
Monitoring the EDGeS Project Infrastructure

Filipe Araujo∗, David Santiago∗, Diogo Ferreira†, Jorge Farinha†,

Patricio Domingues‡, Luis Moura Silva∗, Etienne Urbah§, Oleg Lodygensky§,

Haiwu He¶, Attila Csaba Marosi‖, Gabor Gombas‖, Zoltan Balaton‖,

Zoltan Farkas‖, Peter Kacsuk‖

∗ CISUC, Dept. of Informatics Engineering

University of Coimbra, Portugal

E-mail: {filipius, demanuel, luis}@dei.uc.pt
† E-mail: {defer, jfar}@student.dei.uc.pt

‡ School of Technology and Management

Polytechnic Institute of Leiria, Portugal

E-mail: patricio@estg.ipleiria.pt

§ LAL Universite Paris Sud, CNRS, IN2P3, France

E-mail: {urbah, lodygens}@lal.in2p3.fr

¶ INRIA, LIP, ENS Lyon, France

E-mail: haiwu.he@inria.fr

‖ MTA SZTAKI, Computer and Automation Research Institute of the Hungarian Academy of Sciences

H-1528 Budapest, P.O.Box 63, Hungary

E-mail: {atisu, gombasg, balaton, zfarkas, kacsuk}@sztaki.hu

Abstract

EDGeS is an European funded Framework Program 7

project that aims to connect desktop and service grids

together. While in a desktop grid, personal computers pull

jobs when they are idle, in service grids there is a scheduler

that pushes jobs to available resources. The work in EDGeS

goes well beyond conceptual solutions to bridge these grids

together: it reaches as far as actual implementation, stan-

dardization, deployment, application porting and training.

One of the work packages of this project concerns mon-

itoring the overall EDGeS infrastructure. Currently, this

infrastructure includes two types of desktop grids, BOINC

and XtremWeb, the EGEE service grid, and a couple of

bridges to connect them. In this paper, we describe the

monitoring effort in EDGeS: our technical approaches, the

goals we achieved, and the plans for future work.

1. Introduction

Interoperability of computing resources that are geo-

graphically and administratively dispersed is a goal that

the scientific community is pursuing for a large number

of years by now [1] and that we can still consider as

incomplete. One of the deepest differences that persists,

concerns access to resources attached to desktop grids (DGs)

and to service grids (SGs). DGs are characterized by an

(often) extremely large number of computers orchestrated

by a central supervisor, glued together by some middleware

like BOINC [2] or XtremWeb [3] (XW). In these DGs,

workers (also known as clients) always take the initiative

of requesting new jobs to the central server, usually when

they are idle. One of them most distinctive features in

DGs lies in the fact that computing resources belong to

private users, which make them available on an entirely

voluntary basis, for altruistic reasons, for fun, or for some

other reason. Unlike this, service grids are frequently made

of dedicated computing resources, belonging to scientific or

academic institutions. Service grids include a scheduler that

pushes jobs to computers available in the pool. One of the

largest service grids that exist today was brought together by

another EU project, called Enabling Grids for E-sciencE [4]

(EGEE), which joined together as many as 300 sites from

50 countries. As a consequence of these two fundamentally

different kinds of grids, there is a big impediment to make

jobs (or tasks or workunits) intended for a DG to run on a

SG and vice-versa.

To overcome this difficulty, Enabling Desktop Grids for

e-Science [5] (EDGeS), a Framework Program 7 (FP7)

European project (see the EDGeS web page at http://www.

XW

XW

BOINC

BOINC

EGEE

EGEE

EGEE

EGEE

B
ri
d
g
e
s

Figure 1. Bridges under development in EDGeS

edges-grid.eu/web/edges/) aims to connect both kinds of

grids in a seamless way, such that jobs running in EGEE

can run in the extremely large pool of resources made avail-

able by either BOINC or XW servers, while also enabling

DG projects to reach EGEE. While the EDGeS team is

actively solving the interoperability problem, there is more

to it besides conception and implementation: the team must

deploy a few different infrastructures to port and run existing

end users applications, it must adopt and foster standard

solutions, and it must commit on dissemination, training and

consulting activities to spread the work. Many, if not most,

of these activities are partially or almost completely finished

by now.

One of the workpackages of EDGeS (known as Joint

Research Activity 2 — JRA 2) devotes to monitoring the

entire infrastructure, made of DGs, SGs and bridges. The

purpose of this paper is precisely to describe the monitoring

solutions in use, inside this project. While we adopted

a well-known tool, named Ganglia [6], as part of our

solution, the specificities of EDGeS make it difficult, if not

impossible, to pick one off-the-shelf application to do the

entire monitoring job. We had to create many modules and

to considerably change Ganglia to fit our own needs. One

interesting fact is that we manage to collect most significant

data from DGs alone, as these can provide surprisingly rich

information in the context of EDGeS. Still, there are many

open problems that we are currently working on.

In the remainder of this paper, we present the monitoring

problem, its challenges, solutions and current situation. In

Section 2, we briefly introduce the EDGeS architecture.

In Section 3, we outline the high-level requirements of

monitoring EDGeS. In Section 4 we overview some impor-

tant monitoring architectures. In Section 5, we review the

monitoring solution we built. Finally, Section 6 concludes

the paper and points to our future work.

2. An Overview of the EDGeS Architecture

EDGeS has two strongly related fundamental goals: i)
enable job submissions originating in SGs to reach avail-

able DG nodes and ii) enable workunits of DGs to reach

SG nodes. The EDGeS project should develop solutions

for EGEE as a SG and for XW and BOINC as DGs.

This makes for a total of four different bridging opera-

Job
Database

Queue
Manager

S
c
h
e
d
u
le
r

Job
Wrapper

Plugin

Figure 2. 3G Bridge Architecture

tions: BOINC→EGEE, EGEE→BOINC, XW→EGEE and

EGEE→XW, as seen in Figure 1. The EDGeS team devel-

oped these bridges in JRA 1. Implementation of all these

bridges, except the XW→EGEE bridge, follows the 3G

Bridge Architecture developed at SZTAKI [7]. We depict

the main idea of this architecture in Figure 2.

The 3G bridge has one single core (inside the dashed

rectangle) that receives, stores and forwards all jobs in

transit to the different kinds of grids. When a job enters

the core, it is stored in the job database, while the handler,

which represents the job, goes to the queue manager. This

handler stays there until the scheduler dispatches the job to

run. The core should receive and uniformly treat jobs from

different originating grids, provided that there exists some

form to wrap these jobs from that grid into the 3G bridge.

Additionally, the bridge core can also submit jobs to any

grid, as long as an appropriate plugin for that destination

grid exists.

The job wrapper depends on the particular input grid. In

the case of BOINC, the job wrapper requests workunits from

the server, deals with the input file, with the executable (to

be run in the other side of the bridge) and with bringing

back the results to the originating bridge. If the destination

grid is EGEE (thus in this example we would have the

BOINC→EGEE bridge), this means to run an EGEE job and

set configuration variables, like Virtual Organization (VO)

name, or the MyProxy information necessary to submit jobs,

like host name, port, user name and password.

One important aspect for monitoring is that a single

bridge deployment can support all bridging operations. This

simplifies a number of tasks, as all bridging information

and, more important, configuration are centralized in a single

point. In particular, to perform monitoring on the bridge,

information on the job wrappers and job database suffices.

From the job wrapper, we need to know which clients are

in fact pumping jobs to the other side of the bridge, while

from the job database, we need to do some counting over

the jobs (which ones are waiting in the bridge, for instance).

The only bridge that does not use the 3G architecture is

the XW→EGEE bridge. This bridge follows the gliding-in

approach [8]. This solution tackles the issue of matching

a pull-based grid, where workers request jobs (XW) with

a push-based grid, where a scheduler sends jobs to workers

(EGEE) in a different way. The approach is to wrap the XW

executable and submit this executable to the SG using the

standard push-based approach. This executable is known as

”pilot-job”. Once this executable reaches the SG, it requests

tasks and sends results to the XW server, as any other

volunteer worker would do in the standard DG. In simplified

terms, the bridge pushes a job that pulls the work.

From the monitoring point of view, this solution is more

complex as there is no central entity, like the bridge, to

get configuration information from. While in BOINC, the

single bridge requests all the workunits for the SG side,

in XW the same requests can come from many different

sources. This complicates the task of recognizing which

tasks were computed by standard DG nodes, and which ones

were computed by SG nodes. At the time we write this text,

all the works that are intended to cross the bridge have a

special indication. We use this indication to distinguish jobs

that crossed the bridge, from those who did not.

3. Requirements of EDGeS Monitoring

In a first stage, we defined three main requirements for

EDGeS monitoring:

• Performance monitoring. This includes counting the

number of jobs/workunits executed in each DG, how

many cross the bridge toward EGEE and vice-versa,

success rate of jobs and workunits, computing power

available in the entire platform, etc.

• Providing information to the bridge operation. In prac-

tice, this consists of publishing appropriate information

of the DG into the Berkeley Database Information

Index (BDII).

• Notification of problems in the bridge.

At the present time, we already tackled the first two, while

the third problem is still pending. However, since the second

goal is not very relevant to this paper, we focus on the

performance monitoring issue.

4. A Short Review of Grid Monitoring Tools

Since many monitoring systems exist already, one of the

first steps in our work was to take a decision on which

monitoring tools and solutions should we base EDGeS

monitoring. Here, we overview just a few. Many more exist,

namely for EGEE, but in general, as we explain ahead, they

are not entirely fit for our purposes.

Nagios is a system, network and application monitoring

environment. Nagios uses a web-based interface to display

information of its monitored resources. Nagios has the

ability to monitor almost any resource, because it relies on

external plugins to monitor virtually any system properties,

such as load average and free disk space; the availability of

important network services like HTTP, SMTP, POP3, NNTP,

PING, or per host network availability and reachability.

Nagios includes notification of changes through normal

channels (e-mail, pager, cellphone) or via user defined mech-

anisms; it can define event handlers to run during service or

host events for proactive problem resolution (e.g., restarting

a HTTP server). It is also extensible through add-ons, for

services not included in the standard package. Nagios relies

on a central core, Nagios itself, together with the external

special purpose plugins. The central core provides basic

scheduling. When a resource needs to be checked, Nagios

calls the appropriate plugin to perform the check. The plugin

is a simple executable program, like a shell or perl script.

Ganglia [6] is a distributed monitoring system oriented

toward high performance computing systems such as clusters

and grids. One of the crucial goals of Ganglia is scalability

as it aims to collect statistics from large sets of sources.

These include the name of the machine, the number of

CPUs, memory, etc. Objects of interest to Ganglia are nodes,

clusters and grids [9]. A node is a computer of 1 to 4

CPUs usually racked. A cluster is a group of nodes and

a grid is a group of clusters. However, these definitions

are quite flexible and depending on the particular scenarios,

the concepts of node, cluster and grid, can have different

meanings. Ganglia has several possible uses, for monitoring

large scale cluster, “bunch” of machines, data centers, or

simply logical partitions. [9] enumerates several scenarios

of use for Ganglia.

Ganglia contains three main modules: ganglia monitoring

daemon (gmond), ganglia meta daemon (gmetad) and

ganglia web front-end (web). gmond is a daemon running on

every monitored machine. It collects all the system metrics

configured, like CPU, memory, disk, network, etc. When

run in a cluster environment (i.e., all nodes can be joined

through multicast), the nodes synchronize their databases

using multicast. This enables the gmetad, which lies above

gmond, to collect information of all the cluster from a single

node. Although we base our monitoring system in Ganglia,

we must emphasize that we change the way in which gmond

runs and we also change its role considerably.

To store and display information, Ganglia uses RRD-

tool [10] (Round Robin Database) for the different levels of

the hierarchy: grid, cluster, host and metric trends. RRDtool

can store data for different time granularities ranging from

minutes to years. RRDtool can also display plots of data for

the different time granularities.

One important additional component of Ganglia is

gmetric, a command-line tool that lets applications pub-

lish application-specific metrics (as opposed to built-in met-

rics, which are compiled in gmond source code and, thus,

collected by default). We take advantage of gmetric to

dynamically collect and submit data to Ganglia.

Another important issue for us is what kind of monitoring

information can we get from the EGEE side. There is a large

number of monitoring tools for EGEE, as listed in [11].

We would be particularly interested in having the precise

number of times that some application was run in the EGEE

side, such that we could compare this number to the number

of times it reaches the DG side after crossing the bridge.

Unfortunately, as far as we know, this is not possible. One

thing however, that we can get, from sites like Gridview [12]

and CESGA [13] is extensive information on specific jobs

that ran in some VO. This will allow us to see some data

concerning the EDGeS VO (though we are not using it yet).

4.1. Discussion of Monitoring Solutions

In the Service Grid→Desktop Grid bridge, the Workload

Management System (WMS) treats a DG as a single Com-

puting Element (CE). Hence, for monitoring, we could treat

the DG part as another Computing Element integrated in

EGEE. Unfortunately, there are a couple of inconveniences

to this idea. One problem is that we still have the Desktop

Grid→Service Grid bridge to monitor. Another more subtle

issue is that we can get a lot of data from BOINC or

XW servers, regarding execution of individual applications,

but not quite the same from the EGEE side. We thus treat

BOINC and XW differently from other CEs, the shortcom-

ing being that we need to join two irreconcilable worlds.

From the monitoring point of view, DGs and SGs could

not be more different. While the components of a SG obey

to a strongly centralized administration, usually, DGs do not

exist under the same administrative roof, as nodes in a DG

belong to private unrelated users (an exception to this comes

from DGs running at faculty labs, for instance). This makes

it impossible to install dedicated monitoring components in

a DG, as no administrator can impose such installation.

Moreover, owners of private PCs might not be interested

in installing additional software (this might even be very

complex).

Our particular choice of Ganglia was motivated by the

flexibility and simplicity of this tool. A very interesting

feature of Ganglia is that it uses the RRD Tool, to store

periodic-based information. Utilization of the RRD Tool

in Ganglia provides a powerful way of showing individual

and aggregate statistics of the parameters under observation.

While we changed many things in the “normal” use of

Ganglia, we still use this powerful feature, as we describe

in Section 5.6.

However, Ganglia cannot solve all the problems by itself,

as we cannot install gmond on every privately owned

computer. A bulk approach, with queries on the BOINC or

XtremWeb server databases directly, seems to be our only

option to read data from DGs. Despite controlling each one

DG Probe
Data Collector

Daemon
Ganglia Stack User Interface

Figure 3. Architecture Blocks of EDGeS Monitoring

of the users individually, the DG server does so in the normal

control flow of computation. It does not impose additional

messages to the clients or any change in the communication

pattern, which is always initiated by the client (e.g., because

client can reside behind a firewall and may be inaccessible).

Hence, our approach on DGs changes nothing in the client

and uses the extensive database information already in place

in the servers. Although we used Ganglia as a starting point,

practice showed us that the base version of Ganglia required

some changes, before reaching production in our specific

setting.

Furthermore, we have other unsolved challenges in front

of us, like achieving a deeper integration of monitoring

with EGEE, supporting restart of services or notification

of failures, just to name a few. Some of these issues are

easily solvable with Nagios, which can also monitor EGEE

sites [14]. We are currently evaluating the possibility of

using Nagios to augment our current service.

5. Monitoring Architecture

The current version of our monitoring architecture com-

prises the following parts:

• the BOINC/XW probe;

• the Data Collector daemon;

• the Ganglia stack;

• the User Interface.

We can further refine the organization of our architecture

in a rough two-part division: one serves the purpose of

collecting, and processing general data, the other supports

the web view of data (although it also manages and stores

data). The first part includes the BOINC/XW probe and the

Data Collector Daemon, the other part includes the Ganglia

stack and the User Interface. We depict the block view in

Figure 3 with the interactions existing in the whole system.

Data flow starts in probes, like the BOINC and XW

probes, which collect data from the BOINC and XtremWeb

databases. For example, these probes can collect the number

of workunits that crossed the bridge, how many are waiting

to be downloaded by any kind of worker, etc. These data

follow to the Data Collector Daemon, which act as a hub,

receiving, then filtering, (optionally) storing and sending

data to whatever devices want to receive it. We use Java

Enterprise Edition technologies, like Java Message Service

and Enterprise Java Beans as the core technology for this

component. The user interface, which displays system in-

formation for administrators, is backed by the Ganglia stack

that stores and manages data for plots (daily, weekly or

monthly). For instance, to display periodic plots of the

workunits running on some desktop grid, the Ganglia stack,

must receive data on this parameter regularly (e.g., every 5

minutes, but this depends on the granularity one wishes to

have on the parameters).

In our architecture, the flow of monitoring data goes

through the following hops: i) a DG probe reads the Desktop

Grid database, ii) sends data to the Data Collector Dae-

mon, which iii) spawns one gmetric process. iv) From

gmetric, data goes through the usual path in the Ganglia

architecture to reach gmetad, which writes data in the

RRD Tool database. Finally, v) when the user visits the

appropriate page and requests a given parameter, a Java

servlet in the Java Server Faces (JSF) framework will issue

a request to the RRD Tool and produce a plot on-the-fly

(if needed).

5.1. DG Probe that reads the Desktop Grid

database

The BOINC and XW servers store all their data (users,

workunits, which users have downloaded which workunits,

the success of the workunits, etc.) in a MySQL database.

To query this database, we use a DG probe that sends SQL

queries to the server.

Since the operation of BOINC and XW probes are similar

(for both bridge directions), to conserve space we only list

the parameters we collect for the Desktop Grid→Service

Grid direction for a BOINC DG. The list of parameters is

pretty similar in XW, while for the opposite direction, this

probe only collects data about workunits (WUs) that have

crossed the bridge, thus reaching BOINC or XW. At the time

we write this document, we collect data for the following

parameters:

• Running Workunits. The number of WUs downloaded

from the DG server both by the bridge and by regular

clients. To the DG server, the bridge is simply another

client, although very powerful.

• Waiting Workunits. The number of WUs in the DG

server waiting to be downloaded (from clients and

bridge).

• Past Workunits. The number of WUs that are finished

(from clients and bridge).

• Success Rate of Past Workunits. If s is the number of

WU results that clients submitted with success, and a
is the overall number of WU results clients submitted,

success rate is s/a.

• Past Crossing-Bridge Workunits. This parameter

counts the number of finished WUs that crossed the

bridge toward the SG.

Report

Server

MySQL
Database

BOINC

BOINC
Probe

XtremWeb

BOINC
Bridge

user name

XW
Probe

XtremWeb
Server

MySQL
Database

re
po
rt

pa
ra
m
et
er
s

W
e
b

S
e
rv
ic
e

JMS

Topic

Web Service

Implementation

Message

Dispatcher

EJB

Message

Dispatcher

EJB

GlassFish

Application

Server

gmetric

T
o
 G
a
n
g
lia
 s
ta
c
k

Data Collector Daemon

Figure 4. Data Collector Daemon

• Success Rate of Past Crossing-Bridge workunits. s/a
as the general success rate of all WUs, but this metric

is restricted to the jobs that crossed the bridge.

• CPUs Available. Number of CPUs that are available.

• GFLOPS. Number of floating point operations per

second in the entire DG divided by 10
9. We restrict

this number to the CPUs that downloaded WUs in the

last 6 hours.

One should notice that some of these parameters do not

concern the bridge, but they may, nevertheless, convey some

important information. Consider the case of success rate. It

can be useful to compare the success rate of workunits that

cross the bridge against the overall success rate of the same

application. To get each one of these parameters we run

SQL queries on the BOINC database. To install the BOINC

probe one has to set the reporting interval of the probe. We

currently set this to 300 seconds to reduce the impact of

the probe as much as possible, while keeping a reasonable

granularity for parameters.

5.2. The Data Collector Daemon

One of the components of our architecture is the Data

Collector Daemon (DCD), shown in Figure 4. We wrote

this daemon using technologies of Java Enterprise Edition

(JEE), more precisely, Java Message Service (JMS) and

Enterprise Java Beans (EJB), running on a GlassFish [15]

Application Server. The fundamental component of the DCD

is a JMS topic, where components exchange information.

The BOINC and XW probes report their data to a web

service. This web service connects to an EJB called “Mes-

sage Dispatcher”, which in turn publishes data to the JMS

topic. By logically disconnecting the web service and the

Ganglia

DG->SG
BOINC
Gmond

Gmetad

RRDtool

User Interface

JSF

Framework

SG->DG
BOINC
Gmond

gmetric

DG->SG
XW

Gmond

DG->SG
XW

Gmond

Figure 5. From gmetric to the web display

Message Dispatcher, we allow them to easily run in different

machines if necessary. The path closes in another EJB, called

“GMetricProcessorBean”, which subscribes to the topic and

launches an external process to run Ganglia’s gmetric.

One of the most advantageous features of DCD is the

decoupling it provides between production and consumption

of data. In fact, this is quite typical to the message-oriented

approach we are using here. In this way, we can easily

add new sources of data, and new receivers, all without

having to halt the platform. Consumers and producers do

not need to be aware of each other, they are just connected

by the JMS topic. Since, at the present time, we are mainly

concerned with displaying periodic data of some parameters,

data only flows to the Ganglia stack. However, there are

many other services that should not go to Ganglia and that

need a separate data flow. Perhaps one of the most important

examples here would be to raise an alarm, when some

parameter runs out of its acceptable range. This is very easy

to do using standard JMS filtering.

5.3. The gmetric to gmetad Data Flow

The DCD spawns a process to execute the gmetric tool

included in Ganglia. This gmetric process publishes the

reported metric to gmetad (see Figure 5). We report data

through gmetric, instead of getting it directly from the

gmond, to overcome the limitations of gmond, as the latter

cannot deal with new parameters. If we want to change

parameters on the fly (e.g., adding the average waiting time

of tasks in the bridge, or some other parameter), we would

have to recompile gmond. While the DG probe runs in the

same local area network as the BOINC or XW databases,

the DCD and the entire Ganglia stack reside in a completely

different place. Moreover, for each DG we only need to add

one DG probe that accesses a single web service to report

results to the Ganglia-based monitoring stack. gmetric

sends new values to the multicast channel of the cluster,

where all the listening gmond’s receive it. Later, gmetad

collects this data from gmond and stores it in the RRD Tool.

As we can see in Figure 5, we run four instances gmond.

Two are for the Service Grid→Desktop Grid direction,

BOINC and XW, while the other two are for the Desk-

top Grid→Service Grid direction, BOINC and XW, also.

This separation has to do with the internal organization

of Ganglia. This enables Ganglia to store data from both

bridges separately, with all the possibilities that come with

this separation, like aggregation of results (which show up in

the web user interface). For example, we can have separate

views of the number of workunits in BOINC projects that

crossed the bridge starting from separate DGs, but we can

also have the total sum of such number starting from all

DGs (this is a sum computed by Ganglia).

One important aspect regards the list of applications that

exist in the web user interface. This list emerges automati-

cally, as new probes connect to the JMS topic. In the first

step, data of the newly connected application will reach the

gmond and eventually the web interface without additional

human intervention. However, the opposite step of removing

an application requires manual intervention in gmond.

5.4. The gmetad to Data Display Flow

gmetad stores its information in local RRD files, which

follow the format specified by the RRD Tool. The gmetad

creates an XML summary that dictates the organization of

the RRD files on disk. Then, we use a JDOM [16] parser,

to convert this summary to Java structures that enable us

to know exactly where to find the appropriate RRD file

for a given parameter, in a given cluster (DG or EGEE).

We cache the parser-generated information for five minutes

before disposing and creating a new one.

To create the human readable data plots, we rely on the

tools that come with RRD. To conserve CPU utilization, we

minimize the number of times we need to create the plots.

Specifically, the first time some user requests a plot, we

build the corresponding png file [17] and store it on disk in

a place accessible to the Java servlet that creates the HTML

with the plots. Then, we keep this png file for a time period

that depends on the time-span of the plot. For example for

last-day statistics we keep this file 5 minutes, before creating

a new instance. For last-week statistics we keep it for 1 hour,

while for last-month statistics we keep it for 12 hours. If a

second user requests the same plot within this time limits,

the web server replies with the cached plot, otherwise, it

generates a new one. In this way, we reduce the latency felt

by the user for subsequent requests, while, at the same time,

we contain the monitoring system’s load.

5.5. Organization of Monitoring Data

We need to organize the directories of the RRD Tool

(as part of Ganglia) according to the EDGeS infrastructure

/var/lib/ganglia/rrds

__SummaryInfo__

sgdg|xtremweb

sgdg|boinc

dgsg|boinc

dgsg|xtremweb

sztaki|search

__SummaryInfo__

westminster|dsp

westminster|PR

westminster|protein

westminster|Blender

westminster|laserac

auger9|singlemuons

auger9|isdep

__SummaryInfo__

rrd files of

parameters

auger9|dart

auger9|dsp

__SummaryInfo__

__SummaryInfo__

...

Figure 6. Internal organization of information in our
Ganglia-based monitoring tool

and, in particular, we must make the separation between

both bridge directions explicit, to show this on the web site.

Refer to Figure 6. In the first level, we split contents in four

parts, one for each direction of the bridge, both in XW and

BOINC. These accounts for four directories dgsg|boinc,

dgsg|xtremweb, sgdg|boinc and sgdg|xtremweb.

In addition to these two directories, the RRD tool adds an-

other directory deemed __SummaryInfo__, to aggregate

parameter values from all directions. This directory is useful

to aggregate results for all applications in one of the direc-

tions of BOINC or XW. For example, if we have the num-

ber of CPUs for sztaki|search, westminster|dsp,

etc., the __SummaryInfo__ directory of the correspond-

ing level stores the aggregate number of CPUs, resulting

from addition of all applications of BOINC running a

Desktop Grid→Service Grid bridge.

5.6. Monitoring User Interface

We use the GlassFish application server to generate

the web pages that display data collected by monitoring.

The current address of our monitoring web site is http:

//edges.dei.uc.pt/EDGeSMonitoring/. We keep a second site

(http://edges.dei.uc.pt:8080/EDGeSMonitoring/) for testing

purposes. Since we changed the normal operation of the

Ganglia stack, and due to the specific requirements of

the EDGeS project, we decided to build our own web-

based application from scratch, using the Java Server Faces

framework. One should notice that programming costs of

this decision are not that high, because it is easy to create

and use the png files from the gmetad in our own setting.

More precisely, we can easily manipulate Ganglia as we

need despite not using the native Ganglia User Interface. To

implement some features of our web site (e.g., getting the

entire list in a drop-down list or using some special tags

in a HTML table), we had to use a couple of Tomahawk

components [18], like datalist and dataTable. These

components enrich the standard JSF implementation.

At the current time, the interface consists of the follow-

ing main web pages: “Welcome page”, “About”, “Desktop

Grid→Service Grid”, “Service Grid→Desktop Grid”, “Pa-

rameters” and “Contact”. Everywhere in the web site, there

is a menu on top, with links to any of the aforementioned

pages. The “Welcome page” contains some static admin-

istrative information about the EDGeS project, as well as

some configuration information. The “About” page contains

the credits of the EDGeS project team, of web page main-

tainers and designers. The “Parameters” page contains the

description of the parameters we collect and display in the

“Desktop Grid→Service Grid” and “Service Grid→Desktop

Grid” pages. The “Contact” page contains mail address of

the web site maintainers.

The Desktop Grid→Service Grid and Service

Grid→Desktop Grid have similar controls: an

XtremWeb/BOINC radio button, a drop-down list of

Grids (typically administratively different sites) and another

drop-down list for applications (i.e., BOINC or XW

applications that run in clients). Figure 7 gives an overview

of the Desktop Grid→Service Grid page. The default

view contains three plots per application per parameter,

corresponding to the last 24 Hours, to the Last Week and

to the Last Month. Additionally, we can replace the plots

by numerical values. To switch on or off some of the views

we use javascript, thus reducing the interaction with the

web server.

6. Conclusion and Roadmap

In this paper, we described the monitoring architecture

we have created so far for the EDGeS project. It contains

four main components: a probe that runs SQL queries on the

BOINC/XW server, the Data Collector Daemon, a Ganglia

stack to treat data and a web user interface. One of the fun-

damental components of our architecture are the DG probes.

While conceptually simple, DG probes are powerful enough

to virtually collect all data we are currently observing for the

entire platform. Current parameters concern mainly workunit

accounting. One of the major shortcomings of this approach,

however, is the difficulty to get in the EGEE side the same

Figure 7. Aggregate view of applications

information we get in the DG side, regarding execution of

specific applications.

In the long term, and as the size of the EDGeS platform

is expected to grow to a larger scale, we plan to include

functionality tests, as described in Section 3. As a final vi-

sion for EDGeS monitoring, we will evaluate the possibility

of integrating our current work in a powerful monitoring

platform, like Nagios. While we need to have the possibility

of keeping our tailor-made view of the grid (because, in

fact, we need to view exchanges of jobs between different

grids), an external framework can bring with it many other

services that can significantly empower EDGeS, like stan-

dardized probing, user management or failure notification

mechanisms, just to mention a few examples.

Acknowledgment

The EDGeS (Enabling Desktop Grids for e-Science)

project receives Community funding from the European

Commission within Research Infrastructures initiative of

FP7 (grant agreement Number 211727).

References

[1] I. Foster, “What is the grid? - a three point checklist,”
GRIDtoday, vol. 1, no. 6, July 2002. [Online]. Available:
http://www.gridtoday.com/02/0722/100136.html

[2] D. P. Anderson, “BOINC: A system for public-resource com-
puting and storage,” in 5th Intl Workshop on Grid Computing
(GRID 2004), 2004, USA, Proceedings. IEEE Computer
Society, 2004, pp. 4–10.

[3] F. Cappello, S. Djilali, G. Fedak, T. Hérault, F. Magniette,
V. Néri, and O. Lodygensky, “Computing on large-scale
distributed systems: XtremWeb architecture, programming
models, security, tests and convergence with grid,” Future
Generation Comp. Syst., vol. 21, no. 3, pp. 417–437, 2005.

[4] “EGEE Portal: EGEE Portal,” http://www.eu-egee.org/.

[5] M. Cárdenas-Montes, A. Emmen, A. C. Marosi, F. Araujo,
G. Gombás, G. Terstyanszky, G. Fedak, I. Kelley, I. Taylor,
O. Lodygensky, P. Kacsuk, R. Lovas, T. Kiss, Z. Balaton,
and Z. Farkas, “Edges: bridging desktop and service grids,”
in 2nd Iberian Grid Infrastructure Conference (IBERGRID
2008), Porto, Portugal, May 2008.

[6] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia
distributed monitoring system: design, implementation, and
experience,” Parallel Computing, vol. 30, no. 5-6, pp. 817–
840, 2004.

[7] “JRA1.1: Prototypes of Bridge from Desktop Grids to Service
Grids,” Deliverable DJRA1.1 of the EDGeS Project, Jun.
2008.

[8] O. Lodygensky, G. Fedak, F. Cappello, V. Neri, M. Livny, and
D. Thain, “Xtremweb & condor sharing resources between in-
ternet connected condor pools.” in CCGRID ’03: Proceedings
of the 3st International Symposium on Cluster Computing and
the Grid. Washington, DC, USA: IEEE Computer Society,
2003, p. 382.

[9] “Ganglia description,” http://www.ibm.com/developerworks/
wikis/display/WikiPtype/ganglia.

[10] “RRDtool — about RRDtool,” http://oss.oetiker.ch/rrdtool/
index.en.html.

[11] “EGEE-II SA1-documentation collection,” http://egee-docs.
web.cern.ch/egee-docs/list.php?dir=./mig/production/\&.

[12] “Gridview: Visualization and monitoring tool for lcg,” http:
//gridview.cern.ch/GRIDVIEW/.

[13] “EGEE Accounting Portal,” http://www3.egee.cesga.es/
gridsite/accounting/CESGA/egee view.html.

[14] E. Imamagic and D. Dobrenic, “Grid infrastructure monitor-
ing system based on nagios,” in GMW ’07: Proceedings of
the 2007 workshop on Grid monitoring. New York, NY,
USA: ACM, 2007, pp. 23–28.

[15] “glassfish: Glassfish - open source application server,” https:
//glassfish.dev.java.net/.

[16] “JDOM,” http://www.jdom.org/.

[17] “PNG (portable network graphics) home site,” http://www.
libpng.org/pub/png/.

[18] “Myfaces tomahawk - apache myfaces - tomahawk,” http:
//myfaces.apache.org/tomahawk/.

