
PEER-TO-PEER TECHNIQUES FOR DATA DISTRIBUTION
IN DESKTOP GRID COMPUTING PLATFORMS

Fernando Costa, Luis Silva
CISUC, Dep Eng Informatica,
University of Coimbra,
Portugal
flcosta@student.dei.uc.pt

luis@dei.uc.pt

Ian Kelley, Ian Taylor
School of Computer Science,
Cardiff University,
United Kingdom
and
Center for Computation & Technology
Louisiana State University,
United States
I.R.Kelley@cs.cardiff.ac.uk

Ian.J.Taylor@cs.cardiff.ac.uk

Abstract In this paper, we discuss how Peer-to-Peer data distribution techniques can be
adapted to Desktop Grid computing environments, particularly to the BOINC
platform. To date, Desktop Grid systems have focused primarily on utilizing
spare CPU cycles, yet have neglected to take advantage of client network capa-
bilities. Leveraging client bandwidth will not only benefit current projects by
lowering their overheads but will also facilitate Destkop Grid adoption by data-
heavy applications. We propose two approaches to Peer-to-Peer data sharing
that could be adapted for volunteer computing platforms: the highly success-
ful BitTorrent protocol; and a secure and customizable Peer-to-Peer data center
approach.

Keywords: Peer-to-Peer, P2P, BitTorrent, P2P-ADICS, P2PS, BOINC



2

1. Introduction
Desktop Grids have been extremely successful in bringing large numbers of

donated computing systems together to form computing communities with vast
resource pools. These types of systems are well suited to perform highly par-
allel computations that do not require any interaction between network partici-
pants. Currently, the most successful Desktop Grid systems are volunteer com-
puting platforms such as the Berkeley Open Infrastructure for Network Com-
puting (BOINC), which rely on donated computer cycles from ordinary citizen
communities. BOINC is currently being successfully used by many projects
to analyze data, and with a supportive user community can provide compute
power to rival that of the world’s supercomputers. In the current implementa-
tion of these systems, network topology is restricted to a strict master/worker
scheme, generally with a fixed set of centrally managed project computers dis-
tributing and retrieving results from network participants. The potentially large
user communities that become involved in volunteer computing initiatives can
easily result in large network requirements for host projects, forcing them to
upgrade their computer hardware and network availability as their projects rise
in popularity.

These centralized data architectures currently employed by BOINC and
other Desktop Grid systems, can be a potential bottleneck when tasks share
large input files or the central server has limited bandwidth. With new data
management technologies, Desktop Grid users will be able to explore new
types of data-intensive application scenarios – ones that are currently overly
prohibitive given their large data transfer needs. This lack of a robust data
solution often discourages application developers from embracing a Desktop
Grid environment, or forces users to scale back their applications to only prob-
lems that do not rely upon large data sets. There are many applications that,
given more robust data capabilities, could either expand their current problem
scope, or migrate to a Desktop Grid environment.

Peer-to-Peer (P2P) data sharing techniques can be used to introduce a new
kind of data distribution system for volunteer and Desktop Grid projects –
one that takes advantage of client-side network capabilities. This functional-
ity could be implemented in a variety of forms, ranging from BitTorrent-style
networks where all participants share equally, to more constrained and cus-
tomizable unstructured P2P networks where certain groups are in charge of
data distribution and discovery. These approaches, although similar in nature,
each have their own distinct advantages and disadvantages, especially when
considered in relation to a scientific research community utilizing volunteer
resources. In this paper, we make the argument for P2P data distribution, dis-
cuss the relative advantages and disadvantages of these two approaches, and



P2P Techniques for Data Distribution in Desktop Grid Computing Platforms 3

explore how they could be applied to the Desktop Grid community, with par-
ticular emphasis on BOINC.

This paper is organized as follows: section 2 gives background on the tech-
nologies involved; section 3 introduces related work; section 4 discusses how
P2P technologies could be applied to Desktop Grid systems such as BOINC;
section 5 introduces how the BitTorrent protocol could be used in this facil-
ity; section 6 presents a more complex data center approach; and, section 7
concludes.

2. Background
To begin the discussion on how P2P technologies can be integrated into

Desktop Grids, and specifically BOINC, it is advantageous to first give a brief
overview of the software technologies involved. Naturally, there are many [3]
[14][21] Peer-to-Peer technologies available, and several different systems that
can be classified as Desktop Grids [1][6][11][15], however, for the purposes of
this paper, we are going to limit our scope to exploring how the very popu-
lar BitTorrent protocol, as well as another in-development secure data center
approach can both be applied to the most widespread “volunteer computing”
Desktop Grid platform, the Berkeley Open Infrastructure for Network Com-
puting (BOINC).

The Berkeley Open Infrastructure for Network Computing (BOINC) [1]
[4] is a software platform for distributed computation using otherwise idle
cycles from volunteered computing resources. BOINC’s use is widespread,
with many different and varying projects employing the core infrastructure
to distribute their data processing jobs. The diverse scientific domains utiliz-
ing BOINC range from gravitational wave analysis, to protein folding, to the
search for extraterrestrial life [22]. Although these projects are diverse in their
scientific nature, each one has something in common with the others: they have
work units that can be easily distributed to run autonomously in a highly dis-
tributed and volatile environment. To achieve this task, each project must not
only prepare its data and executable code to work with the BOINC libraries
and client/server infrastructure, but they must also setup and maintain their
own individual servers and databases to manage the project’s data distribution
and result aggregation. BOINC has been highly successful, and to date, over
5 million participants have joined various BOINC projects, giving an overall
computing power equivalent to 450 TeraFlops [2].

BitTorrent [7] is a popular file distribution protocol based on the P2P paradigm.
However, unlike other well-known P2P applications such as Gnutella or KaZaA,
which incorporate peer and file discovery algorithms, BitTorrent’s focus is
more on optimising the distributed of files by enabling multiple download
sources through the use of file partitioning, tracking and file swarming tech-



4

niques. The main idea of BitTorrent is the collaboration between users ac-
cessing the same file by sharing chunks of the file with each other. To obtain
information about the file to download, a peer must download a corresponding
.torrent file. This file contains the file’s length, name and hashing information,
and the url of a tracker, which keeps a global registry of all the peers sharing
the file. Trackers help peers establish connections between themselves by re-
sponding to a user’s file request with a partial list of the peers having (parts, or
chunks of) the file. A tracker does not participate in the actual file distribution,
and each peer decides locally which data to download based on data collected
from its neighbors. Therefore, each peer is responsible for maximizing its own
download rate. Peers do this by downloading from whoever they can and de-
ciding which peers to upload to via a variant of tit-for-tat policy to prevent
parasitic behavior.

The Peer-to-Peer Architecture for Data-Intensive Cycle Sharing (P2P-ADICS)
[16] is a research and development project at Cardiff University, working to
build a multi-purpose and adaptable super-peer architecture for data caching
that can be used by scientific applications to distribute large data files and large
data sets in Desktop Grid environments. P2P-ADICS’s is being designed with
the scientific user in mind, taking into account such issues as customizable
network membership and data security policies, as well as the more traditional
scalability challenges. For its low-level network building layer, P2P-ADICS
is currently relying on a software package entitled “Peer-to-Peer Simplified,”
or P2PS [19], which is also being developed by the same group. P2PS is a
light-weight system for building decentralized Peer-to-Peer networks, and is
similar in nature to JXTA, however it is more focused on the fundamental net-
work building tools and provides much simpler mechanisms for advertisement
queries and service discovery. P2PS can be used by a variety of applications
to construct P2P overlay networks, for a variety of purposes, including data
exchange and caching.

3. Related Work
The creation of Condor [15], as one of the first Grid Computing middleware

projects, paved the way for numerous Desktop Grid projects, that, instead of
harnessing computational power from clusters on organizations, sought to take
advantage of the internet and distributed desktop users. Many of these projects
follow a centralized architecture [1][6][18], using a data distribution system
that has one (or few when using mirrors) point of failure. To distribute data
sharing, numerous alternatives are available today, in the form P2P file sharing
systems or data storage systems. In this section we discuss some of the more
significant ones as they relate to the work proposed here.



P2P Techniques for Data Distribution in Desktop Grid Computing Platforms 5

OceanStore [12] is a global, distributed, Internet-based storage infrastruc-
ture. It consists of cooperating servers, which work as both server and client.
The data is split up in fragments which are stored redundantly on the servers.
For search, OceanStore provides the Tapestry [21] subsystem, and updates are
performed by using Byzantine consensus protocol. This adds an unnecessary
overhead since file search is not a requisite for BOINC, and supporting repli-
cation implies the use of a distributed locking service, which incurs further
performance penalties. Farsite also uses the Byzantine agreement protocol to
establish trust within an untrusted environment. Farsite aims to provide the
user with persistent non-volatile storage with a filesystem like interface, by
utilizing unused storage from user workstations, whilst operating within the
boundaries of an institution.

Freeloader [17] aggregates unused desktop storage space and I/O bandwidth
into a shared cache/scratch space, for hosting large, immutable datasets and
exploiting data access locality. It is designed for large scientific results (outputs
of simulations. The overall architecture of Freeloader shares many similarities
to Google File System. GFS is a distributed storage solution which scales in
performance and capacity whilst being resilient to hardware failures. GFS was
designed to operate in a trusted environment, where the application is the main
influence of usage patterns. The GFS typical file size was expected to be in the
order of GB’s and the application workload would consist of large continuous
reads and writes, which does not apply to the BOINC environment.

Gnutella [9] is a decentralized file-sharing system whose participants form
a virtual network, communicating via the Gnutella protocol, which is a simple
protocol for distributed file search. To participate in Gnutella a peer first must
connect to a known Gnutella host (host lists are available on specialized sites).

KaZaA [14] is similar to Gnutella, although it extends upon this by exploit-
ing peer heterogeneity and organizing the peers into two classes, Super Nodes
(SNs) and Ordinary Nodes (ONs). SNs are generally more powerful in terms
of connectivity, bandwidth, processing, and are not behind NAT systems. In
order to bypass firewall and NAT systems, KaZaA uses dynamic port numbers
along with a hierarchical design where a node can act as a relay between two
other nodes. Like Gnutella, KaZaA’s file discovery mechanism creates unnec-
essary traffic, and its Super Node architecture applied to data distribution on
BOINC could generate an unacceptable level of network traffic while relaying
requests.

4. Applying a Peer-to-Peer Data Architecture to BOINC
The BOINC architecture is based on a strict master/worker model, with a

central server responsible for dividing applications in thousands of small inde-
pendent tasks and then distributing the tasks to participants, or worker nodes, as



6

they request work units. To simplify network communication and bypass any
NAT problems that might arise with bidirectional communication, the central-
ized server never initiates communication with worker nodes, rather all com-
munication is instantiated from the worker when more work is needed or re-
sults are ready for submission. In the current implementation of BOINC, data
distribution and scaling is achieved though the use of multiple centralized and
mirrored HTTP servers that share data with the entire network.

The centralized architecture of BOINC not only creates a single, or in the
case of mirrored servers, small number of failure points and potential bottle-
necks, but it also fails to take advantage of the client-side network bandwidth
and capabilities. If client-side network bandwidth could be successfully uti-
lized to distribute data sets, not only would it allow for larger data files to
be distributed, but it would also minimize the needed network capabilities of
BOINC projects, thereby substantially lowering operation costs. To decentral-
ize the current model as it relates to data, we propose using a Peer-to-Peer data
distribution approach.

When considering the practical application of P2P technologies to the “pro-
duction” BOINC environment, several concerns must be adequately addressed
if the solution is to be successful. For the purposes of this paper, we have
chosen to focus on the following four:

Router Configuration — a Peer-to-Peer infrastructure would have to
have a way to automatically configure routers or somehow bypass NAT
issues through use of relaying severs
Data Integrity — mechanisms for identifying hosts that supply bad
data, and subsequently banning them from the network or having ways
to avoid using them
Adaptable Network Topology — ability to not only adapt on the wide
area network, but also to detect and exploit local area network topologies
and relative proximity
BOINC Integration — any new technology must be easy to integrate
with current BOINC client software, in practice this means a C++ im-
plementation or binding

4.1 Case Study of Two Selected P2P Approaches
Applying a P2P data distribution approach could be achieved in a variety of

forms. In this paper, we discuss two implementations: one that uses a central-
ized tracker, as in BitTorrent where worker-nodes each share data, discussed
in section 5; and the other that employs the use of decentralized data servers,
built using a super-peer topology, which could be configured to limit data shar-
ing participants based upon project defined security constraints, presented in
section 6. In the latter case, these policies could be implemented to have the
data layer mimic the currently used system of a few known and trusted peers,



P2P Techniques for Data Distribution in Desktop Grid Computing Platforms 7

yet would scale as the network size or data loads increase (by requesting more
trusted peers to become data centers). Either of these types of systems would
be especially beneficial to projects that: have large input files; use the same
input file for several work units; and/or, have limited or slow outbound connec-
tions from the central project server. In the rest of the paper, we will present
these two different approaches in more detail, and outline what they would
require to be applied to a BOINC application.

5. Approach 1: Adapted BitTorrent for Data Distribution
In order to integrate BitTorrent in BOINC, the main BOINC server code

remains relatively unchanged but a tracker is needed to co-ordinate the down-
loads. The tracker manages the .torrent file once it is created, and acts as the
first seed in the network. On the client side, not only is a BitTorrent client
needed to download and share the file, but changes to the BOINC client code
would be required. This is due to several reasons but mainly concerned with
the starting and stopping of the BitTorrent client, as well as handling its errors
and managing its execution requirements, such as downloading and rebuilding
files, verifying signatures, and removing obsolete .torrents.

There are some advantages and disadvantages to implement a pure BitTor-
rent solution. The advantages are many, for example, BitTorrent: has proven
itself to be an efficient and low-overhead means of distributing data; can scale
easily to large numbers of participants; and has built-in functionality to ensure
relatively equal sharing ratios [10]. Some of these advantages however turn
into disadvantages when trying to apply BitTorrent to a volunteer computing
platform. On account of its flat topology, BitTorrent only works if enough
nodes in its network are listening for incoming connections, which can prove
problematic when confronted with firewalls and NAT systems. Another po-
tential disadvantage when applying BitTorrent to the volunteering computing
platform its “tit-for-tat” sharing requirements, which forces most participants
to share on a relatively equal scale to what they are receiving. Although this
proves quite effective for preventing selfish file-sharing on traditional home
networking systems, it is not necessarily a requirement when applying P2P
technologies to volunteer computing. For example, in the volunteer computing
case, not everyone may wish to be a BitTorrent node but they may wish to of-
fer their CPU time to a project. So, in the pure tit-for-tat BitTorrent world, this
would not be possible.

In the following, the four target issues identified earlier in section 4 are
discussed, with a brief overview of how they relate to BitTorrent integration.

Firewall & Router Configuration — BitTorrent, as other P2P protocols, is
based on a two-way communication between peers. Every peer, seed
or not, is supposed to accept requests for chunks from other peers, and



8

therefore must allow incoming connections, by opening the BitTorrent
port (usually in the 6881– 6889 range) in their routers/firewalls. In a Bit-
Torrent swarm, should no peer accept incoming connections (including
the initial seed), the system would not work.

There is no easy answer for this problem, faced by most P2P protocols.
If both clients are behind symmetric NATs, the only solution is to use
a relay server, possibly a node with a public IP that would act as an
intermediary between two clients. This methodology is used by Skype,
but it would prove disastrous in this case, given the size of the shared
files, causing an excessive overhead on the relay. For non-symmetric
NATs, hole punching techniques could be used, but it would involve
changes in the BitTorrent core software layer, which is beyond the scope
of this paper.

Malicious Users — The integration of BitTorrent would bring new security
issues to BOINC, and creates more possibilities for malicious users to
exploit the system. The BitTorrent protocol itself does not strictly en-
force fairness and exploits are possible, but the use of a central tracker
decreases the danger of malicious attacks. Hashing prevents bad data
from being propagated across the network, and small chunk sizes can be
used to avoid downloading too much corrupted data. An additional level
of security is provided by certain BitTorrent clients like Azureus [23],
that bans peers that share bad data. The “original” BitTorrent client
by Bram Cohen [7] also incorporates a similar mechanism by default,
with the tag –retaliate to garbled data, which refuses further connec-
tions from addresses with broken or intentionally hostile peers.

Therefore, the main problem with BitTorrent is not in the protocol itself,
but rather in the peer swarms which allow BOINC users to obtain a list
of other users that are downloading the same file (and possibly executing
the same work unit). A client could send consecutive requests for peer
lists to the tracker, and build a comprehensive database of peers shar-
ing a file. Should a user from the list answer the attacker and agree to
cooperate with him, or become compromised, several negative scenar-
ios would be possible. For example, both users could report bad results
that would be marked as correct if there was not enough replication (in
practice, this number is not higher than three, so two users would build
a quorum), or they could report a much higher computation time/value
than they had to use in an attempt to obtain more credits. A possible
solution for this problem would be a trust-based system, where peers
would have a reputation based on their past actions.

Exploiting Network Topology — Another possible advantage of the Bit-
Torrent protocol would be the possibility to take advantage of the net-
work topology. Clients could give a higher priority to peers on the



P2P Techniques for Data Distribution in Desktop Grid Computing Platforms 9

same Local Area Network, reducing the traffic generated to the out-
side. Bram Cohen’s BitTorrent client has an option turned on by de-
fault, –use local discovery, that scans the local network for other clients
with the desired content. Another possibility is using an approach sim-
ilar to the one used in the Julia Content Distribution Network [5], in
which nodes gather statistics about the network conditions as the down-
load progresses, and then contact closer nodes (in terms of latency and
bandwidth).

Integration with BOINC — To allow for an easy integration with BOINC,
the current prototype implementation has been completed in the same
language as BOINC, C++. This minimized the conflicts and number of
additional software packages needed. Additionally, a failure in the Bit-
Torrent data distribution would simply cause a fallback to the standard
centralized nature that BOINC currently implements.

5.1 Proposed Scenario
In this new architecture a BitTorrent tracker is installed on the central server,

and a port is defined to receive client requests (normally 6881). We decided
to use a centralized tracker because the decentralized alternative is very recent,
and the maintenance and construction of the DHT requires each peer to main-
tain an

Figure 1. BT BOINC file transfer

orthogonal set of neighbors within the
DHT, and pay the communication costs of
maintaining the DHT in the face of high
rates of churn [13]. A .torrent file is created
for every input file that should be down-
loaded through BitTorrent, pointing to the
tracker in the central server: file.data ->
file.data.torrent. The original file and its
torrent counterpart are hosted on a project
data server. To start sharing the file, the
BOINC server must run a BitTorrent client
to act as a seed and announce itself to the
tracker.

The .torrent file is related to the data
file through the work unit. When creating
work, a tag <bittorrent/> is added to the file
info of the data file in the work unit tem-
plate and the .torrent file itself is added as

an input file.
Figure 1 shows the architecture and highlights the steps of a file transfer:

(1) the client contacts the scheduler and asks for work. The scheduler then



10

replies with a given work unit and a reference to a .torrent file that represents an
input file made available via BitTorrent. The client then downloads the .torrent
file through normal HTTP; (2) after downloading the .torrent file, the BOINC
client initiates the local BitTorrent client with the .torrent as an argument. The
BitTorrent library then contacts the tracker defined on the file and receives list
of peers; finally, (3) the client contacts the chosen peers and the BitTorrent
protocol is used to download the subsequent file chunks and re-assemble the
input file for processing by the local BOINC client.

This architecture can help reduce the load on the server and possibly im-
prove transfer times for projects where input files are large and shared by many
work units. It can provide new opportunities for projects that were previously
limited by bandwidth issues on their server and, by improving the data distri-
bution, speeding up the scientific research behind the projects. On the other
hand, this approach is likely to be received with skepticism, if not resistance,
for two main reasons: (i) users are not willing to share their bandwidth when
there is no direct benefit - network utilization is not a contributing factor to the
credit ratings - and the alternative works; (ii) BitTorrent, like other P2P sys-
tems, is normally associated with piracy and illegal downloads, which taints
its reputation; and, (iii) besides motivation, security can also be an issue since,
to operate in good conditions, ports must be opened which increases users’
vulnerabilities (not necessarily because of the BitTorrent protocol).

Recent experiments on the XtremWeb platform using BitTorrent showed
promise [20], and should be and indicator of what to expect in this case. It
is important to run experiments on a medium to large scale to ascertain the
impact of the BitTorrent protocol on BOINC, and to determine the scenarios
on which it will have the best performance. We expect to find a crossover
point in performance in terms of file size and number of nodes sharing the file
between the original BOINC and this version.

6. Approach 2: Super-Peers and Secure Data Centers
BitTorrent can fairly effectively solve the data needs of BOINC as they re-

late strictly to distribution. However, it has limited security beyond ensuring
file integrity and has no notion of grouping or peer hierarchy. For volunteer
computing communities, security can be a much larger issue than simply guar-
anteeing data validity. Due to the sensitive and vulnerable nature of Desktop
Grids, and in particular volunteer networks used for research purposes, whose
user community is volatile, it is critical not only for data integrity and reliabil-
ity to be ensured, but also that peer nodes are secure from malicious attacks.
This requires a number of steps, and can be implemented in a variety of fash-
ions, each with their own benefits and tradeoffs. The easiest, and perhaps most
susceptible to attacks is a pure P2P network, in which any node is allowed to



P2P Techniques for Data Distribution in Desktop Grid Computing Platforms 11

receive and share information with any other node on the network, as BitTor-
rent does. Although this is perhaps the most efficient use of a P2P network, and
could potentially reap the largest rewards as far as potential disk space capacity
and network bandwidth utilization, it is also the most dangerous, given its re-
quirements for opening ports and generalized policy that all nodes participate
on an equal level. Since any node in this scenario has the capability to flood the
network with false information, regardless of whether it is later discarded as
invalid, the probability that this will happen is much greater than in a restricted
network, where only “trusted” peers are allowed to act as data providers and
message relaying, or rendezvous, nodes.

Secure data centers are a way of implementing a super-peer topology for
data sharing that would restrict the set of peers that are allowed allowed to
propagate data. In this scenario, policies could be set by each BOINC project
as to which participants, if any, are allowed to host and redistribute data. Be-
yond simply restricting data center membership, policies could also be intro-
duced to govern the relative sensitivity of data and retention policies. Adding
these new types of functionality would allow for more advanced scenarios,
although with the additional costs of software and network complexity.

The Secure Data Center ideas discussed here are currently in the process of
being implemented in the form of a software middleware entitled “Peer-to-Peer
Architecture for Data-Intensive Cycle Sharing” (P2P-ADICS) [16], which was
briefly introduced in section 2. P2P-ADICS is building a super-peer architec-
ture for data sharing that focuses on allowing for the dynamic configuration of
group

Figure 2. Snapshot of example P2P-ADICS
network topology after initial discovery phase.

membership that facilitates creating
secured data-caching overlay net-
works that coexist with the conven-
tional super-peer discovery overlay
for bootstrapping purposes.

In this scenario, to implement the
data sharing aspects of BOINC, a
new overlay network would be cre-
ated which contains only those nodes
that have been promoted to data-
centers, within this overlay, data cen-
ters propagatedata amongst them-
selves and serve requests to the un-
derlying worker layer.

Figure 2 gives a visual represen-
tation of how the different components in this network relate to one-another,
after the initial discovery process has taken place. In this discovery phase (not
pictured), a worker node sends a request to known access points on the data



12

center overlay, which responds with an updated list of data centers that the
worker node can use to harvest data. Failing to discovery anyone, the worker
node will directly contact the data provider to request a data center reference.

In the following, the four target issues identified earlier in section 4 are
discussed, with a brief overview of how they relate to Secure Data Center inte-
gration, and the preliminary implementation states of P2P-ADICS.

Firewall & Router Configuration — Depending on an individual projects
configuration, firewall and router issues could be a potential problem, or
a complete non-issue. In a free-for-all system where any member node
was permitted to be a data center, there could obviously be problems
with that node being behind a NAT, and the tradeoff between “punching
holes” in the firewall and the potential benefit of the node’s available
network bandwidth would have to be determined. For more restricted
systems, in which pre-specified static or semi-dynamic nodes are dy-
namically promoted to be data centers as the network requires, firewall
and router issues could be minimized, for example, through enforcing el-
igibility criteria for data centers to only those nodes that have a publicly
addressable network space. In this instance, semi-dynamic, is referring
to nodes that have gone through some pre-screening that verifies them as
good candidates for data-centers, such as obtaining a specific certificate
or accumulated substantial project credits. However, when they actually
perform as data centers is determined dynamically based upon network
properties.

Current design of P2P-ADICS is working with the assumption that a
more secured sharing will be desired and enforced, which requires data
center peers to be publicly accessible machines, thereby for the moment
forgoing the potential pitfalls of attempting to implement automatic fire-
wall configuration, leaving this as a future implementation issue.

Malicious Users — As with Firewall & Router Configuration, the issue of
how much relative freedom network participants have to manipulate the
network will depend on the individual policies of each hosting project.
In the most restrictive case, the only nodes that would be allowed to
propagate data would be well known and trusted, thereby affording the
same level of security currently available in the centralized network. In
looser security configurations, which are configured to harvest more par-
ticipant network resources, the security issues would be roughly equiv-
alent to BitTorrent as discussed in section 5. The advantage of the sys-
tem proposed here is there are middle-ground options that lying between
these two extreme alternatives that could be exploited.

P2P-ADICS relies on the data signing and validation procedures cur-
rently utilized by BOINC, which essentially guarantee that requested



P2P Techniques for Data Distribution in Desktop Grid Computing Platforms 13

data will be what is ultimately retrieved. However, to effectively dis-
tribute a single data file from multiple data centers to an individual host,
BitTorrent-style file-swarming techniques are being investigated, which
require two-level hashing of data, once on the individual chunks, and
once on the entire file. Therefore, this additional chunk-level hashing is
in the process of being implemented in an attempt to prevent malicious
users from propagating “bad chunks,” to the network.

Exploiting Network Topology — Similar to the mechanisms employed by
BitTorrent and the Julia Content Distribution Network [5], network prox-
imity would have to be determined to adequately map nodes and decide
if any are on a local network. However, if the network parameters are set
to limit the participants to known hosts, then the likelihood of internal
LAN nodes being available to a given peer as a data center is signifi-
cantly diminished. In these cases, a two-tier system of data servers is
envisioned: one, in the traditional case, which meets certain selection
criteria, but is available on the larger network via a public address; and
another which has also met the selection criteria for a “trusted node” yet
is unavailable to the larger network, however is available to distribute
files to local peers. Alternatively, LAN data centers could have lower
security requirements placed upon them, as the data is digital signed to
verify integrity, however, this could allow for malicious exploits involv-
ing the reporting of false results should multiple recipients on the same
LAN be given identical tasks to compute.

P2P-ADICS, through its underlying reliance on P2PS currently uses
UDP multicasting for LAN discovery of data servers, and KaZaA-style
“known peers” for WAN discovery. As the project progresses, technolo-
gies such as those employed by the Julia Content Distribution Network
will be explored for more advanced network topology exploitation.

Integration with BOINC — The Secure Data Center approaches outlined
here, in the form of P2P-ADICS, would demand more radical changes
and a larger software stack than the BitTorrent implementation proposed
in the previous section. This is primarily due to two distinct areas: in-
ternal integration with BOINC and external library dependencies. Re-
garding internal integration, the BitTorrent solutions are fairly straight-
forward, the centralized HTTP server contact address is simply replaced
with the corresponding tracker. In the off chance case in which no peers
are mirroring the data, the client simply downloads from the centralized
server, as it would have under the current implementation. For P2P-
ADICS, to ensure a comparable level of certainty, an if/else statement
would have to be injected into the client code, whereby if a lookup on the
P2P network failed, clients could resort to traditional download means.



14

Although this solution adequately manages the problem, it could incur
severe latencies if not implemented correctly.

Regarding external library dependencies, BitTorrent solutions could only
require the addition of a single C++ BitTorrent libary, which could be
used to broker BitTorrent downloads. P2P-ADICS is currently being
built atop P2PS, which is implemented in Java. This creates a client de-
pendency on a JRE. There are two possible solutions to this problem:
(i) add a JRE to the required software to run BOINC, which could po-
tentially limit adoption of P2P-ADICS; and, (ii) create a light-weight
client-side C++ implementation of the P2P-ADICS client download ca-
pabilities, thereby limiting the JRE requirement to nodes that wish to
operate as data centers. The current design and plans for P2P-ADICS is
pursuing option i in an attempt to build a working system, and will later
reassess the necessity of option ii based upon feedback from the BOINC
user-community.

In [8] a more general cycle-sharing paradigm utilizing Peer-to-Peer systems
to distribute work units was presented (authors Kelley and Taylor are in the
overall design of this system, which is led by ICAR-CNR). Although the work
presented there is more generalized, the fundamental “dynamic caching” and
data distribution aspects are coherent with the ones presented here, and the
results and arguments therein can be directly applied to the scenario proposed
here. Specifically, [8] presents an argument that using dynamic data caching,
whilst knowing the network and data properties, can allow for a more efficient
configuration of data server replication, as opposed to the current static sized
set used by BOINC projects.

Based upon the preliminary results of [8] and the arguments presented here,
it is our belief that decentralized data centers can prove to be both valid and
useful solutions to distributing data in Desktop Grid environments. There is,
however, a tradeoff between functionality and complexity that needs to be ad-
equately addressed and balanced if such technologies are to be adopted by
production environments such as BOINC. P2P-ADICS is an ongoing research
project attempting to build a system that can address the needs of scientific
users, while maintaining the benefits of a decentralized network that utilizes
available network properties at much as possible.

7. Conclusions
In this paper we have argued that the current centralized client/server archi-

tecture applied by BOINC and other Desktop Grid systems for data distribution
is limiting and costly, and these projects would benefit from P2P data distribu-
tion technologies. Specifically, we have presented two approaches for large-
scale data management in Desktop Grid domains: one, based directly upon the



P2P Techniques for Data Distribution in Desktop Grid Computing Platforms 15

BitTorrent protocol, and another employing a decentralized unstructured P2P
network. For both of these potential solutions, we have provided the reader
with arguments for and against, weighing the relative costs and benefits of up-
take, as well as giving the current status and directions we are undertaking in
our work in these areas. It is hoped that the ideas presented here will promote
the discussion of Peer-to-Peer data distribution not only in the BOINC and
Desktop Grid groups, but also to the wider scientific community, encouraging
others to explore P2P as a valid and useful approach for data distribution.

Acknowledgments
The authors wish to thank Pasquale Cozza and Domenico Talia of DEIS

University of Calabria, and Carlo Mastroianni at ICAR-CNR for their con-
tributions and help. This work was supported by the CoreGRID Network of
Excellence, the Center for Computation & Technology at Louisiana State Uni-
versity, and EPSRC grant EP/C006291/1.

References
[1] David Anderson. BOINC: A System for Public-Resource Computing and Storage. In

Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing, Pitts-
burgh, USA, November 2004.

[2] David Anderson. Volunteer Computing: Planting the Flag. PCGrid 2007 Workshop,
Long Beach, March 30 2007.

[3] H. Balakrishnan, F. Dabek, M.F. Kaashoek, D.R. Karger, D. Liben-Nowell, R. Morris,
and I. Stoica. Chord: a scalable peer-to-peer lookup protocol for Internet applications.
Networking, IEEE/ACM Transactions on, 11.

[4] Berkeley Open Infrastructure for Network Computing (BOINC).
See web site at: http://boinc.berkeley.edu/.

[5] Danny Bickson and Dahlia Malkhi. The Julia Content Distribution Network. 2nd Usenix
Workshop on Real, Large Distributed Systems (WORLDS ’05), San Francisco, USA, De-
cember 2005.

[6] F. Cappello, S.Djilali, G.Fedak, T.Herault. F.Magniette, V.Neri, and O.Lodygensky. Com-
puting on large-scale distributed systems: XtremWeb architecture, programming models,
security, tests and convergence with Grid. FGCS Future Generation Computer Science,
2004.

[7] Bram Cohen. Incentives build robustness in BitTorrent. Proceedings of IPTPS, 2003

[8] Pasquale Cozza, Ian Kelley, Carlo Mastroianni, Domenico Talia, and Ian Taylor. Cache-
Enabled Super-Peer Overlays for Multiple Job Submission on Grids. To be published
ISC 2007 CoreGrid Workshop, 2007.

[9] Gnutella Project.
See web site at: http://www.gnutella.com/ .

[10] M. Izal, G. Urvoy-Keller, E. W. Biersack, P. A. Felber, A. A. Hamra, and L. Garces-Erice.
Dissecting BitTorrent: Five Months in a Torrent’s Lifetime. In Proceedings of Passive
and Active Measurements (PAM), 2004.



16

[11] P. Kacsuk, N. Podhorszki, and T. Kiss. Scalable Desktop Grid System. CoreGRID Tech-
nical Report TR-0006, MTA SZTAKI, University of Westminster, 2005.

[12] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S.
Rhea, H. Weatherspoon, W. Weimer, C. Wells and B. Zhao Oceanstore: An architecture
for global-scale persistent storage. In the 9th International Conference on Architectural
Support for Programming Languages and Operating Systems, 2000.

[13] J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and T. M. Gil. A performance vs. cost
framework for evaluating DHT design tradeoffs under churn. IEEE Conference on Com-
puter Communications (INFOCOM), 2005.

[14] J. Liang, R. Kumar, K. W. Ross. The KaZaA Overlay: A Measurement Study. Computer
Networks Journal, Oct. 2005.

[15] M. Litzkow, M.Luvby, and M.Mutka. Condor - A Hunter of Idle Workstations. Pages
104-111. 8th International Conference on Distributed Computing Systems (ICDCS).
Washington, DC, 1988.

[16] Peer-to-Peer Architecture for Data-Intensive Cycle Sharing (P2P-ADICS).
See web site at: http://www.p2p-adics.org/.

[17] Sudharshan S. Vazhkudai, Xiaosong Ma, Vincent W. Freeh, Jonathan W. Strickland, Nan-
dan Tammineedi, Stephen L. Scott. FreeLoader: Scavenging Desktop Storage Resources
for Scientific Data. sc, p. 56,Ê ACM/IEEE SC 2005 Conference (SC’05),Ê 2005.

[18] J. Verbeke, N. Nadgir, G. Ruetsch, and I. Sharapov. Framework for Peer-to-Peer Distri-
bution Computing in a Heterogeneous, Decentralized Environment. Proceedings of the
Third International Workshop on Grid Computing, 2002.

[19] Ian Wang. P2PS (Peer-to-Peer Simplified). In Proceedings of 13th Annual Mardi Gras
Conference - Frontiers of Grid Applications and Technologies, pages 54–59. Louisiana
State University, February 2005.

[20] Baohua Wei, G. Fedak, and F. Cappello. Scheduling independent tasks sharing large data
distributed with BitTorrent. pages 219-226. Grid Computing, 2005. The 6thIEEE/ACM
International Workshop on, IEEE ComputerSociety, 2005.

[21] B. Y. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An Infrastructure for Fault-tolerant
Wide-area Location and Routing. UCB Tech Report UCB/CSD-01-1141, University of
California, Berkeley, 2001.

[22] List of BOINC projects at: http://boinc.berkeley.edu/projects.php.

[23] Azureus BitTorrent client.
See web site at: http://azureus.sourceforge.net/.


