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Abstract 
This work proposes the application of generalized 

regression neural network multi-models to the prediction 
of acute hypotensive episodes (AHE) occurring in 
intensive care units. Contrasting with classical auto 
regressive representations, multi-model schemes do not 
recursively use model outputs as inputs for step ahead 
predictions. As result, prediction errors are not 
propagated over the forecast horizon and long-term 
predictions can be accurately estimated. The 
effectiveness of this strategy is validated in the context of 
PhysioNet-Computers in Cardiology Challenge 2009. 
The dataset considered consists of arterial blood 
pressure signals, obtained from MIMIC-II Database. A 
correct prediction of 10 out of 10 AHE for test set A and 
of 37 out of 40 AHE for test set B was achieved. 

1. Introduction 
Hypotension, a clinical condition characterized by 

abnormally low blood pressure values, is one of the 
recurrent situations occurring in intensive care units. If 
not promptly treated, acute hypotensive episodes may 
result in irreversible organ damage and, eventually, death. 
Therefore, the development of methodologies able to 
detect not only the presence of this condition but also to 
predict their occurrence is of extreme importance 
concerning appropriate clinical interventions. In fact, 
since clinical interventions to treat such events are 
usually invasive and aggressive, a prediction system that 
identifies an imminent event would be a significant 
benefit to timely support non-invasive and preventive 
treatments. 

In general, the development of automatic hypotensive 
predictive solutions explore the correlation of patient 
clinical information, such as arterial blood pressure 
(ABP), heart rate (HR) and oxygen saturation (SO2) with 
the onset of the hypotension episode. Bassale [1] 
proposed the use of parametric and non-parametric 
methods to analyze and characterize ABP before 
hypotensive episodes. He concluded that ABP variability 
and shape features have the potential to predict such 
events. Crespo et al [2] also suggested the use of changes 

in the ABP morphology occurring immediately before an 
episode of hypotension. In particular, they suggested the 
variance of the ABP signal and the variance of the wave 
slope as the most relevant features to consider when 
predicting AHE. Recently, Lehman et al [3] proposed a 
similarity-based searching and pattern matching 
algorithm, applicable to classification and forecasting 
tasks. Using real physiological measurements they 
employed the methodology to forecast hypotensive 
episodes in intensive care units. Frolich et al [4] 
suggested the use of baseline HR as a significant 
predictor of obstetric spinal hypotension. Basically, they 
showed that higher baseline HR may be a useful 
parameter to predict postspinal hypotension. 

Using spectral analysis of HR and ABP variability 
Pelosi et al [5] have identified precursors of hypotensive 
episodes during renal dialysis. Also using frequency 
analysis techniques, Reich et al. [6], investigated the 
correlation of HR variability analysis with hypotension 
events. Chamchad et al [7] found a significant correlation 
of nonlinear HR variability dimension analysis with the 
presence of hypotension, occurring after spinal anesthesia 
for cesarean delivery. Hanss et al [8] also concluded that 
HR variability analysis could be used to predict the 
occurrence of hypotension during spinal anesthesia. In 
particular, they investigated the ratio of low to high 
frequency peaks of the HR variability power spectrum 
(LF/HF) to the prediction of hypotension events after 
spinal anesthesia, for the specific cases of pregnant 
women [9] and elderly men [10]. More recently, Mancini 
et al [11] showed the potential of SO2 short-term 
variability in anticipating the hypotension onset. 

This work addresses the forecast of acute hypotensive 
episodes through the development of predictive multi-
models, applicable to ABP time-series. Multi-models do 
not recursively use model outputs as inputs for step ahead 
predictions. Therefore, prediction errors are not 
propagated and long-term predictions can be accurately 
estimated. Among regression models, neural networks 
have shown considerable capabilities to learn and to 
generalize from non-linear environments, enabling to 
capture the fundamental data dynamics. In particular, 
generalized regression neural network (GRNN) structures 
are employed here.  



 

 

Moreover, multi-models can be trained by means of 
standard backpropagation algorithms. In fact, each 
independent neural sub-model is used for each sampling 
instant and does not depend on previous predictions. In 
this work neural sub-models were trained using arterial 
blood pressure signals, obtained from MIMIC-II 
“numerics record” dataset (H and C datasets). No 
information from “clinical records” was used.  

The paper is organized as follows. In section 2 the 
proposed methodology is described. In section 3 the 
results using PhysioNet-Computers in Cardiology 
challenge 2009 datasets are presented and discussed. 
Finally, in section 4, some conclusions are drawn.  

2. Methods 
Figure 1 depicts the methodology proposed in this 

work. 

 
Figure 1 - Proposed scheme. 

 
The input consists of a discrete ABP signal (sampled 

once per minute) considering the information available 
before t0, the instant where the forecast period starts. 
This signal passes through a set of pre-processing 
techniques, namely to deal with missing information, 
noise reduction and normalization. Then, a correlation 
analysis procedure is carried out considering the 
processed ABP signal and a series of ABP templates, 
representative of historical ABP trends evolution. From 
this correlation analysis the most similar templates are 
identified and the correspondent multi-models, previously 
trained, selected. These specific neural models are then 
employed to predict the future evolution of the particular 
ABP input signal, from instant t0 until the end of the 
forecast window (one-hour). Finally, an AHE is 
identified if at least 90% of the ABP prediction signal 
during a period of 30 minutes or more is at or below 60 
mmHg. 

2.1. Multi-models 
This step involves modeling each ABP template 

signal, based on a GRNN multi-model approach, with the 
aim of prediction. Consider a time-model series described 
by the following discrete-time nonlinear auto regressive 
representation  

( )1( ) ( 1), ( 2),..., ( )y k f y k y k y k n= − − −  (1)

where y(k) is the value of the ABP signal at minute k, n is 
the order of the model and 1f  is a mapping such that 

1 : nf ℜ → ℜ . Assuming the knowledge of mapping 1f , 
and considering the current instant k, it is possible to 
predict one step ahead ABP value by 

( )1( 1) ( ), ( 1),..., ( 1 )y k f y k y k y k n+ = − + −  (2)

Considering the instant 2k +  

( )1( 2) ( 1), ( ),..., ( 2 )y k f y k y k y k n+ = + + −  (3)

This description can be reformulated [12], and 
expressed as a function of past observed values 

1 1( 2) (   ( ( ),..., ( 1 )),
                      ( ),..., ( 2 ) )
y k f f y k y k n

y k y k n
+ = + −

+ −
 (4)

( )2( 2) ( ), ( 1),..., ( 1 )y k f y k y k y k n+ = − + −  (5)
In general, a particular future time instant P can be 

expressed in a compact form by  

( )( ) ( ), ( 1),..., ( 1 )Py k P f y k y k y k n+ = − + −  (6)

Thanks to this structure, predictions do not depend on 
previous predictions, but only on information available at 
current instant k. However, using multi-models, one 
independent model ( if ) has to be used for each sampling 
instant within the prediction horizon. As result, if a future 
instant P has to be predicted, P distinct regression models 
have to be derived. 

2.2. Neural-network multi-models 
Each regression sub-model ( if ) is here described by a 

distinct GRNN, a type of radial basis function network. 
The principal advantages of GRNN are that it enables a 
fast learn and it is suitable for smooth function-
approximation problems [13]. The main drawback of 
GRNN is that, like kernel methods, it suffers from the 
curse of dimensionality. Although the multi-model can be 
used for long-range prediction, each neural network is 
trained by means of a standard backpropagation 
algorithm (actually, training a GRNN involves the 
estimation of kernels location and hidden-to-output layers 
weights). This is viable since the structure of multi-
models is not recursively used and, therefore, predictions 
do not depend on previous predictions.  



 

 

2.3. Templates and correlation analysis 
To define the ABP templates a representative 

historical dataset composed of past and future tendencies 
has to be considered. The dataset consists of the 60 
training records (H and C), available in Physionet/CinC 
challenge [14]. Actually, one signal (C1#4, a40234) was 
excluded, since it presents a significant discontinuity in 
the neighborhood of the instant t0.  

For each signal an appropriate period of time, 
immediately before and after the beginning of the defined 
forecast window (instant t0), respectively 6 hours and 1 
hour, is considered. To address future predictions, each of 
these time series templates (H and C) is modeled using 
the GRNN multi-model approach. These models are 
trained using past information available (before t0), while 
validation is performed based on future information (after 
t0). 

Given a new ABP testing dataset, truncated at time 
instant t0, the ABP forecast is predicted based on 
previous trained GRNN multi-models. To select the 
specific multi-models a correlation analysis procedure 
takes place. Basically, correlation coefficients between 
new ABP data and stored ABP templates are firstly 
computed. Then, the ABP templates that present 
correlation coefficients verifying a given threshold value 
are selected. In particular, being CC a vector composed 
of all positive correlation coefficients (sorted in 
descending order), the first k templates are selected if 
equation (7) is verified. 

( )     1 .. 
( )

sum CCi tolerance i k
sum CC

> =  (7)

The occurrence of an AHE, within the forecast 
window (one hour), is finally assessed according to the 
AHE definition [14]. 

 

3. Results 

3.1. Neural network multi-models 
When modeling each ABP signal template, the 

selection of the order (n) and the size are of particular 
importance. The parameter size is defined as the period 
before the starting of the forecast window, from where 
information is used for training purposes. In order to 
estimate the parameters (order and size) an optimization 
procedure was followed, through the minimization of the 
least square prediction error over the forecast window.  
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2

,
0

ˆ( ( ) ( ) )
k t

size order
k t

min y k y k
= +

=

−∑  (8)

 

Variables y(k) and ˆ( )y k define, respectively, the actual 
and the approximated ABP signal. This minimization 
procedure was carried out considering different values for 
the order and for the size parameters, namely 

[60...90]order ∈  and [120...180]size ∈ , with increments 
of 10 minutes.  

The GRNN structures have been defined and trained 
using the newgrnn function [15], available in Matlab 
toolbox. Figure 2 presents the training results for the 
record #H1_4 (a40834). For this specific signal the order 
and size values are, respectively, 80 and 140 minutes. 
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Figure 2. GRNN modeling and predicting, #H1_4 (a40834). 
 

It is important to stress that the neural multi-models 
predict future behavior over the whole prediction horizon 
only using information before the starting of the forecast 
window (instant t0). Moreover, to reduce the number of 
sub-models, each GRNN structure was trained to deal 
with 15 step ahead predictions. As result, for each ABP 
template 4 neural sub-models have been trained. 

3.2. Acute hypotensive episodes 
Using the present strategy, testing dataset available in 

Physionet/CinC challenge (10 records for A dataset, and 
40 records for B dataset) was used for validation 
purposes. Firstly, each of these 50 datasets was correlated 
with the ABP templates, considering a specific period of 
size minutes before instant t0. The correspondent GRNN 
models, determined from the correlation analysis 
procedure, are used to predict future ABP values. The 
global prediction signal is computed as the weight 
average of all estimated predictions, being the 
identification of AHE straightforward computed. Figure 3 
shows the prediction of the specific ABP signal #A1_10 
(110bnm) over the forecast horizon (one hour) and the 
respective AHE. 



 

 

 

Figure 3. Prediction and AHE identification - signal #A1_10. 
 
Table 1 presents the occurrences where AHE episodes 

have been identified for A and B records. A correct 
prediction of 10 out of 10 AHE for test set A and of 37 
out of 40 AHE for test set B was achieved. 

 
Table 1. AHE detection 

 AHE detection 
Dataset A  1, 2, 4, 9, 10 
Dataset B  2, 3, 5, 7, 9, 14, 17, 18, 22, 23, 25, 26, 34, 38, 39 

 
Although these results are relevant, the experiments 

performed have showed that the robustness of forecasting 
methodology is highly dependent on several parameters, 
namely order, size, and tolerance. Future work will focus 
on deriving compact template sets that characterize the 
dynamics that distinguish different ABP evolution. In this 
case, a PCA strategy could be easily used to capture the 
major characteristics of the testing dataset, reducing the 
number of templates and, consequently, the number of 
multi-models involved. Additionally, other sources of 
information (such as clinical record data) can be 
included. 

 

4. Conclusions 
This work proposed a methodology to predict acute 

hypotensive events over a specific time period. Using 
arterial blood pressure time series, a modeling strategy 
based on GRNN multi-models was implemented, 
enabling to estimate predictions over a forecast horizon. 
Applied to ABP time-series, considered in the 
PhysioNet/CinC challenge 2009, the referred strategy 
allows to adequately capture its dynamics and, then, to 
predict the onset of hypotensive events.  

The reduction of the number of historical templates, 
and therefore of the number of neural-networks, is a 
possible direction of future work. 
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