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Progressive Parametric Query Optimization 
Pedro Bizarro, Nicolas Bruno and David J. DeWitt 

Abstract— Commercial applications usually rely on pre-compiled parameterized procedures to interact with a database. 

Unfortunately, executing a procedure with a set of parameters different from those used at compilation time may be arbitrarily 

sub-optimal. Parametric query optimization (PQO) attempts to solve this problem by exhaustively determining the optimal plans 

at each point of the parameter space at compile time. However, PQO is likely not cost-effective if the query is executed 

infrequently or if it is executed with values only within a subset of the parameter space. In this paper we propose instead to 

progressively explore the parameter space and build a parametric plan during several executions of the same query. We 

introduce algorithms that, as parametric plans are populated, are able to frequently bypass the optimizer but still execute 

optimal or near-optimal plans. 

Index Terms— Parametric Query Optimization, Adaptive Optimization, Selectivity Estimation.  
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1  INTRODUCTION

N many applications, the values of run-time parame-

ters of the system, data, or queries themselves are un-

known when queries are originally optimized. In these 

scenarios there are typically two trivial alternatives to 

deal with the optimization and execution of such parame-

terized queries. One approach, termed here Optimize-

Always, is to call the optimizer and generate a new execu-

tion plan every time a new instance of the query is in-

voked. Another trivial approach, termed Optimize-Once, is 

to optimize the query just once, with some set of parame-

ter values, and reuse the resulting physical plan for any 

subsequent set of parameters. Both approaches have clear 

disadvantages. Optimize-Always requires an optimiza-

tion call for each execution of a query instance. These 

optimization calls may be a significant part of the total 

query execution time, especially for simple queries. In 

addition, Optimize-Always may limit the number of con-

current queries in the system, as the optimization process 

itself may consume too much memory. On the other 

hand, Optimize-Once returns a single plan that is used for 

all points in the parameter space. The chosen plan may be 

arbitrarily sub-optimal for parameter values different 

from those for which the query was originally optimized. 

1.1 Parametric Query Optimization 

An alternative to Optimize-Always and Optimize-Once is 

Parametric Query Optimization (PQO). At optimization 

time, PQO determines a set of plans such that, for each 

point in the parameter space, there is at least one plan in 

the set that it is optimal. The regions of optimality of each 

plan are also computed. Later, when an instance of the 

query is submitted, PQO chooses the best pre-computed 

plan for the query instance and executes it without mak-

ing a new optimization call. PQO proposals often assume 

that the cost formulas of physical plans are linear or 

piece-wise linear with respect to the cost parameters and 

that the regions of optimality are connected and convex. 

However, in reality, the cost functions of physical plans 

and regions of optimality are not so well-behaved. A 

more important problem results from the fact that PQO 

has a much higher startup cost than optimizing a query a 

single time (PQO usually requires several invocations of 

the optimizer with different parameters [8, 9]). When a 

previously unseen query arrives, it is therefore not clear 

to determine whether PQO should be used: it may not be 

cost-effective to solve the full PQO problem if the query is 

not executed frequently or if it is repeatedly executed 

with values covering a small sub-space of the entire pa-

rameter space. Most previous work (see Section 6) ignores 

this dilemma and instead solves the full PQO problem, 

potentially wasting more resources than necessary. 

1.2 Contributions 

In this paper, we propose an alternative approach to han-

dle parametric queries that addresses the shortcomings 

described above. Our contributions are as follows: 

- In Section 2 we propose Progressive Parametric 

Query Optimization (PPQO), a novel framework to 

improve the performance of processing paramete-

rized queries. We also propose the Parametric Plan 
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interface as a way to incorporate PPQO in DBMS. 

- In Sections 3 and 4 we propose two implementa-

tions of PPQO with different goals. On one hand, 

Bounded has proven optimality guarantees. On the 

other hand, Ellipse results in higher hit rates and 

better scalability. 

- Finally, in Section 5 we present an extensive per-

formance evaluation of PPQO using a prototype 

implementation on Microsoft SQL Server 2005. 

2 PROGRESSIVE PARAMETRIC QUERY 

OPTIMIZATION 

The main idea of Progressive Parametric Query Optimiza-

tion, or PPQO for short, is to incrementally solve (or ap-

proximate) the solution to the PQO problem as successive 

query execution calls are submitted to the DBMS. Fig 1 

shows a high-level architecture of our approach. Given a 

query and its parameter values, a traditional optimizer 

returns the optimal execution plan along with its esti-

mated cost (� and � in the figure). In contrast, a PPQO-

enabled optimizer introduces a data structure called Pa-

rametric Plan (PP), which incrementally maintains plans 

and optimality regions, allowing us to reuse work across 

optimizations. As the Parametric Plan data structure be-

comes populated, it is possible to completely bypass the 

optimization process without hurting the quality of the 

resulting execution plans. 

Fig 1 – Using Parametric Plans to process a query. 

When a new instance of a parametric query arrives (� in 

Fig 1), PPQO tries to obtain an optimal (or near-optimal) 

plan by consulting the parametric plan data structure. If it 

is successful, it returns such plan and a full optimization 

call is avoided (� in Fig 1). Otherwise, it makes an opti-

mization call (� in Fig 1) and both the resulting optimal 

plan and cost are added to the parametric plan for future 

use (� in Fig 1). Due to the size of the parameter space, 

parametric plans should not be implemented as exact 

lookup caches of plans because there would be too many 

“cache misses”. Also, due to the non-linear and disconti-

nuous nature of cost functions, parametric plans should 

not be implemented as nearest neighbor lookup struc-

tures as there will be no guarantee that the optimal plan 

of the nearest neighbor is optimal or close to optimal for 

the point in the parameter space being considered [3, 16]. 

We now describe the PPQO problem in more detail, bor-

rowing notation and definitions from the classic parame-

tric optimization problem.  

2.1 Definitions and Preliminaries 

A parametric query Q is a text representation of a relational 

query with placeholders for m parameters vpt = (v1, …, 

vm). Vector vpt is called a ValuePoint. Examples of parame-

ter values are system parameters (e.g., available memory) 

and query-dependant parameters (e.g., constants in pa-

rametric predicates). In the rest of the paper we focus on 

query-dependant parameters since they cover the most 

common scenarios. We note, however, that our tech-

niques can also be adapted to other kinds of parameters. 

Using vpt directly to model the parameter space and 

characterize regions of optimality for plans is in general 

difficult (see below for an example). To address this prob-

lem, we use a transformation function φ, which is opti-

mizer-specific and transforms ValuePoints into what we 

call CostPoints. A CostPoint is a vector cpt = (c1, …, cn) 

where each ci is a cost parameter with an ordered domain. 

A well-known implementation of φ, which we justify 

below and use in the rest of the paper, is transforming 

parametric predicate values into the corresponding predi-

cate selectivities. For instance, consider predicate age<$X$, 

with parameter $X$. Function φ would then map a specif-

ic constant c for $X$ into the selectivity of the non-

parametric predicate age<c. 

Let p be some execution plan that evaluates query Q 

for a given vpt. The cost function of p, denoted p(cpt), 

takes a CostPoint cpt as an input and returns the cost of 

evaluating plan p under cpt. For every legal value of the 

parameters, there is some plan that is optimal. Given a 

parametric query Q, the maximum parametric set of plans 

(MPSP) is the set of plans, each of which is optimal for 

some point in the n-dimensional cost-based parameter 

space. The region of optimality for plan p, denoted r(p), is 

defined as: 

r(p) = {(t1, …, tn) | p is optimal at (c1=t1, …, cn=tn)} 

Finally, a parametric optimal set of plans (POSP) is a mi-

nimal subset of MPSP that includes at least one optimal 

plan for each point in the parameter space. 
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Having introduced this basic terminology, we next jus-

tify the need for the transformation function φ, and then 

define the PPQO framework in detail. 

2.2 The Parameter Transformation Function φ 

Recall that a value parameter refers to an input value of 

the parametric SQL query to execute. On the other hand, 

a cost parameter is an input parameter in the formulas 

used by the optimizer to estimate the cost of a query plan. 

Cost parameters are estimated during query optimization 

from value parameters and from information in the data-

base catalog. (Physical characteristics that affect the cost 

of plans but do not depend on query parameters, such as 

the average tuple size or the cost of a random I/O are 

considered physical constants instead of cost parameters.) 

A crucial cost parameter that is used during optimiza-

tion is the estimated number of tuples in (intermediate) 

relations processed by the query plan: most query plans 

have cost formulas that are monotonic in the number of 

tuples processed by the query. On the other hand, there is 

no obvious relationship between the value parameters 

and the cost of the query plans. Thus, it becomes much 

easier to characterize the regions of optimality using a 

cost-based parameter space than using a value-based 

parameter space. In Example 1, below, and in what fol-

lows, we use a cost-based parameter space whose dimen-

sions are predicate selectivities. (Note that the estimated 

number of tuples of each relation processed by a query is 

typically derived from selectivities of sub-expressions 

computed during query optimization.) 

 
Fig 2 – Age distribution in table FRESHMEN 

Example 1: Table FRESHMEN(NAME, AGE) succinctly describes 

1st-year graduate students. The age distribution of stu-

dents is showed in Fig 2. Consider queries of the form: 
         SELECT *  

         FROM FRESHMEN  

         WHERE AGE=$X$ OR AGE=$Y$ 

Assume that the optimal plan for queries that retrieve less 

than 5% of FRESHMEN tuples is PIDX, a plan using an index 

on column AGE. For all other queries, the optimal plan is 

PFS, a full-table scan on FRESHMEN. The parameters of this 

query can be represented as the absolute values used for 

parameters $X$ and $Y$ or as the selectivities of predicate 

age=$X$ and predicate age=$Y$. Accordingly, the costs of 

physical PIDX and PFS can be represented in value-based 

parameter spaces, shown in Figure 3, or in selectivity-

based (also referred to as cost-based) parameter spaces, 

shown in Figure 4. Clearly, the selectivity-based represen-

tation results in a much more manageable parameter 

space than the (seemingly chaotic) value-based represen-

tation. The reason is that selectivity-based representations 

are better aligned to the optimizer cost model, tend to be 

represented by monotonic cost functions, and therefore 

the regions of optimality of plans tend to cluster together. 

 
Fig 3 – Value-based parameter space 

 

Fig 4 – Selectivity-based parameter space 

In the rest of this paper, we assume that function φ takes 

query Q and its SQL parameters, vpt, and returns cpt as a 

vector of selectivities. Computing the selectivities in cpt 

corresponds to the task of selectivity estimation, a sub-

routine inside of query optimization. Other components 

of query optimization –e.g., plan enumeration, rule trans-

formation and costing– need not be part of the implemen-

tation of function φ. In general, computing selectivity 

values from actual values is done by manipulating in-

memory histograms, which is very efficient, and a neglig-

ible fraction of the full query optimization task. 

We note that the arity of the value-based parameter space 

and that of the selectivity-based parameter space are not 

necessarily the same. On one hand, it is possible to have 

predicates of the form age>$X$ and age<$Y$, where two 
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value predicates are collapsed into a single selectivity 

value for the combined predicate. Similarly, a query that 

contains a predicate of the form R.age<$X$ and also a join 

between tables R and S might require two selectivity pa-

rameters to capture the optimizer’s cost model: one for 

the selectivity of the predicate on the base table, and 

another for the selectivity of the predicate on the join. In 

our prototype and experimental evaluation, we use a 

simple one-to-one mapping between parametric predi-

cates and selectivity values (i.e., we do not consider join 

predicates nor combine atomic predicates over the same 

column). The reasons behind our choice are (i) this is the 

mapping used in previous work on parametric optimiza-

tion, (ii) it can be implemented without deep knowledge 

about the underlying query optimizer, and (iii) our expe-

riments show that this simple model is very competitive. 

2.3 The Parametric Plan Interface 

We now give an operational description of the Parametric 

Plan (PP) component of PPQO by describing its two main 

operations (also see Figure 1):  

- addPlan(Q, cpt, p, c): registers that plan p, with esti-

mated cost c, is optimal for query Q at CostPoint cpt. 

- getPlan(Q, cpt) – returns the plan that should be 

used for query Q and cost values cpt, or returns null 

if no plan is considered good enough for Q. 

function processQuery ( 

   inputs: Query Q, ValuePoint vpt 

   input/output: ParametricPlan pp )  

01 CostPoint cpt ← φ(Q, vpt);    // ValuePoint to CostPoint 

02 Plan p ← pp.getPlan(Q, cpt);  // what plan to use? 

03 if (p == NULL)  

04   Cost cost;                // cost is output param below 

05   p ← optimize(Q, vpt, cost);// finds optimal plan & cost 

06   pp.addPlan(Q, cpt, p, cost);// stores plan & cost in pp 

07 execute(p); 

Fig 5 – Using Parametric Plans 

Implementations of the PP interface are used during 

query processing as shown in Figure 1 and in the pseudo-

code in Figure 5. When parametric query parameter in-

stances are required to execute, the DBMS calls the para-

metric plan’s getPlan method. If getPlan returns plan p1, 

then p1 is used for execution and an optimization call is 

avoided. If getPlan returns null (we call this situation a 

getPlan miss), then the optimizer is called and a potentially 

new plan, p2, is obtained from the optimizer. Plan p2 is then 

executed. The parameter values, plan p2 and its cost are 

then added to the Parametric Plan using addPlan. 

Optimize-Always implements PP 

   addPlan(inputs: Query Q, CostPoint cpt, 

                   Plan p,  Cost cost) 

   return; // does nothing 

 

   getPlan(inputs:  Query Q, CostPoint cpt; 

           outputs: Plan p)  

   return null; 

Fig 6 – Optimize-Always implementation 

As we show in sections 3 and 4, the PP interface can be 

used to implement various PPQO policies. However, it 

can also implement simple policies like Optimize-Always 

and Optimize-Once. Fig 6 shows the Optimize-Always im-

plementation of the PP interface, in which addPlan is emp-

ty and getPlan always returns null, forcing an optimiza-

tion for every query. Fig 7 shows the Optimize-Once im-

plementation of the PP interface, in which addPlan saves 

the first plan it is given as input and getPlan returns such 

plan in all subsequent calls. 

Optimize-Once implements PP 

   private Plan p = null; 

 

   addPlan(inputs: Query Q, CostPoint cpt, 

                   Plan plan, Cost cost) 

   if (p == null) p = plan;  // saves first plan  

 

   getPlan(inputs:  Query Q, Cost-Point cpt; 

           outputs: Plan plan)  

   return p;                 // returns first plan 

Fig 7 – Optimize-Once implementation 

2.4 Parametric Plans: Requirements and Goals 

The main tradeoff in PPQO is to avoid as many optimiza-

tion calls as possible as long as we are willing to execute 

sub-optimal -but close to optimal- plans (note that this 

goal has also been proposed in [5] and [11] in the context 

of classical PQO). Thus, PP implementations must obey 

the Inference Requirement below. 

Inference Requirement: After a number of addPlan calls, 

there must be cases where getPlan returns a (near-) op-

timal plan p for query Q and parameter point cpt, even if 

addPlan(Q, cpt, p, cost)  was never called. 

Given a sequence of execution requests of the same 

query with potentially different input parameters, PPQO 

has therefore two conflicting goals: 

Goal 1: Minimize the number of optimization calls. 

Goal 2: Execute plans with costs as close to the cost of 

the optimal plan as possible. 

Consider a trivial cache implementation of the PP in-

terface, which stores (Q, cpt) pairs as the lookup key and 

(p, cost) as the inserted value. This implementation cannot 

fulfill the inference requirement because it would return 
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hits only for previously inserted (Q, cpt) pairs. In the next 

sections we propose two PPQO implementations, each 

giving priority to one of the above goals. Bounded-PPQO, 

described in Section 3, gives priority to Goal 2. Ellipse-

PPQO, described in Section 4, gives priority to Goal 1. 

3 THE BOUNDED-PPQO IMPLEMENTATION 

We now describe the first of two proposed PPQO imple-

mentations, termed Bounded-PPQO or simply Bounded. 

This implementation provides guarantees on the quality 

of the plans returned by getPlan(Q, cpt), thus focusing on 

Goal 2 of PPQO (see previous section). Either the re-

turned plan p is null (and an optimization call cannot be 

avoided) or p has a cost guaranteed to be within a user-

specified bound of the cost of the optimal plan. Specifical-

ly, the cost of plan p returned by getNext is guaranteed to 

be bounded by OptCost*M+A, where OptCost is the cost of 

the optimal plan, and M≥1 and A≥0 are user-defined con-

stants. Both M and A can be used to specify different 

bounds on sub-optimality and are generally application-

specific. (We report, however, the effects of varying pa-

rameters M and A in the Experimental Evaluation.) 

The intuition for the Bounded-PPQO implementation is 

as follows. Consider a parametric query with two para-

meters. If plans pi and pj are optimal in some CostPoints 

cpti and cptj, which delimit a box as shown in the 2-

dimensional example of Fig 8, then we can provably 

bound the cost of plan pj in all points within that box if 

the cost functions are monotonic along all dimensions 

(e.g., if the cost of the query increases whenever the selec-

tivity of any parameter increases). Specifically, the cost of 

plan pj in the box will be between the cost of plan pi at cpti 

and the cost of plan pj at cptj. 

 
Fig 8 – Overview of Bounded-PPQO 

3.1 Preliminaries 

We now introduce some definitions required to describe 

the Bounded PPQO implementation: 

- Relationship equal (≡≡≡≡): Given cpt1=(c1,1, …, c1,n) and 

cpt2=(c2,1, …, c2,n), cpt1 ≡ cpt2 iff ∀i c1,i=c2,i. 

- Relationships below (�) and above (�): Given cpt1=(c1,1, 

…, c1,n) and cpt2=(c2,1, …, c2,n), cpt1� cpt2 (cpt1 �cpt2) iff 

∀i, c1,i≤c2,i (c1,i≥c2,i), and ∃i, c1,i≠c2,i. Note that both � 

and � are transitive. That is, if cpt1� cpt2 (cpt1 �cpt2) 

and cpt2� cpt3 (cpt2 �cpt3) then cpt1� cpt3 (cpt1 �cpt3). 

- Opt(cpt): It is the cost of an optimal plan at cpt. 

- Triples ti=(cpti, plani, costi) and tj=(cptj, planj, costj) are 

a bounding pair if plan plani (planj) is an optimal plan 

at cpti (cptj) with cost costi (costj), cpti � cptj and pla-

ni(cpti)≤ planj(cptj)≤ plani(cpti)*M+A, where M and A 

are, respectively, any user-defined multiplicative 

and additive factors, with M≥1 and A≥0. The pair (ti, 

tj) is also said to bound cpt, if cpti � cpt � cptj . 

We additionally rely on the intuitive Monotonic Assump-

tion (or MA), stated as follows: given plan p and Cost-

Points cpt1 and cpt2, if cpt1 ���� cpt2 then p(cpt1)≤p(cpt2).1 

3.2 Implementation of AddPlan for Bounded 

Function addPlan(Q, cpt, p, cost), shown in Fig 9, associates 

with each parametric query Q a list TQ of triples (cpt, p, 

cost) ordered by cost, where p is an optimal plan at cpt 

with an estimated execution cost (at cpt), of cost=p(cpt). 

addPlan (inputs: Query Q, CostPoint cpt, 

                 Plan p, Cost cost) { 

 01 List TQ ← getList(Q);    // Gets the list of triples for Q 

 02 if (TQ ==null)  

 03    TQ = new List();      // If no list, create one 

 04 TQ.insert(cpt, p, cost); // Inserts triple in cost order 

 05 setList(Q, TQ);}           // adds/replaces TQ into catalog 

Fig 9 – Bounded’s addPlan Implementation 

3.3 Implementation of GetPlan for Bounded 

For user-defined constants M≥1 and A≥0, Bounded’s get-

Plan(Q, cpt) searches for a pair  ti=(cpti, plani, costi) and 

tj=(cptj, planj, costj) that bounds cpt (i.e., with costi≤ costj≤ 

costi*M+A and with cpti � cpt � cptj). If it finds no such 

bounding pair, getPlan returns null. Otherwise, it returns 

such plan (see Fig 10 for a high-level description).  

getPlan(inputs: Query Q, Cost-Point cpt; 

        outputs: Plan plan) 

01 List TQ ← getList(Q);     // gets list of triples for Q 

02 for each (t1, t2) in TQ   // look any pair of triples 

03   if (t1.cost≤t2.cost≤t1.cost*M+A and 

         t1.cpt � cpt � t2.cpt)  

04       return t1.p; 

05 return null; 
 

1 All cost parameters we use are selectivities. Since higher selectivities imply more tuples to 

process, the monotonic assumption follows the intuition that plans that process more tuples likely 

cost more than plans that process less tuples. Although not true for all queries–e.g., queries using 

SQL clause NOT EXISTS may have non-monotonic costs–plans with non-monotonic costs are less 

common than plans with costs monotonic with the number of processed tuples. 
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Fig 10 – Bounded’s getPlan Implementation 

We next show that if getPlan returns plan p, it guaran-

tees under the Monotonic Assumption, that the cost of ex-

ecuting p at cpt satisfies Opt(cpt) ≤ p(cpt) ≤ Opt(cpt)*M+A. 

We first show in Lemma 1 that if the Monotonic Assump-

tion holds for every plan considered, then the cost of the 

optimal plan at any point (regardless of what the optimal 

plan is at any single point) also increases monotonically 

with the parameters. 

Lemma 1: If cpt1� cpt2, cost1=p1(cpt1)=Opt(cpt1), and 

cost2=p2(cpt2)=Opt (cpt2) then cost1 ≤ cost2. 

Proof: We note that if p2 is optimal at cpt1, then 

cost1=p2(cpt1). Otherwise, p2 is not optimal at cpt1, and 

therefore cost1<p2(cpt1). In any case, we have that cost1≤ 

p2(cpt1), which, coupled with the monotonic assumption 

and cpt1 � cpt2, it implies that p2(cpt1)≤ p2(cpt2)=cost2. Puting 

the last two inequalities together, we obtain cost1≤cost2.   ■ 

 

Lemma 2: If M≥1, costx≤costz≤costx*M+A, and 

costx≤costy≤costz, then costy≤ costz≤costy*M+A. 

Proof: Since M≥1 and costx≤costy, it follows that 

costx*M+A≤costy*M+A. Also, since costx≤costz≤costx*M+A it 

follows that costz≤costx*M+A ≤costy*M+A. Finally, since 

costx≤costy≤costz it follows that costy≤costz≤ costy*M+A.       ■ 

Finally, Theorem 1 establishes our desired result. 

Theorem 1: If  ti=(cpti, plani, costi) and tj=(cptj, planj, costj) 

are a bounding pair for some M≥1 and A≥0, then, under 

the Monotonic Assumption, the cost of planj can be tightly 

bounded such that Opt(cpt)≤planj(cpt)≤Opt(cpt)*M+A, for 

all cpt such that cpti � cpt � cptj.  

Proof: By Lemma 1 and cpti � cpt � cptj it follows that 

costi≤Opt(cpt)≤costj. Also, by Lemma 2, and costi 

≤costj≤costi*M+A, we get Opt(cpt)≤ costj≤Opt(cpt)*M+A.    ■ 

 

Example 2: For some query Q, assume that addPlan was 

already called for the points (and associated triples) 

showed in Fig 11 (i.e., assume that the parametric plan 

stores information about the optimal plans and costs for 

the triples in TQ=(t1, t2, t3, t4, t5, t6, t7)). Given cpt (showed 

as a black circle) in the cost-based parameter space, 

M=1.5, and A=0, which plan would getPlan(Q, cpt) return? 

There are six pairs (cpti, cptj) such that cpti � cpt � cptj: (cpt1, 

cpt5), (cpt1, cpt6), (cpt1, cpt7), (cpt3, cpt5), (cpt3, cpt6), and (cpt3, 

cpt7). From those pairs, only two triples bound cpt: pair 

(t3, t5), because c3≤c5≤c3*1.5+0⇔6≤8≤9, and pair (t3, t6), 

because c3≤c6 ≤c3*1.5+0⇔6≤9≤9. Thus, either plan p5 and 

plan p6 can be safely returned by getPlan. ■ 

3.4 Efficient Implementation of getPlan  

The naïve implementation of getPlan in Fig 10 enumerates 

all pairs of tuples (ti, tj) ∈TQ x TQ, ti≠tj that were intro-

duced by addPlan and tests if any pair bounds cpt. If some 

pair (ti, tj) bounds cpt, then plan pj can be returned as the 

answer to getPlan. The complexity of this procedure is 

clearly quadratic in the size of TQ. To avoid the enumera-

tion of all of pairs of triples that have to be checked, we 

apply an optimization that allows us to choose a single 

pair of triples (t1, t2) to be checked.  

Definition [���� (below) and ���� (above) operators]. Given a 

list, TQ, of k triples (cpti, pi, costi) ordered by costi, with 

i=0...k-1, where cpti is a CostPoint and costi represents the 

cost of executing the optimal plan pi at cpti and given cpt, 

another CostPoint we define the following operations: 

1- TQ�cpt is the list of triples (cpti, pi, costi) from TQ, 

ordered by costi, such that cpti � cpt. 

2- TQ�cpt is the list of triples (cpti, pi, costi) from TQ 

ordered by costi, such that cpti � cpt. 

Example 3: Let TQ=(t1, t2, t3, t4, t5, t6, t7), be triples shown in 

a 2-dimentional cost-based parameter space of Fig 11. 

Then TQ�cpt=(t1, t3) (the triples in the light gray area) and 

TQ�cpt=(t5, t6, t7) (the triples in the dark gray area). ■ 

 

Fig 11 – TQ=(t1, t2, t3, t4, t5, t6, t7) 

As shown in Example 2 in the previous section, there is 

potentially more than one solution to getPlan(Q, cpt). We 

next show that, if there is a solution, we only need to 

check if costlast≤costfirst≤costlast*M+A, where cfirst is the cost of 

the first triple in TQ �cpt and clast is the cost of the last triple 

in TQ� cpt. In such situation, then the plan in the first triple 

of TQ�cpt, pfirst is returned. Theorem 2 proves the 

correctness of this approach. 

Theorem 2: If ∃cptb:tb=(cptb, pb, costb), tb∈TQ�cpt, 

∃cpta:ta=(cpta, pa, costa), ta∈TQ�cpt, and costb ≤ costa ≤ 

costb*M+A, then costlast ≤ costfirst ≤ costlast*M+A, where costfirst 

is the cost of the first triple in TQ�cpt and costlast is the cost 

of the last triple in TQ�cpt.  

t1=(cpt1, p1, c1=3) 

cpt 

t2=(cpt2, p2, c2=5) 

t4=(cpt4, p4, c4=7) t5=(cpt5, p5, c5=8) 

t6=(cpt6, p6, c6=9) 

t3=(cpt3, p3, c3=6) 

t7=(cpt7, p7, c7=13) 

Cost parameter 2 

Cost parameter 1 
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Proof: By definition, the CostPoint of any triple that 

belongs to the below list is below the CostPoint of any 

triple that belongs to the above list. Formally, 

∀cptb:tb=(cptb, pb, costb) ∈ TQ�cpt, ∀cpta:ta=(cpta, pa, costba)∈ 

TQ�cpt we have that cptb � cpt � cpta. Then, by Lemma 1 we 

have that costb≤costlast≤Opt(cpt)≤costfirst≤costa.  By 

costb≤costa≤costb*M+A and Lemma 2, it follows that costlast≤ 

costa≤costlast*M+A. Also, if costx≤ costz≤costx*M+A and 

costx≤costy≤costz, then costx≤ costy≤costx*M+A. Putting all 

together, it follows that costlast≤costfirst≤costlast*M+A. ■ 

The optimized implementation of getPlan is shown in Fig 

12. We can see that given the properties of TQ�cpt and 

TQ�cpt, it is possible to select a single triple t1 from TQ�cpt 

and a single triple, t2 from TQ�cpt such that only pair (t1, 

t2) needs to be checked. Note that the implementation of 

getPlan in Fig 12 makes at most a single pass over TQ; 

thus, it has O(|TQ|) time complexity, where |TQ| is the 

number of elements in TQ. (Note that the search condition 

depends on multiple attribute values –the cost 

parameters- and therefore more sophisticated search 

procedures such as binary search are not applicable) 

Before addPlan is called the first time, any getPlan call 

returns null. As new triples are added, the hit rate of 

getPlan is expected to increase. Intuitively, as more triples 

are added, the more likely it is that getPlan returns a plan 

because it is more likely that any two triples fulfill the 

requirements of Theorem 2. Note also that the lower the 

values of M and A, the less likely it is to find pairs of 

triples that fulfill the requirements of Theorem 2, and 

thus, more added triples are needed to obtain higher hit 

rates. 

getPlan(inputs: Query Q, Cost-Point cpt; 

        outputs: Plan plan) 

01 List TQ ←getList(Q); // gets list of triples for Q 

02 if (TQ ==null) return null; 

03 Triple last=null; // last triple of TQ�cpt 

04 for Triple t in TQ // in cost order 

05    if (t.cpt ≡≡≡≡ cpt) return t.p; // exact match 

06    else if (t.cpt � cpt) // keep track of last triple of TQ�cp 

07       last = t; 

08    if (t.cpt � cpt) // first triple of TQ�cpt 

09       if (last == null) return null; 

10       if (last.c ≤ t.c ≤ last.c*M+A)  

11          return t.p; 

Fig 12 – Bounded’s getPlan Implementation 

4 THE ELLIPSE-PPQO IMPLEMENTATION 

Bounded’s getPlan provides strong guarantees on the cost 

of plans returned. However, we expect low hit rates of 

Bounded’s getPlan for small values of M and A, or before 

Bounded’s TQ has been populated. In this section we 

propose the Ellipse-PPQO (or simply Ellipse) 

implementation of the PP interface, designed to address 

Goal 1 of Section 2.2 (i.e., having high hit rates). For that 

purpose, Ellipse’s getPlan returns ∆-acceptable plans rather 

than guaranteed near-optimal costs.  

Definition [∆∆∆∆-Acceptable Plans]: For ∆∈[0, 1], if plan p is 

known to be optimal at points cpt1 and cpt2 in the cost-

based parameter space, then plan p is ∆-acceptable at 

point cpt in the cost-based parameter space if and only if:  

�|���1 − ���2|�

�|��� − ���1|� + �|��� − ���2|�
≥  ∆ 

where �|� − q|� is the Euclidian distance between p and q. 

It follows from the definition of ∆-acceptable that if p is 

optimal at cpt1 and cpt2, then p is 1-acceptable only on 

points between cpt1 and cpt2 and p is 0-acceptable at all 

points. Note that in a 2-dimentional space, the area where 

p is ∆-acceptable is equivalent to the definition of an 

ellipse; if p is optimal for cpt1 and cpt2, then p is ∆-

acceptable at cpt if cpt is on or inside an ellipse of foci cpt1 

and cpt2 such that the distance between the foci, ||���1 −
���2||, over the sum of the distances between cpt and the 
foci, ||��� − ���1||  + ||��� − ���2||, is at least ∆. Fig 13 
shows the areas where p is 0.5-acceptable, 0.8-acceptable, 

and 1-acceptable if p is optimal at cpt1 and cpt2.  

 
Fig 13 - Areas where p is ∆∆∆∆-acceptable 

Ellipse-PPQO encodes the heuristic that if a plan p is 

optimal in two points cpt1 and cpt2, then p is likely to be 

optimal or near-optimal in a convex region that encloses 

cpt1 and cpt2. Note that a nearest-neighbor algorithm 

could be used as an alternative to Ellipse-PPQO. 

However, since regions of optimality are frequently long 

and narrow [16], for any given cpt point, the closest 

known plan could very well be from another region of 

optimality (which we verified in practice). In addition, ∆-

acceptable areas can easily encode both small and large 

regions of optimality. 

4.1 Implementation of addPlan for Ellipse 

The implementation of addPlan for Ellipse proceeds as 

follows. For each query Q and for each plan p that is 

optimal in some point of the parameter space, Ellipse’s 

0.8-acceptable 

cpt1 cpt2 

1-acceptable 

p is optimal at 

these points 

0.5-acceptable 
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addPlan(Q, cpt, p, cost) essentially maintains a list of (cpt, 

cost) pairs where p is optimal for Q  (see Fig 14). 

addPlan(inputs: Query Q, CostPoint cpt, 

                Plan p, Cost cost)  

01 PointList L ← getPointList(Q, p);// where is p optimal? 

02 if (L==null) // if no PointsList  

03    L = new PointList(); // create new one 

04    PlanList P ← getPlanList(Q); // optimal plans for Q 

05    if (P==null)P=new PlanList(p); 

06    else        P.insert(p);  // add new optimal plan to list 

07    setPlanList(Q, P); // adds/replaces list P in catalog 

08 L.insert(cpt, cost); // adds information about p. 

09 setPointList(Q, p, L) // adds/replaces list L in catalog 

Fig 14 – Ellipse’s addPlan Implementation 

4.2 Implementation of getPlan for Ellipse 

Ellipse’s getPlan (see Fig 15) consists in the following. For 

each optimal plan p, it iterates over pairs of points where 

p is optimal for the given query, Q. For each pair of points 

(cpt1, cpt2), it tests if p is ∆-acceptable at the given point 

cpt. If it is, getPlan returns p, otherwise getPlan keeps 

trying other points and plans. If all pairs of plans for Q 

are exhausted without an ∆-acceptable plan being found, 

getPlan returns null. Note that we return the first ∆-

acceptable plan and therefore getPlan depends on the 

order on which points are enumerated. Instead of 

returning the first match, we can consider all ∆-acceptable 

plans and return the one with the largest distance from ∆, 

which might improve the quality of the resulting plans at 

the cost of a slower implementation of getPlan. 

getPlan(inputs: Query Q, Cost-Point cpt; 

        outputs: Plan plan) { 

01 PlanList P ←getPlanList(Q); // gets optimal plans 

02 if (P ==null)  // tests for empty list   

03    return null; 

04 for Plan plan in P  

05    PointList L ← getPointList(Q, plan); 

06    for PointPair (cpt1, cpt2) in L // enums point pairs 

07       if (∆ <= dist(cpt1, cpt2) /  

              (dist(cpt, cpt1) + dist(cpt, cpt2))) 

08          return plan;  // found ∆-acceptable plan 

09 return null; 

Fig 15 – Ellipse’s getPlan Implementation 

5 EXPERIMENTAL EVALUATION 

In this section we report an experimental evaluation of 

PPQO using Microsoft SQL Server 2005. The client 

application implements the pseudo-code described in 

sections 3 and 4 , and Microsoft SQL Server is used to 

obtain estimated optimal plans and estimated costs of 

plans. 

5.1 Dataset, Metrics, and Setup 

The TPC-H benchmark [17] was used to evaluate the 

PPQO implementations. Table 1 shows which tables are 

joined by each query. The tables are lineitem (L), orders 

(O), customer (C), supplier (S), part (P), partsupp (T), 

nation (N), and region (R). 

Table 1 – Description of TPC-H queries used 

As in Reddy and Haritsa [16], and unless otherwise 

noted, we added two extra selections to the TPC-H 

queries to more easily explore the parameter space (see 

Section 5.7 for experiments with more than two selection 

predicates). The two selections are of the form coli≤vali, 

i=1,2, where, for each query, coli is one of the two columns 

shown in Table 1 and vali is a random value from the 

domain of the column.  

For each query tested, we generated 10,000 random 

val1 and val2 values. (A (val1, val2) pair is a ValuePoint.) To 

guarantee that random parameter values uniformly 

explore the parameter space, we altered the values in the 

columns subject to the extra selections to such that those 

values are uniformly distributed in their domains instead 

of using the non-uniform TPC-H generated distributions. 

For each query and each ValuePoint vpt we make a 

getPlan lookup call (see Fig 5), where PP is either 

Optimize-Once, Optimize-Always, Bounded, or Ellipse. If 

getPlan returns a plan we call it a hit and check if the plan 

is optimal; if it is not optimal we check how its estimated 

cost compares with the estimated optimal cost. These give 

rise to the following metrics: 

- HitRate: Fraction of getPlan calls that return a plan. 

- OptRate: The percentage of plans that are optimal. 

- SO: Measure of suboptimality: phit(cpt)/Opt(cpt), with 

phit= getPlan(Q, cpt). SO≥1. 

- AvgSO: The average of all SO values. 

- MaxSO: The maximum of all SO values; reflects how 

risky a PP implementation can be. 

- Number of points: Number of (cpt, plan, cost) triples 

stored in a ParametricPlan (i.e., number of misses). 

- Number of plans: Number of distinct optimal plans.  

- QP: Number of queries processed. 

The experiments were run on a lightly loaded Pentium M 

at 1.73GHz with 1GB of RAM and using TPC-H scale 

Query Tables Joined Column 1 Column 2 

7 LOCSNN c_acctbal o_totalprice 

8 LOCPSNNR s_acctbal l_extendedprice 

9 LOTPSN s_acctbal l_extendedprice 

18 LLOC c_acctbal l_extendedprice 

21 LLLOSN s_acctbal l_extendedprice 
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factor 1. Indexes and statistics were built on all columns 

subject to selections and on all primary and foreign key 

columns. To estimate the cost of sub-optimal plans 

returned by PPQO, each sub-optimal plan was forcibly 

cost by SQL Server [13]. Unless otherwise stated, 

Bounded used M=1.1 and A=0 and Ellipse used ∆=0.95. 

5.2 Variation on HitRate and OptRate 

The first experiment consisted in processing queries using 

10,000 different random ValuePoints (value vectors) for 

each query and observing how HitRate and OptRate 

varied for Bounded and Ellipse. This experiment was 

performed for the five TPC-H queries listed in Table 1 

and the results for three are shown in Figures 16–18 . 

Several trends can be observed: 

- Ellipse always has a higher HitRate than Bounded; 

- Except for Query 8 (more on this below), Bounded 

always has a higher OptRate than Ellipse. 

- HitRate converges quickly, but OptRate converges 

slightly faster. 

- HitRate monotonically increases as a function of QP 

(more processed queries imply more misses and 

each miss adds information to the ParametricPlan, 

therefore increasing the likelihood of future hits). 

- OptRate naturally varies up and down, as the initial 

random (cpt, plan, cost) triples are added to the 

ParametricPlan object, until it converges. 

 

 
Fig 16 – HitRate and OptRate for Query 7 

 
Fig 17 – HitRate and OptRate for Query 8 

 
Fig 18 – HitRate and OptRate for Query 21 

5.3 Number of Plans, of Points, Space, and Time 

Fig 19 shows the number of plans and number of points 

for the experiments of the previous section. Bounded has 

a higher number of plans and number of points because it 

has a lower HitRate; for every miss there will be a new 

point stored in the ParametricPlan object. 

Storing the number of plans and the number of points 

took only between ~600Kbytes to ~1300Kbytes using the 

original uncompressed XML plan representations 

provided by SQL Server. Storing zip-compressed XML 

plans instead would decrease the size of the plan 

representation by a factor of 10. (Plans do not need to be 

understood, zipped, or unzipped by addPlan or getPlan 

functions.) 

Fig 20 reports the time and space taken by the 

Bounded and Ellipse approaches during optimization. 

Time (in seconds) includes time elapsed during 

optimization (if there is a miss), during addPlan, and 

during getPlan, but not execution time nor time consumed 

by function φ. For comparison purposes, the time taken 

for Optimize-Once and Optimize-Always is also 

included. 

  
Fig 19 – Number of plans and points for 10,000 QP 

After 10,000 queries have been processed, Optimize-

Always took between 5.2 and 13.6 times longer than 

Bounded and between 10.7 and 18.5 times longer than 

Ellipse. Thus, although Bounded only used between 7% 

and 20% of the optimization time, it still returned plans 

that were, as shown in section 5.4, on average just 1% 

more costly then the optimal plan. Ellipse used between 

5% and 9% of the optimization time and returned plans 

that were 6% more costly than the optimal plan. Ellipse 

was always faster than Bounded because it had less 
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optimize and addPlan calls (due to higher HitRates) and 

faster getPlan calls (because it has less information stored 

in its parametric plans). 

 
Fig 20 – Optimization time and space for 10,000 QP 

Note that although Optimize-Once spends the least 

optimization time, it is not the best overall approach (as 

seen in Fig 24 below). In fact, the entire Parametric Query 

Optimization research area aims to overcome the 

performance problems of using Optimize-Once. 

5.4 Quality of Returned Plans 

The quality of the returned plans is described in this 

section. The sub-optimality of each plan returned by 

Bounded, Ellipse, and Optimize-Once was measured in 

the same experiments of the previous two sections. 

Figures 21–23 show the quality of the returned plans 

(hits) for Bounded, Ellipse, and Optimize-Once in the 

form of cumulative distributions. The X axis represents 

how much the cost of a returned plan is above optimal, 

and the Y axis represents the cumulative percentage of 

plans that correspond to that sub-optimality level. For 

example, about 77% of the plans returned by Bounded for 

Query 7 are within 1% of the cost of optimal and 99.9% 

are within 10% the cost of optimal. The quality of most 

plans returned by Ellipse and Bounded is very good, and 

the quality of the plans returned by Bounded is higher. 

To complete the picture, Figure 24 shows the average 

and maximum sub-optimality for the three policies and 

five queries. While both Bounded and Ellipse have very 

good average cases, Ellipse, can have as bad worse cases 

as Optimize-Once (but less frequently). Overall, 

Bounded’s most sub-optimal plan was 5 times worse than 

the optimal plan, while the most sub-optimal plan chosen 

by both Ellipse and Optimize-Once was 412 times more 

costly than the optimal plan (MaxSO graph of Fig 24). 

 
Fig 21 – Quality of returned plans (Q7) 

 
Fig 22 – Quality of returned plans (Q9) 

 
Fig 23 – Quality of returned plans (Q21) 

An interesting observation is that although Bounded 

(with M=1.1) is supposedly guaranteed to return plans no 

more than 110% the cost of the optimal plan, in some 

experiments that guarantee was violated. Indeed, for 

queries 7, 8, 9, and 21, the most sub-optimal plan returned 

by Bounded was, respectively, 155%, 499%, 172%, and 

177% the cost of the corresponding optimal plan. Further 

analysis showed that the problem lied with the tool that 

forces plans and that obtains the estimated cost of those 

plans. In some very rare cases, for a specific CostPoint cpt, 

the tool returned a plan, say, p1 with cost c1 at cpt, as if it 

was optimal, but some other plan, say, p2, had an 

estimated cost c2 at cpt lower than c1. This lead to two 

problems: 1) Bounded stored plans and costs in its data 

structures that were not optimal; 2) the costs of the 

(presumed) optimal plan appeared non-monotonic. Other 

than those very rare occasions, Bounded guaranteed its 

sub-optimality specifications. (Arguably, this issue 

affected Ellipse less because the Ellipse implementation 

does not rely on monotonic cost functions.) 
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Fig 24 – MaxSO and AvgSO 

Another surprise was how well Optimize-Once did in the 

AvgSO metric. On average, across all queries, Optimize-

Once returned plans with costs ~140% the cost of optimal 

(the same average was ~101% for Bounded and ~106% for 

Ellipse). One possible explanation is the following. 

Optimize-Once obtains the optimal plan for the first of 

the 10,000 random parameter values and reuses that plan 

for all other values. If that first plan is also the plan with 

less cost variation in the plan space, then there is a high 

chance that that plan will do well in many other points in 

the space. Consider Fig 25, which shows a conceptual 

representation of the costs of four different plans, each 

optimal in different regions of the parametric space. 

 
Fig 25 – Typical costs of optimal plans  

Executing either plan p3 or plan p4 for all points of the 

parameter space would yield costs, on average, not much 

higher than the cost of optimal. Coincidently, the 

likelihood that any given point lies in the space where 

either p3 or p4 are optimal is very high, and thus, by 

random chance, Optimize-Once is likely to use a plan that 

is not catastrophic. However, Optimize-Once can and will 

return catastrophic plans eventually. We will explore this 

issue further in Section 5.6 - Vary Query Order. 

5.5 Vary Bounded’s M and Ellipse’s ∆ 

In this experiment the value M of Bounded was varied 

from 1.1 to 3 for query 21. The values of OptRate and 

HitRate are shown in Fig 26 and Fig 27. As expected, a 

lower value for M (tighter optimality bound) results in a 

higher OptRate (because returned plans cannot be much 

worse than the corresponding optimal plans due to the 

tight optimality bound M) but a lower HitRate (because 

tight values of M result in small regions with quality 

guarantees and therefore a larger number of calls do not 

return any plan). Because the HitRate for M=1.5 is already 

so close to 100% (Figure 27), increasing M to 3 barely 

improves HitRate or change change OptRate much. 

Alternatively, it could have resulted in a small change in 

HitRate but a larger change in OptRate (as it does not 

happen, there might be a correlation between HitRate and 

OptRate in this scenario). The same query 21 with the 

same random parameter values was run using Ellipse 

while varying ∆ from 0.9 to 0.99 (see Figures 28 and 29). 

As expected, a higher ∆ results in a higher OptRate but a 

lower HitRate (the reasons are similar to those above). 

Due to space constraints, we do not report experiments 

varying Bounded’s A parameter. (Results, however, were 

similar to the ones for M, i.e., larger values of A increase 

HitRate and decrease OptRate). 

 
Fig 26 – OptRate for Bounded, vary M, Q21 

 
Fig 27 – HitRate for Bounded, vary M, Q21 

 
Fig 28 – OptRate for Ellipse, vary ∆, Q21 

 
Fig 29 – HitRate for Ellipse, vary ∆, Q21 

5.6 Vary Query Order 

This experiment assessed the impact of the order of the 

incoming queries on the performance of the algorithms. 
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The same 10,000 random values used for Query 21 were 

used again, but the order in which those 10,000 queries 

were processed was chosen randomly. Six random orders 

were generated and processed with Bounded (M=1.1, 

A=0), Ellipse (∆=0.9), and Optimize-Once. 

The results are shown in Figures 30–33 and 

summarized in Table 2. Note that in Figures 30–33 it is not 

possible to tell apart which line is which. That is precisely 

the point: except for Ellipse’s OptRate, query order 

essentially had no effect on the values of HitRate or 

OptRate. 

Table 2 – Effects of Different Query Orders 

 

 
Fig 30 – HitRate for Bounded, vary query order, Q21 

 
Fig 31 – OptRate for Bounded, vary query order, Q21 

 
Fig 32 – HitRate for Ellipse, vary query order, Q21 

 
Fig 33 – OptRate for Ellipse, vary query order, Q21 

Note that although query order had no impact in the 

final values of Bounded’s OptRate, Bounded’s HitRate, 

and Ellipse’s HitRate, query order did have a medium 

impact on the final value of Ellipse’s OptRate. 

On the other hand, for Optimize-Once, query order 

had a very significant impact on OptRate, with final 

values ranging from 3% to 48%. An interesting 

observation is that the performance of Optimize-Once 

was exactly the same for four out of those six random 

orders. Further analysis showed that, although the very 

first value of each of the six random orders were all 

different, for four of them, the corresponding optimal 

plan was the same. This follows the observation (Section 

5.4, Fig 25, and [16]) that some plans have very large 

optimality areas. 

5.7 Vary Number of Dimensions 

In all the experiments so far, the parameter space was 2-

dimensional. The next experiment varies the number of 

dimensions, from 1 to 4. Query 8 is used (with extra 

parametric selections as needed) because it was the one 

with the highest number of plans and thus, more likely to 

suffer from the “curse of dimensionality”: an exponential 

growth of complexity with a linear increase in the 

number of dimensions. The query was then run for 10,000 

random values for Bounded (M=1.1, A=0) and Ellipse 

(∆=0.95). The results, showed in Figures 34-37 are 

summarized in Table 3. 

 
Fig 34 – Vary dimensions, HitRate for Bounded, Q8 

 
Fig 35 – Vary dimensions, OptRate for Bounded, Q8 

 
Fig 36 – Vary dimensions, HitRate for Ellipse, Q8 
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 Final OptRate Final HitRate 

 Max Min Avg Max Min Avg 

Bounded  89.0% 86.0% 87.8% 86.0% 85.0% 85.8% 

Ellipse 71.0% 59.0% 65.7% 99.0% 99.0% 99.0% 

OptOnce 48.0% 3.0% 35.2% - - - 
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Fig 37 – Vary dimensions, OptRate for Ellipse, Q8 

Table 3 – Variation of #umber of Dimensions 

It is clear that the more dimensions the parameter space 

has, the lower are the OptRate and HitRate. Some of the 

reasons that contribute to this effect are twofold. First, 

given a point cpt centered in the middle of the parameter 

space, the percentage of space � cpt (or � cpt) decreases 

exponentially with the number of dimensions (affects 

Bounded). That is, the larger the number of dimensions, 

the less likely it is that any two random points are above 

or below some other point. For example, for a 1-dim 

space, 50% of space is below (above) the mid-point. For 2-

dim, 25% of the parameter space is below (above) the 

mid-point (12.5% for 3-dim, ~6% for 4-dim). Fig 38 shows 

the number of plans and points for Bounded. Second, the 

number of unique optimal plans increases exponentially 

with the dimensionality of the parameter space. This 

issue affects Ellipse because this approach relies on 

finding two close-by points where the same plan is 

optimal. Fig 39 shows the number of plans and points for 

Ellipse. 

The number of plans and points increase exponentially 

for both Ellipse and Bounded, but slower for Ellipse. For 

each of the experiments above (which use 1, 2, 3 and 4 

cost parameters), the returned plans were on average 7%, 

8%, 45%, and 35% respectively more expensive than the 

optimal plans when using Ellipse and 0.2%, 2%, 24%, and 

10% respectively more expensive than the optimal plans 

when using Bounded (not shown in the graphs). 

    
Fig 38 – Number of plans and points, Bounded, Q8 

    
Fig 39 – Number of plans and points, Ellipse, Q8 

6 RELATED WORK 

Parametric query optimization was first mentioned by 

Graefe [7] and Lohman [12]. This pioneering early work 

also proposed dynamic query plans and a new meta-

operator, the choose-plan [7]. Dynamic query plans include 

more than one physical plan choice. The plan to use is 

determined at run-time by the choose-plan operator after 

it costs the alternatives given the now known parameter 

values. How to enumerate dynamic query plans was 

proposed only later [2] with the concept of incomparability 

of costs: in the presence of unbound parameters at 

optimization-time, plan costs are represented as intervals, 

and if intervals of alternative plans overlap, none is 

pruned. At run-time, when parameters are bound to 

values, the choose-plan selects the right plan. This 

approach may enumerate a large number of plans (see 

[15]), and all those plans may have to be re-cost at run-

time. Ioannidis et al [10] coined the term Parametric 

Query Optimization and proposed using randomized 

algorithms to optimize in parallel the parametric query 

for all possible values of unknown variables. This 

approach is unfeasible for continuous parameters, gives 

no guarantees on finding the optimal plan for a query, 

and places no bounds on the optimality of the plans 

produced. Ganguly [5] uses a geometric approach to 

solve the PQO problem for one and two parameters 

under the assumption that cost functions are linear and 

that regions of optimality of plans are convex. Ganguly 

solves PQO for restricted forms of non-linear, one-

parameter, cost functions. Prasad [14] extends the 

geometric approach to solve PQO for ternary linear cost 

functions and binary non-linear functions. Hulgeri and 

Sudarshan [8] propose a solution to PQO that handles 

piecewise linear cost functions for an arbitrarily number 

of parameters but requires substantial changes to the 

query optimizer. AniPQO [9] is a recent technique that 
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approximates the solution to PQO for non-linear 

functions and for an arbitrary number of parameters. 

AniPQO approximates optimality regions to n-

dimensional convex polytopes and finds its solution to 

PQO by calling the optimizer multiple times and 

evaluating plan costs up to thousands of times. Unlike 

AniPQO, PPQO never calls the optimizer or costs plans 

more often than what a traditional non-PQO approach 

would. 

A closely related piece of work is PLASTIC [6]. Like 

PPQO, PLASTIC incrementally maintains clusters of 

incoming queries and avoids optimizing a new query if it 

is “close enough” to a previously seen cluster. At a high 

level, we can see PLASTIC as an instance of PPQO, where 

getPlan compares an incoming query against each of the 

previously saved ones and reuses an old query plan if it is 

“close enough” to the current query, and addPlan adds a 

plan as a new cluster representative. In contrast to 

Bounded and Ellipse, query similarity in PLASTIC is 

measured as a distance between feature vectors that 

describe the queries (such as number of relations in the 

query, number and type of predicates, and estimated 

sizes of tables and intermediate relations). For that 

reason, PLASTIC has the potential to detect similarities 

between queries with similar structure but touching 

different tables (like “SELECT R.a FROM R JOIN S” 

and “SELECT T.b FROM T JOIN U”). In our work we 

do not attempt to reuse plans across different queries, so a 

direct implementation of PLASTIC would always 

compare instances of the same query with different 

parameters. As a consequence, the distance metric 

between queries would result in the sum of differences in 

the cost parameters, and PLASTIC would reduce to 

performing nearest neighbor searches on the parameter 

space with a threshold that determines when a new 

cluster should be created. As such, PLASTIC cannot give 

worst-case quality guarantees on the resulting plans (as 

Bounded does), nor is able to model long and narrow 

optimality regions (as Ellipse does). It is, however, an 

interesting implementation of PPQO that might be useful 

in certain scenarios. 

Finally, recent work [16] coins the term “plan 

diagram” to denote a pictorial enumeration of the 

execution plan choices of a query optimizer over the 

selectivity space. This work shows, using plan diagrams, 

that assumptions commonly held by PQO (plan 

convexity, plan uniqueness, and plan homogeneity) do 

not hold. These discoveries do not affect Bounded-PPQO, 

which provides optimality guarantees. On the other hand, 

Ellipse-PPQO results in higher hit rates but gives no 

optimality guarantees on returned plans and may 

produce poor results for large ∆-acceptable regions. Very 

recently, in a follow-up to [16], the authors propose to 

reduce the plan diagram for a given query by 

“collapsing” plans whose costs are close enough to each 

other [3]. This work shares with ours the notion that, in 

many cases, obtaining near-optimal plans is sufficient and 

might lead to dramatic reductions in the number of plans 

to consider without sacrificing the quality of the 

optimization process. A crucial difference with our work 

is that [3] proceeds a-posteriori, after optimizing the input 

query for all possible parameters (specifically, over a fine 

grid that is laid out over the parameter space). In contrast, 

PPQO is to progressively builds a parametric plan data 

structure with no long startup costs. 

7 CONCLUSIONS 

Before Progressive Parametric Query Optimization 

(PPQO), processing parameterized queries was an all or 

nothing approach: either the optimizer explores all the 

parameter space and computes the full PQO solution 

(traditional PQO) or it relies on luck and uses the very 

first plan it gets for a query. PPQO is able to progressively 

construct information about the parametric space and 

approximate optimality regions, being able to bypass the 

optimizer up to 99% of the times, while still returning 

plans within 5% of the cost optimal plan for 99% of the 

cases. Unlike PQO, PPQO does not perform extra 

optimizer calls or extra plan-cost evaluation calls. At 

execution time, PPQO selects which plan to execute by 

using only the input cost parameters without recosting 

plans. PPQO is an adaptive technique that works prior to 

execution (and assumes the optimizer to be correct – just 

like any other PQO approach). Query re-optimization [11] 

and other adaptive query processing (AQP) approaches 

[1, 4] work during optimization and execution and 

assume that the optimizer can make mistakes or that the 

system characteristics change significantly during the 

execution of a single query. Also PPQO is an inter-query 

adaptive approach while AQP are frequently intra-query 

optimization approaches. 

PPQO is also amenable to be implemented in a 

complex commercial database system as it requires no 

changes in the optimization or execution processes. In 

fact, our PPQO prototype ran outside the DBMS server. 

For technical reasons, we did not implement function φ 

ourselves, but instead used SQL Server’s cost model to 

transform value- into cost-parameters. For that reason, we 

did not evaluate the impact of such function in our 

experimental evaluation. However, it is important to note 
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that function φ can be implemented by simply 

manipulating in memory histograms (i.e., 200-int arrays), 

which is a negligible fraction of optimization time and 

would  not have resulted in any noticeable difference in 

our experimental evaluation. 

PPQO was evaluated in a variety of settings, with 

queries joining up to eight tables, with multiple sub-

queries, up to four parameters, and in plan spaces with 

close to 400 different optimal plans. PPQO yielded good 

results in all scenarios except for the Bounded algorithm 

in complex queries using a 4-D parameter space. 

However, even in this challenging scenario, Ellipse on 

average executed plans just 3% more costly than the 

optimal, while avoiding 87% of all optimization calls. 
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