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4.1 Introduction

An immense quantity of information is available in all sectors of human 
activity, especially in the healthcare and medical sector. The processing of 
that information is a challenge to the human user—the medical doctor. The 
challenge is to develop tools (systems, procedures, and methods), to support 
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122 Intelligent and Adaptive Systems in Medicine

clinicians, which are more exact, cost-effective, and friendly to use. Informa-
tion of several kinds is available.

Numeric analytic from known cause–effect relations that can be for-
malized through a mathematical (in the classical sense) relation.
Numeric empirical, issued from experimentation and practical work 
but to which there is no known cause–effect relation.
Linguistic (qualitative), expressed in an approximate way by the user, 
with several levels of granularity (detail). Granularity may be con-
nected to the words of common language (big, small, strong, weak, 
etc.) or to intervals whose limits are not clearly defi ned.

In most cases the available information is empirical or linguistic, issued from 
complex and imprecisely known relations in complex systems, such as those 
with which the clinicians work. To process all these kinds of information, 
several approaches have been developed, each one more appropriate for a 
certain context:

The integral–differential approach, purely numeric, aiming at the 
determination of a set of mathematical equations building a model 
of the process (in the classical sense). This model assumes usually the 
form of integral or differential equations, and is seldom applicable in 
a medical context.
The empirical-data approach, using some basic tools for nonlinear 
function approximations. The aim is to obtain a compact tool able to 
predict behaviors of systems (in the more general sense), after the tool 
has been trained with past known data. Because most real systems 
(such as the human biologic systems) are nonlinear, nowadays the 
most-used tool to synthesize relations between sets of data is the arti-
fi cial neural network (ANN) formalism, giving space to the so-called 
neurocomputing body of knowledge.
The linguistic approach where tools enabling computers to compute 
with words are used. These tools enable computers to process the 
language of the clinician and to make inferences and deductions. 
Fuzzy logic is the most-used framework for that purpose. Because 
of the type of information, computing with fuzzy logic is sometimes 
called granular computing.
Finally, because in real situations the available information is a mix 
of these three types, combinations of these tools are used to build 
fl exible systems capable of working in a diversity of situations with 
an acceptable degree of effi ciency.

Many situations require searching for the “best” solution or, at least, a “good” 
solution. To search for better solutions with a computer, one must have some 
mathematical way of expressing what is good or not good, and an  analytical 
formalism to search iteratively from a solution to another, improving its  quality. 

•

•

•

•

•

•

•
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Unfortunately, the body of knowledge of traditional mathematical  optimization 
requires formal constraints and the possibility to write a mathematical crite-
rion for comparison between solutions. In real life this classical framework is 
of limited applicability, because most of the real problems are ill-conditioned in 
the sense that they cannot be mathematically formalized in a proper way.

Soft computing techniques are a family of tools to “exploit the tolerance for 
imprecision, uncertainty and partial truth to achieve tractability, robustness 
and low solution cost” [1]. Besides neurocomputing and fuzzy computing, 
it also includes genetic (evolutionary) computing and other techniques able 
to deal with incomplete knowledge. Figure 4.1 represents the soft comput-
ing family of techniques among the computing discipline at present times 
(adapted from Ref. 218 and according to Ref. 217). Numeric computation 
deals with numbers, whereas symbolic computation deals with symbols (for 
example, letters) and its mathematical manipulation [2].

A brief introduction to these techniques will be presented in the follow-
ing section. Section 4.3 discusses some medical application involving these 
techniques, covering the following domains: modelling and biosignal pro-
cessing and interpretation, biological system control and prognosis, and 
image- processing and decision-supporting system.

4.2 Soft Computing Techniques

4.2.1 The Data Paradigm: Artificial Neural Networks

This representational/computational tool derives its name from its simi-
larities with the natural neuron (Figure 4.2). The basic element of an ANN 
is a single neuron, shown in Figure 4.3. It is inspired by the natural neuron 
and its fi rst use in the academic community was in 1944, more or less at the 
same time as the birth of the digital computer. For a brief history of ANNs, 
see Ref. 3.

The natural neuron receives electrical impulses from its neighbors through 
dendrites, these impulses being combined in the cell body that attains a certain 
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FIGURE 4.1
The place of soft computing.
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activation degree and an electrical impulse is then transmitted through the 
axon to a synapse of the following neuron. In the artifi cial neuron, signals 
represented by numeric values are presented to the input, weighted by the 
artifi cial synapses (called weights for this reason), are combined (usually 
summed), and the resulting signal is the argument of a certain function—the 
activation function—that produces a transformed signal as output [4].
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FIGURE 4.2
The biological neuron and its connections. One neuron is composed of dendrites, cell body, 
and synapses. A synapse transmits a signal to another neuron by contacting one dendrite.
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FIGURE 4.3
Artifi cial neuron and its connections.
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Figure 4.3 shows the usual representation of an artifi cial neuron. A single 
artifi cial neuron is a simple and powerful computational tool. The weighted 
sum a of several inputs is passed through an activation function f to produce 
the output y of the neuron; Equation 4.1.

 a = w1x1 + w2x2 + … + wnxn + b ⇔ a = wTx + b (4.1)
 y = f(wTx + b)

An alternative architecture is the radial basis neuron measuring a radial dis-
tance between the input presented to it and an interior center (the radbas 
function is illustrated in Figure 4.4d).

 y = radbas(a) = radbas( �w – x� b) (4.2)

 y = radbas  (   √ 
___________________________________

   ( w 1  –   x 1 ) 
2  + ( w 2  –  x 2  ) 

2  + … + ( w n  –   x n ) 2    ) 

The special input of constant value 1 is called the bias of the neuron, allow-
ing a nonzero output for a zero input. One neuron has the following degrees 
of freedom: the number of inputs, the value of the weights, the type and 
parameters of the activation function f, and the value of the bias weight b. 
It is possible to use a multiplicity of activation functions. Figure 4.4 shows 
some of them [5].

A neuron can be combined (networked) in an arbitrary way in series and 
in parallel, giving place to structures that can model any nonlinear relations 
between a set of inputs and a set of outputs, with or without feedback. One of 
the most used structures is shown in Figure 4.5, the multilayer feedforward 
neural network (MLFNN), also known as perceptron [6].

Other well-known structures are radial basis function neural network 
(RBFNN), having only a radial hidden layer, and recurrent neural networks 
(RNN), which involve dynamic elements and have feedback connections. 
Each structure has its own potentialities and is more adequate for cer-
tain types of applications. In general terms, ANN is used to fi nd relations 
between two sets of data: an input set is presented to the network, that is, the 
network is trained to reproduce at its output the other set, the target set, or 
to classify the input set among a fi nite number of classes. Training means to 
use its degrees of freedom to fi nd the confi guration that best fi ts the situation 
(best according to some criteria). Figure 4.6 illustrates how this is done in 
the case of modelling biological systems. The same input set is given to the 
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FIGURE 4.4
Some types of activation functions. (a) Binary; (b) linear; (c) logistic; (d) radial based.
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system to be modelled and to the network. The output of the network is 
compared with the system output (the output set) and an error information 
is fed back to the network, where a training algorithm changes its degrees of 
freedom (usually the weights) until the error is minimized.

The MLFNN and RBFNN are appropriate for function approximation such 
as in modelling biological systems. There is one weight for each input for 
each neuron, resulting in a high number of weights even for small networks. 
For a particular problem, the training of the network is just the procedure to 
fi nd the best set of values of these weights such that the network is able to 
mimic the response to a certain history of inputs. After the training phase, 
the network is able to predict the future behavior, or give answers to new 
inputs (data generalization). Of course the generalization capability of the 
network depends on many factors, namely the quantity and quality of inputs 
and the particular architectures. Similarly, because of the complexity and 
variety of the human body, doctors make decisions that are not based on a 
single symptom [4]; a doctor with more experience is more likely to make cor-
rect decisions than a newcomer because of his learnings from past mistakes 
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FIGURE 4.6
Training the artifi cial neural network to model biological systems.
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FIGURE 4.5
Multilayer feedforward neural network (in this case with two hidden layers).
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and successes (he has more training data). To have a good set of examples is 
decisive for the “experience” of the neural network.

For pattern recognition, some kinds of single-layer networks (Hebb, 
Widrow–Hoff, etc. [6]) can also be adequate. In medical decision problems, the 
medical symptoms such as “stabbing pain in head,” are presented to the inputs 
(after being codifi ed by a numerical value) as training examples. For a set of 
past data, containing symptoms for which the correct diagnosis is known, the 
weights of the network are varied in a systematic way such that the output 
of the network produces the correct diagnosis (also codifi ed by a numeric 
value)—“brain tumor,” “stress,” etc. The hidden layers are just used for the 
computation of the mapping between the inputs and the outputs (Figure 4.7).

Therefore, the network is trained just like a doctor, being presented with a 
large number of known cases (training set) with known outcome. The most 
used algorithm for training the multilayer network, that is, the adjustment of 
its weights, is the backpropagation algorithm [7], using the backward prop-
agation of the information. Basically it is a computational procedure that 
varies the weights to progressively reduce the distance between the correct 
answer and the network answer. The information is sent backward because 
only at the end of the network (its output) this distance can be computed 
and the changes of the weights in the beginning of the network depend on 
that information. If properly trained, the network can give answers to new 
unknown cases with some reliability. If the training is made constantly, as 
new cases happen, the network becomes adaptive and with improved capa-
bilities. For a good review see Ref. 8.

The simple structure of a neural network has a high number of degrees of 
freedom: type of activation function, number of layers, and number of neu-
rons per layer. Moreover there are two fundamental learning approaches: 
supervised learning and unsupervised learning. In supervised training a 
desired behavior of the network output is previously specifi ed, as in Fig-
ure 4.6. In unsupervised learning no such behavior is provided; unsuper-
vised learning can be used for analyzing (clustering, for example) the input 
data and to fi nd features embedded in the data expressing properties of the 
system in study. Self-organizing maps (SOM), introduced by Kohonen [9] in 

Symptoms 
(set of past known cases)

Error+
−

Diagnosis 
(set of past known 

 cases)

Neural network

FIGURE 4.7
Training the artifi cial neural network for diagnosis tasks.
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1982, are originated from learning vector quantization (LVQ) that was also 
introduced by Kohonen [10]. If systems continue to remain adaptive, care 
must be taken such that previously learned information is not lost. Grossberg 
[11] has coined the term stability–plasticity dilemma for this problem intro-
ducing adaptive resonance theory (ART). Regarding the fl ow of informa-
tion, basically, neural networks can be classifi ed as static (feedforward) and 
dynamic (recurrent). RNN were fi rst introduced by Hopfi eld [12], and then 
developed by some other authors. Unlike the neurons in MLNN, the Hop-
fi eld network consists of only one layer whose neurons are fully connected 
with one another. Owing to their intrinsic abilities to incorporate time, they 
have some advantages with respect to static neural networks (feedforward 
multilayer perceptrons), particularly for modelling dynamic processes.

Additionally, other properties justify their application in the medical 
domain, [13–17]: noise is quite well managed by neural networks, their pre-
diction capabilities are well-suited for regressive models, the on-line learning 
capabilities allows to face the possibilities of automatic analysis and diagno-
sis with updated knowledge. On-line learning means that data are processed 

TABLE 4.2

Publications in Pub Med with “Neural AND Networks”

Year Number of Papers

1996  632
1997  641
1998  728
1999  809
2000  895
2001  998
2002  996
2003 1185
2004 1542
2005 1548

TABLE 4.1

Publications in Pub Med with “Artifi cial AND Neural 
AND Networks”

Year Number of Papers

1996 168
1997 209
1998 233
1999 229
2000 252
2001 298
2002 311
2003 321
2004 498
2005 428
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iteratively as it is obtained, as opposed to off-line learning where complete 
data are fi rstly obtained and then the learning process is launched with all 
data simultaneously considered.

The total number (on June 20, 2006) of references in Pub Med under “artifi cial 
AND neural AND networks” was 2617 ([18], in all fi elds). For the past 10 years, 
the number is indicated in Table 4.1. Under “neural AND networks,” the total 
number was 11293 (most of these are related with artifi cial networks) and for 
the past 10 years the number of publications is shown in Table 4.2.

The main drawback of ANNs is that they are “black boxes,” that is, they do 
not give any understandable explanation for the relation between its inputs 
and outputs. They just give numbers that cannot be interpreted in terms of 
a natural language. If the model would become transparent, explaining the 
reasons for the diagnosis, then it would increase its importance and usabil-
ity. Fuzzy systems allow making this evolution of the machine because fuzzy 
logic is a way to compute with words.

4.2.2 The Linguistic Paradigm: Fuzzy Logic and Fuzzy Systems

Fuzzy logic was born in 1965 by the pioneer work of Lofti Zadeh [1], at MIT, 
United States, as a mathematical tool for dealing with uncertainty. In fuzzy 
logic, statements are not “true” or “false” (as in the Aristotelian bivalued 
logic), but they may have several degrees of truth and several degrees of 
false. Fuzzy sets do not have a well-defi ned frontier, but an imprecise 
(fuzzy) one. It is not only black and white but it has many levels of gray 
in between. Consider, for example, the classifi cation of teeth develop-
ment in preeruption, emerging, and posteruption. Is there a well-defi ned 
frontier between these phases? If a tooth has a state of eruption 0.2, what 
is its state? It is still emerging, but has it already emerged! How can we 
represent this in the classical binary Aristotelic logic (true or false, 0 or 1, 
black or white)? Fuzzy sets are very convenient to represent the situation 
(see Figure 4.8)[19].

The membership functions (mf ), representing the membership degree may 
have several shapes (see Figure 4.9).

State of tooth eruption is 0.2

Tooth 
emerging1

0 1−1

Preeruption Posteruption

0.8

0.2

G
ra

de

0.2

FIGURE 4.8
Membership functions (b) of teeth development phases.
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For any variable (for example, temperature) its universe of discourse is 
divided into several labels, each one corresponding to a fuzzy set (e.g., “very 
low,” “low,” “regular,” “high,” and “very high”).

The fuzzy sets must overlap and they must cover completely the universe 
of discourse (all the intervals of possible temperatures, in the example, and 
as illustrated by Figure 4.10). Usually they must overlap in such a way that 
the sum of the membership degrees for any point is 1, and at most two sets 
are valid for that point. Fuzzy logic is the logic of fuzzy sets. In fuzzy logic 
there are many levels of truth and of false, in the real interval [0,1]. A value 
in the universe of discourse belongs simultaneously to several fuzzy sets, 
eventually with different membership values.

There are some characteristics of our perception systems that can be seen 
as fuzzy sets. For example, according to Sir Thomas Young’s (1802) theory 
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FIGURE 4.9
Membership functions: (a) symmetrical (triangular, trapezoidal, Gaussian); (b) nonsymmetrical.

Very low

0 1−1 −0.5

1

0.5

Low Regular High Very high

0

FIGURE 4.10
A universe of discourse (one variable) divided into fi ve fuzzy sets. The fi rst and last ones are 
nonsymmetrical.
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FIGURE 4.11
Illustration of the theory of Young. The curves show the amount of activity of each of the three 
visual receptors types by each wavelength (of the several colors). Maximum excitation in each 
is produced by one wavelength, and adjacent wavelengths produce progressively less activity. 
(From Erikson, R., Chelaru, M., and Buhusi, C., Fuzzy and Neurofuzzy Systems in Medicine, CRC 
Press, Boca Raton, FL, 1999.)

[20] for color perception, there are three principal colors—red, green, and 
blue—and three types of visual receptors.

The way these visual receptors vibrate with the colors’ wavelengths is 
illustrated in Figure 4.11. Maximum excitation in each is produced by one 
wavelength; adjacent wavelengths produce progressively less activity in the 
particular receptor.

This seems to be the case of all sensorial systems: although we have 
many neurons, there are not enough such that each neuron has a specifi c 
function (e.g., to encode red apples) distinct and disjoint from that of every 
other neuron. There is too much information to be encoded. The sensitivity 
functions of all individual neurons in all sensory systems are bell-shaped at 
a fi rst approximation and have been referred to as neural response functions 
(NRF) [18]. There are few neural resources to represent many stimuli. So the 
few neurons available must have fuzzy sets (NRF) that can as broadly as 
possible cover all stimuli (Figure 4.12).

Fuzzy systems work in a similar way. Using fuzzy sets and fuzzy logic, 
fuzzy inference systems may be built enabling to compute a decision based 
on a set of rules. Fuzzy rule–based systems perform a sequence of fuzzy logi-
cal operations: fuzzifi cation, conjunction, inference, and defuzzifi cation [21].

A fuzzy system consists of three stages: the fuzzifi cation, the deffuzifi cation, 
and the inference procedure (Figure 4.13). The fuzzifi cation stage determines 
the membership degrees of the input values in the antecedent fuzzy sets, con-
verting numerical values of patient data (symptoms that mainly defi ne the 
patient’s state of health) into linguistic variables. The inference mechanism 
combines input information with the knowledge stored in the fuzzy rules and 
determines the output of the rule-based system. The knowledge base consists 
into the diagnosis scheme, expressing associations between symptoms and 
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FIGURE 4.13
Different modules of a fuzzy system.
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FIGURE 4.12
Fuzzy sets and neural codes according to Young’s theory. (a) Three idealized receptor types (1, 2, 
3) and four stimulus (P, Q, R, S); (b) the magnitude of the response of each receptor to each stimu-
lus; (c) the neural codes for P, Q, R, S. The brain interprets these codes. (From Erikson, R., Chelaru, 
M., and Buhusi, C., Fuzzy and Neurofuzzy Systems in Medicine, CRC Press, Boca Raton, FL, 2000.)
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diseases by means of fuzzy rules. The diagnosis is obtained by the defuzzifi ca-
tion part, which chooses among rules that have been fi red simultaneously.

Let us consider a fuzzy system with four rules in the form depicted in 
Figure 4.14.

Rule 1: If Symptom1 is LOW and Symptom2 is LOW then Diagnosis is LOW.
Rule 2: If Symptom1 is LOW and Symptom2 is HIGH then Diagnosis is HIGH.
Rule 3: If Symptom1 is HIGH and Symptom2 is LOW then Diagnosis is LOW.
Rule 4: If Symptom1 is HIGH and Symptom2 is HIGH then Diagnosis is HIGH.

Fuzzifi cation is the operation of transforming a numeric value, issued from 
a measurement, into a membership degree of a fuzzy set. Figure 4.15 shows 
2 measurements: Symptom1 = −0.443 and Symptom2 = 0.193. All four rules 
have some degree of truth and some degree of false. All rules must be fi red. 
To compute the fi ring intensity of one rule, one may consider the weakest 
case in the antecedents, corresponding to the application of the minimum 
operator. Now we transport these values to the consequents. This is done by 

Symptom 1

Symptom 2

Fuzzy system

(Mandani)

Low
1

High

Low High

0

1

0

Low
1

High

0

Diagnosis

FIGURE 4.14
The fuzzy system and membership functions.

FIGURE 4.15
Firing the rule base: fuzzifi cation, conjunction, inference, defuzzifi cation (obtained with the 
Fuzzy Logic Toolbox, the Mathworks, Inc).
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 cutting the fuzzy set of the consequent at the height equal to the fi ring inten-
sity of the antecedent. The graph shows that (on the right-hand side) rule 3 is 
quite truth, rule 1 is about 0.3 truth, rules 2 and 4 are about 0.2 truth.

The fi nal decision is the result of the balanced contribution of the four rules. 
Defuzzifi cation is this balancing to obtain a numerical value to be assigned to 
the decision. If the four fi gures (of the consequents) are superposed, in geo-
metrical terms the point of equilibrium is the center of mass. This is the most 
used defuzzifi cation method and it is applied in the example. The graphical 
construction is quite intuitive. Formally, there are some properties and opera-
tions of fuzzy logic supporting it. For example, the cutting of the membership 
function on the consequent is made by a minimum operator:

DiagnosisOut = min(sympotom1, symptom2)

The operator maximum performs the aggregation of outputs:

OutputFinal = max(diagnosis1, diagnosis2, diagnosis3, diagnosis4)

Takagi-Sugeno-Kang (TSK) fuzzy systems are based on rules that have a 
nonfuzzy consequent. For a zero order TSK system, each consequent is sim-
ply a constant: they are in the form (for a similar example, and with constants 
0 and 1 in the consequents).

Rule 1: IF Symptom1 is LOW and Symptom2 is LOW then Diagnosis is 0.
Rule 2: IF Symptom1 is LOW and Symptom2 is HIGH then Diagnosis is 1.
Rule 3: IF Symptom1 is HIGH and Symptom2 is LOW then Diagnosis is 1.

Figure 4.16 illustrates how it works. Now for the same measurement 
values, it proceeds as follows:

FIGURE 4.16
Firing the rule base in TSK model: fuzzifi cation, conjunction, inference, defuzzifi cation 
(obtained with the Fuzzy Logic Toolbox, the Mathworks, Inc).
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Rule 1: fi ring strength: 0.15 output1 = 0
Rule 2: fi ring strength: 0.75 output2 = 1
Rule 3: fi ring strength: 0.15 output3 = 0
Rule 4: fi ring strength: 0.4 output4 = 1

The overall output is the sum of the individual outputs weighted by their 
degrees of truth, that is, the fi ring strength of the respective rule, giving 0.8, 
shown on the right-hand side of Figure 4.16.

TSK fuzzy systems are simpler to compute than the previous ones called 
Mamdani fuzzy systems. They are particularly important in neurofuzzy 
systems. A fuzzy system is a set of fuzzy rules describing what is known 
about some problem. The development of the fuzzy system is basically 
the writing of the rules. However, how are these rules obtained? Several 
approaches may be applied:

Expert interviews (actual medical knowledge)
Simulation using models of the processes (seldom possible)
Rule extraction from data (data mining)

The latter is becoming the most important approach, where the machine 
(computer) learns from data. Two aspects must be analyzed: the determi-
nation of an initial set of rules (the initial structure of the system) and the 
update and optimization of the rules as new data and knowledge become 
available. For the determination of the initial set of rules, the most impor-
tant technique is clustering. The second operation, the optimization of the 
fuzzy structure (i.e., the number of rules, the parameters of the member-
ship function, etc.) is actually carried out in the context of neurofuzzy sys-
tems. The fi rst application of fuzzy logic to the medical fi eld dates back to 
1969, when Zadeh published a paper on the possibility of applying fuzzy 
sets in biology [22].

The medical fi eld has inheritably several sources of inaccuracy [23]: 
information about the patient consists of a number of categories, all of 
which have uncertainties; medical history of patients is most of the times 
subjective and may include nonunderstandable symptoms (supplied by the 
patient); and lack of knowledge of previous diseases that usually leads to 
doubts about the patients’ medical history. Additionally, although results 
of laboratory tests are objective data, they are however dependent on the 
accuracy of the measurements and on the possible inadequate behavior of 
the patient during the examination. Fundamentally, fuzzy systems allow 
transparency in knowledge representation and in the formulation of deci-
sion rules that mimic human thinking, justifying its medical application in 
the representation of narratives and clinical guidelines in decision-support 
systems [24,25].

The number of papers published on fuzzy logic in medicine during the 
past 10 years are given in Table 4.3. (Pub Med [18] under “fuzzy” on June 20, 
2006, all fi elds).

•
•
•

CRC_IP385_Ch004.indd   135CRC_IP385_Ch004.indd   135 10/9/2007   10:09:05 PM10/9/2007   10:09:05 PM



136 Intelligent and Adaptive Systems in Medicine

The fi rst applications were related to assessing of symptoms and the mod-
elling of medical reasoning. For a more detailed historical perspective of 
the early stage, see Ref.26. For the similarity between fuzzy reasoning and 
the physiology of the nervous system, see Ref. 20, where the dynamic model 
of sensory systems by the neural response functions, for example, for taste 
neurons, is made by a TSK fuzzy system.

4.2.3 Clustering and NeuroFuzzy Systems

Clustering is basically the detection of similar points in an input–output 
space data set. Figure 4.17 illustrates the case of a bidimensional data space 
for a system with two variables (e.g., input x and output y).

TABLE 4.3

Publications in Pub Med with “Fuzzy” (All Fields)

Year Number of Papers

1996 98
1997 128
1998 135
1999 135
2000 152
2001 218
2002 191
2003 201
2004 304
2005 278
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FIGURE 4.17
Clustering is a classifi cation of multidimensional points into classes. The black points repre-
sent the centers of (a) FCM used; (b) the classes obtained by subtractive clustering (obtained 
with the Clustering Interface, the Mathworks, Inc.).
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A region where there is a concentration of data forms a cluster. A clus-
ter then represents a repetition of facts resulting from some property such 
as input–ouput relation. Computational clustering techniques form a large 
body of knowledge. In soft computing, the most used are the Fuzzy C-means 
(FCM), the mountain, and the subtractive clustering [27–29].

Clustering is an operation that requires high-computational resources and 
currently, the main research direction is to obtain recursively implementable 
clustering techniques such that the clusters are continuously updated with 
new data. This is particularly important for systems that operate in changing 
environments needing permanent adaptation and learning.

A cluster identifi es a working region, so it defi nes a relation between the vari-
ables; this relation may be translated into a fuzzy rule. One of the main impor-
tant applications of clustering is precisely in the development of rules from 
data, leading to the neurofuzzy systems. Once the clusters have been identifi ed, 
fuzzy rules can be built based on the identifi ed centers ci = (xi, yi), of the form:

IF Input is Xi THEN Output is Yi

where Xi and Yi are the fuzzy sets centered on xi and yi, respectively.
Fuzzy systems are designed to work with knowledge in the form of lin-

guistic rules; neural networks to deal with data. The optimization of rules 
with respect to a set of data or to new data needs an effi cient computational 
tool able to process a nonlinear mapping (a rule is in general a nonlinear 
mapping). Neural networks enter here in a natural manner. A hybrid tech-
nique is defi ned as any effective combination of different techniques that 
performs superior or, in a competitive way, over simple standard techniques 
[15,30]. Neurofuzzy systems are possibly the most promising hybrid soft 
computing technique, combining the capabilities of neural networks with 
fuzzy systems, that is, enabling to acquire knowledge (fuzzy rules) from 
experimental data. Because of the accuracy and the interpretability that 
they may allow to achieve, neurofuzzy systems have shown a high poten-
tial of success when applied in complex domains of application such as in 
the medical fi eld [23].

The artifi cial neural fuzzy inference system (ANFIS) [31,32], depicted in 
Figure 4.18 is probably used the most. It is based on TSK fuzzy rules and 
have the structure of an MLFNN neural network with fi ve layers.

Each layer computes a fuzzy operation:

Layer 1—the fuzzifi cation layer (Ai, Bi): each numerical input is pre-
sented to each neuron. The neuron output is the membership value 
of the input. For each input variable there are as many neurons as 
fuzzy sets in its space.
Layer 2—the conjunction layer (T): each neuron computes the con-
junction of the antecedents of each rule. Usually the conjunction 
operator is the algebraic product of the antecedent membership val-
ues. The output of the neuron is the absolute fi ring strength of the 
rule. There are as many neurons as rules.

•

•
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Layer 3—the normalization layer (N): each neuron computes the rela-
tive fi ring strength of the rule with respect to the sum of all strengths 
of all fi red rules.
Layer 4—the inference layer: computes the consequent value for 
each rule weighting the consequent function by the relative fi ring 
strength of the rule.
Layer 5—the defuzzifi cation layer: computes the overall output of all 
the rules by summing the individual consequents from the previous 
layer.

The operations of the network are the same as we saw in the graphical infer-
ence method (Figure 4.17). The advantage is that we now have a neural net-
work that can adjust its weights to a set of data in a way such that the output 
of the network approaches optimally the experimental output. We have here 
simultaneously the advantages of fuzzy logic and the advantages of the 
neural networks. Neurofuzzy systems have this nice property.

The research of new architectures for neurofuzzy systems is very active. 
Several developments from ANFIS architecture can be found: DENFIS [33], 
GENFIS, [34] and others [35].

•

•

•

TABLE 4.4

Publications in Pub Med with “Neurofuzzy”

Year Number of Papers

1996  1
1997  1
1998  0
1999  6
2000  4
2001  10
2002  10
2003  9
2004  10
2005  12
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FIGURE 4.18
The ANFIS neurofuzzy system is composed of fi ve layers.
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Under “neurofuzzy,” all fi elds, the number of publications in Pub Med on 
June 20, 2006, was as indicated in Table 4.4.

4.2.4 Fuzzy Medical Image Processing

Medical images convey uncertainty due to the intrinsic nature of modalities 
that originate noise, blurring, background variations, partial volume effects 
(this effect is induced by low-resolution sensors, which induce borders strictly 
not defi ned between tissues), low contrast, and certain modality-specifi c 
effects. This uncertainty is not always due to randomness but due to ambigu-
ity and vagueness and may propagate to the entire image- processing chain, 
that is, from the low- to the high-level image-processing stages (see Figure 4.19). 
According to Refs. 37 and 38, besides randomness three other sources of imper-
fection can be distinguished in images in general: (1) grayness ambiguity, (2) 
geometrical fuzziness, and (3) vague (complex/ill-defi ned) knowledge.

These uncertainties are diffi cult to overcome using the traditional image-
processing approaches such as probabilistic and physics-based image inter-
pretations. Under these circumstances, expert knowledge can provide a 
valuable source of information to deal with uncertainty.

Following Tizhoosh’s [36,37] defi nition, fuzzy image processing comprises the 
collection of all approaches that understand, represent, and process the images, 
their segments, and features as fuzzy sets. The representation and processing 
depend on the selected fuzzy technique and on the problem to be solved. From 
this defi nition it becomes clear that to integrate the fuzzy framework into image 
processing, a new image defi nition has to be applied, that is, images and their 
components have to be fuzzifi ed, whereas relationships between image parts 
have to be extended into fuzzy sets. During the processing stage, appropriate 
fuzzy techniques modify the membership values. These can be fuzzy cluster-
ing, fuzzy rule-based approaches, fuzzy-integration approaches, or others. As 
one would expect, a defuzzifi cation stage has to be performed to obtain crisp 
results. This general procedure is illustrated in Figure 4.20

Typical fuzzifi ers depend on the task at hand. For instance, to perform 
global image-processing tasks, that is, point operations, each pixel should 

Results
Preprocessing

Image Segmentation 
Representation 

Description

Analysis 
Interpretation 
Recognition

Uncertainty
Imperfect knowledge

FIGURE 4.19
Imperfect knowledge in image processing. (Adapted from Tizhoosh, H., Fuzzy Image Processing: 
Introduction in Theory and Practice, Springer-Verlag, Heidelberg, 1997.)
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be assigned one or more membership values. This is known as histogram-
based gray-level fuzzifi cation that can easily be extended for color image 
point processing. For typical neighborhood-based pixel operations, such as in 
fi ltering (e.g., noise fi ltering and edge detection) and local contrast enhance-
ment, image fuzzifi cation usually takes into account the same neighborhood 
applied during the processing step. For intermediate- and high-level image-
processing tasks, fuzzifi cation of the extracted image features is required 
(e.g., shape descriptors, corners, curvature, texture, and motion). Again the 
fuzzifi er is application dependent and should be set up based on expert 
knowledge, and eventually combined with a learning strategy [36–38].

Fuzzy processing is performed by modifying the membership values of 
pixels or features by means of a suitable fuzzy approach. The most common 
modifi cation principles are [37] (1) aggregation using, for instance, fuzzy 
integrals, (2) membership value transformation (this is usually the case for 
contrast enhancement), (3) classifi cation by means of fuzzy classifi ers such 
as fuzzy clustering or syntactic approaches, and (4) inference by means of 
if–then rules. Low- and intermediate-level image-processing operations 
usually require crisp outputs; these may be computed during a defuzzifi ca-
tion stage. For image processing two general groups of defuzzifi ers exist: (1) 
 conventional defuzzifi ers such as center of area and mean of maximum and 
(2) inverse mapping for point-based operations.

For further reading on fuzzy image-processing principles and theory refer 
to Refs. 36,37,39,40].

4.3 A Brief Review of Applications in the Medical Field

Regarding medical domain applications, handled with soft computing schemes, 
numerous approaches have been presented in literature. Signifi cant medical 
applications that make use of neural networks, fuzzy systems, and both involve 
the following among others:

Input image

Expert 
knowledge

Image 
fuzzification

ResultMembership 
modification

Image 
defuzzification

Fuzzy logic 
Fuzzy set theory

FIGURE 4.20
The general structure of fuzzy image processing.
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The review presented in this work is structured on medical application 
domains, covering the following areas: modelling and biosignal process-
ing and interpretation, biological system control and prognosis, and image-
processing and decision-supporting system [42].

4.3.1 Modelling and Biosignal Processing and Interpretation

Our understanding of biological systems is incomplete. There are features 
and information hidden in the physiological signals that are not clear, and 
effects between the different subsystems that are not evident. Moreover, bio-
logical signals are characterized by signifi cant variability, caused by impul-
sive internal mechanisms or external stimulus and, most of the times, are 
corrupted by noise.

There are two main, recognized advantages of using neural networks for 
modelling and biosignal processing [72]: one is their capacity to perform 
any nonlinear mapping between input and output patterns (providing an 
adequate number, type, and association of neurons). This capacity offers an 
universal approximation property of unknown systems based on sparse sets 
of noisy data, such as biological systems. Another advantage is the adaptive 
learning capacity of neural networks, enabling them to adapt to new input 
patterns. Unfortunately, it is almost impossible to come to a reasonable and 
human understandable (transparency) interpretation of the overall structure 
of these networks. Furthermore, the existence of previous knowledge, for 
instance, the explanation of clinical rules, is not easily incorporated into the 
neural model. In the context of modelling and biosignal processing, fuzzy 
systems provide tolerance and partial correctness; thus a suitable way to 
 represent qualitative linguist information. Independently or combined, neu-
ral network and fuzzy systems can assist the modelling of their relationships 

Medical Application Reference

Bacteriology 41
Cardiology 39,40,42–44
Dentistry 45
Drug and anesthesia delivery 24,46
Gastroenterology 47
Genetics 48,49
Intensive care 50,51
Neurology 52,53
Nuclear medicine 54
Obstetrics and gynecology 55
Oncology 56–59
Ophthalmology 60,61
Otology-rhinology-laryngology 62
Pathology 63,64
Radiology 65–68
Sleep research 69
Urology 70,71
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containing uncertainty and nonlinearity characteristics, extract parameters 
and features, identifying and removing biosignal artifacts.

Multilayer perceptrons with external recurrence have been extensively 
applied in biological systems domain. Using this structure, the nonlinear 
mapping between output and past information is implemented by a neural 
network, the output being y(t) function of the m past inputs, u(t – 1), …, u(t – m) 
and the n past outputs, y(t – 1), …, y(t – n), as described in Equation 4.1 and 
depicted in Figure 4.21 (q–1 represents the unitary delay operator).

 y(t) = NN {y(t – 1), y(t – 2), …, y(t – n), u(t – 1), u(t – 2), …, u(t – m)} (4.3)

In the fi eld of biosignal processing (mainly for cardiology), soft computing 
techniques have been widely used in clinical practice for automatic electro-
cardiographic (ECG) analysis. There have been several attempts to use neural 
networks to improve the ECG diagnostic accuracy and achieve more fault-
less operation, even in the presence of complicating factors. In this context, 
Lee et al. [73] have studied and compared multilayer RNN with conventional 
 algorithms for recognizing fetal heart rate abnormality, revealing the excep-
tional performance of neural networks. Multilayer neural networks were 
also used to model heart rate regulation [74,75], although Ortiz et al. [76] 
have applied them to examine heart failure. Assessment of long-term ECG 
 recordings (Holter-monitor) is a time-consuming and exhausting procedure 
(nearly 90.000 ECG-complexes a day). Neural networks have shown capabili-
ties to recognize disorder events automatically, which occur infrequently with 
up to 99.99% sensitivity [77]. For long-duration ECG recordings, Papalou-
kas et al. [78] have presented a method that employs neural networks for 
the automated detection of ischemic episodes.

u(t )

q −1

y(t)

y (t−1)

u(t −1)

u(t−m)

y(t−2)

y(t−n)

q −1

q −1

q −1

q −1

Multilayer neural 
network

FIGURE 4.21
Multilayer neural network with external recurrence.
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Silipo and Marchesi [79] have demonstrated the capabilities of neural 
networks to deal with the ambiguous nature of ECG signals. In their work 
they have used static and RNN architectures and explored ECG analysis for 
arrhythmia detection, myocardial ischemia recognition, and chronic altera-
tions. Janet et al. [44] discuss a neural network that has been trained to detect 
acute myocardial infarction. They have used ECG measurements from more 
than 1,000 patients who had suffered a heart attack, and more than 10,000 
healthy persons, with no history of heart attack. They have concluded that 
neural networks were 15.5% more sensitive than an interpretation program 
and 10.5% more sensitive than experienced cardiologists in diagnosing any 
abnormalities. However, the cardiologist was slightly better at recognizing 
ECGs with very clear-cut acute myocardial infarction changes.

Waltrous and Towell [80] reported the use of a neural network, synthe-
sized from a rule-based classifi er, applied to an ECG patient monitoring task. 
Serum enzyme–level analysis forms the basis of acute myocardial infarction 
diagnostics. The neural network has been trained based on the analysis of 
these heart enzyme levels, showing a diagnostic accuracy of 100% with an 
8% false-positive rate. The neural beat classifi er was integrated into a four-
stage procedure for the diagnosis of ischemic episodes.

When conditions are such that an RBFNN can act as a classifi er [81], an 
advantage of the local nature of radial basis function networks, compared 
with multilayer neural networks, is that a new set of input values that falls 
outside all the localized receptor fi elds could be recognized as not belong-
ing to any of the existing classes. Employing an RBFNN, Bezerianos et al. 
[82] have approximated the nonlinearity of heart dynamics, using the local 
reconstruction of the dynamics in the space spanned by each basis function. 
Fraser et al. [83] have investigated the effectiveness of radial basis function 
networks for diagnosis of myocardial infarction. Their method achieved a 
sensitivity of 85.7%. However, as studied by Tarrassenko [84], an RBFNN 
may not perform as well as a multilayer network. For example, in an electro-
encephalogram (EEG) application an RBFNN has shown a shortly increased 
misclassifi cation (11.6%) when compared to a multilayer neural network.

Lagerholm et al. [85] employed self-organizing neural networks in con-
junction with Hermite basis function, for the purpose of beat clustering 
to identify and classify ECG complexes in arrhythmia. As claimed by the 
authors, self-organizing networks benefi t in interpreting ECG data, allowing 
to extract the most relevant information from it, outperforming other super-
vised learning methods.

Hu et al. [86] have studied the feasibility of neural networks applied to a 
patient-adaptable ECG beat classifi cation algorithm. Their approach consists 
of an SOM/LVQ–based scheme, easily adapted to other existent automated 
patient monitoring algorithms. Their analysis reveals that the performance 
of the patient-adapted network was improved due to their ability to adjust 
the boundaries between classes, although the distributions of beats were dis-
tinct for each patient.
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Several neurological disorders are routinely examined by EEG analysis 

and the differentiation between physiological and pathological alterations 
requires the fl exibility and excellent capability and recognition of various 
EEG-complexes. In this context, Schetinin [87] has developed an algorithm 
to classify artifacts and normal segments in clinical EEGs. This method 
involves evolving cascade neural networks, ensuring a nearly minimal num-
ber of input and hidden neurons as well as connections. The algorithm was 
successfully applied, classifying correctly 96.69% of the testing segments. 
Singh [88] has developed a polygon feature selection method for the clas-
sifi cation of temporal data from two or more sources, with emphasis on the 
analysis of EEG data. A feature classifi cation, using a modifi ed fuzzy  nearest-
neighbor method, was used and a recognition rate varying from 90–99% was 
achieved. Millan et al. [89] have proposed a local neural classifi er for the rec-
ognition of mental tasks from on-line spontaneous EEG signals, allowing to 
recognize three mental tasks. Leichter et al. [90] have developed and applied 
a classifi cation of EEG data based on independent component analysis (ICA) 
as a feature extraction technique, and on evolving fuzzy neural networks as 
a classifi cation modelling technique.

4.3.2 Biological System Control and Prognosis

Imprecisely defi ned processes, for which clinical model-based control tech-
niques are impractical but can be satisfactorily controlled by physicians, 
fuzzy logic is of particular interest. Fuzzy control can be described as a “con-
trol with sentences rather than equations” providing a natural-to-use sen-
tences or rules as the control strategy written in terms of if–then clauses.

A fuzzy controller system is usually used in feedback confi guration (Fig-
ure 4.22). The fuzzy controller establishes a relationship, expressed using the 
if–then formalism, between inputs (the desired output or set point and the 
actual output) and the output, the control action.

The fi eld of anesthesia is one of the most relevant concerning applica-
tions of fuzzy control in the clinical domain [24]. It involves monitoring the 
vital parameters of the patient and controlling the drug infusion to main-
tain the anesthetic-level constant. It includes depth of anesthesia [91], muscle 
relaxation [46,92], hypertension during anesthesia [93], arterial pressure 

Fuzzy 
controller Patient

Output
Control 
action

Set point

FIGURE 4.22
Fuzzy controller.
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 control [94], mechanical ventilation during anesthesia [95], and postoperative 
control of blood pressure [96].

Another example of application of fuzzy control is to develop a computer-
based system for control of oxygen. Sun et al.[97] have applied a fuzzy control 
system delivery to ventilated infants. A successful example is VentPlan, a venti-
lator management advisor that interprets patients’ physiological data to predict 
the effect of proposed ventilator changes [98] and NEOGANESH, a program 
for automated control of assisted ventilation in intensive care units [99].

An open-loop system for treatment of diabetic outpatients was developed 
for calculating the insulin dose [100]. Advisory expert systems can also be 
considered as an open-loop controller for advising on drug administration 
in general anesthesia [101]. Carollo et al. [102] have proposed a fuzzy pain 
control and Ying et al. [103] a fuzzy blood pressure control.

Most of the fuzzy logic control applications in the fi eld of artifi cial organs 
are concerned with artifi cial hearts. In this context, a fuzzy controller has 
been implemented for adaptation of the heart pump rate to body perfusion 
demand by pump chamber fi lling detection [104]. A more advanced system, 
based on neural and fuzzy controller for artifi cial heart, was developed by 
Lee et al [105].

In Ref. 25, a combination of fuzzy logic and neural networks is used to 
develop an adaptive control system for arterial blood pressure using the 
drug nitroprusside. Another hybrid intelligent system based on a neuro-
fuzzy approach can be found in Ref. 106. The system consists of an adap-
tive fuzzy controller and a network-based predictor for controlling the mean 
arterial blood pressure of seriously ill patients. The system has the ability to 
learn the control rules from an off-line training process as well as to adjust 
the parameters during the control process.

Neural networks are able to provide prognostic information based on retro-
spective parameter analysis. Given the ability of neural networks to identify 
patterns or trends in data, they are well suited for prediction or forecasting. 
In medical applications, neural networks can help clinicians, for example, to 
investigate the impact of parameter after certain conditions or treatments; they 
supply clinicians with information about the risk or incoming circumstances.

Patients who are hospitalized for having high-risk diseases require special 
monitoring. Neural networks have been used as a tool for patient diagnosis 
and prognosis to determine patients’ survival. In this context, Bottaci and Drew 
[107] have investigated multilayer neural capabilities to predict survival and 
death of patients with colorectal cancer. Pofahl et al. [108] have implemented 
a neural network scheme for predicting the length of stay (more than 7 days) 
for acute pancreatitis patients, having achieved the highest sensitivity (75%). 
Ohlsson et al. [109] have presented a study for the diagnosis of acute myocardial 
infarction. In their study a multilayer neural network has been applied to pre-
dict whether the patient suffered from acute myocardial infarction or not.

Neural networks have also been successfully applied to other clinical prob-
lems [110]. Abidi and Goh [111] proposed a multilayer neural network as a fore-
caster for bacteria–antibiotic interactions of infectious diseases. Their results 
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have shown that the 1-month forecaster produces a correct output (within 
occurrences of sensitivity) although predictions for the 2 and 3 months are 
less accurate. Prank et al. [112] have also used neural networks for predict-
ing the time course of blood glucose levels from the complex interaction of 
glucose counterregulatory hormones and insulin. Benesova et al. [113] have 
developed a neural network scheme to predict the teratogenity of perinatal 
administrated drugs. Lapeer et al. [55] applied neural networks for similar 
predictive tasks, attempting to pick out perinatal parameters infl uencing 
birthweight.

4.3.3 Image Processing

Medical imaging has revolutionized medical practice by providing new, 
noninvasive, and probably, the most effective tools for diagnosis. Today any 
medical expert may rely on multiple imaging modalities such as ultrasound 
(US), projection x-ray, computer tomography (CT), magnetic resonance imag-
ing (MRI), single positron (SPECT) and positron emission tomography (PET) 
to obtain detailed morphological (structural), functional, and pathological 
insight on several aspects of the human body. Besides their diagnosis func-
tion, these systems are of great help for other medical tasks such as treatment 
and surgery planning. To be helpful for healthcare, medical images have to 
be interpreted either qualitatively or quantitatively in a timely and accurate 
manner. In this context, medical image processing is increasingly an impor-
tant tool to aid the medical professional in managing and extracting valuable 
information from these data sets. Typical useful processing operations on 
these images are as follows [36]:

Image compression. Most medical images are high-resolution images (see 
Table 4.5). Hence, image compression is an imperative operation in 

TABLE 4.5

Some Typical Characteristics of Medical Images

Modality Image Matrix Bytes/Pixel Megabytes/Study

DR 2048 × 2580 2  20

CT 512 × 512 2  30

MR 256 × 256 2  25

US 512 × 512 3  10

Mamografy 4096 × 6144 2  192

Angiografy 1024 × 1024 2  30

Fluoroscopy 1024 × 1024 1  10

PET/SPECT 256 × 256 2  2
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many medical contexts to ensure fast interactivity during browsing 
of large sets of images (e.g., volumetric data sets, time sequences of 
images, and image data bases), their effi cient storage management 
in picture archiving and communication systems (around 3.5 TB of 
data per year may be collected for a medium size hospital) and their 
application in teleradiology over low or moderate bandwidth net-
works such as ISDN and satellite networks. For medical image appli-
cations, special care has to be devoted to lossy compression schemes 
to avoid permanent loss of their diagnostic value.

Image preprocessing. The three most frequent image preprocessing oper-
ations under the medical context are image restoration in general, 
image reconstruction, and contrast enhancement. Distortion is an 
intrinsic property of most medical imaging modalities. In medi-
cal images, distortions may be both due to the electronics and the 
characteristics of the human body. In images where the distinction 
between normal and abnormal tissues is subtle, accurate interpreta-
tion may become diffi cult in the presence of distortions. Under these 
circumstances, image enhancement is usually applied to obtain 
clearer images for medical observation as well as for most automated 
or semiautomated diagnosis systems. Another common image pre-
processing operation for medical applications is image reconstruc-
tion. The output from some modalities is not directly observable. 
For instance, the output from CT scanners are sinograms (collection 
of projections for different angles) that have to be backprojected to 
reconstruct the image. Owing to randomness, special algorithms 
have to be designed to avoid the cost of important details during 
reconstruction.

Image registration. Registration of images from different modalities is 
essential in several applications where the correspondence between 
the images conveys the desired medical information. These images 
may convey different information such as structural (e.g., CT) and 
functional (e.g., SPECT) information obtained from the same body 
part at different instances. Registration algorithms have to account 
for different types of geometrical and modality-specifi c distortions 
as well as distortions due to soft tissue elasticity to properly align 
the data sets for medical observation.

Image segmentation. Image segmentation is one of the most important 
processing steps in the analysis of patient image data. The main goal 
of segmentation algorithms is to divide the image into sets of pix-
els with strong correlation to signifi cant structures such as organs, 
lesions, and different tissues that are a part of the image. These 
sets of segmented regions may be used to aid the medical profes-
sional in identifying important features in the image or to extract 
the necessary features for their automatic classifi cation and disease 
diagnosis.
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4.3.4 Neural and Fuzzy Applications in Medical Image Processing

4.3.4.1 Medical Image Compression

Although there is a considerable research effort concerning medical image 
compression, most compression approaches reported in literature do not rely 
on fuzzy methods. In this context, neural networks (see, e.g., Refs. 114–123) 
are much more common than fuzzy techniques.

Application of NN for data compression always relies on the principle of 
space reduction. According to Egmont-Petersen et al. [124], two different types 
of image-compression approaches can be identifi ed using neural networks: 
direct pixel-based encoding/decoding by one ANN [114,119] and pixel-based 
encoding/decoding based on a modular approach [124]. Concerning archi-
tecture and principle, the major types of NNs that have been adapted for 
image compression are feedforward networks [116,119,120,122,123], SOMs 
[125,126], a learning vector quantifi er [123], and a radial basis function net-
work [126]. For a more extensive overview see Refs. 111 and 124.

A few attempts to combine fuzzy techniques for image compression have 
been reported. For example, Karras et al. [127] achieve higher lossy compres-
sion thresholds for wavelet coeffi cients in each DWT band in terms of how 
they are clustered according to their absolute value. Kaya [128] introduces a 
fuzzy Hopfi eld neural network for the same purpose as the one described 
by Karras et al. [127]. Fuzzy vector quantization for image compression is 
performed by Karayiannis et al. [129].

4.3.4.2 Image Enhancement

The majority of applications of ANNs in medical image preprocessing are 
for image restoration [121–134] and enhancement of specifi c image features 
[135]. The goal in image restoration is to compensate for the image distortion 
introduced by the physical measurement device. Besides noise, the major dis-
tortions introduced by the acquisition system are motion blur, out-of-focus 
blur, and distortion caused by low resolution (e.g., in SPECT). Image restora-
tion is an intrinsically ill-posed problem, since confl icting criteria need to be 
accomplished, that is, resolution versus smoothness.

Lee and Degyvez [133] introduced color image restoration based on cel-
lular NN (CNN). The generalized neural fi lter (GANF) is reported in 
Ref. 136, which has been applied for noise suppression. A GANF is build up 
on a set of neural operators, based on a stack of fi lters. Hopfi eld networks are 
a common use of NN for deblurring and diminishing out-of-focus effects 
(see, e.g., Ref. 137]). This problem is usually addressed using maximum 
a posteriori probability (MAP) and regularization. These objective functions 
can be mapped onto the energy function of Hopfi eld networks. Usually it 
is observed that some architecture modifi cations are required to enable the 
mapping operation.

Regarding image feature enhancement, most NN applications reported 
in literature are for edge enhancement. Few exist for other tasks. Usually, 
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NN approaches for medical image enhancement rely on regression ANNs 
and classifi ers [138,139]. In the latter, typically binary image outputs are 
obtained. For instance, Shih et al. [139] report an ART network for binary 
image enhancement. Regarding edge enhancement two approaches can be 
distinguished: (1) fi lter approximation [138] and (2) edge classifi cation [140].

Other applications of NNs in this context are the implementation of mor-
phological operators with modifi ed feedforward networks [135] and the use 
of Grossberg’s center-surround shunting feedforward network for contrast 
enhancement.

Fuzzy techniques have mainly been introduced for noise suppression 
[141–143], edge, and contrast enhancement [141,144]. Noise reduction in 
medical images is not a trivial task. The fi lter should be able to distin-
guish between unwanted information (noise) and image details that have 
to be preserved and ideally, be enhanced. From this contradictory objec-
tive, it is seen that nonlinear fi lters based on expert knowledge tend to 
outperform conventional methods. This is the main reason why fuzzy 
reasoning is one of the main supporting tools for fuzzy applications to 
noise reduction—the fuzzy inference ruled by else-action (FIRE) class of 
fi lters [145]. Another class of fuzzy fi lters are the fuzzy weighted fi lters 
[146,147]. This approach applies one or more fuzzy systems to evaluate 
weights of a weighted linear fi lter. These weights may be associated with 
the inputs (fuzzy weighted mean fi lters) [146,147] or with the outputs of 
different operators (fuzzy selection fi lters) [148,149]. Other fuzzy fi lter-
ing approaches rely on the generalization of classical fi ltering methods 
such as median and order statistics fi lters [150–152]. Although a major-
ity of these fi lters have not been specifi cally developed for medical image 
processing, they are very well suited for the task, given their ability to 
incorporate expert information. An example of their application in a medi-
cal context can be found in Zeng et al. [153]. For further information and 
recent reviews on fuzzy fi lters, see Ref. 141.

Fuzzy contrast enhancement for medical image processing has been 
attempted using global transformations, that is, histogram transformations 
and local adaptive transformations. Global contrast transformations have 
been reported in Refs. 154–157, whereas local contrast transformations are 
introduced in Refs. 158 and 159. In Ref. 144, the possibility distribution is 
applied together with four hard if-then-else rules to stretch the histogram 
of the input image. A similar approach using an intensifi cation opera-
tor over fuzzifi ed image pixel values is presented in Ref. 153. In Ref. 157, 
histogram hyperbolization is extended for fuzzy image coding. Fuzzy 
inference is applied in Ref. 144 to globally and locally enhance the image 
contrast. These techniques are local adaptations, using a small neighbor-
hood of the global algorithms previously mentioned. A completely dif-
ferent approach is presented by Krell et al. [159], who combine histogram 
hyperbolization with a modifi ed associative memory network to imple-
ment a local contrast enhancement algorithm for feature matching in 
radiotherapy.
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4.3.4.3 Image Registration

The only known method for image registration using fuzzy techniques is the 
one reported by Maintz et al. [160]. Their algorithm is a surface-based method 
for registration of SPECT and MR images. In particular they propose to use 
the “surfaceness” computed from morphological operators as a fuzzy surface 
measure that is able to retain more information than concurrent algorithms 
based on binary segmentation. The registration is performed by optimizing 
the cross-correlation between the registered “surfaceness” spaces. Although 
several NNs applications for image registration exist in literature, few are 
for medical imaging purposes. A rare example is the algorithm reported by 
Rangarajan and Chui [161]. These authors formulate the registration prob-
lem as a feature-based matching approach with correspondences as a mixed 
variable objective function. Optimization is performed based on a neural-
network approach.

4.3.4.4 Image Segmentation

Applications of the major fuzzy theoretical principles for image segmentation 
have been reported. From these, fuzzy clustering is the most straightforward 
and probably the most applied fuzzy technique for image segmentation in 
medical contexts. Typical application of this clustering principle is to divide 
the image into clusters and interpreting the class membership as a correlation 
or similarity with an ideal anatomical structure or its property. Although 
several variations on fuzzy clustering exist, the most applied principles for 
medical image segmentation are FCM [162,163] and the maximum entropy 
principle–based fuzzy clustering (MEP-FC) [164]. Other fuzzy algorithms 
applied in this context are possibilistic neuro-fuzzy c-means (PNFCM) 
[162] and fuzzy hidden Markov chains (FHMC) [165]. For an introduction to 
these algorithms see Ref. 162.

Fuzzy clustering has been extensively applied for medical image segmen-
tation using two main strategies: (1) as the main segmentation algorithm 
and (2) as a preprocessing for nonfuzzy segmentation strategies or directly 
combined with them. In the fi rst class of algorithms, clustering is usually 
performed directly on the intensity data, although other features may be 
applied (see, e.g., Ref. 166). A comparative performance analysis for the mul-
timodal image segmentation problem using this approach is presented in 
Ref. 162. In Ref. 167, FCM is applied to extract the ventricular region in angi-
ography images, whereas Ref. 168 uses a modifi ed FCM to segment brain 
images obtained from noisy CT scans and one-channel MRI scans. Auto-
matic identifi cation of brain tumors using FCM is discussed in Ref. 169 (for 
a survey paper on fuzzy applications in brain-related topics, namely on its 
segmentation, see Ref. 170). Other fuzzy clustering applications to CT and 
MR image segmentation can be found in Refs. 171 and 172. Ghafar et al. [173] 
apply FCM for Pap smear image segmentation, whereas tracking of vessels 
in retinal images using FCM is reported in Ref. 174. Several medical domain 
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applications of fuzzy clustering for unsupervised and supervised image seg-
mentation are reviewed in Ref. 42.

In the second class of segmentation algorithms, clustering is combined 
with nonfuzzy approaches. For instance, a neurofuzzy segmentation tech-
nique for radiographic images is proposed in Ref. 175 based on the cluster-
ing of a feature space obtained from a wavelet decomposition of the image. 
Zhang et al. [176] report a multiresolution approach for cluster identifi ca-
tion. In their work intra- and interscale properties are formulated as fuzzy 
functions, being signifi cant clusters obtained from the minimization of their 
combined effect. A combined multiresolution FCM algorithm for breast cal-
cifi cations was recently introduced by Sentelle and Sutton [177]. Fuzzy clus-
tering is applied by Schüpp et al. [178] to initialize seed regions for active 
contours. Karayiannis and Pai [179] describe a hybrid algorithm for MR 
image segmentation based on fuzzy algorithms for LVQ, whereas Derrode 
et al. [165] combine fuzzy and hidden Markov chains to segment ill-defi ned 
images.

Other fuzzy image segmentation principles that can be found in literature are 
methods based on fuzzy integrals (e.g., applied for fuzzy feature weightening), 
fuzzy geometry (e.g., compactness and connectness) [178], and fuzzy entropy 
and divergence. However, these principles are less common for medical image 
segmentation. For a review on these techniques, see Ref. 37.

Algorithms for medical image segmentation using NN can be broadly 
divided into two classes [124]: (1) pixel-based algorithms [180–188], and 
(2) feature-based algorithms [189,190]. Regarding the underlying NN, most 
existing types of NN have been applied for the purpose: feedforward NNs 
[185,189], SOMs [168,183–185,189,188], Hopfi eld networks [186], and constraint 
satisfaction networks. For medical purpose, most NN-based algorithms have 
been trained to operate on texture [168,189] and a combination of texture and 
shape [187].

Regarding the application area, most of these segmentation algorithms 
have been developed for MR image segmentation [184,185] (a comparison 
between neural and fuzzy techniques for MR image segmentation is pre-
sented in Ref. 182), digital radiology [189], and multimodal images [186].

4.4 Decision Support Systems

Applications in clinical area often involve analysis and classifi cation of the 
outcome of an experiment. Clinical diagnosis systems aim at offering sug-
gestions and help in arriving at a diagnosis based on patient data. However, 
biosignal processing and interpretation in medicine involve a complex anal-
ysis of signals, image processing and interpretation, graphic representations, 
and pattern classifi cation. Consequently, even experienced physicians could 
misinterpret the available data [191,192].
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Diagnosis of diseases is an important and diffi cult task in medicine. In fact, 
detecting a disease from several factors or symptoms is a many-layered prob-
lem that also may lead to false assumptions with often unpredictable effects. 
Therefore, the attempt of using the knowledge and experience of many special-
ists collected in databases to support the diagnosis process seems reasonable. 
Fuzzy systems are well suited to tasks that heavily rely on human experience 
and intuition, which is the case of clinical diagnosis systems. Unfortunately 
in many cases, experts may not know, or may not be able to formulate, what 
knowledge they actually use in solving their problems. Given a set of clinical 
cases that act as examples, learning in soft computing can be achieved, for 
example, with a neurofuzzy methodology.

One of the most widely known applications of neural networks in medi-
cine is the Papnet system [193]: a commercial neural network-based com-
puter program for assisted screening of Pap (cervical) smears. If detected 
early, cervical cancer has an almost 100% chance of cure. With this system, a 
Pap smear test examines automatically cells taken from the uterine cervix for 
signs of precancerous and cancerous changes, thus enabling to detect very 
early precancerous changes.

Another diagnostic system is presented by Blekas et al. [194], employing 
a fuzzy neural-network approach, for the discrimination of benign from 
malignant gastric lesions. The input to the system consists of images of 
routine-processed gastric smears, stained by Papanicolaou technique. The 
analysis of the images provides a data set of cell features, being the fuzzy 
min–max classifi cation network based on hyberbox fuzzy sets that can be 
incrementally trained. The application of the fuzzy min–max neural net-
work has shown high rates of correct classifi cation (both at cell- and patient 
level). Alonge et al. [195] presented a neurofuzzy scheme, able to perform 
focal lesions classifi cation in MR images of brain tissues affected by multiple 
sclerosis disease. Images are fi rst segmented using a fuzzy technique; then 
each cluster is processed to classify and label nonpathologic tissues and to 
locate all possible candidates to be sclerosis lesions. Finally, the neural clas-
sifi cation step is implemented using a multilayer neural network, providing 
an estimate of the position and the shape for each lesion.

Lee et al. [196] have proposed the combination of a multimodule contex-
tual neural network and spatial fuzzy rules and fuzzy descriptors for auto-
matically identifying abdominal organs from a series of CT image slices. 
With this approach, the diffi culties arising from partial volume effects, 
gray-level similarities of adjacent organs, and contrast media effect can be 
highly reduced. Basically the multimodule contextual neural network seg-
ments each image slice through a divide-and-conquer concept, and the varia-
tions in organ position and shape are addressed with spatial fuzzy rules and 
fuzzy descriptors, along with a contour modifi cation scheme implementing 
consecutive organ region overlap constraints.

A three-dimensional (3-D) visualization fuzzy-based decision support 
system to timely detect glaucoma in older patients, as well as to optimize 
the monitoring process, allowing measuring the progress of the disease is 
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presented in Ref. 197. The practical application of the system at the Depart-
ment of Ophthalmology and the Eye Hospital of the University of Saarland 
in Homburg has proven that the optimized support, enhanced by fuzzy 
methods, for an accurate decision making in disease monitoring can offer 
direct benefi ts for the level of medical care and the interactive 3-D visualiza-
tion might substantially enhance the doctor’s involvement in the treatment 
of patients threatened by glaucoma.

The objective of the work presented by Cherrak et al. [198] was to test the 
performances of a computer system that was designed to analyze and quantify 
lesions on two-dimensional renal arteriograms. The system is based on a fuzzy 
automaton and performs a syntactic analysis of the arterial segment provid-
ing automatic and reproducible quantifi cation of lesions. When compared to 
individual radiologists, the computer system gave a more precise estimation of 
percent stenosis and did not over- or underestimate the severity of the lesion.

Dutch et al. [199] have studied several systems for extraction of logical rules 
from data, and applied to the analysis of the melanoma skin cancer data. These 
systems include, among others, neural networks, enabling a very simple and 
accurate classifi cation for the four types of melanoma. Clark et al. [200] have 
presented a knowledge-based paradigm that combines fuzzy techniques, 
multispectral analysis, and image-processing algorithms, to produce an 
unsupervised system capable of automatically segmenting and labeling com-
plete glioblastoma-multiforme tumor volumes from transaxial MR images 
over a period of time during which the tumor is treated.

Zhang and Berardi [201] have investigated the potential of ANNs in diag-
nosing thyroid diseases. The robustness of neural networks with regard to 
sampling variations were examined using a cross-validation method. They 
have demonstrated that for medical diagnosis problems, where the data are 
often highly unbalanced, neural networks can be a promising classifi cation 
method for practical use.

Pesonen et al. [202] have presented a neural network–based decision sup-
port system for the diagnosis of acute abdominal pain. Namely, two neu-
ral network algorithms, backpropagation and LVQ were studied, and the 
k-nearest neighbors in deciding the correct class for the LVQ network was 
used. The evaluation of the network with different databases as well as the 
comparison to statistical analyses has shown the effectiveness of the neu-
ral network scheme. Smith and Arabshahi [203] report the development of 
a fuzzy decision system to semiautomate ultrasonic prenatal examinations. 
The main goal is to reduce costs and minimize exposure time of the fetus to 
ultrasonic radiation. Varachiu et al. [204] have proposed the use of a knowl-
edge discovery process to develop a fuzzy logic inference system for diagno-
sis and prediction of glaucoma.

Aphasia is a disturbance in the communicative use of language (disability 
to use or comprehend words), which can occur in different forms and results 
from brain damage. Jantzen et al. [205] have explored the capabilities of neu-
rofuzzy system to classify several types of aphasia, showing their effective-
ness for aphasia diagnosis.
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Sordo et al. [206] have implemented a knowledge-based neural network for 
classifi cation of phosphorus (31P) magnetic resonance spectra from normal 
and cancerous breast tissues. A priori knowledge of metabolic features of nor-
mal and cancerous breast tissues was incorporated into the structure of the 
neural network to overcome the scarcity of available data. The  knowledge-
based neural network proposed has outperformed conventional neural net-
work, revealing that the combination of symbolic and neural techniques is 
more robust than a neural technique alone.

4.5 Conclusion

Computational intelligence theories have undergone important developments 
during the past years. They provide techniques and tools that may support, 
in a very useful way, human decisions in complex contexts. Complexity here 
means high number of factors, changing conditions, imprecise knowledge, 
vagueness, lack of data, etc. The medical and healthcare domains are probably 
those with the highest potential for these techniques. An intense research has 
been and is going on worldwide concerning neural networks, fuzzy systems, 
and their combinations for applications covering practically all activities in 
these areas. This chapter provides a brief overview for these techniques and 
applications. The use of these techniques in the daily life of clinicians is in 
progress and it is expected that, with the proof of confi dence, massive utiliza-
tion will result in real benefi ts for the patients and for the clinicians.
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