
Evaluating the Performance and Intrusiveness of Virtual Machines for Desktop
Grid Computing

Patricio Domingues
School of Technology and Management - Polytechnic Institute of Leiria, Portugal

patricio@estg.ipleiria.pt

Filipe Araujo, Luis Silva
CISUC, Dept. of Informatics Engineering, University of Coimbra, Portugal

{filipius, luis}@dei.uc.pt

Abstract

We experimentally evaluate the performance overhead
of the virtual environments VMware Player, QEMU, Virtu-
alPC and VirtualBox on a dual-core machine. Firstly, we
assess the performance of a Linux guest OS running on a
virtual machine by separately benchmarking the CPU, file
I/O and the network bandwidth. These values are compared
to the performance achieved when applications are run on a
Linux OS directly over the physical machine. Secondly, we
measure the impact that a virtual machine running a vol-
unteer @home project worker causes on a host OS. Results
show that performance attainable on virtual machines de-
pends simultaneously on the virtual machine software and
on the application type, with CPU-bound applications much
less impacted than IO-bound ones. Additionally, the perfor-
mance impact on the host OS caused by a virtual machine
using all the virtual CPU, ranges from 10% to 35%, de-
pending on the virtual environment.

1. Introduction

System-level virtual machines that can run unmodified
operating systems (OS) are substantially changing comput-
ing. In fact, virtual machines have emerged in the last
decade as a viable solution for running a full operating
system (guest OS) on top of a hosting environment (host
OS). Among other features, virtual machines provide for
the easy deployment of virtual OSes, migration, fault tol-
erance and sandboxing. A major use for virtualization
has been software development, software testing and server
consolidation [15]. Additionally, virtualization can also
play a major role in public resource computing projects, like
SETI@home, Einstein@home, Rosetta@home and oth-
ers [2]. Indeed, several characteristics make virtualization

appealing for public resource computing, both from the de-
velopers and volunteers point of view. For instance, virtu-
alization provides for an easy deployment of the same com-
puting environment across all participating machines. This
includes the operating system and all the software stack that
might be required by the desktop grid application. In addi-
tion, having a unique and well-known environment across
all volunteers considerably eases the task of developers, be-
cause they only have to deal with a single platform.

Besides providing for a homogeneous environment, the
use of virtual machines for desktop grid computing brings
an enhanced security for volunteers. Indeed, the sandboxing
isolation offered by system-level virtual machines makes
the execution of a foreign application by a volunteer ma-
chine much safer. In fact, virtual machines are often used in
security-oriented environments for testing potentially mali-
cious software.

Another appealing feature of virtual machines for desk-
top grid computing lies in the possibility of saving the state
of the guest OS to persistent storage. This is done in a trans-
parent manner, requiring no intervention nor modification
of the guest OS. This checkpointing feature allows simulta-
neously for fault tolerance and migration, making possible
the exportation of a virtual environment to another physical
machine, with the execution being resumed at the remote
machine.

Nonetheless the above stated advatanges, wide deploy-
ment of virtualization for desktop grids has some hin-
drances: (1) software licensing, (2) the size of the virtual
OS images and (3) the performance impact on both the
virtualized environment and on the host OS. Software li-
censing issues, namely operating system ones can be dealt
by resorting to open source OS, such as Linux and BSD.
To contain the size of the virtual machine image, one
can choose a small footprint distribution, such as ttylinux
(www.minimalinux.org). However, this will always impose



a download that might not be affordable for all the would-be
volunteers.

Finally, resorting to virtual machines for desktop grid
computing has implication on performance. Indeed, desk-
top grid computing aims to use volunteer resources in an
efficient manner to maximize the work done. Therefore,
before considering the wide-scale adoption of virtual ma-
chines for desktop grid computing, the performance impact
needs to be assessed. This is precisely the main goal of
our study. We split the performance evaluation into two
main experiments: one to determine the overhead of run-
ning applications in guest OSes, and a second one to assess
the overhead that such setting causes on the host OS. For
this purpose, we firstly evaluate the raw performance of ap-
plications run on virtual machines resorting to benchmarks
for CPU, disk I/O and network I/O. We compare the mea-
sured values against the performance obtained on the same
physical machine, but in a native environment. Secondly,
we assess the impact on the performance of a machine that
hosts a virtual machine. Specifically, we measure the drop
in performance sensed at the host OS level when a guest OS
running on a virtual machine is computing a task from the
Einstein@home public volunteer project.

We do all performance measurements with four freely
available system-level virtual environments: VMware
player (henceforth VmPlayer), QEMU, Virtual PC (hence-
forth virtualPC) and VirtualBox. We use Windows XP as
the host OS and Linux as the guest OS. The measured val-
ues are compared with a native environment, in which the
physical machine is running the same Linux distribution.

An interesting result of this study is the direct relation
that seems to exist between the performance delivered by a
given virtual machine environment and the impact it causes
on the host OS: the higher the performance, the higher is the
overhead. In particular, the VmPlayer environment, which
delivered the best performance among the studied virtual
machines, also caused the highest impact on host.

The remainder of this paper is organized as follows. In
Section 2, we present the applications used to assess the
performances of virtual machines, while in Section 3 we
briefly describe the four virtual machines that were evalu-
ated in this study. Section 4 presents the results. Section 5
summarizes the related work. Finally, Section 6 concludes
the paper.

2 Methodology

To assess the performance delivered by the assessed vir-
tual machines, we resorted to the benchmarks listed below.
Of these, we wrote Matrix and IOBench, while the others
already existed and are freely available:

- 7Z: the 7Z application implements, as its default
mode, the LZMA algorithm (Lempel-Ziv-Markov

chain-Algorithm), which is an improved LZ77 com-
pressor developed by Igor Pavlov [16]. The application
has a benchmark mode, which is available through the
command line option b. Specifically, the benchmark
mode returns an execution rate based on the number of
instructions that were executed as well as the percent-
age of CPU that was available to the application. An-
other useful feature of 7z is the possibility of setting,
through the command line switch -mmt, the number of
threads of the application. This allows for benchmark-
ing multi-core machines. As the 7z benchmark does
not access I/O devices, it essentially measures non-
floating point CPU performance.

- Matrix: this application multiplies two squared matri-
ces of doubles, using a linear (non-optimized) algo-
rithm. We used two matrix sizes: 512 × 512, and
1024 × 1024. This benchmark essentially evaluates
floating-point CPU performance.

- IOBench: to assess IO disk performance, we devel-
oped the python program IOBench. It evaluates the
performance of the read and write I/O (disk) opera-
tions of the filesystem. For this purpose, IOBench
executes read and write operations for randomly gen-
erated files, whose size ranges from 128 KB to 32
MB. Between each test, the file size is incremented by
doubling the precedent one, therefore yielding the se-
quence 128 KB, 256 KB, 512 KB and so on.

- NetBench: NetBench is a wrapper for the iperf ap-
plication [12]. This application measures the network
speed for point-to-point communications at the trans-
port layer (TCP and UDP). In this study, the iperf was
used in its default mode, in which it measures the time
required for the transfer of a 10 MB data stream over
a TCP connection between a guest OS and a remote
machine acting as an iperf server. The connecting net-
work was a 100 Mbps Fast Ethernet LAN.

3 Environments

Since Windows is the dominating OS in desktop grid
machines [3], we considered Windows XP as the hosting
environment throughout this paper. For the guest OS, we
selected the Linux Ubuntu distribution. This corresponds
to a plausible usage scenario, since due to licensing restric-
tions, the usage of virtual machines for desktop grids is only
viable with license free OS and software.

The applications were run on the following system-
level virtual machines: VmPlayer 2.0.2 [21], VirtualBox
1.6.2 [19], QEMU 0.9 with QEMU accelerator 1.3 [5] and
Microsoft VirtualPC 2007 6.0.156 [20]. We selected these
virtual platforms because (1) they are freely available, (2)



they run on top of Windows XP and (3) they can execute an
unmodified Linux image. Moreover, all the considered vir-
tualized environments implement full virtualization, com-
pletely simulating an underlying hardware. Next, we suc-
cinctly describe the four evaluated virtual machine environ-
ments.

3.1 VmWare player

VMware, Inc. was pioneer in the development of virtu-
alization products for the x86 architecture. VmPlayer is a
standalone virtualization software that can run guest OSes.
The software is optimized, relying on binary translation for
achieving nearly native speed.

3.2 QEMU

QEMU is an open source (released under a GPL license)
virtualization environment that emulates many hardware
platforms. QEMU is being developed by Fabrice Bellard,
and it is highly praised for its features and for the large num-
ber of architectures (x86, AMD64, SPARC, etc.) that it can
emulate. In this study, we complemented QEMU with the
QEMU Accelerator which speeds up the execution via bi-
nary translation on x86 platforms [5].

3.3 VirtualBox

VirtualBox was released in January 2007 under the GPL
version 2 open source license. The product was later ac-
quired by Sun Microsystems in February 2008. Like Vm-
Player, VirtualBox resorts to binary translation to achieve
full virtualization, while other parts were adopted from
QEMU. In this study, we used the open source variant of
VirtualBox, version 1.6.2.

3.4 VirtualPC

Microsoft’s VirtualPC implements full virtualization for
the x86 architecture. Although officially VirtualPC does not
support Linux as guest OS, we were able to run the Ubuntu
distribution without hurdles. However, the lack of official
support means that the optimization packages available for
Windows guest OSes do not exist for Linux.

4 Results

All tests were conducted on a Core 2 Duo 6600 @2.40
GHz fitted with 1 GB of DDR2 RAM memory. The host OS
is Windows XP (service pack 2). The virtual machines were
set with 300 MB of virtual RAM. To avoid bias, every test
was performed at least 50 times. Additionally, to circum-
vent the timing imprecision that occur on virtual machines,

Figure 1. Relative performance of 7z on vir-
tual machines

Figure 2. Relative performance of Matrix on
virtual machines

especially when the machines are under high load [22], time
measurements for executions under virtual machines were
done resorting to an external time reference. For that pur-
pose, we used a simple UDP time server running on the host
machine.

We present two sets of results: (1) performance of guest
OSes and (2) the impact on host OS. The former measures
the performance delivered on the guest OS, while the latter
evaluates the impact on the host OS when a guest OS is
using up all its virtual CPU.

4.1 Performance of Guest OSes

Figure 1 to Figure 4 aggregate the results for the afore-
mentioned benchmarks. To ease comparisons, results have
been normalized against the measurements obtained on a
native Ubuntu environment (this latter is represented as the
unitary value). As the plots represent performance lag rel-
atively to the native environment, smaller values mean bet-



ter performance. The only exception is Figure 4 where ab-
solute values are used: higher values mean better network
bandwidth performance.

As shown in Figure 1, for the 7Z benchmark all virtual
machines were slower than the native environment. Vm-
Player was the best performer, with a 15% performance
drop, VirtualBox was 20% slower, while VirtualPC induced
a 36% impact on performance relatively to the native exe-
cution. QEMU was clearly the worst performer, being more
than twice slower than the native environment.

Figure 3. Relative performance of IOBench on
virtual machines

Figure 2 displays the relative performance for the Ma-
trix benchmark. Although the performance ordering of re-
sults is similar to the ones seen for 7Z, the performance
drop is much smaller. Indeed, apart the QEMU virtual ma-
chine, which has a 30% performance drop, all other vir-
tual environments induce a performance degradation below
20%. This means that floating-point performance is only
marginally deteriorated within virtual environments. Thus,
from the performance point-of-view, it is viable to run such
applications under a virtual environment.

As seen on Figure 3, disk I/O is more severely impacted
on virtual environments. Indeed, even VmPlayer, which is
the fastest disk I/O environment, is 30% slower than a na-
tive execution. VirtualBox and VirtualPC are roughly twice
slower than the native environment, while QEMU performs
extremely poorly, being nearly five times slower than a na-
tive execution. This means that conducting disk I/O inten-
sive operations under a system-level machine virtual envi-
ronment significantly impacts the performance.

Absolute network performances against the native envi-
ronment are shown in Figure 4. Obviously, the native mode
was the fastest, achieving 97.60 Mbps. Since VmPlayer
supports a NAT and a bridged mode for network commu-
nications, both were assessed. In bridged mode, VmPlayer
yields performance very close to the native execution, de-
livering a network speed of 96.02 Mbps. This contrasts

Figure 4. Absolute performance for NetBench
on virtual machines

sharply with the NAT mode, which only attains 3.68 Mbps.
Contrary to the results for the other benchmarks, QEMU
performed quite respectably, averaging 65.91 Mbps, thus
being the fastest of the whole set of tested virtual environ-
ments, apart VmPlayer in bridged mode. Under VirtualPC,
the available bandwidth was 35.56 Mbps. Finally, Virtual-
Box really underperformed, being nearly 75 times slower
than the native execution. The slow speed delivered by the
NAT mode is due to the high overhead of this approach [17].

As observed from the CPU and IO benchmarks, while
virtual machines moderately degrade performance for CPU-
bounded applications and thus can be used for such ap-
plications without much loss, impact on IO-bounded ap-
plications is much more severe. This makes system-level
virtual environments unattractive for running such applica-
tions, even considering the benefits of sandboxing and ap-
plication isolation that such environments deliver.

4.2 Impact on host

An important issue regarding virtual environments for
volunteer computing is the performance impact that virtual
machines can induce on the hosting machines. Specifically,
what is the performance drop felt by applications run on
the hosting machine, while a guest system-level virtual ma-
chine is executing volunteer tasks? Indeed, if this impact is
excessively high, it will most certainly discourage resource
owners to volunteer via virtual machines. Next, we assess
the overhead on memory and CPU when the virtual CPU of
a guest OS is running at full capacity.

4.2.1 Impact on Memory

The memory footprint of system-level virtual machine is de-
fined in its configuration, with the virtual machine commit-
ting all the configured memory when it is running. In this



way, the memory consumption is configurable, constant and
well-known. This is important for volunteers, since they
will know right from the start the amount of memory of
their systems which is effectively being volunteered. As
stated before, for all experiments reported in this paper, we
set the virtual environments with 300 MB. This value might
seem high for today’s standard machines that have, com-
monly, 1 or 2 GB of RAM memory. However, we believe
that lighter Linux distributions can be used, requiring half
of this value. Moreover, 3 and 4 GB are becoming stan-
dard on new machines and thus the relative memory space
occupied by a guest OS can still be reduced.

4.2.2 Impact on single-threaded applications

Due to the high costs of IO under virtual machines, which
practically prohibits the execution of IO-bound application
on virtual machines, we solely assess the impact on the host
machine for CPU-bound applications. For this purpose, we
measured the behavior of a CPU-oriented benchmark. We
ran NBench (described ahead) on the host OS under two
scenarios. In the first scenario, we ran the benchmark to-
gether with a virtual machine that was processing tasks from
the Einstein@home, and thus using the virtual CPU at its
full capacity. This corresponds to a real usage scenario. In
the second scenario, the benchmark was run on the host OS,
with no virtual machine present. Thus, the performance dif-
ference between the two scenarios corresponds to the over-
head induced by the presence of an active virtual machine.

The NBench benchmark is derived from the well-known
ByteMark [6] benchmark. Specifically, the benchmark was
ported from Linux, with its C source code compiled with
Visual Studio 2003 in release mode. The NBench applica-
tion relies on well-known algorithms to summarize a com-
puter performance with three numerical indexes: MEM for
memory, INT for integer and FP to expose floating point
performance. Although these indexes are not suitable for
absolute comparisons with NBench original values, since
the operating systems and the compilers are different, they
can still compare relative performance and thus measure the
overhead induced on a host OS, by a running guest virtual
machine.

We should emphasize that we could not use the NBench
application to evaluate the guest OS. Indeed, NBench re-
sorts to numerous timing measurements of extremely short
periods, and the lack of precision of time measurement in
virtual machines [22], yields misleading results when the
benchmark is run in a virtual environment. However, these
timing measurement issues do not exist for executions per-
formed in the host OS.

Figure 5 and Figure 6 plot the performance overhead for
the MEM and INT indexes, respectively. Each plot presents
the overhead relatively to the performance measured on the

Figure 5. Relative performance (MEM index)

hosting OS with no virtual machine. Thus, smaller val-
ues mean less overhead. The measurements were taken on
the same computing environment (machine, hosting OS and
virtual machines) that was used for assessing the perfor-
mances of virtual machines. To check the influence of the
priority level assigned by the host OS to the virtual machine,
we first ran the tests with the virtual machine software set
to normal priority, and then repeated the experiment with
the idle level, which is the lowest priority level available in
Windows XP. To allow for a better comparison, a normal
priority result is plotted next to the corresponding idle pri-
ority.

From the plots, it can easily be seen that the highest over-
head occurs with the MEM index (Figure 5), but even for
the worst case, it is under 5%. For the INT index (Figure 6),
overhead averages 2% for all the virtual environments. Fi-
nally, practically no overhead was observed regarding float-
ing point (to conserve space, we omit the plot for the FP in-
dex). Additionally, all virtual environments performed sim-
ilarly. Likewise, the priority level assigned by the host OS
only marginally influence performance, with both normal
and idle levels yielding similar values.

Figure 6. Relative performance (INT index)



The marginal overhead appears to be a consequence of
the dual core processor, with the benchmark scheduled by
the hosting OS in one core, while the virtual environment
is scheduled in the other core. The slight overhead in the
MEM index might be due to the fact that some cache colli-
sions occur over the 4 MB level 2 cache, since this cache is
shared between the two cores. The results also give proofs
that resources can be volunteered without practically no
consequence on the performance of the hosting machine.

4.2.3 Impact on multi-threaded applications

To further assess the impact on the host OS caused by run-
ning a virtual machine with full use of virtual CPU, we set
up the following testbed: in the Linux guest OS, we ran the
BOINC client attached to the Einstein@home public vol-
unteer project, thus consuming the whole virtual CPU. To
minimize impact, and reproduce real conditions, the execu-
tion priority for the virtual machine was set to idle.

Simultaneously, in the Windows XP host OS, we run the
7z application in benchmark mode since this application al-
lows to set the number of executing threads. Therefore, we
can distinctly measure the impact on the host OS of a run-
ning virtual machine, by executing 7z in single and mul-
tithreaded mode, by setting the thread number to one and
two, respectively. Figures 7 and 8 display the performance
measurement delivered by the 7z application while the Ein-
stein@home client is demanding 100% from the CPU of
the virtual machine. To ease comparisons, for each environ-
ment, the result for the single-threaded 7z execution is plot-
ted to the left of the equivalent result performed under the
dual-threaded mode. The entry no VM represents the con-
trol case, corresponding to results gathered when the virtual
machine was not running.

Figure 7 displays the percentage of time the processor
is working for the 7z application. A 100% CPU usage for
one thread means that the whole CPU was dedicated to the
thread running 7z. Likewise, a 180% CPU usage for two
threads means that average CPU usage is about 90% for
each thread. Therefore, the full availability of two CPUs
(cores in this case) is represented by 200%. Confirming
results of Section 4.2.2, the plot clearly illustrates that no
impact is sensed for single-threaded application, since 7Z
reports 100% CPU availability for all except for QEMU,
which nonetheless delivers a value close to 100%. How-
ever, for dual-threaded applications, the no VM execution
only achieves 180% CPU usage. This means that 20% of
CPU can not be exploited, possibly due to the limitations
and overhead of the hardware (contention on memory when
both cores try to access memory), OS and of the multi-
threading subsystem.

Different virtual machines using up all the virtual CPU
have different impacts on the host OS. Indeed, while

Figure 7. Available % CPU for host OS when
guest OS is running at 100%

Figure 8. MIPS for 7z when guest OS is run-
ning at 100%

QEMU, virtualbox and virtualPC limit the CPU for host
OS to approximately 160%, that is, they roughly cause a
20% overhead, VmPlayer induces a steeper penalty, since
7z only reports a 120% CPU availability. This means that
VmPlayer causes a 60% overhead, roughly thrice more than
the other virtual environments. Figure 8 displays the MIPS
metric as computed by the 7z application. Specifically, this
metric counts the number of instruction per second per-
formed by 7z. The results shown on the plot correspond
to the ratio between the MIPS obtained for the execution on
the host OS when a virtual environment is running and the
same execution when no virtual machine is present. It can
be observed that the presence of VmPlayer reduces MIPS
in roughly 30%, while the other virtual environments cause
a near 10% degradation. The higher degradation caused by
the VmPlayer environment might be due to the more CPU
demanding internal optimization techniques that allows this
environment to perform faster than the other ones.



5 Related Work

Figueiredo et al. [10] were pioneers on the usage of vir-
tual machines for the execution of grid applications. They
address several problems, such as the impact on perfor-
mance, and the needs for a viable deployment infrastruc-
ture. Regarding performance, they report a less than 10%
overhead for CPU-bounded benchmarks executed under
VMware Workstations 3.0 having both the host OS and the
guest OS running Red Hat 7.1. As our study confirms, their
performance results still hold on for the VMware platform.
Their work has evolved to the WOW system [11]. This sys-
tem implements fault tolerant virtual cluster over large scale
networks by resorting to virtual machines and P2P tech-
niques. The system uses virtualization to provide resource
isolation and to wrap the heterogeneity of machines.

Csaba et al. [9] present a practical approach for the use
of virtual machines in desktop grid environments. Their
main goal is to devise a generic architecture that can be
transparently integrated with desktop grid middleware (in
particular, the Sztaki DG and extensions are targeted [4]).
The proposed architecture relies on a virtual machine base
image, which is used to create instances. The number of
instances to create in a given machine depends on the hard-
ware, namely on the number of CPU cores. Each virtual
machine instance then separately maintains the changes it
has performed over the base image. This allows for an eas-
ier migration and further strengthen the sandboxing robust-
ness of the system, since no changes can be made to the
base image. The authors selected the QEMU virtual envi-
ronment with its accelerator KQEMU. The choice was mo-
tivated by the flexibility of the virtual environment, when
compared to other system level virtual machines. Indeed,
QEMU provides overlay and copy-on-write images, back-
door access and single user process instance [4]. For Csaba
et al., flexibility-related issues have higher precedence than
performance, since deployment and manageability are de-
terminant factors when considering virtual environments for
desktop grid computing.

Tanaka et al. [18] compare the floating-point perfor-
mance of VmPlayer-based virtual machines versus OS run-
ning in a so-called real machine. Specifically, they resort
to the YafRay open source ray tracer, measuring the wall
clock time needed for the ray tracing of a fixed scenario
under the given virtual and real environments. They consid-
ered both Linux and Windows as guest OS, observing that
both operating systems induced performance penalties rel-
atively to an execution under a native environment. Similar
to our results, both operating systems, when run in a vir-
tual environment, yield performances that are inferior to the
native environment. However, the authors found out that
as guest OS, Windows delivers slightly worst performance
than Linux. They explained this behavior by the higher us-

age that Windows does of the kernel mode. Indeed, under
VmPlayer, instructions in kernel mode are emulated, run-
ning much slower than user mode instructions, since these
ones are directly executed in the processor.

The philosophy behind the Minimal intrusion Grid
(MiG) [1] is to provide a Grid infrastructure that imposes
as few requirements on users and resources as possible and
that emphasizes the protection of harvested resources. For
the purpose of safely harvesting resources, the system re-
sorts to system-level virtual machines for the execution of
foreign tasks, thus protecting local resources from buggy
and/or malicious guest applications. Similarly to the scenar-
ios benchmarked in this paper, MiG runs a Linux guest OS
in the context of a virtual machine which is executed on top
of a Windows OS. The study confirms that the system-level
virtual machine approach is viable for harvesting desktop
grids, at least from an implementation point of view. The
study does not provide data regarding overall performance,
nor the performance overhead caused by system level vir-
tual machines.

Gonzalez et al. propose the virtual desktop grid com-
puting system [13]. Their approach is to combine desktop
grid middleware with VmPlayer. They resort to BOINC for
distributing a specially crafted initialization workunit. This
workunits holds the OS virtual image and the worker ap-
plications. Once this stage is completed, the BOINC client
uses the large initialization workunit to launch VmPlayer
with the hosted OS image, which in turn starts the applica-
tion whose execution is sought within the desktop grid en-
vironment. The application can then connect to the project
server and requests regular workunits. The main motivation
for this approach is to cleanly support legacy applications
out of the box. One problem relies to the massive size of
the initialization workunit. In an experiment performed by
the authors, a 1.4 GB initialization workunit was required.
For the time being, this size mostly limits the system to lo-
cal area environments. However, an optimized scheme for
provisioning virtual environments can be used as described
by Chadha et al. [7]. Similarly, pure P2P distribution proto-
col such as BitTorrent can also be considered [8].

The P2P Distributed Virtual Machine (P2P-DVM) [14]
is a middleware that promotes desktop grid computing in
a peer-to-peer fashion. The system provides support for
parallel programming environments such as MPI, PVM and
BSP for the execution of desktop grid applications. Regard-
ing virtualization, all processes of the P2P-DVM system run
on top of a Linux installation, which is hosted by a virtual
environment such as VMWare or Xen (among other possi-
bilities). The goal of using virtual machines is to allow for
full isolation between the hosting resources and the guest
applications. Interestingly, P2P-DVM implements system-
level checkpointing for each of its processes that are run
inside the virtual environment.



6 Conclusion

We measured the performance drop that applications suf-
fer when they run on a guest OS of a virtual machine. We
also evaluated the impact on local resources, measured at
the host OS level, caused by running desktop grid tasks un-
der virtual environments. All experiments were performed
with a Core 2 Duo machine to i) evaluate how this architec-
ture copes with virtual machines and ii) what are the per-
formance it can deliver when running simultaneously Win-
dows XP as host OS and an Ubuntu Linux distribution as
guest OS. In particular, we show that a machine fitted with a
dual core processor can withstand with marginal impact on
its performance, the presence of a virtual machine as long
as only single threaded applications are run in the host OS.
However, multi-threaded applications running at the host
OS suffer a performance drop that ranges from 10% to 35%
compared to the same execution in the native environment.

For the applications executed on the virtual environment,
the performance impact depends on the application type and
on the virtual machine software. For CPU-bounded appli-
cation, the overhead is acceptable, since it revolves around
15% to 30% for the virtualized environments. The only ex-
ception is QEMU whose high overhead practically halves
the execution speed. However, both disk IO and network IO
performances are severely penalized on the studied virtual
machines and thus the execution of IO-bound applications
should not be considered on such environments.

Acknowledgment

This work was partially supported by Fundação
para a Ciência e a Tecnologia under the project
GRID/GRI/81727/2006, “GRID para simulação e análise
de dados de ATLAS/LHC”.

References

[1] R. Andersen and B. Vinter. Harvesting idle windows cpu cy-
cles for grid computing. In H. R. Arabnia, editor, Proceed-
ings of the 2006 International Conference on Grid Comput-
ing & Applications (GCA 2006), pages 121–126, Las Vegas,
Nevada, USA, June 2006. CSREA Press.

[2] D. Anderson. BOINC: A System for Public-Resource Com-
puting and Storage. In 5th IEEE/ACM International Work-
shop on Grid Computing, 2004, Pittsburgh, USA, 2004.

[3] D. P. Anderson and G. Fedak. The Computational and Stor-
age Potential of Volunteer Computing. In IEEE Interna-
tional Symposium on Cluster Computing and the Grid (CC-
GRID’06), pages 73–80, 2006.

[4] Z. Balaton, G. Gombas, P. Kacsuk, A. Kornafeld, J. Kovacs,
A. C. Marosi, G. Vida, N. Podhorszki, and T. Kiss. SZTAKI
desktop grid: a modular and scalable way of building large
computing grids. In IPDPS’07, 2007.

[5] F. Bellard. QEMU, a Fast and Portable Dynamic Transla-
tor. In Proceedings of the USENIX Annual Technical Con-
ference, FREENIX Track. April 2005, Anaheim, CA, USA,
pages 41–46, april 2005.

[6] Bytemark (http://www.byte.com/bmark/bmark.htm), 2008.
[7] V. Chadha, D. Wolinsky, and R. Figueiredo. Provisioning

of virtual environments for wide area desktop grids through
redirect-on-write distributed file system. In IEEE Interna-
tional Symposium on Parallel and Distributed Processing
(IPDPS 2008), pages 1–8, April 2008.

[8] F. Costa, L. Silva, G. Fedak, and I. Kelley. Optimizing
the data distribution layer of BOINC with BitTorrent. In
IPDPS’08, pages 1–8, 2008.

[9] A. Csaba Marosi, P. Kacsuk, G. Fedak, and O. Lodygensky.
Using virtual machines in desktop grid clients for applica-
tion sandboxing. Technical Report TR-0140, Institute on
Architectural Issues: Scalability, Dependability, Adaptabil-
ity, CoreGRID - Network of Excellence, August 2008.

[10] R. Figueiredo, P. Dinda, and J. Fortes. A case for grid com-
puting on virtual machines. In ICDCS’03, 2003.

[11] A. Ganguly, A. Agrawal, P. O. Boykin, and R. J. Figueiredo.
Wow: Self-organizing wide area overlay networks of virtual
workstations. Journal of Grid Computing, 5(2), 2007.

[12] Iperf - The TCP/UDP Bandwidth Measurement Tool
(http://dast.nlanr.net/Projects/Iperf/), 2008.

[13] D. Lombraa-Gonzalez, F. de Vega, L. Trujillo, G. Olague,
and B. Segal. Customizable execution environments with
virtual desktop grid computing. In Parallel and Distributed
Computing and Systems, PDCS, 2007.

[14] L. Ni, A. Harwood, and P. J. Stuckey. Realizing the e-
science desktop peer using a peer-to-peer distributed virtual
machine middleware. In MCG ’06: 4th International Work-
shop on Middleware for Grid Computing, 2006.

[15] P. Padala, X. Zhu, Z. Wang, S. Singhal, and K. Shin. Per-
formance evaluation of virtualization technologies for server
consolidation. Technical Report HPL-2007-59R1, HP Labs,
September 2008.

[16] I. Pavlov. 7-Zip (http://www.7-zip.org), 2008.
[17] S. Rixner. Network virtualization: breaking the performance

barrier. ACM Queue, 6(1):36–41, 2008.
[18] K. Tanaka, M. Uehara, and H. Mori. A case study of a linux

grid on windows using virtual machines. In AINAW ’08:
Proceedings of the 22nd International Conference on Ad-
vanced Information Networking and Applications - Work-
shops, pages 195–200, 2008.

[19] VirtualBox (http://www.virtualbox.org), 2008.
[20] VirtualPC, Microsoft Inc. (http://www.microsoft.com),

2008.
[21] VmWare, Inc. (http://www.vmware.com), 2008.
[22] Time keeping in VmWare Virtual Machines

(http://www.vmware.com/pdf/vmware timekeeping.pdf),
2007.


