
  

Abstract - Ventricular arrhythmias, especially tachycardia 
and fibrillation are one of the main causes of sudden cardiac 
death. Therefore, the development of methodologies, enable to 
detect their occurrence and to characterize their time evolution, 
is of fundamental importance. This work proposes a non-linear 
dynamic signal processing approach to address the problem. 
Based on the phase space reconstruction of the 
electrocardiogram (ECG), some features are extracted for each 
ECG time window. Features from current and previous time 
windows are provided to a dynamic neural network classifier, 
enabling arrhythmias detection and evolution trends 
assessment. Sensitivity and specificity values, evaluated from 
public MIT-BIH databases, show the effectiveness of the 
proposed strategy.  

I. INTRODUCTION 
ardiovascular diseases are the leading cause of death in 
developed countries. In the context of cardiovascular 

problems, the ventricular arrhythmias (VA) assume a very 
important role. In fact, their incidence in population can lead 
to situations of severe complexity and risk. Particularly, 
ventricular fibrillation (VF) is potentially fatal, being 
considered the main cause of sudden cardiac death. 
Moreover, VA evolve from simple premature ventricular 
contractions, which are in most situations benign, to 
ventricular tachycardia (VT) and finally to critical 
ventricular fibrillation episodes. Therefore, the development 
of methodologies able to detect not only the occurrence of 
these arrhythmias but also their evolution trends is of extreme 
importance for the conception of early prevention systems. 

For ventricular arrhythmias detection several algorithms 
have been developed, enabling to distinguish between 
normal sinus rhythms (NSR) and VT/VF, as well as to 
distinguish between VT and VF. Some methods have 
employed sequential hypothesis testing [1], autoregressive 
modeling of ECG [2], time domain and frequency domain 
features [3], and Wavelet analysis [4]. Other works have 
investigated template matching algorithms to distinguish 
NSR from VT and NSR from VF [5]. For discrimination 
between VT and VF, rate and irregularity analysis, correlation 
waveform analysis, spectral analysis and time-frequency 
analysis have been employed. Neural networks and fuzzy 
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systems have also been applied to VT and VF detection [6].  
In the last years there has been an increasing interest in 

applying techniques from the domains of non-linear analysis 
and chaos theory, to the study of ECG signals and, in 
particular, for arrhythmias detection. As a consequence, new 
signal classification approaches have emerged. Some of 
these approaches used features like correlation dimension, 
Lyapunov exponents, fractal dimension, entropy and 
complexity measure, to characterize arrhythmias [7], [8]. 
Other approaches used features extracted from the phase 
space reconstruction (PSR) [9], [10], and others followed a 
modeling approach based on PSR [11], [12].  

For ventricular arrhythmias prediction, one of the greatest 
challenges in cardiology, few works have been developed. 
Actually, some features can be extracted from the ECG 
which give an indication of VF increased risk, therefore, of 
the arrhythmia trends evolution [13]. One of these features is 
the heart rate variability (HRV). M. Baumert et al. [14] used 
HRV measures for short-term forecasting of VT. Wessel et 
al. [15], also used HRV analysis and showed that a loss of 
short-term variability precedes the onset of a VT. Thong and 
Goldstein [16] proposed the “vagal fatigue index” feature, 
extracted from HRV, and showed that this feature is an 
efficient predictor of sustained VA. Following different 
approaches, other solutions have been proposed. Minija et 
al. [17] used neural networks (NN) for VF prediction and 
classification, based on ST segment analysis. Jekova et al.  
[18] used modified K-nearest neighbors algorithm for the 
prediction of VF and VT. 

Although the detection problem has been extensively 
addressed with satisfactory results, few achievements have 
been made on the trends of arrhythmias evolution. In this 
work an integrated strategy for VA characterization is 
proposed, dealing simultaneously with their detection and 
trends evolution. Based on a PSR methodology, some 
appropriate features are extracted for each ECG time 
window. The decision module consists of a dynamic neural 
network, which uses features from current and previous time 
windows, enabling the detection of arrhythmias evolution 
trends. Moreover, the proposed strategy presents a low 
complexity, thus suitable to be incorporated into personal 
health (phealth) systems. 

The paper is organized as follows: in the section 2 the 
proposed methodology is described. In section 3 some 
validation results using MIT-BIH databases are presented 
and, finally, in section 4, some conclusions are drawn. 
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II. PROPOSED METHODOLOGY 
A. Scheme 
Figure 1 depicts the schematic diagram of the strategy 

followed in the current work. The input consists of the 
discrete ECG signal, considering usual pre-processing 
techniques, in particular normalization and baseline removal. 
The algorithm is evaluated by windowing segments of the 
ECG under analysis. The followed strategy considers, for 
each window, a phase space reconstruction procedure. Then, 
from the obtained two-dimensional trajectory, some relevant 
features are extracted. Features from current and previous 
windows are provided to a time delay neural network 
classifier (TDNN), enabling the characterization of VA. Due 
to its ability to incorporate time, the neural structure is 
effective to capture the dynamics of the arrhythmias 
evolution. For the decision system four features have been 
considered. The first, spatial filling index, has been 
successfully employed to distinguish NSR from VT and VF 
[5], [10]. The other three features have been developed 
within this work, exploiting the distribution characteristics of 
the reconstructed phase space trajectory. 

NSR/VT/VF

Features (n)PSR (n-1)

Classifier
(RNN)Features (n-1)

PSR (n)
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Figure 1. VA arrhythmias characterization scheme. 

B. Phase Space Reconstruction 
Phase space reconstruction is a technique used to 

represent the non-linear characteristics of a dynamic system, 
consisting of a simple plot of signal time-lagged vectors 
[19]. Considering the signal as a time series x(1), x(2), …, 
x(n), where n is the number of points, the time lagged vectors 
of the multidimensional phase space are determined 
according to (1),  

( 1)...i i i dXi x x xτ τ+ + −⎡ ⎤= ⎣ ⎦  1  ...  ( 1)i n d τ= − −

 

(1) 
where τ is the time delay between the points of the time 
series, and d is the embedding dimension which corresponds 
to the number of phase space coordinates.  
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  Figure 2. PSR for NSR, VT and VF signals. 

The PSR is carried out by plotting the original signal 
against the delayed versions of itself. The present work uses 
a two-dimensional PSR (d=2) and a time delay τ equal to 7, 
which was established as a suitable choice in the case of 
ECG signals [19]. As it can be seen in   Figure 2, the PSR 
(τ=7) has the capacity to distinguish between the three types 
of signals: NSR, VT and VF. In fact, the shape of the 
trajectories is clearly distinct for each case. 

C. Features Extraction 
1. Spatial filling index 
The first step to determine the spatial filling index is to 

reconstruct a two-dimensional phase space of the ECG 
signal. Given the ECG signal x(1), x(2), …, x(n), the A 
matrix is obtained as (2). 
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Dividing each element (i,j) of matrix A by q=max| x(k) | 
(1≤k≤n), a normalized matrix B is obtained. In two 
dimensions, the phase space plot corresponding to B matrix 
ranges from -1 to +1 on either axis. This phase space area is 
divided into small square areas of size R×R, originating 
N=2/R grids (being 2/R an integer number). The phase space 
matrix C (dimension R×R), is determined with each element 
C(i,j) equal to the number of phase space points falling into 
the grid g(i,j). A new matrix P is obtained, dividing each 
element of C by M, given by (3). 

, 1

1 ,    ( , )
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i j

P C M C i j
M

=
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Each element P(i,j) represents the probability that a phase 
space point falls into the grid g(i,j). Squaring each element of 
P, the R matrix is determined. Being S the sum of all points 
of R, the spatial filling index (η) is finally obtained as (4). 

2
S

N
η =  (4) 

2. Standard deviation of the curve of C column averages 
Taking the average of each column of C matrix, a curve 

characterizing the distribution of points in the phase space is 
obtained, inspired by the idea of Radon transform [20]. 
Figure 3 depicts examples of these curves, for the NSR, VT 
and VF signal types, revealing their discrimination 
capacities. The second feature is the standard deviation of 
the curve. 

3. Area of the curve of C column averages 
The third feature is the percentage of area in the 

extremities of the curve of C column averages. From Figure 
3, it is clear that the area under this curve can be used to 
distinguish between ECG signal types. As seen, for VT 
signals, the area under the curve near the extremities is 
higher than in the other cases. 
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Figure 3. C matrix column averages: NSR (⎯), VF(…), VT(---). 

 
4. Ellipse based feature 
The fourth feature is based on the phase space points 

distribution. As it is depicted by   Figure 2, in the NSR case, 
the distribution of the points is concentrated on a center; in 
the VT case, the points are grouped in an elliptic shape; in 
the VF case, the points are randomly distributed (by the 
interior, the border and the exterior of the ellipse). The 
number of points in each one of these regions (center, border 
and remaining) is used to discriminate the signals. Given a 
representation of a signal in the phase space the method 
proposed by [21] is used for fitting ellipses to scattered data.  

D. Classifier 
The classifier consists of a dynamic neural network (time 

delay neural network), where the number of hidden neurons 
has been determined experimentally (10): small enough for 
fast training and generality, but sufficiently large to give 
adequate accuracy. The parameters (weights and bias) that 
characterize the NN, have been trained using the Levenberg 
Marquardt algorithm [22]. 

III. VALIDATION RESULTS 
All the functionalities related to databases access, signal 

processing and validation results were implemented in 
Matlab [23]. The input consists of the discrete ECG signal 
(250 samples per second), followed by a normalization and a 
baseline removal process. The algorithm was evaluated by 
windowing five seconds segments. 

A. MIT-BIH Databases and Validation Parameters 
To validate the detection algorithms public databases were 

used: MIT-BIH Malign Arrhythmia Database (MVA) and 
Creighton University Ventricular Tachyarrhythmia Database 
(CVT) [24]. To estimate the quality of the detection 
algorithm, the sensitivity (SE) and the specificity (SP) have 
been evaluated.  

The algorithms effective validation regarding arrhythmias 
evolution trends, was not possible to assess once there are no 
available databases to perform this task. To characterize the 
trends evolution, the variation of the features extracted from 
PSR over the time was correlated with the transition between 
arrhythmias of different natures.  

B. Training 
Regarding validation, a data base of 51 signals was 

created. It contains the three ECG signal classes (table I) and 
the extracted features indicated. For MVA and CVT data 
sets, the number of windows was 420 (35 minutes) and 102 
(8.5 minutes), respectively. The data base was randomly 
divided into training and validation data sets. As mentioned, 
the TDNN was trained using the Levenberg Marquardt 
algorithm and the number of hidden neurons was determined 
experimentally.  

TABLE I 
ECG DATA SET 

Signal NSR VT VF  Signal NSR VT VF 
MVA     CVT    
#418 420 0 0  #009 90 0 12 
#419 420 0 0  #010 63 0 39 
#420 361 59 0  #011 74 0 28 
#421 336 84 0  #012 102 0 0 
#422 380 40 0  #013 90 0 12 
#423 328 92 0  #014 102 0 0 
#424 420 0 0  #015 81 0 21 
#425 414 6 0  #016 79 0 23 
#426 276 13 131  #017 93 0 9 
#427 242 178 0  #018 96 0 6 
#428 408 12 0  #019 93 0 9 
#429 417 3 0  #020 49 0 53 
#430 137 72 211  #022 79 0 23 
#602 339 81 0  #023 81 0 21 
#605 413 7 0  #024 88 0 14 
#607 387 33 0  #025 94 0 8 
#609 418 2 0  #026 86 0 16 
CVT     #027 97 0 5 
#001 43 0 59  #028 99 0 3 
#002 102 0 0  #029 75 0 27 
#003 93 0 9  #030 26 0 76 
#004 47 0 55  #031 99 0 3 
#005 84 0 18  #032 92 0 10 
#006 80 0 22  #033 84 0 18 
#007 36 0 66  #034 89 0 13 
#008 85 0 17  #035 96 0 6 

C. Results and discussion 
The performance of the method, regarding arrhythmias 

detection is presented in table II. The detection results are 
superior when considering independently each data base. 
Applied to all databases the method has a sensitivity of 
92.3% and specificity of 98.2%, revealing its capacity to 
perform detection tasks. 

TABLE II 
CLASSIFICATION PERFORMANCE 

 MVA CVT  
 VT VF VT VF ALL 

Episodes 682 342 0 701 1725 
Sensitivity 92.6 97.6 n.a. 92.8 92.3 
Specificity 94.3 99.2 n.a. 96.4 98.2 

Figure 4 shows the time evolution of the ECG and related 
features, for CVT data base (record #001). As can be seen, 
the features clearly show the transition from a NSR to a VF. 
Figure 5 shows a comparable situation, in the presence of a 
transition from a NSR to a VT (MVA data set, record #420).  
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Figure 4. Features and ECG signal; transition from a NSR to a VF. 

Windows=5 seconds
ECG

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

seconds

Features

-1

-0.5

0

0.5

1

5 10 15 20 25 30 35 40  
Figure 5. Features and ECG signal; transition from a NSR to a VT. 

 
Although some indicators can be captured from the above 

simulations, in the future, these evolution trends will be 
investigated and combined with dynamic modeling tools 
(state space model, for instance). The final goal will be the 
arrhythmias trend prediction and the risk stratification 
assessment, thus a step forward with respect to current 
models related to arrhythmias characterization. 

IV. CONCLUSIONS 
In this paper a strategy for VA characterization was 

proposed, using a phase space reconstruction of the ECG, 
from where some features were extracted. Features from 
current and previous time windows were provided to a 
dynamic neural network classifier, enabling the detection and 
characterization of arrhythmias trends evolution. The 
validation of the algorithms was based on public MIT-BIH 
databases.  

The main goal was to introduce a preliminary strategy able 
to deal with the dynamic characterization of arrhythmias and, 
consequently, for risk stratification and early diagnosis 
issues. Currently, this topic is of fundamental research in the 
context of preventive tools of next generation phealth 
systems. However, there are theoretical and experimental 
challenges, which are potential to further research. Future 
work will be mainly directed to the development of a multi-
parametric analysis system, incorporating other relevant 
aspects in the decision system, namely HRV parameters, 
non-linear and complexity measures. 
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