
  

  

Abstract - This work addresses two major drawbacks of the 

current cardiovascular risk score systems: reduced number of 

risk factors considered by each individual tool and the inability 

of these tools to deal with incomplete information. To achieve 

this goal a two phase strategy was followed. In the first phase, a 

common representation procedure was considered, based on a 

Naïve-Bayes classifier methodology. Conditional probabilities 

parameters were initially evaluated through a frequency 

estimation method and after that optimized using a Genetic 

Algorithm approach. In a second phase, a combination scheme 

was proposed exploiting the particular features of Bayes 

probabilistic reasoning. 

This strategy was applied to describe and combine SCORE, 

ASSIGN and Framingham models. Validation results were 

obtained based on individual models, assuming their statistical 

correctness. The achieved results are very promising, showing 

the potential of the strategy to accomplish the desired goals. 

 

I. INTRODUCTION 

In the context of cardiovascular diseases, risk assessment 

tools are of fundamental importance. In fact, they have a 

significant impact on the management of an individual 

patient, mainly supporting professionals in the stratification 

of patient’s risk and in personal care plan definition. In this 

perspective, risk assessment helps professionals to adapt the 

personal care plan according to a given specific risk-

reduction effort. Additionally, they are valuable tools to 

reduce lack or over treatment situations as well as tailoring 

the frequency of clinical follow-up visits [8][2].  

The cardiovascular risk, i.e., the probability of occurrence of 

a cardiovascular event within a certain period of time, is 

commonly estimated based on risk score models. According 

to the period of time it is possible to identify two main 

categories of cardiac risk assessment tools: long term (years) 

and short term tools (months). Long term tools are widely 

available, while only a few studies have been conducted 

considering a short term period (months) [6][14]. Regarding 
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long term risk assessment tools, numerous cardiovascular 

disease/coronary artery disease are available in literature: 

Framingham study [6], SCORE [4], Qrisk [5], ASSIGN [19], 

PROCAM [1], UKPDS [12], Joint British charts [3], New 

Zealand[10], Sheffield [11]. These risk score systems differ 

when considering input risk factors, disease (artery disease, 

heart failure, etc), events prediction (death, myocardial 

infarction, etc), prevention type (primary/secondary) and 

patients’ specific condition (for example diabetics).  

Although useful, these tools present some limitations. In fact, 

individually, they include relatively few risk factors and they 

cannot deal with incomplete information (missing risk factor) 

[2]. Additionally, they are not able to capture the dynamics 

of the risk evolution, they do not allow the incorporation of 

clinical knowledge and they are not appropriate to model a 

specific patient. The main goal of the present work is to 

develop a methodology that is able to create an adjustable 

model that can incorporate a higher number of risk factors 

and cope with incomplete information. This approach 

intends to take into account available information, try to 

profit from that by developing a strategy to combine that 

knowledge, rather than derive a new model. 

In literature, several different ways to combine models are 

referred, basically organized according two main categories: 

models’ output combination (static/dynamic voting, 

static/dynamic selection …) and models’ parameters fusion 

[17]. The strategy followed in this work is included in the 

last category, and considers the combination of individual 

Naïve-Bayes models. In fact, Naïve-Bayesian models can 

handle with incomplete data sets, show causal relationships 

and facilitate the use of prior knowledge, which make them 

appropriate to model the individual risk scores [9,11]. 

Following a Bayesian modeling approach, a common 

representation of individual models is, in a first stage, carried 

out. Then, based on this common description, individual 

models are combined. As a result, it is possible to 

consider/integrate distinct inputs from individual tools in a 

global model and, consequently, to consider a larger number 

of risk factors which, with a single risk tool, would not be 

possible. Additionally, since Bayesian models are based on 

conditional probabilities, they provide an appropriate 

approach to deal with uncertainty. As a result, it is possible 

to handle directly with incomplete information (missing risk 

factors). Bayes model parameters learning involve 

conditional probabilities estimation. These values were, in a 

first step, evaluated through a frequency estimation method 

based on inputs and outputs discretization of individual 

models. Later, a Genetic algorithm (GA) approach was 

applied to optimize initial conditional probabilities.  
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The validation of the proposed combination strategy 

represents a major challenge, since there is no available 

global dataset. In order to circumvent this problem, 

validation was done based on the individual models, which 

have already been statistically validated. The paper is 

organized as follows: in section 2 an outline of the 

methodology is presented. It incorporates the individual 

models common description and their combination scheme. 

In section 3 some validation results are presented and, 

finally, in section 4, some conclusions are drawn. 

II. METHODOLOGY 

A. Common representation 

The first phase addresses a common representation of the 

individual models. Bayesian networks were employed to 

model individual behaviors since they are suitable for these 

particular conditions. In fact, Bayes networks are simple, 

efficient and present a predictive performance competitive 

with other classifiers [16]. Furthermore, they can deal with 

incomplete information, a key aspect in the present work. 

Figure 1 shows a Naïve-Bayes structure, a particular case of 

Bayes network models. This structure assumes a very simple 

and particular configuration, composed of only one output 

(C) and several inputs (Xi). 

 

Figure 1 – Naïve-Bayes Structure. 

Considering x as the value taken by variable X and c being 

the class label (mutually exclusive), Naïve-Bayes classifies 

the instance (e) in the class Ci that maximizes the conditional 

probability P(Ci |e), according to equation (1), where α is a 

normalization constant. 
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This specific structure assumes that this calculation is only 

valid if all the inputs Xi are conditionally independent, given 

the value of class C [7][13]. Considering individual 

cardiovascular risk models, risk factors (inputs) are usually 

unrelated. This fact validates the application of Naïve-Bayes 

structure in the present work. 

B. Conditional probabilities estimation 

Conditional probabilities (CP) of each input Xi, given the 

class C, are commonly evaluated from available datasets. 

When considering individual risk models, the CP parameter 

learning process was accomplished based on data generated 

from individual models’ equations, accessible in literature 

[4][6][19]. Using the generated data, CP were directly built 

based on a frequency estimation method, equation (2). 
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It is important to emphasize that inputs considered in current 

cardiovascular risk assessment tools are from different 

natures (continuous/discrete). Consequently, the first 

operation to be performed was the inputs’ discretization. 

There are several methods to perform that operation [20]. 

Here the discretization was performed in order to verify the 

intervals with clinical significance.  

C. Combination of models 

Combination of models aims to create a global system that 

can integrate information from different individual models. 

In this scheme several individual models Mi are considered, 

each one characterized by a specific conditional probability 

table (CPT), P(Xij |Ci), and the individual risk model output, 

P(Ci). Moreover, some risk factors (model inputs) may be 

considered by more than one model, while other inputs 

belong just to a particular model. Given these conditions, 

models’ combination, i.e, global risk distribution P(C), is 

obtained based on individual risk model outputs P(Ci). In 

order to perform this combination some conditions have to 

be verified: 

i) Individual models have the same number of output levels 

(classes). This ensures that models share the same risk 

assessment goal.  

ii) Shared variables’ CPT P(Xij|Ci) present approximately the 

same values. This means that individual models classify 

the same information (common variables) in an similar 

way. 

The value of P(C) is determined based on a simple frequency 

calculation, considering the entire single models’ outputs. 

Conditional probability tables of the global risk model, given 

by P(Xi |C), can also be defined based on a frequency 

estimation method (1). Nonetheless, for each variable it is 

necessary to consider the correct dataset. In this manner, a 

CPT calculation for a variable that is used by more than one 

model must consider the dataset of those models. On the 

contrary, if a variable only belongs to one model the CPT 

table must match the respective individual CPT. 

This approach builds a global model that has the same 

inference method as the individual models (2), and presents a 

behavior that can reproduce the performance of each one of 

the base models.  

Since Bayes models are based on probabilistic reasoning, 

this inference mechanism is able to deal with lack of input 

information (missing risk factor). Additionally, it is possible 

to make use of all input variables as a whole, which is not 

possible when individual models are considered. 

D. Validation and optimization strategy 

As there is no available global data set, it is not possible to 

adequately validate the proposed strategy. However, it is 

important to stress that the validity of individual models is 

guaranteed, since they have been statistically validated (in 

literature). Currently, it is assumed that the validity of the 



  

global model can be confirmed if it presents the same 

behavior of each individual model, when only the respective 

variables are considered.  

To assure that global model reproduces individual behaviors 

in a very precise way Genetic Algorithms were applied to 

optimize the parameters of the global conditional probability 

table P(Xi|C), initially estimated based on a frequency 

estimation method. 

III. RESULTS 

A. Bayes representation of individual risk tools 

ASSIGN, Framingham and SCORE [4][6][19], were the 

selected models to validate the present methodology. 

SCORE is a well accepted tool and is applied in clinical 

practice in some European countries. It calculates a 10 year 

CV absolute risk for fatal events. Thus, it was included in the 

model but it will not be combined with the other models 

since it only considers fatal events.  

ASSIGN and Framingham estimate a 10 year CV absolute 

risk events (non-fatal, death). These two models were 

combined according to the methodology explained in section 

II. These three models, characterized in table I, were 

implemented following the Naïve-Bayes classifier approach. 

 
 

1) Data set 

Assuming the same approach proposed by Twardy et. al. 

[15,16] the continuous variables were normally distributed, 

as given in table II, taking into account the respective mean 

(µ) and standard deviation (σ).  

 
The values for the discrete variables were generated from 

models presented in [4][6][19], through a random process. 

Based on risk factors’ values and on the 

equations/charts/scores available in literature (statistically 

validated models), the corresponding class was calculated for 

each instance. Using this approach two data sets were 

created ),,...,( 1 inii cxx  for all Ni ≤≤1 : training set 

N=10000; testing set N=1000. 

 

2) Input discretization  

Continuous variables were discretized. As referred in section 

II, discretization levels were defined according to their 

clinical relevance, as shown in the table III. 

 
The remaining inputs are discrete: 

 

3) Conditional Probability Tables (CPT) 

 Conditional probability tables were obtained based on a 

frequency estimate method (3). Therefore, for each input, a 

CPT was created. The number of lines and columns 

corresponds, respectively, to the number of categories and 

the number of class labels. Table V presents CPT for HDL - 

High-density lipoproteins input. 

 

4) Models’ Performance and optimization 

The individual models’ performance was validated, based on 

the capacity to predict the correct class, in comparison with 

the original models.  These results are presented in table VI. 

Despite the good performance of individual models, a 

genetic algorithm (GA) approach was, in a second step, 

applied, to optimize conditional table parameters. Table VI 

presents initial and optimized performance of individual 

models. 

 

TABLE I 

INDIVIDUAL MODELS CHARACTERIZATION 

Models Risk Factors Output levels  

SCORE  

(fatal events) 

age, sex, tch, sbp, smok, rg Low/Intermediate; 

High; Very High  

ASSIGN 

(events) 

age,sex, tch, hdl, sbp, diab, 

famh, cpd, sim    

Framingham 

(events) 

age, sex, tch, hdl, sbp, 

smok, diab, bptr 

 

Low/Intermediate; 

High 

Inputs: 

tch – Total Cholesterol; sbp –Systolic blood pressure; rg – European 

Region [low risk/high risk]; hdl - High-density lipoproteins; smok – 

smoking; diab – Diabetes; famh – Family history; cpd – Cigarettes per 

day; sim – Social deprivation index, bptr – Blood pressure treatment   

Outputs: 

SCORE categories [0  5  15  100]; Assign/Framingham [0  20   100] 

TABLE VI 

INDIVIDUAL MODELS’ PERFORMANCE 

Models Before GA % After GA% 

SCORE 91.3 99.6 

ASSIGN 90.4 99.24 

Framingham 89.6 99.03 

 

TABLE V 

EXAMPLE: INPUT “HDL” CPT 

 Low/Intermediate High 

0-35 0.1623 0.3002 

35-45 0.2854 0.3115 

45-55 0.3150 0.2480 

> 55 0.2373 0.1403 

TABLE IV 

DISCRETE VARIABLES 

Var. Categories 

Sex 0/1 : Female /Male 

Smok 0/1 : No/Yes    

Rg 0/1 : Low risk / High Risk 

Diab 0/1 : No/Yes    

Bptr 0/1 : No/Yes    

Famh 0/1 : No/Yes    

 

TABLE III 

CONTINUOUS VARIABLES’ DISCRETIZATION 

Var. Range 

age [0  35  40  45  50  55  60  100] 

sbp [0  120  130  140  160  250]    

tch [0  100  190   250  400] 

hdl [0  35  45  55  400] 

cpd [0 1 15 25 40 60] 

sim [1 15 30 45 60 87] 

 

TABLE II 

CONTINUOUS VARIABLES GAUSSIAN DISTRIBUTIONS 

Var. µ σ 

Age 48.5 10.8 

Sbp 129.7 17.6 

Tch 212.5 39.3 

Hdl 44.9 12.2 

 



  

B. Models’ Combination 

Individual models (ASSIGN and Framingham) were 

combined following the approach described in section II. 

Therefore, the global model has two outputs: one to calculate 

the 10 year absolute risk of fatal events (SCORE) and 

another to assess 10 year absolute risk of fatal/non-fatal 

events. Table VII shows the performance of the global 

model, before and after GA optimization process. 

 
These values were obtained taking into consideration the risk 

factors that belong to each model separately. The capacity to 

isolate individual models’ behavior is a direct consequence 

of the global model’s ability to deal with lack of input risk 

factors, since it is a straightforward operation to disable the 

influence of a specific variable. The respective CPT must be 

set to one in order to disable the influence of a particular 

variable (risk factor). Then results were compared to the 

original models.  

Thus, it is possible to confirm that the global model behaves 

like individual models when the respective risk factors are 

the only information available. This aspect assures that the 

global model has the right structure and learns the correct 

parameters’ values (CPT definition). Then, as highlighted in 

section II, the global model was validated exclusively based 

on statistically validated models. 

C. Implementation  

All the models as well as the remaining functions were 

implemented with Matlab. A graphical interface was also 

developed to ease the global model’s performance 

evaluation. 

IV. CONCLUSIONS 

This work has proposed a strategy to overcome two major 

drawbacks of the current cardiovascular risk tools: reduced 

number of risk factors considered by each individual tool 

and the inability of these tools to deal with incomplete 

information. Based on a Naïve-Bayes classifier methodology 

a common representation scheme was implemented for the 

individual cardiovascular risk tools. Then, using this 

common description, a combination scheme was proposed 

exploiting the particular features of probabilistic reasoning. 

The validity of the proposed strategy was assessed 

considering the description of three individual models 

SCORE, ASSIGN and Framingham and the combination of 

the last two (ASSIGN and Framingham). 

Ongoing research is mainly directed to improve the 

conditional probability tables of the global model and to 

increase the global model’s risk discrimination (higher 

number of output classes). This last issue depends directly on 

the availability of suitable validated individual models 

(clinically relevant).  
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      TABLE VII 

GLOBAL MODELS’ PERFORMANCE 

Models Before GA % After GA% 

ASSIGN 88.5 98.93 

Framingham 89.0 98.88 

 


