.

On the other hand, for Optimize-Once, query order

had a very significant impact on OptRate, with final

values ranging from 3% to 48%. An interesting

observation is that the performance of Optimize-Once

was exactly the same for four out of those six random

orders. Further analysis showed that, although the very

first value of each of the six random orders were all

different, for four of them, the corresponding optimal

plan was the same. This follows the observation (Section

5.4, Fig 25, and [16]) that some plans have very large

optimality areas.

5.7 Vary Number of Dimensions

In all the experiments so far, the parameter space was 2-

dimensional. The next experiment varies the number of

dimensions, from 1 to 4. Query 8 is used (with extra

parametric selections as needed) because it was the one

with the highest number of plans and thus, more likely to

suffer from the “curse of dimensionality”: an exponential

growth of complexity with a linear increase in the

number of dimensions. The query was then run for 10,000

random values for Bounded (M=1.1, A=0) and Ellipse

(∆=0.95). The results, showed in Figures 34-37 are

summarized in Table 3.

Fig 34 – Vary dimensions, HitRate for Bounded, Q8

Fig 35 – Vary dimensions, OptRate for Bounded, Q8

Fig 36 – Vary dimensions, HitRate for Ellipse, Q8

0%

25%

50%

75%

100%

0 2000 4000 6000 8000 10000

Queries Processed

0%

25%

50%

75%

100%

0 2000 4000 6000 8000 10000

Queries Processed

0%

25%

50%

75%

100%

0 2000 4000 6000 8000 10000

Queries Processed

0%

25%

50%

75%

100%

0 2000 4000 6000 8000 10000

Queries Processed

0%

25%

50%

75%

100%

0 2000 4000 6000 8000 10000

Queries Processed

1-D

2-D

3-D

4-D

0%

25%

50%

75%

100%

0 2000 4000 6000 8000 10000

Queries Processed

1-D

2-D

3-D

4-D

0%

25%

50%

75%

100%

0 2000 4000 6000 8000 10000

Queries Processed

1-D

2-D

3-D

4-D

 Final OptRate Final HitRate

 Max Min Avg Max Min Avg

Bounded 89.0% 86.0% 87.8% 86.0% 85.0% 85.8%

Ellipse 71.0% 59.0% 65.7% 99.0% 99.0% 99.0%

OptOnce 48.0% 3.0% 35.2% - - -

AUTHOR ET AL.: TITLE 13

Fig 37 – Vary dimensions, OptRate for Ellipse, Q8

Table 3 – Variation of #umber of Dimensions

It is clear that the more dimensions the parameter space

has, the lower are the OptRate and HitRate. Some of the

reasons that contribute to this effect are twofold. First,

given a point cpt centered in the middle of the parameter

space, the percentage of space � cpt (or � cpt) decreases

exponentially with the number of dimensions (affects

Bounded). That is, the larger the number of dimensions,

the less likely it is that any two random points are above

or below some other point. For example, for a 1-dim

space, 50% of space is below (above) the mid-point. For 2-

dim, 25% of the parameter space is below (above) the

mid-point (12.5% for 3-dim, ~6% for 4-dim). Fig 38 shows

the number of plans and points for Bounded. Second, the

number of unique optimal plans increases exponentially

with the dimensionality of the parameter space. This

issue affects Ellipse because this approach relies on

finding two close-by points where the same plan is

optimal. Fig 39 shows the number of plans and points for

Ellipse.

The number of plans and points increase exponentially

for both Ellipse and Bounded, but slower for Ellipse. For

each of the experiments above (which use 1, 2, 3 and 4

cost parameters), the returned plans were on average 7%,

8%, 45%, and 35% respectively more expensive than the

optimal plans when using Ellipse and 0.2%, 2%, 24%, and

10% respectively more expensive than the optimal plans

when using Bounded (not shown in the graphs).

Fig 38 – Number of plans and points, Bounded, Q8

Fig 39 – Number of plans and points, Ellipse, Q8

6 RELATED WORK

Parametric query optimization was first mentioned by

Graefe [7] and Lohman [12]. This pioneering early work

also proposed dynamic query plans and a new meta-

operator, the choose-plan [7]. Dynamic query plans include

more than one physical plan choice. The plan to use is

determined at run-time by the choose-plan operator after

it costs the alternatives given the now known parameter

values. How to enumerate dynamic query plans was

proposed only later [2] with the concept of incomparability

of costs: in the presence of unbound parameters at

optimization-time, plan costs are represented as intervals,

and if intervals of alternative plans overlap, none is

pruned. At run-time, when parameters are bound to

values, the choose-plan selects the right plan. This

approach may enumerate a large number of plans (see

[15]), and all those plans may have to be re-cost at run-

time. Ioannidis et al [10] coined the term Parametric

Query Optimization and proposed using randomized

algorithms to optimize in parallel the parametric query

for all possible values of unknown variables. This

approach is unfeasible for continuous parameters, gives

no guarantees on finding the optimal plan for a query,

and places no bounds on the optimality of the plans

produced. Ganguly [5] uses a geometric approach to

solve the PQO problem for one and two parameters

under the assumption that cost functions are linear and

that regions of optimality of plans are convex. Ganguly

solves PQO for restricted forms of non-linear, one-

parameter, cost functions. Prasad [14] extends the

geometric approach to solve PQO for ternary linear cost

functions and binary non-linear functions. Hulgeri and

Sudarshan [8] propose a solution to PQO that handles

piecewise linear cost functions for an arbitrarily number

of parameters but requires substantial changes to the

query optimizer. AniPQO [9] is a recent technique that

0%

25%

50%

75%

100%

0 2000 4000 6000 8000 10000

Queries Processed

1-D

2-D

3-D

4-D

Number of plans

9

78

156

382

0

100

200

300

400

1 2 3 4
Number of Dimensions

Number of points

46
604

1187

5128

0

1000

2000

3000

4000

5000

6000

1 2 3 4
Number of Dimensions

Number of plans

14
67

102

253

0

100

200

300

400

1 2 3 4
Number of Dimensions

Number of points

47 242 447
1240

0

1000

2000

3000

4000

5000

6000

1 2 3 4
Number of Dimensions

 OptRate HitRate

 1-D 2-D 3-D 4-D 1-D 2-D 3-D 4-D

Bounded 77% 65% 65% 56% 100% 94% 88% 49%

Ellipse 99% 74% 62% 58% 100% 98% 96% 88%

14 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

approximates the solution to PQO for non-linear

functions and for an arbitrary number of parameters.

AniPQO approximates optimality regions to n-

dimensional convex polytopes and finds its solution to

PQO by calling the optimizer multiple times and

evaluating plan costs up to thousands of times. Unlike

AniPQO, PPQO never calls the optimizer or costs plans

more often than what a traditional non-PQO approach

would.

A closely related piece of work is PLASTIC [6]. Like

PPQO, PLASTIC incrementally maintains clusters of

incoming queries and avoids optimizing a new query if it

is “close enough” to a previously seen cluster. At a high

level, we can see PLASTIC as an instance of PPQO, where

getPlan compares an incoming query against each of the

previously saved ones and reuses an old query plan if it is

“close enough” to the current query, and addPlan adds a

plan as a new cluster representative. In contrast to

Bounded and Ellipse, query similarity in PLASTIC is

measured as a distance between feature vectors that

describe the queries (such as number of relations in the

query, number and type of predicates, and estimated

sizes of tables and intermediate relations). For that

reason, PLASTIC has the potential to detect similarities

between queries with similar structure but touching

different tables (like “SELECT R.a FROM R JOIN S”

and “SELECT T.b FROM T JOIN U”). In our work we

do not attempt to reuse plans across different queries, so a

direct implementation of PLASTIC would always

compare instances of the same query with different

parameters. As a consequence, the distance metric

between queries would result in the sum of differences in

the cost parameters, and PLASTIC would reduce to

performing nearest neighbor searches on the parameter

space with a threshold that determines when a new

cluster should be created. As such, PLASTIC cannot give

worst-case quality guarantees on the resulting plans (as

Bounded does), nor is able to model long and narrow

optimality regions (as Ellipse does). It is, however, an

interesting implementation of PPQO that might be useful

in certain scenarios.

Finally, recent work [16] coins the term “plan

diagram” to denote a pictorial enumeration of the

execution plan choices of a query optimizer over the

selectivity space. This work shows, using plan diagrams,

that assumptions commonly held by PQO (plan

convexity, plan uniqueness, and plan homogeneity) do

not hold. These discoveries do not affect Bounded-PPQO,

which provides optimality guarantees. On the other hand,

Ellipse-PPQO results in higher hit rates but gives no

optimality guarantees on returned plans and may

produce poor results for large ∆-acceptable regions. Very

recently, in a follow-up to [16], the authors propose to

reduce the plan diagram for a given query by

“collapsing” plans whose costs are close enough to each

other [3]. This work shares with ours the notion that, in

many cases, obtaining near-optimal plans is sufficient and

might lead to dramatic reductions in the number of plans

to consider without sacrificing the quality of the

optimization process. A crucial difference with our work

is that [3] proceeds a-posteriori, after optimizing the input

query for all possible parameters (specifically, over a fine

grid that is laid out over the parameter space). In contrast,

PPQO is to progressively builds a parametric plan data

structure with no long startup costs.

7 CONCLUSIONS

Before Progressive Parametric Query Optimization

(PPQO), processing parameterized queries was an all or

nothing approach: either the optimizer explores all the

parameter space and computes the full PQO solution

(traditional PQO) or it relies on luck and uses the very

first plan it gets for a query. PPQO is able to progressively

construct information about the parametric space and

approximate optimality regions, being able to bypass the

optimizer up to 99% of the times, while still returning

plans within 5% of the cost optimal plan for 99% of the

cases. Unlike PQO, PPQO does not perform extra

optimizer calls or extra plan-cost evaluation calls. At

execution time, PPQO selects which plan to execute by

using only the input cost parameters without recosting

plans. PPQO is an adaptive technique that works prior to

execution (and assumes the optimizer to be correct – just

like any other PQO approach). Query re-optimization [11]

and other adaptive query processing (AQP) approaches

[1, 4] work during optimization and execution and

assume that the optimizer can make mistakes or that the

system characteristics change significantly during the

execution of a single query. Also PPQO is an inter-query

adaptive approach while AQP are frequently intra-query

optimization approaches.

PPQO is also amenable to be implemented in a

complex commercial database system as it requires no

changes in the optimization or execution processes. In

fact, our PPQO prototype ran outside the DBMS server.

For technical reasons, we did not implement function φ

ourselves, but instead used SQL Server’s cost model to

transform value- into cost-parameters. For that reason, we

did not evaluate the impact of such function in our

experimental evaluation. However, it is important to note

AUTHOR ET AL.: TITLE 15

that function φ can be implemented by simply

manipulating in memory histograms (i.e., 200-int arrays),

which is a negligible fraction of optimization time and

would not have resulted in any noticeable difference in

our experimental evaluation.

PPQO was evaluated in a variety of settings, with

queries joining up to eight tables, with multiple sub-

queries, up to four parameters, and in plan spaces with

close to 400 different optimal plans. PPQO yielded good

results in all scenarios except for the Bounded algorithm

in complex queries using a 4-D parameter space.

However, even in this challenging scenario, Ellipse on

average executed plans just 3% more costly than the

optimal, while avoiding 87% of all optimization calls.

REFERENCES

[1] S. Babu, P. Bizarro. Adaptive Query Processing in the Looking

Glass. In Proceedings of CIDR 2005.

[2] R. L. Cole and G. Graefe. Optimization of Dynamic Query

Evaluation Plans. In Proceedings of SIGMOD 1994.

[3] Harish D, P. Darera and J. Haritsa. On the Production of

Anorexic Plan Diagrams. In Proceedings of VLDB 2007.

[4] A. Deshpande, Z. Ives, and V. Raman. Adaptive Query

Processing. Foundations and Trends in Databases: Vol. 1: No 1, pp

1-140, 2007.

[5] S. Ganguly. Design and Analysis of Parametric Query

Optimization Algorithms. In Proceedings of VLDB 1998.

[6] A. Ghosh, J. Parikh, V. S. Sengar, J. R. Haritsa. Plan Selection

Based on Query Clustering. In Proceedings of VLDB 2002.

[7] G. Graefe and K. Ward. Dynamic Query Evaluation Plans. In

Proceedings of SIGMOD 1989.

[8] A. Hulgeri and S. Sudarshan. Parametric Query Optimization

for Linear and Piecewise Linear Cost Functions. In Proceedings

of VLDB 2002.

[9] A. Hulgeri and S. Sudarshan. AniPQO: Almost Non-intrusive

Parametric Query Optimization for Nonlinear Cost Functions.

In Proceedings of VLDB 2003.

[10] Y. E. Ioannidis, R. T. Ng, K. Shim, and T K. Sellis. Parametric

Query Optimization. In Proceedings of VLDB 1992.

[11] N. Kabra, D. J. DeWitt. Efficient Mid-Query Re-Optimization of

Sub-Optimal Query Execution Plans. In Proceedings of

SIGMOD 1998.

[12] G. M. Lohman. Is Query Optimization a 'Solved' Problem?

Workshop on Database Query Optimization. Oregon Graduate

Center Tech. Rep. 89-005, 1989.

[13] Microsoft Corporation. Plan Forcing Scenario: Create a Plan

Guide That Uses a USE PLAN Query Hint. SQL Server 2005

Books Online.

[14] V. G. V. Prasad. Parametric Query Optimization: A Geometric

Approach. MSC Thesis. IIT, Kampur, 1999.

[15] S. V. U. Maheswara Rao. Parametric Query Optimization: A

Non-Geometric Approach. Master Thesis. IIT, Kampur, 1999.

[16] N. Reddy and J. R. Haritsa. Analyzing Plan Diagrams of

Database Query Optimizers. In Proceedings of VLDB 2005.

[17] Transaction Processing Performance Council. The TPC-H

Benchmark. http://www.tpc.org/. Accessed March 2006.

