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Abstract— Heart Failure Management is one of the product 

concepts developed under the FP6 MyHeart project funded by 

European Union. By providing a periodic monitoring of vital 

signals and other parameters, which are locally processed and 

analysed on a personal digital assistant, it is possible to 

continuously evaluate the cardiac condition, symptoms 

progression and arrhythmic events, enabling an early detection 

of heart failure decompensation.  

This work presents the approach followed for the assessment of 

cardiac arrhythmias, with clinical relevance for heart failure 

management. The framework includes algorithms for atrial 

fibrillation and ventricular arrhythmias detection (PVC-

premature ventricular contractions, VT-ventricular tachycardia 

and VF-ventricular fibrillation), that are currently incorporated 

into the patient station of the heart failure management system. 

I. INTRODUCTION 

Roughly 45% of all deaths in Europe are due to 
cardiovascular disease (CVD) and more than 20% of all 
European citizens suffer from a chronic CVD, such as 
myocardial infarction, arrhythmias and congestive heart 
failure. Despite the advances in the treatment of heart failure 
(HF), it is observed that the mortality rate continues to be high. 
Nowadays, close to 50% of deaths in HF are thought to occur 
suddenly [1]. The principal cause of mortality in HF is not 
absolutely clear, but the presence of cardiac arrhythmias 
suggests a reserved prognosis. Atrial fibrillation (AF) and 
ventricular tachyarrhythmia (VA) are the most significant 
rhythm disturbances found in ventricular dysfunction 
(decompensation) both in terms of the number of patients 
affected and the associated mortality and morbidity [2].  

AF is a common arrhythmia with a prevalence of 
approximately 0.4-0.1% in the general population. Prevalence 
increases with age and is estimated to be present in 5% of 
those older than age 65, and 10% of those older than 70. AF is 
associated with an increased risk of stroke and mortality, as 
well as congestive heart failure [3]. The prognostic 
significance of ventricular arrhythmias in the patient with 
decompensated left ventricular function has been examined in 
a number of studies. Data from the GISSI-2 study [4], 
examining 8676 post myocardial infarction patients, showed 

that ventricular arrhythmias were more frequent when signs or 
symptoms of left ventricular damage were present. The 
presence of frequent premature ventricular beats (PVC) was 
found to be an independent risk factor for total mortality and 
sudden death at 6 months.  

Being part of the Heart Failure Management (HFM) 
product concept of the MyHeart project, this work focuses on 
the developed ECG analysis algorithm platform designed to 
detect and to characterize arrhythmic states of the heart (AF 
and VA) with high accuracy. Moreover, the feasibility of 
incorporating the designed algorithms into a personal data 
assistant (PDA) is also a fundamental aspect, since it is the 
form factor of the patient station of the HFM system. In the 
current setup of the HFM system, algorithms run off-line, i.e. 
once signal acquisition has finished. However, both due to 
technical reasons as well as due to user motivation issues, it is 
important that the user is able to obtain a timely response from 
the system and, therefore, the computational efficiency of the 
algorithms is imperative. Thus the goal of this paper is 
twofold: on the one hand, to introduce the designed ECG 
analysis algorithm platform and, on the other hand, to 
demonstrate the feasibility to run the algorithms in a patient 
station implemented using a PDA.  

Based on the analysis of the ECG, several algorithm 
strategies have been proposed and implemented, enabling to 
distinguish between sinus normal rhythms (SNR) and VT/VF 
[5], as well as to distinguish between VT and VF [6]. Several 
authors have investigated template-matching algorithms to 
distinguish SNR from VT and SNR from VF [7]. For 
discrimination between VT and VF several detection methods 
have been developed, such as rate and irregularity analysis, 
correlation waveform analysis, spectral analysis and time-
frequency analysis (including wavelets) and algorithms based 
on complexity measures [7]. Neural networks and fuzzy 
systems have also been applied to VT and VF detection, and 
are recognized as powerful and promising techniques for 
arrhythmia discrimination [8]. Regarding PVC detection, 
measurements of average wave amplitudes, time duration and 
wave areas, have been adopted to extract a set of characteristic 



ECG parameters [9]. Once this set of features has been 
evaluated, several techniques for classification are then 
applied, such as probabilistic approaches, heuristic models, 
knowledge-based systems or neural networks [10].  

Although several cardiac arrhythmias classification 
methods have been proposed, it is observed that usually they 
focus on one specific problem, i.e. AF, PVC, VT or VF 
detection, and only few methods consider the problem of ECG 
analysis as a global/integrated procedure. In this work, an 
integrated framework for life threatening arrhythmias (LTA) 
assessment is proposed. The approach is able to 
simultaneously handle the detection of AF, PVC, VT and VF. 

The paper is organized as follows: in the section 2 an 
outline of the modules that compose the integrated arrhythmia 
analysis method is presented. In section 3 some results using 
public ECG databases are presented and, finally, in section 4, 
some conclusions are drawn. 

II. METHODS 

In the HFM product concept of MyHeart, vital signals 
(ECG and trans-thoracic impedance) will be measured 
according to a defined daily monitoring protocol. According 
to the acquisition protocol, 10 minutes of ECG will be 
collected per day (5 minutes at rest and 5 minutes after a 
physical exercise) using the wearable MyHeart sensors. The 
system integrates a patient station in the form factor of a PDA 
that implements the patient user interface and where 
algorithms will perform local signal analysis. As has already 
been mentioned, the proposed algorithm platform is only 
based on the analysis of characteristics of the ECG signal. To 
extract these characteristics, pre-processing and segmentation 
of ECG is essential. Once these stages have been completed, 
feature extraction methods are applied. The final step consists 
on the classifier implementation, training and validation.  

The functions implemented as part of the framework’s 
toolbox were divided into three main modules (see Fig. 1): 
fiducial point detection, AF detection and ventricular 
arrhythmia (VA) detection. Moreover in VA detection three 
different aspects have been considered: PVC, VA and VF. 
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Fig. 1 Architecture of the LTA assessment algorithm. 

 

A. The ECG analysis platform 

The main modules of the proposed LTA assessment 
scheme are depicted in Fig. 1. The input consists of the 
discrete ECG signal (obtained from wearable sensors) 
followed by the usual pre-processing techniques, i.e. standard 
filters for noise reduction and baseline removal. It should be 
stressed that, in order to enable real-time processing, the ECG 
is evaluated using a sliding window strategy in all modules 
that compose the platform. Two distinct outputs have been 
considered: one for AF assessment and another for VA 
assessment (PVC, VR or VF). 

The proposed approach assumes that the fundamental 
differences in the physiologic origins of sinus rhythm and 
AF/PVC/VT/VF can be discriminated via time analysis of the 
ECG’s morphology and spectral components. The set of 
applied discriminating features have been determined using a 
correlation analysis procedure of the most significant features 
found in literature as well as new features developed during 
this work. These features are provided as inputs to a 
hierarchical NN module enabling the discrimination of 
specific arrhythmias. In this classifier configuration, each 
module discriminates only between two classes. As is well 
known, the achievable accuracy of a given classifier is highly 
dependent on the number of classes present in the input data. 
Clearly, with only two classes each classifier is able to 
provide a superior classification result, due to the lower 
complexity of the mapping function to be identified. This fact 
has justified the design of different neural network classifiers 
with specialized tasks (PVC, VT, VF and AF). Finally, the 
outputs of each neural network are used as inputs to a global 
classifier, based on an ANFIS structure, which provides the 
global result of the ECG analysis algorithm platform. 

B. AF detection 

In order to detect AF events two features have been 
considered as inputs to a neural network classifier: P-waves 
existence and heart rate variability assessed using a Markov 
model. These two features are fed into a feedforward neural 
network classifier to categorize each window of ECG data 
into two classes: with/without AF.  

P wave detection: The absence of P waves during the 
fibrillation process before the QRS complexes is an important 
characteristic of AF episodes. Although ECG segmentation 
methods can be very accurate in the detection of ECG fiducial 
points, it is observed that these algorithms tend to breakdown 
for the detection of P waves during AF episodes. To avoid 
these misclassification errors, a template-based approach is 
proposed. First a model is extracted by averaging all annotated 

P waves found in the QT Database from Physionet (see Fig. 2). 
The existence of a P wave is assessed by the correlation 
coefficient between the P wave candidate and the P wave 
template.  

Heart Rate variability: The second feature relates to the 
variability of the RR interval. Basically, the R-R interval 
sequence is modelled as a three-state Markov process being 
each interval classified as one of the three states S, R, L (short, 



regular or long). Intervals are called short if they do not 
exceed 85% of the mean interval duration, long if they exceed 
115% of the mean interval duration, and regular otherwise. 
Thus, the R-R interval sequence can be assumed as a 
stationary first-order Markov process, characterized by its 
state transition probability matrix [7]. In our approach, the 
regularity of the heart rate is characterised by the probability 
of transition from state R to itself, since this transition is more 
likely to occur when the RR intervals present approximately 
the same length. Since PVCs induce large variability in heart 
rate, they are excluded from the computation of the transition 
matrix in the Markov model (see Fig. 1). 

 

Fig. 2 P wave model extracted from the Physionet QT Database. 

C. PVC detection 

The proposed PVC detection module considers, for each 
beat classification, a comparative analysis using the ECG 
signal in close proximity to the current beat. It has been 
established that every analysis window must contain at least 
10 beats. In order to meet this constraint for real time 
applications the length of the present analysis window is 
estimated based on the heart rate frequency observed in the 
previous window.  

For each beat in a given time window a set of 13 features (fi, 

i=1...13) is extracted (for a complete review, the reader is 
referred to [12]). Some of the features are directly related to 
well defined characteristics of PVCs: R wave length, area and 
centre of mass of QRS complex, T wave deflection and 
amplitude, P wave absence and RR interval variability (Fig. 3).  

 
Fig. 3  Features extracted directly connected to ECG characteristics. 

The remaining features have been defined using feature 
extraction methods based on the morphological derivative, 
spectral and information content.  

Morphology Information: Two features are based on the 
ECG signal’s morphological derivative. It is observed that 
PVC complexes exhibit lower slop before or/and after each R 

peak. The slop from the Q peak to the R peak can be measured 
by calculating the morphological derivative’s peak amplitudes 
in this segment (QRamp, see Fig. 4).  

 
Fig. 4 Comparison of amplitude differences between normal beats and PVCs 

morphologic derivatives. 

Analogously, the slop after the R peak can be represented 
by the amplitude of the RS peak segment (RSamp). An 
approximation to the normal beat R wave left and right slops 
can be estimated by calculating the averages of QR and RS 

amplitudes. Let these be ampQR  and ampRS , respectively. 

The relations between QRamp and ampQR , and the relation 

between RSamp and ampRS , provide two original features,  

equations (1) and (2): 

1

( )
( ) ( ) log ,        1,...,amp

amp

amp
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QR
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Spectral Information: Chick et al. [10] proposed that the 

QRS complexes’ morphology differences between PVCs and 
normal beats might be evaluated using frequency spectrum 
signatures. Namely, PVC spectrums tend to be more 
concentrated in lower frequencies, while spectrums from 
normal beats tend to be more dispersed. The following 
features are based on this observation. The entropy of each 
normalized QRS spectrum assesses the concentration of each 
spectrum. The logarithmic comparison between the entropy 

(H) and the average of all entropies ( H ) leads to the feature 
presented in (3). Another feature is calculated using the 
Kullback–Leibler divergence (Dkl) between every normalized 



spectrum (Sp) and the average of all spectrums ( pS ). This 

feature expresses the similarity between each spectrum and a 
spectrum that is an approximation of a normal QRS complex 
spectrum, according to (4).  
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D. VT and VF detection 

The selection of the most relevant features for VT and VF 
discrimination was performed through a correlation analysis 
procedure. This approach took into consideration a set of 
available features found in literature and developed within this 
work and their dependency with respect to the desired task. 
Concerning temporal domain markers, five morphological 
features were chosen. These represent information about the 
shape of the ECG signal: 

a) PTABT (percentage of time above or below thresholds) 
is defined as the relative amount of time of beat peaks, which 
are above a high threshold or below a low threshold [13]. This 
parameter is a characteristic of the temporal ECG morphology: 
a normal ECG presents a very small PTABT and a ventricular 
tachycardia/fibrillation exhibits a larger value of PTABT. 

b) Another feature was based on an algorithm presented by 
Jekova and Krasteva [14]. Following this approach, a 
particular band pass digital filter is applied to the original 
signal. Then, from the filtered signal a set of time domain 
parameters are extracted, enabling the rhythm classification. 

c) A feature comparable to the heart rate was extracted. 
This feature employs a nonlinear transform, derived from 
multiplication of backward differences, providing an 
estimation of extreme variations in the ECG [15].  

d) Another feature was obtained from a two dimensional 
phase space reconstruction diagram, a tool able to identify 
chaotic behaviour of signals. Fundamentally, if the signal is 
non-chaotic (normal sinus rate), the curve in the phase space 
diagram showing a regular form is concentrated in a restricted 
region of the plot. However, a chaotic signal (VT/VF) 
produces a curve that is uniformly distributed over the entire 
diagram. 

e) For detection of abnormal signal amplitudes and slopes, 
appropriate markers were implemented. These markers were 
evaluated inside a specific window (10 seconds) by assessing 
the portions of small and high derivatives in the ECG signal: i) 
the number of points close to the baseline where the derivative 
is small (signal is almost horizontal) and ii) the number of 
points where the derivative is high (signal is almost vertical). 
The baseline (bLine) as well as the respective derivative 
(dLine) was found. The number of points close to the baseline 

(horizontalP) and the number of points, where the derivative 
is high (verticalP) were computed using (6) and (7): 

( ) ( ) ( )  ( ) - ( )  

       1

If dLine i lowT AND ecg i bLine i baseT

horizontalP horizontalP

< <

= +

 

(6) 

( ) ( )

     1

If dLine i highT

VerticalP verticalP

>

= +

 (7) 

Variables lowT, highT and baseT define three thresholds, 
which are established based on the amplitude of the ECG 
signal. The number of points (horizontalP and verticalP) is 
evaluated for every window and allows the estimation of the 
time interval where the signal is almost horizontal or vertical. 

Global classifier 

A global classifier implemented using an ANFIS (Adaptive-

Network-Based Fuzzy Inference System) scheme forms the 
final stage of the proposed algorithm platform. This classifier 
performs the decision-making, based on the outputs of the 
simple two-class NN classifiers applied for each ventricular 
arrhythmia, deciding on whether the current signal is a normal 
or abnormal signal, i.e. if it is NSR, PVC, VT or VF.  

For this classifier, hybrid learning algorithm was 
implemented, combining the subtractive clustering technique 
with the least-squares method. Subtractive clustering has been 
utilized to partition the training sets and to generate the 
structure, i.e., to determine the number of rules and 
membership function parameters (the membership functions 
of the input fuzzy sets were selected in the form of Gaussian 
functions). The parameters (weights) associated with the 
membership functions were tuned using the least square 
method. 

III. VALIDATION  

In a first phase, all the functionalities related to database 
access, signal processing, network and ANFIS training, as 
well as validation results were implemented in Matlab. In a 
second phase the Matlab code was manually ported to C 
language, integrated and tested in the portable device (PDA). 

A. Training and Validation 

In order to train and to validate the module developed for AF 
detection, a comparative study using the MIT Atrial 
Fibrillation database has been employed. This database 
includes twenty-three ECG recording of paroxysmal AF 
patients, i.e. containing AF episodes and NSR. Five 
recordings (ID: 05091, 07162, 07859, 08405 and 08455) have 
been excluded from the analysis, due to the fact that they 
exhibit mainly very short duration AF episodes. Using the 
remain eighteen records, a total ECG signal duration of 7937 
minutes have been used to validate the module, including 
246600 heart beats of AF episodes and 435600 heart beats of 
NSR episodes. 

The PVC detection algorithm validation has been 
performed using 46 of 48 MIT-BIH database records. Non 
MLII lead configurations records have been removed from the 
training and testing datasets, preserving coherence in the 



morphological characteristics of ECG records. 1965 PVCs and 
11250 normal QRS complexes from the aforementioned 
dataset, compose the training dataset. Validation was 
performed using all 46 dataset records (6595 PVCs and 95893 
normal beats). 

To validate the VT/VF module of the algorithm, the 
following public databases were employed: MIT-BIH 
Arrhythmia Database (MIT) [16], MIT-BIH Malign 
Arrhythmia Database (MVA) [17] and Creighton University 
Ventricular Tachyarrhythmia Database (CVT) [18].  

In a first phase, NN and ANFIS structure were trained and 
validated independently for each database. In a second phase, 
the training was performed taking into account simultaneously 
all available databases. In both cases the training data was 
carefully selected in order to include representative examples 
of the arrhythmias under study. The validation was performed 
using randomly data from these databases. The NNs were 
trained using the Levenberg-Marquardt algorithm and the 
number of hidden neurons was determined experimentally. 
The ANFIS structure and training was performed through a 
hybrid learning algorithm. The subtractive clustering method 
with ra=0.2 (neighbourhood radius) was used to partition the 
training sets and generating the FIS structure. 

B. Results and discussion 

The achieved results by the algorithm platform regarding 
sensitivity and specificity for each of the arrhythmia 
assessment tasks are presented in Table II through Table IV. 
Table I presents the achieved processing times using a QTeK-
S200 PDA. 

TABLE I – AVERAGE PROCESSING TIME OF 10 SECONDS OF ECG ON A S200 

PDA FROM QTEK. 

Module Time (Seconds) 

Segmentation 4.8 
AF Detection 7.9 

PVC Detection 0.4 
VA Detection 16.7 

TABLE II – RESULTS ON AF DETECTION. 

 Se(%) Sp(%) 

**   
**   

TABLE III – RESULTS ON PVC DETECTION. 

 Se(%) Sp(%) 

Proposed Algorithm 96.35 99.15 
Jekova et al. [19] 93.30 97.30 
Christov et al. [20] 96.90 96.70 
Christov and Bortolan [21] 98.50 99.70 

TABLE IV- VT/VF CLASSIFICATION PERFORMANCE. 

Database MIT MVA CVT All 

Se (%) 99.7 90.7 91.8 89.3 
Sp (%) 98.8 95.0 96.9 94.1 

 
**AF 
The achieved results regarding PVC detection performance 

are presented and compared in Table III with state of the art 

algorithms. The values shown for the later are those reported 
by their respective authors. The sensitivity and specificity 
achieved by the proposed algorithm are 96.35% and 99.15%, 
respectively. Comparing these values with those of the 
algorithms reported in literature, it is observed that the 
proposed algorithm reveals very accurate classification 
results. Christov and Bortolan [21] present higher sensitivity 
(+2.15%) and slightly higher specificity (+0.55%) than the 
proposed algorithm. However, it should be noted that the 
algorithm proposed by these authors is based on two ECG leads 
and 26 features, while the proposed algorithm is based on only 
one ECG lead and a much lower number of features. Another 
advantage of the proposed PVC detection module is that it is 
more patient invariant than other state-of-the-art PVC 
algorithms, since it uses features that rely on local relative 
comparisons of ECG properties instead of global absolute 
values. As can be inferred from table I, the achieved solution 
enables real-time processing for PVC detection, since on 
average, the method requires 0.4 sec. of processing time in the 
PDA for each 10 sec. window of ECG signal.  

The performance of the algorithm for VT and VF 
(MIT/MVA/CVT) detection are presented in Table IV. As can 
be observed, the detection results are higher when considering 
independently each database. Applied to all databases the 
method has a sensitivity of 89.3% and specificity of 94.1%. 
This has mainly to do with dubious annotations in some 
signals of the publicly available databases. For instance, in fig. 
5, two ECG signals from the MVA (record 421) and CVT 
databases (record 07) are shown. One has been annotated as a 
VT (fig. 5 a)), while the other one has been annotated as a 
sinus normal rate (fig. 5 b)). Obviously, recognition of signals 
of this kind is a challenge to the algorithm and should be dealt 
with in further studies.  
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Fig. 5. Examples of incorrectly classification ECG signals. 
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IV. CONCLUSIONS 

In this paper the integrated ECG analysis algorithm 
platform developed for the HFM product concept of MyHeart 
was introduced. The proposed architecture is modular and 
enables the simultaneous detection of the most significant 
cardiac arrhythmias in heart failure management, i.e. AF, PVC, 
VT and VF detection. It should be stressed that all modules of 
the algorithm have been designed to operate on short signal 
windows (typically in the order of 10 seconds). This has the 
potential to enable real-time operation, which is a significant 
aspect for many home monitoring eHealth applications. This 



is a significant result, since most of the few available 
integrated analysis algorithms require significant durations of 
ECG to perform arrhythmia analysis.    

 The results obtained, by implementing the algorithm in a 
PDA with a standard CPU, demonstrate that it is possible to 
run the algorithms in real-time, if required. In our current 
implementation this is clearly not possible (nor was it the goal 
of the application), since processing time is larger than the 
analysis window duration. However, it should be stressed that 
there is a considerable margin for code optimization (e.g. in 
our implementation floating point arithmetic was used instead 
of fixed point or integer arithmetic), which could enable real-
time realization if required.  

The validation of the algorithms was based on public 
databases. Classification results show that the proposed 
approach can be used to discriminate between different types 
of arrhythmia with state of the art accuracy. However, to 
evaluate effectively the developed algorithms, their 
performance has to be tested in real conditions. Under these 
circumstances, some modules have to be probably improved, 
to maintain/increase the obtained sensitivity and specificity 
and to assure robustness to changes in real measurements 
conditions (including noise and misunderstand events). This 
will be performed in a very near future using the data 
collected during the observational study that is planned for the 
HFM concept of MyHeart. 
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