
A Framework for Performance Evaluation of Complex

Event Processing Systems
Marcelo R. N. Mendes
CISUC, University of Coimbra

Dep. Eng. Informática – Polo II

Univ. de Coimbra, 3030-290 Coimbra,

Portugal

+351 239790000

mnunes@dei.uc.pt

Pedro Bizarro
CISUC, University of Coimbra

Dep. Eng. Informática – Polo II

Univ. de Coimbra, 3030-290 Coimbra,

Portugal

+351 239790000

bizarro@dei.uc.pt

Paulo Marques
CISUC, University of Coimbra

Dep. Eng. Informática – Polo II

Univ. de Coimbra, 3030-290 Coimbra,

Portugal

+351 239790000

pmarques@dei.uc.pt

ABSTRACT
Several new Complex Event Processing (CEP) engines have been

recently released, many of which are intended to be used in

performance sensitive scenarios - like fraud detection, traffic

control, or health care systems. However, there is no standard

means to assess the performance of a CEP engine. This omission

is all the more relevant as there are currently many competing

products, languages, architectures, data models, and data

processing CEP techniques. A performance evaluation framework

can help identify good design decisions and assist in improving

engines. Here we demonstrate our work in progress: FINCoS, a

framework that can be used to benchmark CEP systems. The

proposed framework has five relevant characteristics:

i. Flexible (e.g., it allows changing the workload on the fly to

measure reactions to peak loads);

ii. Independent of particular workloads;

iii. Neutral (not bound to any specific CEP product);

iv. Correctness check (validators can be plugged into the

framework on demand to verify results);

v. Scalable (many of its components, like event generators,

can be centrally orchestrated and run in parallel).

Note that the framework does not include a benchmark

specification. In fact, it was designed such that diverse datasets

and query scenarios can be easily attached and tested on several

CEP engines.

As such, this framework has three key benefits: first, it can be

used by the CEP community to more quickly devise and

experiment new benchmarks for event processing systems.

Second, CEP vendors can employ the framework in conjunction

with their own test datasets to benchmark their systems internally.

Finally, customers can use it with their real data and select the

CEP engine that best fits their needs.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques

General Terms
Design, Performance, Measurement.

Keywords
Complex Event Processing, Performance Evaluation, Framework.

1. I#TRODUCTIO#
Complex Event Processing (CEP) is a relatively new technology

for processing and analyzing multiple events from distributed

sources, with the objective of extracting useful information from

them. It has been employed in diverse areas such as Business

Activity Monitoring, fraud detection and network management, to

perform tasks that vary from simple event correlation to detection

of complex patterns of events or causality analysis. However, up

to now, no effective method for comparing the performance and

scalability of CEP engines has been established.

This omission is particularly relevant since there are currently

many competing products, each with their own languages,

architectures, data models, and data processing CEP techniques.

A performance evaluation framework can help identify good and

bad design decisions which in turn can assist both in the

definition of standards and production of enhanced engines.

However, considering the present stage of the technology,

benchmarking Complex Event Processing systems faces a series

of challenges:

• Lack of standards – currently there are no standards in terms

of query languages, data formats, semantics or terminology,

which makes difficult to specify precisely the workload and

the interfaces between the benchmark and CEP engines;

• Multiple domains of applications – CEP has been applied in

many distinct fields, each one with its own specific

requirements. This means that it will likely be necessary to

design more than one workload and dataset in order to

represent the diverse scenarios;

• Metrics – besides commonly used metrics like throughput or

response time, assessing a CEP engine involves measuring

other dimensions such as correctness of results (many

possible correct answers, due to, for example, different event

arrival sequences), capacity to adapt to variations in the load,

(which tend to be frequent in event-processing systems) or

__

possibly precision and recall (to deal with uncertainty or

fuzzy patterns, for instance);

In next section we describe how FINCoS, the proposed

framework addresses some of those issues. Related work is

discussed in Section 3.

1.1 The BiCEP project
This demonstration is the first outcome of the BiCEP project,

whose final goal is to identify the core CEP requirements and

develop benchmarks that allow an objective comparison of

products and algorithms in spite of their architectural and

semantic differences [2][3].

The main contribution of the FINCoS framework is to provide a

flexible and neutral approach for experimenting diverse CEP

systems, where multiple datasets, queries, answer validators, and

engines can be easily attached, swapped, reconfigured and scaled.

2. THE FI#CoS FRAMEWORK
Specifying a CEP benchmark when standards, applications and

capabilities of this evolving technology are not well defined is a

challenging task. Instead, we developed a functional but flexible

tool, keeping it as generic as possible in such a way that

workloads or CEP products have little or no impact in the

framework itself. The objective is to use it to experiment varying

combinations of datasets and queries, in order to identify the most

relevant aspects for the definition of a benchmark for Complex

Event Processing systems.

2.1 Architecture and Operation
Figure 1 illustrates the general structure of our performance

evaluation framework, which includes five main components:

1. Driver1 – simulates external sources of events; it is

responsible for submitting load to the system under test

(SUT). The events which compose the workload can be

generated by the Driver itself according to user’s

specification or they can be loaded from a third-party file.

Currently, the framework supports only simple directives for

data generation, so it is likely that one needs to use its own

dataset obtained directly from real applications or from

simulations;

2. Sink – receives output events resulting from the queries

running on CEP engines. The results are stored in log files

and/or transmitted over network for subsequent validation;

3. Controller – it is the interface between the framework and

the user. The Controller application is used to configure the

setup of the environment (e.g., number of drivers and sinks

or how many machines are used) and to control the other

applications during performance tests (e.g., start and

1 In CEP terminology, an entity that sends events is usually

denominated ‘event source’ or ‘producer’ or still ‘emitter’. The

term ‘driver’ is often used in the benchmarking field to indicate

a piece of software designed to put load on the system under

test. We consider the latter term more appropriate because it

emphasizes the fact that this component is a simulated event

source and also includes extra functionality, like data generation

and event scheduling.

interrupt components, increase/decrease load intensity or

change workload parameters);

4. Adapters – there is no standard event representation across

CEP engines, so typically each product has its own set of

supported formats. In the absence of a common format to all

engines, we decided to use a neutral comma-separated-value

(CSV) event representation and custom adapters to make the

conversions to a format compatible with their corresponding

CEP engine. We used the CSV format due to its simplicity

and low overhead processing (experiments with alternative

formats such as plain Java objects and name-value pairs

showed a much higher utilization of resources when

compared to CSV). We have implemented a few adapters for

some products, and it should be easy for other people to

extend that list – that is especially the case for some vendors

whose products already support, fully or partially, event

exchange using CSV format. The typical structure and

functionality of an adapter is described in Subsection 2.2;

5. Validator – validates the results produced by CEP engines.

It takes information from all drivers and all sinks and

produces summaries indicating how well the SUT has

performed. Those reports can be displayed while the tests are

running or only after completion. A typical report includes

performance metrics such as response time, total count of

processed events and output events or average throughput, as

well as information about the correctness of the results.

Validators are query-specific and as such must be

dynamically developed and attached to the benchmark suite.

Figure 1 – Architecture of the Framework

Tests can be configured to use multiple Drivers and Sinks

distributed over different machines. This architecture permits to

increase the load over the SUT by scaling up the number of

components when one or more Driver/Sink are in their limit.

The framework also provides flexible experiments setup. For

instance, each Driver has its own workload (i.e., one or more

datasets and event submission rates) and executes independently

from other Drivers – which can be useful to simulate events

coming from distinct sources. Of course, all Drivers can have

exactly the same configuration (for instance, to increase the load

over the SUT as discussed before). Moreover, the workload of a

Driver can be made very dynamic, either during test setup, by

dividing its execution in one or more sequential phases, with each

phase having its individual workload characteristics (event rate,

duration and dataset) or by altering some workload parameters on-

the-fly, while tests are running. The possibility to vary workload

over time is useful for testing the ability of CEP engines to adapt

to changes.

Finally, the framework was designed to be portable across

different CEP products and test scenarios. That is achieved in two

ways: first, by isolating the parts for which there is no

standardization, namely, adapters and Validators, and making

them “plug-and-play” components, which are developed and

attached to the framework on demand; second, the use of

replaceable Validators and the possibility of employing external

datasets ensure that the framework is independent of particular

workloads.

2.2 Adapter Structure
In the previous subsection we briefly explained how adapters are

employed as mediators between the framework and different CEP

products, by performing conversions between a CSV

representation of events to vendor-specific native format. Here we

describe the interface and behavior that an adapter should exhibit

in order to be compatible with the framework.

Adapters receive events from Drivers as textual CSV messages,

using plain sockets on a given local port. The message contains

event’s data as payload and an additional property indicating

event’s type. The latter is used by adapters to forward the event to

the appropriate input stream on the CEP engine, after having done

the required conversions. Likewise, resulting events from the CEP

engine are delivered using plain sockets on a remote port of

appropriate Sinks. Notice that adapters need to associate output

streams to Sinks in order to deliver resulting events to the right

destination (in CEP products this functionality is normally

incorporated in their design tools). We have then built a small

application that permits to specify these mappings between output

streams and Sinks. The format used in delivery of output events is

the same as input events, that is, CSV text messages, with event’s

data as payload and a property indicating event’s type or the

output stream where it came from.

Figure 2 illustrates our implementation of input and output

adapters:

Figure 2 – Sample structure of adapters

We point out that only the vendor-specific part needs to change.

This requires implementing simply two functions: one to send

events and another to receive. The conversion between CSV

records and product’s internal representation is encapsulated

inside those two functions.

Besides the conventional adapter, which provides direct

connection to CEP engines, the framework also includes an

adapter for JMS-based middlewares. This JMS adapter is useful

for evaluating the performance of CEP engines under a very

common configuration, namely when events are exchanged with

external systems via messaging systems. Unlike the conventional

adapter, the JMS adapter uses standard JMS map messages as its

event representation format and JMS topics as intermediaries to

CEP engines. In this way, the incorporated JMS adapter can be

transparently used across different CEP products providing that

they support integration with JMS sources. Figure 3 shows a

sample test configuration using JMS:

Figure 3 – Test configuration with a messaging infrastructure

2.3 Validation
As we mentioned before, validation does not have a universal

logic: response time (and other metrics) can be measured in

several different ways and how accuracy of the results is verified

greatly depends of the queries executed during tests. For this

reason, validation is not directly provided by the framework and

should be performed by standalone components. Nonetheless, we

have implemented a few sample Validators to measure response

time and throughput as well as to perform correctness check for

some common kinds of queries. Following, we show how

validation is performed by those Validators and present

alternatives to the approaches that we have chosen.

• Response Time Measurement – response time can be

measured in two distinct ways: in real time, during the

performance run, or only after the test completion. The first

approach provides feedback sooner, which allows the user to

better control the load during tests but it may overload the

validation infrastructure. Currently we compute and display

on-line estimates of response time at a reduced cost using

sampling. Drivers can be configured to forward a small

portion of its outgoing events to a Validator tool. Similarly,

Sinks can also be configured to forward a fraction of the

events it receives from the CEP engine to the Validator. The

second approach consists in taking complete information

from log files produced by all Drivers and all Sinks; upon

test completion, the response time is accurately computed

over the whole result set. Notice that in either case, the

computation of response time is done in the same way: by

inspecting the causal vector of each output event – which

contains the ID’s of the input events that caused it – and

subtracting the timestamp of the last input event from the

timestamp of the output event. For online measurement,

however, there is an additional challenge of maximizing the

matching between the sampled events from Sinks and those

obtained from Drivers;

• Correctness Validation – another issue is how correctness of

results should be checked by Validators. We envisage two

approaches. The first is to compare, event by event, the result

produced by the CEP engine with the expected output (there

may be more than only one correct output). A problem with

this approach is that, depending on volume of events

produced and test duration, validation can take too long to

complete – more precisely, determining the expected

output(s) may be a time-consuming operation. The second

approach is to have a priori information about data. For

instance, for a query that computes moving averages of some

stock quote, it could be ensured that the test data will

produce a result of, say, 50. For pattern detection queries,

events could be generated in a top-down way, from the

higher-level events to the raw events. For instance, it would

be possible to stipulate constraints like “pattern X, which

consists in event A followed by event B will happen N times

in this dataset. Then, a summary is computed for output data

and, compared with the expected result, which is known a

priori. This approach has the advantage of being faster but it

is potentially less accurate and is feasible only when using

synthetic datasets. Moreover, it requires that data generation

offers more sophisticated directives. For benchmarking

purposes, we consider the first approach the most appropriate

while for casual performance evaluations the second one

should be enough;

• Adaptivity Assessment – although the framework enables

testing the ability of a CEP engine to adapt to changes in the

workload we have not defined a specific metric to assess this

capability. Currently, we use other metrics and associate

them with the moments when intentional changes in the

workload occur (e.g. observing response time or throughput

during and immediately after induced peak-load periods). We

intend, however, to express adaptivity in terms of more

precise metrics soon.

2.4 Demonstration Outline
A live software demonstration of our work will include:

• Test setup – configuration of Drivers and Sinks; creation of

datasets using data generation component and loading of

external files; scaling up the number of components;

• Sample performance runs in two or more CEP products, to

illustrate the use of adapters;

• Dynamic changes in workload, to show the use of Controller

application during tests;

• Validation and real time performance observations.

3. RELATED WORK
Previous work addresses the problem of performance evaluation

in areas related to CEP. Berndtsson et al [1] present the BEAST

benchmark for active databases systems. Arasu et al [5] describe

Linear Road, a benchmark for Stream Data Management Systems.

Finally, Sachs et al [4] introduce the SPECjms benchmark for

JMS-based messaging systems. There are two main differences

between our framework and those works: first, previous works are

not intended to address the specific requirements of a benchmark

for Complex Event Processing; second, all the aforementioned

works include a benchmark specification, while our demonstration

is about a performance evaluation framework, which can be used

to devise new benchmarks.

4. SUMMARY
In this demonstration we presented FINCoS, a framework for

performance evaluation of Complex Event Processing systems.

Up to now, people who wish to assess the performance of CEP

engines would have to build their own application that creates and

submits a synthetic workload to those systems. With the

framework, all that is necessary is to specify a few workload

parameters, such as event submission rates or datasets (which can

be created by the framework or loaded from external files). More

elaborate test configurations can also be created, for example, by

running Drivers and Sinks in parallel or by dynamically plugging

Validators to check output results. We believe that the framework

here described represents an important contribution to

experimenting CEP systems and it will be helpful for accelerating

improvements on engines as well the development of new

benchmarks. The FINCoS framework is available at the BiCEP

research project Web site [2].

5. REFERE#CES
[1] Berndtsson M., Geppert A., Lieuwen D., Roncacio, C.:

Performance Evaluation of Object-Oriented Active Database

Management Systems Using the BEAST Benchmark. In

Theory and Practice of Object Systems, v.4 n.3, p.135-149,

1998

[2] BiCEP research project Web site:

http://bicep.dei.uc.pt.

[3] Bizarro, P.: BiCEP - Benchmarking Complex Event

Processing Systems. In the Proceedings of Dagstuhl Seminar

07191 "Event Processing" November 2007. Available at:

http://drops.dagstuhl.de/portals/index.php?semnr=07191

Accessed: March 2008.

[4] Sachs K., Kournev, S., Bacon, J., Buchmann, A.: Workload

Characterization of the SPECjms2007 Benchmark. Available

at:

http://www.spec.org/workshops/2007/austin/papers/Designin

g_workload_Scenario_MOM.pdf

Accessed: March 2008.

[5] Arasu, A., Cherniack, M., Galvez, E., Maier, D., Maskey,

A.S., Ryvkina, E., Stonebraker, M., Tibbetts, R.: Linear

Road: A Stream Data Management Benchmark. In

Proceedings of the 30th VLDB Conference (Toronto,

Canada, 2004)

