
Mestrado em Engenharia Informática
Dissertação/Estágio
Relatório Final

Cryptography in GPUs

Samuel Neves
sneves@student.dei.uc.pt

Advisor:
Filipe Araújo
Date: July 10, 2009

Abstract

Cryptography, the science of writing secrets, has been used for centuries to
conceal information from eavesdroppers and spies. Today, in the information
age, data security and authenticity are paramount, as more services and
applications start to rely on the Internet, an unsecured channel. Despite the
existence of security protocols and implementations, many online services
refrain to use cryptographic algorithms due to their poor performance, even
when using cryptography would be a clear advantage.

Graphics processing units (GPU) have been increasingly used in the last
few years for general purpose computing. We present and describe serial and
parallel efficient algorithms for modular arithmetic in the GPU. Based on
these, we developed GPU implementations of symmetric-key ciphers, namely
AES and Salsa20, and public-key algorithms, such as RSA, Diffie-Hellman
and DSA. We bundled this software into a library that contains the main
achievements of this thesis.

We show that our symmetric-key cipher and modular exponentiation im-
plementations included in this library outperform recent Intel CPUs and all
previous GPU implementations. We achieve 11686 512-bit modular exponen-
tiations per second, 1215 1024-bit modular exponentiations per second and
peak AES-CTR throughputs of 1032 MB/s.

Contents

1 Introduction 3
1.1 Motivation . 4
1.2 Objectives . 5
1.3 Results . 5
1.4 Work Distribution . 6
1.5 Outline . 7

2 State of the Art 8
2.1 Mathematical Background . 8

2.1.1 Groups, Rings and Fields 8
2.1.2 The distribution of primes 9
2.1.3 Fermat’s Little Theorem 9
2.1.4 Chinese Remainder Theorem 10

2.2 Symmetric-Key Cryptography 11
2.2.1 AES . 11
2.2.2 Salsa20 . 12

2.3 Public-Key Cryptography . 12
2.3.1 Diffie-Hellman Key Exchange 13
2.3.2 RSA . 14
2.3.3 DSA . 15

2.4 Cryptography in GPUs . 16
2.5 Implementing Public-Key Algorithms 18

2.5.1 Classic arithmetic . 19
2.5.2 Barrett Modular Multiplication 23
2.5.3 Montgomery Multiplication 24
2.5.4 Special Moduli . 25
2.5.5 Residue Number Systems 26

3 CUDA 31
3.1 Function Types . 32
3.2 Variable Types . 33

1

CONTENTS 2

3.3 Calling a Kernel . 34
3.4 Built-In Variables . 34
3.5 An Example . 35
3.6 The GT200 Architecture . 36

4 Library 39
4.1 Objectives . 39
4.2 Requirements . 39
4.3 Design . 40
4.4 Functionality . 41

4.4.1 Symmetric encryption primitives 41
4.4.2 Asymmetric cryptographic primitives 43

4.5 Testing . 45

5 Implementation Details 46
5.1 Symmetric Cryptography . 47

5.1.1 AES . 47
5.1.2 Salsa20 . 49

5.2 Asymmetric Cryptography . 50
5.2.1 Modular Exponentiation 50
5.2.2 RSA . 55
5.2.3 Diffie-Hellman . 59
5.2.4 DSA . 59

6 Results 60
6.1 Symmetric Primitives . 60

6.1.1 AES . 60
6.1.2 Salsa20 . 62

6.2 Asymmetric Primitives . 63
6.2.1 Modular Exponentiation 63

6.3 Discussion . 65
6.3.1 Symmetric-key primitives 65
6.3.2 Public-key primitives 66

7 Conclusions and Future Work 69
7.1 Future work . 70

Chapter 1

Introduction

The preservation of secrets is an activity as old as their existence. Since
ancient times humans have sought ways to keep secret information concealed
or otherwise protected from third parties or even foes. Some of the ways
involved securing the information’s medium — using safes, guards or other
means to protect the support where the information was stored. Another way
would be to encode the information in such a way that an attacker would not
be able to recover it even if he managed to get it. The latter method evolved
over time to become a whole field, today known as cryptography. Whereas
in ancient times cryptography only dealt with information secrecy, today it
has 4 main objectives:

Confidentiality Keep information secret to anyone but the intended recip-
ient(s).

Integrity Ensure the information has not been corrupted or tampered with.

Authentication Corroborate the information and/or its sender’s origin.

Non-repudiation Prevent a party from denying previous actions or agree-
ments.

For centuries cryptography was employed solely in diplomatic and mili-
tary circles. From Caesar’s cipher to the much more advanced Enigma ma-
chine used in the Second World War, cryptography was a tool used to protect
little more than national secrets. A thorough insight into cryptography’s uses
throughout history is given in [42].

With the advent of computers and digital communications in the 1960s
and 1970s, private companies started demanding methods to protect their
digitally archived data. To fill this demand IBM invested in cryptographic

3

CHAPTER 1. INTRODUCTION 4

research and with a team led by Horst Feistel produced what was ultimately
known as Data Encryption Standard or simply DES [54].

Meanwhile, significant breakthroughs were being made in a completely
different direction. In 1976, Whitfield Diffie and Martin Hellman published
a milestone paper where they introduced a radical new concept: public and
private keys. The public key could be known by everyone, including foes;
the private key should remain known only to its owner. With this concept,
Diffie and Hellman introduced a new key exchange mechanism without any
previous secret sharing between parties [30]. The security of the method
relied on the hardness of solving an intractable mathematical problem1that
would make possible to derive the private key from the public key. Two
years later Rivest, Shamir and Adleman introduced the first encryption and
digital signing method based on this very concept, today known as RSA.
Unlike Diffie and Hellman’s work, RSA relies on the hardness of factoring
large integers [71]. Since then, numerous other public key algorithms have
been proposed, based on various hard mathematical problems.

1.1 Motivation

With the Internet now an everyday part of commerce and communication,
encryption and information protection has never been so important; thus,
cryptography plays a crucial role in today’s Internet infrastructure. From
online shopping to banking and stock markets, secure communication chan-
nels are a requirement to many activities done remotely.

However, even though cryptography plays such an important role in the
Internet, many services refrain to use it even when they would clearly benefit
from it. For instance the DNS protocol, one of the most important protocols
in the Internet, has suffered many attacks over the years, some of them allow-
ing malicious attackers to forge replies and thus to direct unwitting users to
fake websites. This could be fixed by using digitally signed records. In fact,
a secure solution already exists: DNSSEC. However, its adoption has been
strikingly slow and one of the reasons pointed out has been performance [6].
Another Internet protocol that has seen slow adoption is HTTPS. Recent
study reveals that 70% of the CPU time in such a transaction is spent on
cryptographic operations [82]. This performance hit is one of the leading rea-
sons secure communications are still not ubiquitous on the Internet, besides
where mandatory (e.g. financial transactions).

1In the Diffie-Hellman key exchange, this was the discrete logarithm over a finite field
— given gx (mod p), find x.

CHAPTER 1. INTRODUCTION 5

Cryptography is also important for secure data-at-rest storage. The loss
of personal and other sensitive data has become a large problem that could
also be solved by using cryptography. In large companies, backup tapes are
often sent to offsite facilities. Encryption would thwart the threat of data
theft, but the performance hit here may also be a problem [79]. Databases
often are shutdown when performing backups. Thus, the backup process
must be as fast as possible to avoid unwanted downtime.

Graphics processing units, or GPUs, are special purpose processors origi-
nally designed to perform fast processing and rendering of 3D content. Their
growth in processing power has been substantial in the last few years, where
they now sport more than 1 TFlop/s of computing power. Furthermore,
GPUs have also become more flexible, even allowing to perform more gen-
eral purpose computations. Consequently, it makes sense to employ a GPU
as an accelerator for cryptography given its computing power, ubiquity and
relative low price.

1.2 Objectives

It becomes clear that accelerating cryptography has a crucial role in its adop-
tion in real-world applications where security matters. This defines this
project’s objectives: to employ a 3D graphics card to accelerate the most
common cryptographic functions, both symmetric and asymmetric. To do
so, we will develop a library that uses the NVIDIA CUDA technology to
implement:

• Symmetric-key primitives — AES, Salsa20.

• Asymmetric-key primitives — Diffie-Hellman, RSA, DSA.

1.3 Results

As far as we know, our work resulted in record-setting throughputs for sym-
metric ciphers — up to 1033 MB/s (2868 MB/s discarding memory transfers)
for AES with a 128-bit key in the CTR mode, up from a previous best of 864
MB/s on an NVIDIA 8800GTX and 171 MB/s in our test CPU; the Salsa20
implementation showed throughputs of up to 1358 MB/s (8868 MB/s without
memory transfers), up from 495 MB/s in the test CPU.

We also implemented public-key cryptographic primitives, based on the
speed of modular exponentiation. We have achieved peaks of 11686 512-bit
modular exponentiations per second, 1215 1024-bit modular exponentiations

CHAPTER 1. INTRODUCTION 6

ID Task Name Duration

Q3 08

Fev AbrMarSet MaiOut Nov

2 8,4w
Implement all block cipher modes of

operation

3 9w
Implement and compare different

modular arithmetic approaches

4 8,8w
Implement common public-key

algorithms

5 8,6w
Develop a cryptographic library

integrating all cryptographic primitives

7,8w
Integrate all possible functionality in

OpenSSL

Q1 09 Q2 09Q4 08

Dez JunJan

1

7

6

44,2wElaborate Thesis

23,2w
Research state of the art regarding

cryptographic implementations

Figure 1.1: Gantt chart for the planned work throughout the year.

per second and 71 2048-bit modular exponentiations per second. This in
turn allowed us to achieve over 43457 RSA-1024 encryptions per second,
6022 RSA-1024 decryptions per second, setting again speed records for RSA-
1024 decryption in the GPU. We also implemented 1024 and 2048-bit Diffie-
Hellman key exchanges, for which we obtained throughputs of 1215 and 71
key exchanges per second respectively. Finally, our DSA implementation
achieves 5653 and 3256 signatures and verifications per second, respectively.

1.4 Work Distribution

Figure 1.1 depicts the planned work distribution throughout the duration
of the project. Some of the tasks are very much related — for example, in
modular arithmetic and public-key cryptography implementations improving
the former directly improves and builds upon the latter. Furthermore, if
the performance of a public-key algorithm is not satisfactory, one must go
back to improving the modular arithmetic, the building block the public-key
algorithms.

CHAPTER 1. INTRODUCTION 7

1.5 Outline

Chapter 2 deals with the mathematic and cryptographic background required
to perform the work proposed in the objectives. It also covers the state of
the art in algorithms and implementations in both CPUs and GPUs, starting
with the AES encryption standard and the Salsa20 stream cipher. We then
proceed to describe the most common public-key algorithms today, RSA,
DSA and Diffie-Hellman. Finally, we describe the state of the art in multiple
precision arithmetic required to implement such public-key algorithms in an
efficient manner.

In Chapter 3 we devote special attention to NVIDIA GPUs and the CUDA
programming model. It also contains a small introduction to CUDA pro-
gramming and its API. Finally, the current NVIDIA hardware architecture,
GT200, is described in detail.

Chapter 4 describes the objectives, requirements and design choices con-
sidered during the course of this work, most notably during the development
of the library. It proceeds, then, to describe in detail the functionality of the
library, its inputs and outputs and testing procedures performed.

Implementation details related to the low-level algorithms described in
Chapter 2 will be explained in Chapter 5. These are the algorithms employ
in the library of Chapter 4. Chapter 5 is of particular importance — most
performance-related decisions and optimizations are described in this chapter
and directly affect the final results.

The results obtained by the implementations described in Chapter 5 will
be presented and discussed in Chapter 6. These results are then compared
to the state of the art in both CPU and GPU implementations.

Chapter 2

State of the Art

2.1 Mathematical Background

In this section some background is given for the understanding and imple-
mentation of the public key algorithms considered.

2.1.1 Groups, Rings and Fields

Definition 1. Let G be a non-empty set and ◦ a binary operation1 in G.
The pair (G, ◦) is a group if and only if:

• ◦ is associative, i.e. ∀a, b, c ∈ G, a ◦ (b ◦ c) = (a ◦ b) ◦ c.

• G has an identify element e ∈ G, such that ∀a ∈ G, a ◦ e = e ◦ a = a.

• For each g ∈ G there’s an inverse element g−1 ∈ G such that g◦g−1 = e.

A group is said to be Abelian or commutative if ∀a, b ∈ G, a ◦ b = b ◦ a.
The order of the group is the number of elements it contains; if this number
is finite, the group is said to be finite and its order is denoted by |G|.

Definition 2. The triplet (G,+, ·) is a ring if and only if:

• (G, +) is an abelian group.

• · is associative.

• The distributive law holds, i.e. ∀a, b, c ∈ G, a · (b+ c) = a · b+ a · c.

If · is comutative, (G,+, ·) is said to be a commutative ring. a ∈ G is
invertible if there is an inverse element of a in G relative to ·.

1That is, has 2 distinct operands as input

8

CHAPTER 2. STATE OF THE ART 9

Definition 3. The triplet (G,+, ·) is a field if:

• (G,+, ·) is a commutative ring.

• Any element g ∈ G, g 6= 0 is invertible.

Theorder of an element g ∈ G, where G is finite, is the value a such that
ga = 1, where 1 denotes the identity with respect to ·.

2.1.2 The distribution of primes

The public-key algorithms considered in this document use prime numbers
and their properties in order to work correctly. Since the keys in these systems
are mostly composed of prime numbers, one might wonder: are there enough
prime numbers for every application? How many of them are there?

Theorem 1. The number of prime numbers is infinite.

This theorem, stated and proved by Euclid, shows that there is an infinite
amount of primes [38]. However, it doesn’t say much about how primes are
distributed. We can, then, reformulate the question: how many primes are
there less than or equal to an arbitrary number x?

Theorem 2. Let π(x) be the number of primes less than or equal to x. Thus,

lim
x→∞

π(x)
x

lnx

= 1 (2.1)

From this result, we see that there are enough primes to avoid any kind
of indexing or search. For instance, there are about 3.778× 10151 primes less
than 2512. The chance that an attacker will guess a 512 bit key by picking
randomly is for all practical purposes 0.

From Theorem 2 we can also conclude that given a randomly chosen
integer x, the probability of this number being prime is about 1

lnx
.

2.1.3 Fermat’s Little Theorem

In 1640 Pierre de Fermat stated a theorem of great importance in Number
Theory, which was later proven by Euler and Leibniz. Euler’s proof can be
seen in [38].

Theorem 3. If p is a prime number and a is relatively prime to p,

ap−1 ≡ 1 (mod p) (2.2)

CHAPTER 2. STATE OF THE ART 10

This theorem might mislead the reader into believing that a single expo-
nentiation can be used to prove the primality of a number. While the theorem
is true for any prime number, it also is true for some composite numbers. A
composite number c such that ac−1 ≡ 1 (mod c) is called pseudo-prime of
base a. These numbers are rare though, and usually a pseudo-prime of base
a is not of base b.

Definition 4. A composite number c such that ac−1 ≡ 1 (mod c) for any
integer a is called Carmichael number.

Pomerance proved that there is an upper bound of x1−ln ln lnx/ ln lnx Carmichael
numbers less than or equal to x[27]. Thus, for an input of 2512 there is a max-
imum of 4.60145 × 10107 Carmichael numbers; the probability of randomly
picking a Carmichael number is about 3.43191× 10−47.

Another useful result of Theorem 3 is obtained by multiplying both sides
of Equation 2.3 by a−1:

a−1ap−1 ≡ a−11 (mod p)⇒ ap−2 ≡ a−1 (mod p) (2.3)

If p is indeed prime, one can obtain the multiplicative inverse of an ar-
bitrary number a in Z∗p with a single exponentiation. While this is not the
asymptotically fastest algorithm to obtain inverses, this result might prove
useful when divisions are prohibitively slow or one wants to avoid branching.

2.1.4 Chinese Remainder Theorem

The Chinese Remainder Theorem is an old method that enables one to obtain
an integer value given its residues modulo a system of smaller moduli, often
called basis. One of the earliest applications of this method was to count
soldiers by counting the ‘remainder’ when they were lined up in justified
rows of varying number [27, Section 2.1.3].

Theorem 4. Let m1, . . . ,mr be positive, pairwise coprime moduli, whose
product is M =

∏r
i=1mi. Let r residues ni also be given. Then the system

n ≡ ni (mod mi), 0 ≤ n < M, 1 ≤ i < r (2.4)

Has a unique solution given by

n =
r∑
i=1

niviMi (mod M) (2.5)

where Mi = M/mi and vi = M−1
i (mod mi).

CHAPTER 2. STATE OF THE ART 11

We can see, then, that any positive integer less than M can be represented
uniquely by the set of residues modulo each mi. We can also point out that
the reconstruction can be done in r multiplications, since vi × Mi do not
change for each basis and thus can be precomputed.

2.2 Symmetric-Key Cryptography

Typically, the algorithms used in bulk encryption make use of a single key
for both encryption and decryption — secret-key algorithms. Symmetric-
key encryption algorithms are usually divided in two main categories: block
ciphers and stream ciphers.

Block ciphers, as the name implies, work by invertibly mapping an n-
bit block of plaintext to an n-bit block of ciphertext. The cipher takes as
parameter a k-bit key, on which security rests upon. Examples of block
ciphers are AES, Blowfish, DES, IDEA, etc [54, Chapter 7].

Stream ciphers, on the other hand, encrypt a message one bit (or more
commonly in computing applications, byte) at a time. They are especially
important when buffering is limited or when bytes must be individually pro-
cessed as they are received. Also, since each byte is encrypted/decrypted in-
dividually there is no error propagation beyond the error rate of the channel
itself. Most stream ciphers work by generating a pseudo-random sequence of
bits based on a seed or key. The encryption/decryption is then simply done
by mixing the plaintext/ciphertext with the generated sequence using the
XOR operation. These are called Synchronous stream ciphers [54, Chapter
6].

2.2.1 AES

NIST2 announced in 1997 their intent to choose a successor to the old DES
cipher, which since its inception had become vulnerable to attacks given its
relatively small key (56 bits). This successor was to be named Advanced
Encryption Standard or simply AES, and input was sought from interested
parties both on how the cipher should be chosen and in cipher proposals.
NIST stipulated that the candidates should be block ciphers with block sizes
of 128 bits, and key sizes of 128, 192 and 256 bits. The winning proposal, Ri-
jndael, was announced in 2001 as the new standard for symmetric encryption
[62].

AES operates on a 4× 4 array of bytes, corresponding to the block size.
The cipher itself is composed of a simple initial round, a variable number

2U.S. National Institute of Standards and Technology

CHAPTER 2. STATE OF THE ART 12

(depending on the key size) of rounds and a final round. In each of these
rounds, the elements of the 4×4 array are replaced using a substitution table,
cyclically shifted, multiplied by a polynomial over a finite field and finally
mixed with the round key using the XOR operation. Since each round has a
different round key, the key schedule of the AES is responsible to derive the
key for each round from the main given key [62].

2.2.2 Salsa20

The NESSIE (New European Schemes for Signatures, Integrity and En-
cryption) project was an European research project aimed at finding secure
cryptographic primitives, covering all objectives of cryptography. When no
stream ciphers could be selected, since all had been broken during the selec-
tion process, a new competition called eSTREAM was created in order not
only to find good stream ciphers but also to incentive study in this area [33].
Two profiles were created in this competition: stream ciphers designed to be
run in software applications and stream ciphers designed to be implemented
in hardware. Salsa20 is one of the most successful proposals in the software
profile and thus was chosen as part of the final portfolio.

Salsa20 works by hashing a 256-bit key, a 64-bit IV (initialization vector)
and a 64-bit block counter into a pseudo-random 64 byte block that is mixed
with the plaintext using XOR. The block counter is incremented and the
hash function is computed again each time a 64 byte boundary is reached
during encryption or decryption.

The Salsa20 core function builds a 4×4 table of 32 bit words from the key,
IV, counter and constants. Then a series of rounds composed of additions,
bit rotations and exclusive-ors are performed to achieve a random permuta-
tion of the original inputs [15]. Originally the number of rounds was set to
20; however, the version of cipher included in the eSTREAM portfolio was
reduced to 12 rounds, for performance reasons. This reduced round version
of Salsa20 is denominated Salsa20/12 [9].

2.3 Public-Key Cryptography

As previously mentioned, public-key cryptography relies on a pair of keys
for its operation. The public key, as the name implies, can be known to
everyone; the private key must remain known only to its owner. This concept
allows to devise numerous cryptographic methods for various uses, such as
key exchanges, encryption, digital signatures, etc. This document will only
cover a small part of all of these, namely the most common and trusted

CHAPTER 2. STATE OF THE ART 13

methods available.

2.3.1 Diffie-Hellman Key Exchange

The method introduced by Diffie and Hellman in [30] for key exchanges was
the first to use the above concept of public and private keys. Algorithm 1
describes the exchange of keys between two parties, called A and B.

Algorithm 1 Diffie-Hellman Key Exchange
1: A e B agree on a prime p and a generator α in Z∗p.
2: A picks a random number x in [2, p-2], computes αx mod p and sends

the result to B.
3: B picks a random number y in [2, p-2], computes αy mod p and sends the

result to A.
4: A receives αy mod p and computes the final key K = (αy)x mod p.
5: B receives αx mod p and computes the final key K = (αx)y mod p.

In this case, x is the private key of A and αx mod p is A’s public key.
Similarly, y is the private key of B and αy mod p is its public key. The key
exchange consists then in each party sending his public key to the respec-
tive recipient, while keeping their private key private. The key exchange
works due to the commutative property of exponentiation: (αx)y mod p ≡
(αy)x mod p ≡ αxy mod p.

Suppose that a foe has the ability to eavesdrop all communications be-
tween A and B. This means he’s able to known both αx mod p and αy mod p.
The problem of finding αxy mod p given αx mod p and αy mod p is called
Computational Diffie-Hellman Problem. The best known way to solve this
problem is to solve the discrete logarithm for either one of the public keys,
obtaining either x or y. There are no known polynomial time algorithms to
solve the latter, for appropriately chosen fields and generators.

The choice of good fields and generators is indeed important — some
attacks are able to ruin the security of this scheme if p is poorly chosen.
For example, if p − 1, the order of the field, can be factored in relatively
small primes, the discrete logarithm can be computed modulo each of these
small primes and the complete discrete logarithm can be recovered using
Theorem 4, rendering all key exchanges in this field unsecure [65]. Thus, it is
recommended that the field prime used for this particular use be a safe prime
— a prime p such that p−1

2
is also prime. IETF3 proposes several adequate

3Internet Engineering Task Force

CHAPTER 2. STATE OF THE ART 14

prime fields for Diffie-Hellman key exchanges in RFC 4306 and RFC 3526
[44] [46].

2.3.2 RSA

RSA, named after its inventors, was the first published algorithm that al-
lowed both key exchange, encryption and digital signatures making use of
the public-key concept [71]. However, the first digital signature standard
based on RSA only appeared decades later, as ISO/IEC 9796. The key gen-
eration process for RSA is slightly more complex than Diffie-Hellman’s and
is described in Algorithm 2.

Algorithm 2 RSA Key Generation
Require:
Ensure: N, E, D

1: Randomly choose two prime numbers p, q.
2: N = pq
3: ϕ = (p− 1)(q − 1)
4: Choose a public exponent E coprime to ϕ.
5: D = E−1 (mod ϕ)

In the RSA algorithm, the public key is the pair (N,E). The private
key is D. The security of this algorithm relies on the hardness of finding D
given E and N . Given these, the easiest way to obtain D is to factor N and
repeat the key generation process knowing the original p and q. As with the
discrete logarithm problem, no known polynomial time algorithms are known
for factoring large numbers, making this a hard problem.

The encryption of a message using RSA consists of a single exponentia-
tion, as shown in Algorithm 3.

Algorithm 3 RSA Encryption
Require: M, N, E
Ensure: C
C = ME mod N

Algorithm 4 RSA Decryption
Require: C, N, D
Ensure: M
M = CD mod N

CHAPTER 2. STATE OF THE ART 15

It is possible to verify why RSA works by referring to a generalization of
Theorem 3 presented by Euler:

aϕ(n) = 1 (mod n) (2.6)

Since we know that E ×D = 1 (mod ϕ(N)) ⇒ E ×D = 1 + k × ϕ(N),
we have:

aED = a · (aϕ(N))k (mod N) ≡
aED = a · 1k (mod N) ≡
aED = a (mod N)

(2.7)

The signature process works in the inverse way as encryption and decryp-
tion: the private key is used to sign the message and the public key can be
used to verify its authenticity. Both signature and verification are described
in Algorithm 5 and 6 respectively.

Algorithm 5 RSA Signature creation
Require: M, N, D
Ensure: S
Hm = H(M)
S = HD

m mod N

Algorithm 6 RSA Signature Verification
Require: S, M, N, E
Hm = H(M)
if HE

m mod N = S then
return Valid signature

else
return Invalid signature

end if

2.3.3 DSA

Digital Signature Algorithm, also known as Digital Signature Standard, is
a standard first proposed in 1991 by NIST4 and is the first digital signa-
ture scheme to ever be recognized by any government. The scheme itself

4U.S. National Institute of Standards and Technology

CHAPTER 2. STATE OF THE ART 16

is loosely based on the ElGamal method [5, 34], and is a digital signature
with appendix, i.e. the signature is appended to the message to send. When
otherwise omitted, the hash function used by DSA is SHA-1 [5, 4].

The key generation process is described in Algorithm 7. a is the entity’s
private key, whereas p, q, α and y can be known to everyone.

Algorithm 7 DSA Key Generation
Require:
Ensure: p, q, α, y, a

1: Randomly pick a prime q with 160 bits.
2: Select a 1024 bit prime p, where p− 1 divides q.
3: Find a generator α in Z∗p of order q.
4: Pick a random integer a, 0 < a < q.
5: Compute y = αa mod p.

Algorithm 8 DSA Signature Generation
Require: M, p, q, a, α
Ensure: r, s

1: Randomly pick an integer k, 0 < k < q
2: r = (αk mod p) mod q
3: s = (k−1(SHA1(M) + ar)) mod q
4: return r, s

Similarly to most other public key schemes, DSA bases its strength on a
hard problem — the discrete logarithm problem. Logically, if one is able to
derive a from y = αa, one would be able to forge anyone’s signature without
effort. But as the discrete logarithm is a hard problem for properly chosen
parameters as discussed in Section 2.3.1, this signature scheme is considered
secure.

2.4 Cryptography in GPUs

As far as the author is aware, there is not a single cryptographic primitive
library oriented to GPUs. However, some research has been done in this
direction recently; we proceed to summarize some important work done in
the area.

Cook et al. studied the feasibility of implementing symmetric-key ciphers
in a GPU using the OpenGL API. While this API was not general purpose
and very limited, it was possible to implement the AES using it [23]. The

CHAPTER 2. STATE OF THE ART 17

Algorithm 9 DSA Signature Verification
Require: r, s,M, p, q, y, α

1: if 0 < r < q and 0 < s < q then
2: w = s−1 mod q
3: u1 = w × SHA1(M) mod q
4: u2 = rw mod q
5: v = (αu1αu2 mod p) mod q
6: if v = r then
7: return Valid Signature
8: else
9: return Invalid Signature

10: end if
11: else
12: return Invalid Signature
13: end if

performance obtained was low, since common CPU implementations were
up to 40 times faster than the OpenGL implementation. Yamanouchi used
newer OpenGL extensions specific to the NVIDIA Geforce 8 series to imple-
ment the same cipher, AES [81]. The performance figures obtained in this
implementation were much higher, with the GPU’s throughput going as high
as 95 MB/s, against 55 MB/s on the reference CPU5.

More recently Rosenberg and, independently, Manavski used the NVIDIA
CUDA technology to implement AES [72, 52]. Rosenberg extended the
OpenSSL library, adding a GPU engine that can be used by any applica-
tion using OpenSSL. The performance obtained closely matched the one of
a 3.2 GHz CPU; Manavski’s work, on the other hand, obtained throughputs
of 1 GB/s using a NVIDIA 8800GTX.

GPUs have also been used to attack cryptographic systems. One example
is the bruteforcing of passwords, usually stored as their hash computed using
a hash function. Due to their inherent parallelism, GPUs are able to compute
thousands of hashes simultaneously, accelerating by an order of magnitude
the search for a password given its hash. In the particular case of the MD5
hash function, GPUs are able to compute or verify up to 600 million hashes
per second; a CPU can only compute up to 30 million hashes per second (per
core)[1].

Scott and Costigan used the IBM Cell processor to accelerate RSA in the
OpenSSL library [26]. Compared to the general purpose processor of Cell,

5The CPU used in the benchmarks was an Intel Pentium 4 3.0 GHz; the GPU was a
NVIDIA Geforce 8800GTS 640 MB

CHAPTER 2. STATE OF THE ART 18

the specialized vector cores (SPUs) were around 1.5 times faster. When all
SPUs were used to compute the same operation in cooperation, a speedup of
about 7.5 was obtained. However, the instruction set and architecture of this
CPU, while oriented to vector operations is considerably different than that
of a common GPU. More recently, Costigan and Schwabe implemented a fast
elliptic curve Diffie-Hellman key exchange in the Cell processor [25]. They
conclude that in terms of throughput and performance/cost ratio, the Cell
is competitive with the best current general purpose CPUs and implemen-
tations — the 6-SPU Sony PlayStation 3 could perform 27474 elliptic curve
operations per second, whereas an Intel Q9300, using all 4 cores, performed
27368.

Payne and Hitz implemented multiple-precision arithmetic in GPUs using
residue number systems (RNS) [64]. The authors conclude this approach pro-
vides good performance, but the overhead involved in transferring data from
RAM to the GPU’s memory makes the method worth it only for numbers of
considerable size.

Moss, Page and Smart used the NVIDIA Geforce 7800 GTX graphics
accelerator card to compute modular exponentiations, the main bottleneck in
RSA, also using residue number systems [60]. Due to the overhead of copying
data from the GPU and back, the authors conclude that a speedup is only
achieved by computing numerous different exponentiations simultaneously;
their speedup when computing 100000 modular exponentiations was of up to
3, compared to the reference CPU. Also on the NVIDIA 7800GTX, Fleissner
implemented an accelerated Montgomery method for modular exponentiation
in GPUs [35]. However, he only worked with 192-bit moduli, far too small
to be useful in cryptographic applications.

Recently, Szerwinski et al. employed the newer G80 architecture from
NVIDIA and the CUDA API to develop efficient modular exponentiation and
elliptic curve scalar multiplication [77]. Their work, which included imple-
mentations of both Montgomery and RNS arithmetic, yielded a throughput
of up to 813 modular exponentiations per second in an NVIDIA 8800GTS;
the minimum latency for this throughput, however, was of over 6 seconds.

2.5 Implementing Public-Key Algorithms

In order to have acceptable security margins, the numbers used in the algo-
rithms of the previous section tend to be much larger than the processor’s
natural register length. Thus, methods to represent and perform arithmetic
with large numbers become necessary. This section describes some of the
most common methods used in cryptographic libraries implementing public-

CHAPTER 2. STATE OF THE ART 19

key algorithms.

2.5.1 Classic arithmetic

Representation

Typically, multiple precision numbers are represented as vectors of digits of
the CPU’s register size length. As an example the number represented by a
vector v of n digits in base β = 2w is given by

n−1∑
i=0

vi × βi

Addition and Subtraction

The algorithms to add and subtract numbers represented in this manner are
rather simple; in fact, they’re similar to the methods learned in elementary
school. Both operations have linear complexity. However, due to the carry
propagation across words, these operations are hard to parallelize. Algo-
rithm 10 and 11 describe the algorithms to add and subtract large numbers
respectively.

Algorithm 10 Multiple Precision Integer Addition
Require: x, y
Ensure: z = x+ y

1: c← 0
2: for i = 0 to n− 1 do
3: t← xi + yi + c
4: zi ← t mod β
5: c← bt/βc
6: end for
7: zn+1 ← c

Multiplication and Division

Classical multiplication and division are identical to those learned in elemen-
tary school, as shown in Algorithm 12 and 13. Their complexity is O(n2) in
both cases, for numbers of n digits. There are faster methods for multiplica-
tion and division, but they are usually only of advantage for relatively large
numbers. A detailed account of multiplication and division algorithms can
be consulted in [47, Section 4.3] [27, Chapter 9] [22] [54, Chapter 14].

CHAPTER 2. STATE OF THE ART 20

Algorithm 11 Multiple Precision Integer Subtraction
Require: x, y, x >= y
Ensure: z = x− y

1: c← 0
2: for i = 0 to n− 1 do
3: t← xi − yi + c
4: zi ← t mod β
5: c← bt/βc
6: end for
7: zn+1 ← c

Algorithm 12 Multiple Precision Number Multiplication
Require: x, y
Ensure: z = x ∗ y

1: for i = 0 to n+ t do
2: zi ← 0
3: end for
4: for i = 0 to t− 1 do
5: c← 0
6: for j = 0 to n− 1 do
7: p← zi+j + xj ∗ yi + c
8: zi+j ← p mod β
9: c← bp/βc

10: end for
11: zi+n ← c
12: end for
13: return z

CHAPTER 2. STATE OF THE ART 21

Algorithm 13 Multiple Precision Number Division
Require: x, y
Ensure: z = bx/yc, r = x mod y

1: for i = 0 ton− t− 1 do
2: zi ← 0
3: end for
4: while x ≥ y × βn−t do
5: zn−t−1 ← zn−t−1 + 1
6: x← x− y × βn−t
7: end while
8: for i = n− 1 to t do
9: if xi = yt then

10: zi−t−1 ← β − 1
11: else
12: zi−t−1 ← bxi×β+xi−1

yt
c

13: end if
14: while zi−t−1(βyt + yt−1) > (xiβ

2 + xi−1β + xi−2) do
15: zi−t−1 ← zi−t−1 − 1
16: end while
17: x← x− zi−t−1yβ

i−t−1

18: if x < 0 then
19: x← x+ yβi−t−1

20: zi−t−1 ← zi−t−1 − 1
21: end if
22: end for
23: r ← x
24: return z, r

Exponentiation

Exponentiation can be done in O(log e) multiplications, where e is the expo-
nent, using the binary method described in Algorithm 14. The complexity
of exponentiation in elementary operations is directly related to the multi-
plication algorithm employed or, in the case of modular exponentiation, the
modular reduction method used. If Algorithm 12 is used along with the
binary method, the complexity is O(n3).

The binary method can be seen as a specific case of an addition chain.

Definition 5. An addition chain a of length d for some integer n is a se-
quence of integers a0 . . . ad, where a0 = 1 and ad = n and for every 1 ≤ i ≤ d
there exist j and k such that si = sj + sk.

CHAPTER 2. STATE OF THE ART 22

Algorithm 14 Integer Exponentiation — Binary Method
Require: x, y
Ensure: z = xy

1: A← 1
2: S ← x
3: while y 6= 0 do
4: if y mod 2 = 1 then
5: A← A× S
6: end if
7: y ← by/2c
8: S ← S2

9: end while
10: return A

The problem of finding the shortest addition-chain containing m integers
has been proven to be NP-complete [32]. However, there are methods to
find good addition-chains in linear time. The binary method described above
takes a maximum of 2 log2 e multiplications. This bound can be improved by
generalizing this method to higher bases.

The k-ary method performs a small pre-computation of 2k exponents, then
processes k bits of the exponent per iteration. The total maximum number of
multiplications is reduced to 2k+log2 e+(log2 e)/k. For adequately chosen k,
this provides a significant, albeit constant, speedup over the binary method.
Algorithm 15 describes this method in detail.

Algorithm 15 Integer Exponentiation — k-ary Method
Require: x, y
Ensure: z = xy

1: z ← 1
2: Precompute gi = xi, 0 ≤ i ≤ k
3: for i = logk y − 1 to 0 do
4: z ← z2k

5: z ← zgyi

6: end for
7: return z

As a practical example, consider a 1024-bit exponent. The binary algo-
rithm takes a maximum of 2×1024 = 2048 multiplications; the k-ary method,
using a window size of 5 bits, takes a maximum of 25 +1024+1024/5 = 1260.
Although these figures are for the worst case scenario, similar speedups are

CHAPTER 2. STATE OF THE ART 23

seen in the average case.
There are many other algorithms and improvements to addition chains

in the literature. Binary exponentiation goes back to 200 B.C. [47, Section
4.6.3]; the k-ary method was first introduced by Brauer in [21]. Since then,
many improvements were made; a detailed survey of the state-of-the-art in
exponentiation methods can be consulted in [13].

2.5.2 Barrett Modular Multiplication

Barrett in [11] devised a faster modulo reduction scheme than the one de-
scribed in Algorithm 13. The first observation was that division can be
performed by multiplication by the reciprocal of the divisor. Another obser-
vation is that modular reduction can be performed by the expression

x mod p = x− pbx
p
c (2.8)

Since there isn’t such a thing as a reciprocal in the integer ring, one can
simulate the reals by fixed-point arithmetic — a real r is represented by an
integer n with p+ q bits, where r = bn/2qc. Thus, division can be performed
by the simple, all-integer expression

bx
y
c ≈ b(xb2q/yc)/2qc (2.9)

If the divisor y is known a priori, one can simply precompute b2q/yc, thus
performing the division with one multiplication.

Plugging this result into Equation 2.8 and computing µ = b2q/pc, we get

x mod p = x− pbxµ/2qc (2.10)

As long as 2q ≥ x, the quotient will be either correct or off by 1. In this
case, a correction step is needed to ensure the correctness of the modular
reduction. Since for cryptographic purposes x is usually less than p2, we
have 2q ≥ p2.

As an example, fix x = 23, y = 17 and p = 31. First, one precomputes
µ: µ = b210/31c = 33. xy is easily calculated using Algorithm 12: xy =
23× 17 = 391.

The modular reduction step then requires the calculation of 391−31b(391×
33)/210c = 391−31×12 = 19. Since 19 < 31, no further steps are necessary.

CHAPTER 2. STATE OF THE ART 24

Algorithm 16 Barrett Modular Multiplication

Require: x, y,N, q = 2dlog2Ne, µ = b2q/Nc
Ensure: z = xy mod N

1: t← xy
2: z ← t−Nbtµ/2qc
3: while z >= N do
4: z ← z −N
5: end while

2.5.3 Montgomery Multiplication

Montgomery multiplication is one of the most used algorithms when several
operations modulo the same value are necessary. It requires a small overhead
before and after the actual calculation, but effectively eliminates the need for
divisions from the modular reductions after each multiplication.

Basically Montgomery’s method replaces the number to reduce x (mod N)
by another, given by x′ = xR (mod N). With x in this representation, one
can compute modular reductions without explicit divisions such as the one
in Algorithm 13 [58].

Algorithm 17 Montgomery Reduction — REDC

Require: N,R, x,N ′ = −N−1 mod R
Ensure: z = xR−1 mod N

1: t← x+N(xN ′) mod R
2: z ← bt/Rc
3: if z >= N then
4: z ← z −N
5: end if

The algorithm works because N(xN ′) ≡ −x (mod R), thus t/R is guar-
anteed to be an integer. Plus, t is known to be congruent to x mod N —
x+ x(NN ′) ≡ x mod N .

In order to convert an integer to Montgomery’s representation, one can
use Algorithm 17 to reduce the product xR2R−1 mod N ≡ xR mod N . Thus,
it is useful to precompute R2 mod N , if N and R are known a priori. To
convert a number from Montgomery’s representation to the classic one, one
can again use Algorithm 17 on the output of the last reduction: xR mod N
— xRR−1 mod N ≡ x mod N . Note that there must exist an inverse of
N mod R — N and R must be coprimes.

The choice of R in this method is crucial to the speedup provided by
this method. Good choices for R are typically powers of 2 that are also

CHAPTER 2. STATE OF THE ART 25

multiples of β, since they avoid both logical operations and explicit shifts,
thus accelerating modular multiplications.

To perform one single modular multiplication, this method is far from op-
timal, since the precomputation overhead might be too large. However, when
several modular multiplications are performed in sequence, such as modular
exponentiations or elliptic curve group operations, this method saves quite a
few divisions (for good choices of R), resulting in increased performance.

A simple example is now presented: 5× 6 mod 11. We compute x′ = 5×
32 mod 11 = 6, y′ = 6× 32 mod 11 = 5, N = 11, R = 32,−N−1 mod R = 29.

Now, the modular multiplication and reduction:

xy = 5× 6 = 30

t = 30 + 11((30× 29) mod 32) = 96

z =
96

32
= 3

Note that the mod32 operation can be easily performed using a logical
AND, and the division by 32 can be as easily done with a shift right by 5.
All there is left to do is convert the result from Montgomery’s representation
xR mod N to x mod N . This can be done by reducing the result once again:

t = 3 + 11((3× 29) mod 32) = 256

z =
256

32
= 8

Thus, 5 ∗ 6 mod 11 = 8.
Montgomery multiplication can easily be plugged into any conventional

modular exponentiation algorithm, such as Algorithm 14. Therefore, given
an exponent e one can trade O(log e) divisions by O(log e) multiplications
and cheap logical operations, faster on typical computer architectures.

2.5.4 Special Moduli

It is possible to take advantage of the special form of some moduli to simplify
modular reduction. When a modulus is close to a power of 2, one can exploit
the binary nature of computers to carry out the reduction more efficiently.

Suppose one wants to reduce a positive integer x < 264 modulo p = 232−5.
Assuming a base β = 232, one can represent x as a number comprised of two
32-bit digits:

CHAPTER 2. STATE OF THE ART 26

x = x0 + 232x1

Also observe that 232 mod 232 − 5 is easy to compute — 5. Thus,

x = x0 + 5x1 (mod p)

More generally,

x mod (2t − c) = x mod 2t + cbx/2tc (mod (2t − c)) (2.11)

It is straightforward to generalize this process to more than 2 digits and
make it iterative. Note that the smaller the c coefficient, the faster this
method will be. It is the fastest for Mersenne numbers, where c = 1 — only
modular addition is required. Algorithm 18 describes this modular reduction
method for numbers of arbitrary length.

Algorithm 18 Reduction by Special Modulus

Require: x, p = 2t − c
Ensure: z = x mod p

1: z ← x
2: while z > 2t do
3: t← bz/2tc
4: z ← z mod 2t

5: z ← z + ct
6: end while
7: if z ≥ p then
8: z ← z − p
9: end if

2.5.5 Residue Number Systems

In a residue number system, each number n is represented by the set of
its residues ni mod mi, where mi is a set of pairwise coprime moduli whose
product is M =

∏r
i=1mi. By Theorem 4 we know that any positive integer

less than M can be unambiguously represented by its residues modulo mi.
All operations in a residue number system can be done independently for

each residue. This makes this system look highly attractive for parallel ar-
chitectures. Although additions, subtractions and multiplications are trivial
to perform in these systems, divisions can only be done when the result is
known to be exact (i.e. no remainder). Magnitude comparisons, with the ex-
ception of verifying equality, are very hard to perform without converting the

CHAPTER 2. STATE OF THE ART 27

number back to a classic representation. Several schemes to perform modu-
lar multiplication and exponentiation in residue number systems have been
proposed that keep a high parallelization potential for their implementation
[76, 60, 10, 18].

As an example take the numbers x = 29, y = 21 and moduli B =
〈5, 7, 11, 13〉. Then, M = 5 × 7 × 11 × 13 = 5005. As both x and y are
less than M , they can be uniquely represented by their residues modulo B:

x′ = 〈4, 1, 7, 3〉
y′ = 〈1, 0, 10, 8〉

Multiplying x’ by y’ is simply done by the individual multiplication of
each component:

xy′ = 〈4 ∗ 1 mod 5, 0 ∗ 1 mod 7, 7 ∗ 10 mod 11, 3 ∗ 8 mod 13〉
= 〈4, 0, 4, 11〉

In order to recover xy’ to a conventional representation, we’ll use Equation
2.5:

xy = 4× 5005

5
× 1 + 0× 5005

7
× 1 + 4× 5005

11
× 3 + 11× 5005

13
× 5 (mod 5005)

= 609

We can confirm that 21× 29 is, indeed, 609.
As previously mentioned, division is particularly hard to perform under

residue number systems. Thus, modular reduction, as required by modular
exponentiation, is also non-trivial to perform. This section describes two
known methods to perform modular reductions under these number systems.

RNS Montgomery Multiplication

One approach to perform a modular reduction in RNS is to create an analog
of Algorithm 17. As described in Section 2.5.3, if we choose an integer R such
that division by such integer is easy, one can perform a modular reduction
xR−1 mod N . In a RNS, R is the product of the moduli set, i.e.

∏r
i=1mi.

Thus, one can compute xR−1 mod N as (xi + ni(−xin−1
i))m−1

i mod mi for
each modulus mi.

The reader may notice, however, that division by R, i.e. m−1
i mod mi is

impossible to compute in the current basis, since R ≡ 0 (mod mi). Thus,

CHAPTER 2. STATE OF THE ART 28

one needs to add a second basis, at least as large as the first, convert the
current result to that basis, perform the division and finally convert back
to the original basis. This conversion process between bases is often called
base extension. There are many published base extension methods in the
literature; the best ones appear to cost k2 + 2k modular multiplications to
compute a base extension, for bases of k moduli [45]. Algorithm 19 describes
RNS modular multiplication using this method.

Algorithm 19 RNS Montgomery Multiplication

Require: ami = A mod mi, a
p
i = A mod pi, b

m
i = B mod mi, b

p
i = B mod

pi,mi, pi, N
Ensure: zmi = ABP−1 mod mi

1: Precompute µi = −N−1 mod pi, ni = N mod mi, λi = P−1 mod mi

2: smi ← ami b
m
i mod mi

3: spi ← api b
p
i mod pi

4: tpi ← spiµi mod pi
5: tmi ← BaseExtend(tpi ,mi, pi) . Convert tpi into tmi
6: umi ← tmi ni mod ami
7: vmi ← (smi + umi) mod mi

8: zmi ← vmi λi mod mi

9: zpi ← BaseExtend(zmi ,mi, pi) . Convert zmi into zpi

Step 9 of Algorithm 19 is only necessary when multiple modular multipli-
cations are performed, i.e. when the output of a multiplication is the input
of another. For single modular multiplications this step can be avoided. The
number of modular multiplications of the whole algorithm is 2k2+9k. Bajard
et al. improved this operation count to 2k2 + 8k [10].

Explicit CRT

The Explicit Chinese Remainder Theorem, like Theorem 4, allows the re-
covery of an integer n given its residues modulo a set of coprime moduli mi.
Whereas in Theorem 4 the product sum must be reduced modulo P to obtain
the final result, the Explicit CRT theorem does not have such requirement,
by means of approximation of the quotient.

Theorem 5. Let m1, . . . ,mr be positive, pairwise coprime moduli, whose
product is M =

∏r
i=1mi. Let r residues ni also be given, representing the

integer n < M/2. Let round(x) be the unique integer r such that |x−r| < 1/2,
where x − 1/2 6∈ Z. Let Mi = M/mi, vi = M−1

i (mod mi) and xi = nivi.

CHAPTER 2. STATE OF THE ART 29

Then,

n =
r∑
i=1

xiMi −M · r (2.12)

where r = round(α), α =
∑r

i=1 xi/mi.

Several different approaches have been proposed for the calculation of
the α coefficient. Montgomery and Silverman propose using floating-point
arithmetic to perform a low-precision approximation of α [59]. Bernstein
proposes using fixed-point arithmetic and provides precision bounds for which
the α approximation can be made without error [14].

Theorem 5 can be extended to work in the underlying ring of the numbers
modulo p, given the same initial assumptions and the added restriction that
nivi must be reduced modulo mi:

n =
r∑
i=1

xi(Mi mod p)− (M mod p)r (2.13)

Since nivi mod mi < mi and Theorem 5 is correct, n is congruent to n
(mod p) and cannot be larger than p

∑r
i=1mi. Furthermore, this identity also

holds for p mod mj, rendering this a highly parallelizable reduction method:

n ≡
r∑
i=1

xi(Mi mod p mod mj)− (M mod p mod mj)r (mod mj) (2.14)

Algorithm 20 describes a modular multiplication using the identity in
Equation 2.14.

CHAPTER 2. STATE OF THE ART 30

Algorithm 20 Explicit CRT Modular Multiplication

Require: ai = A mod mi, bi = B mod mi,mi, N
Ensure: zi ≡ AB (mod mi)

1: Precompute qi = (M/mi)
−1 mod mi, ci = M mod p mod mi, dij =

M/mi mod p mod mj

2: ti ← aibiqi
3: α← 0
4: for i in 1 to r do
5: α← α + ti/mi

6: end for
7: for i in 1 to r do
8: sum← 0
9: for j in 1 to r do

10: sum← (sum+ tjdij) mod mi

11: end for
12: prod← αci mod mi

13: zi ← (sum− prod) mod mi

14: end for

Chapter 3

CUDA

Graphical Processing Units, also known as GPUs, are highly parallel spe-
cialized processors typically used in the real-time rendering of 3D content.
However, the continued increase of their processing power and computational
flexibility has drawn attention to their use outside the realm of 3D graphics,
for other computational purposes. The main reason for this substantial in-
crease in computation power comes from the GPU’s special-purpose design
— highly data-parallel operations on vertexes and textures. This comes at a
significant cost: flow control and fast memory access is much less optimized
than in a general-purpose CPU.

General purpose computing on the GPU was originally done by treating
the input data as a texture and processing it using pixel and vertex shaders.
However, doing so directly is not only inconvenient, but also requires exper-
tise in the inner workings of the modern 3D rendering pipeline. The tools
available for shader development are cumbersome for general purpose use
and little is known about the underlying architecture on which the code will
run. This makes it particularly hard to engage and take advantage of the
huge computational power these devices offer.

In late 2006, NVIDIA introduced CUDA, a programming environment
designed to give applications access to the GPU’s computing power. With
CUDA, the GPU is viewed as a highly multithreaded processor, operating
the same program (in each thread) independently on different data. A pro-
gram that runs on the GPU is called a kernel. When a kernel function is
called using CUDA, it is necessary to specify how many threads will run the
function. Threads are organized in thread blocks : groups of threads that have
a common shared memory. Such memory can be used to communicate be-
tween threads in order to achieve cooperation. Each kernel can have several
thread blocks; the set of all threads in all thread blocks of a kernel is called
a grid. Thus, a grid is the instantiation of a kernel in the GPU. There can

31

CHAPTER 3. CUDA 32

Figure 3.1: Evolution of computing power in FLOPS for recent CPUs and
GPUs.

be more than one grid running in the GPU at any given time.
CUDA extends the C programming language in 4 main ways:

• Function type qualifiers to specify where a function shall be executed,
and how it can be called.

• Variable type qualifiers to indicate where a variable shall be stored.

• A directive that allows the programmer to indicate how a kernel will
be executed on the device.

• Built-in variables that identify each thread and block, plus dimensions
of block, grid and warp.

In the following sections each of these extensions will be detailed and
explained.

3.1 Function Types

There are 3 main types of functions in CUDA: host functions, device functions
and global functions.

Host functions, defined by prefixing them with the host directive, are
executed exclusively on the CPU. This is the default type for a function, in
case the prefix is omitted.

CHAPTER 3. CUDA 33

DEVICE

GRID #1

BLOCK (0,1)

THREAD

(0,0)

THREAD

(0,2)

THREAD

(0,1)

THREAD

(1,0)

THREAD

(1,2)

THREAD

(1,1)

SHARED MEMORY

BLOCK (0,0)

THREAD

(0,0)

THREAD

(0,2)

THREAD

(0,1)

THREAD

(1,0)

THREAD

(1,2)

THREAD

(1,1)

SHARED MEMORY

BLOCK (0,2)

THREAD

(0,0)

THREAD

(0,2)

THREAD

(0,1)

THREAD

(1,0)

THREAD

(1,2)

THREAD

(1,1)

SHARED MEMORY

BLOCK (1,0)

THREAD

(0,0)

THREAD

(0,2)

THREAD

(0,1)

THREAD

(1,0)

THREAD

(1,2)

THREAD

(1,1)

SHARED MEMORY

BLOCK (1,1)

THREAD

(0,0)

THREAD

(0,2)

THREAD

(0,1)

THREAD

(1,0)

THREAD

(1,2)

THREAD

(1,1)

SHARED MEMORY

BLOCK (1,2)

THREAD

(0,0)

THREAD

(0,2)

THREAD

(0,1)

THREAD

(1,0)

THREAD

(1,2)

THREAD

(1,1)

SHARED MEMORY

Figure 3.2: Thread organization within a CUDA kernel.

A global function, also known as kernel, is a function executed on the
GPU but accessible (callable) from the CPU. One should notice that this
is precisely the kernel comprised of multiple threads we defined before. A
global function is created by using the prefix global in its declaration.

Device functions are executed on the GPU, but also only callable from
the GPU. This means only kernels or other device functions are allowed to
call them. They are defined by the prefix device .

3.2 Variable Types

As with functions, CUDA allows the user to define where variables are stored,
and how should they be accessed. There are 3 directives available for this
purpose: device , constant and shared .

The device directive informs the compiler that the variable is to be
stored in the GPU’s global memory. If no other directive is used to specify
the location where the variable is to be stored, it will be accessible by all
threads in a grid and has the lifetime of the application.

If the variable is known to remain constant throughout the lifetime of the

CHAPTER 3. CUDA 34

application, one might use the constant directive to offload the variable
to the GPU’s constant memory. This in turn makes memory accesses faster
than in global memory.

If there is a need to share information between threads within a block, the
shared directive must be used. It makes the data visible by all threads in

the same block and resides in the memory space of the thread block, making
accesses faster than global memory. Writes to a shared variable will only be
visible by the other threads in the block once they are synchronized (using
the syncthreads() special function).

3.3 Calling a Kernel

Global functions, when called, require several key parameters to be specified:

• The size of the grid, i.e. the number of thread blocks to be run in the
kernel. This is a bidimensional value. Refer to 3 where we have a 2× 3
grid.

• The dimension of each thread block in number of threads. This is a
tridimensional value.

• An optional size of the shared memory to be dynamically allocated for
each thread block on top of the statically allocated. The default value
is 0.

• An optional stream to be associated to the kernel. Useful when keeping
several computations active simultaneously.

The syntax for calling a global function from the host is FuncName<<<Dg,
Db, Ns, S>>>(Arguments), where Dg is the grid dimension, Db is the block
dimension, Ns the dynamically allocated shared memory and S the associ-
ated stream.

3.4 Built-In Variables

To enable individual threads’ programming without having to write the code
for each of them individually, CUDA provides built-in variables that can be
accessed only inside kernels. They allow to identify and locate each thread
so that it can play its correct role in the computation. They are:

• gridDim — Contains the dimensions of the grid, in thread blocks; up
to 2 dimensions are possible.

CHAPTER 3. CUDA 35

• blockIdx — This variable, composed of 3 dimensions (x, y, z) contains
the block index within the current grid.

• blockDim — This variable, also tridimensional, contains the size of the
current thread block.

• threadIdx — This variable contains the thread index within the block.

3.5 An Example

We now presented an example of a CUDA application that squares an array.

1 #include <s t d i o . h>
#include <s t d l i b . h>
#include <cuda . h> // Inc lude CUDA API Functions

// Kernel t h a t e xecu t e s on the CUDA dev i c e − x = xˆ2
g l o b a l void mul t ip ly a r ray (f loat ∗x , int N)

{
int idx = blockIdx . x ∗ blockDim . x + threadIdx . x ;
i f (idx < N) x [idx] = x [idx] ∗ x [idx] ;

}
11

// This i s executed on the hos t
int main (void)
{

f loat ∗x h , ∗x d ; // Pointer to hos t & dev i c e array
const int N = 10 ; // Number o f e lements in array
s i z e t s i z e = N ∗ s izeof (f loat) ;

x h = (f loat ∗) mal loc (s i z e) ; // A l l o ca t e array on hos t
cudaMalloc ((void ∗∗)&x d , s i z e) ; // A l l o ca t e array on dev i c e

21
// I n i t i a l i z e hos t array and copy to CUDA dev i c e
for (int i =0; i<N; i++) x h [i] = (f loat) i ;
cudaMemcpy(x d , x h , s i z e , cudaMemcpyHostToDevice) ;

// Do the a c t ua l computation on the dev i c e
int b l o c k s i z e = 4 ; // One can a l s o use in t e g e r s , they ’ l l

// be over loaded in t o the co r r e c t type
int n b locks = N/ b l o c k s i z e + (N%b l o c k s i z e == 0 ? 0 : 1) ;
mul t ip ly ar ray <<<n blocks , b l o c k s i z e >>>(x d , N) ;

31
// Ret r i eve r e s u l t from dev i c e and s t o r e i t in hos t array
cudaMemcpy(x h , x d , s izeof (f loat) ∗N, cudaMemcpyDeviceToHost) ;

// Print r e s u l t s

CHAPTER 3. CUDA 36

for (int i =0; i<N; i++) p r i n t f (”%d %f \n” , i , x h [i]) ;

// Cleanup
f r e e (x h) ;
cudaFree (x d) ;

41
// Exi t
return 0 ;

}

Listing 3.1: Example CUDA application

The structure of a typical CUDA application can be easily derived from
the example. First, obtain some data to be processed; in this example the
data is artificially generated. Then, copy the data to the GPU, using the
cudaMemcpy function. The memory used in the device must be previously
allocated using the cudaMalloc function. After this, the kernel can be called
with a configurable number of thread blocks and threads per block. These
sizes need not be constant or defined at compile time. After the kernel is done,
copy the data back to the host using once again the cudaMemcpy function.

3.6 The GT200 Architecture

NVIDIA’s current architecture, GT200, is a natural evolution of the previ-
ous architectures G80 and G92. [51] gives a thorough coverage of the G80
architecture. The hardware architecture of the G80 matches quite well the
CUDA programming model described in Section 3: the computing part of
the card is seen as an array of streaming multiprocessors (SM). Early G80
GPUs were composed of 16 SMs; newer GT200 models have up to 30.

Each SM contains its own shared memory and register bank and also
its own constant and texture memory cache. Besides these specialized fast
memories, the GPU also has access to local and global memory, which reside
outside the chip and are not cached. Additionaly, each SM contains a single
instruction cache, 8 ALU units and 2 Special Function Units (SFU) — to
maximize the ALU area on the chip, each of these ALUs operates in a SIMD
fashion, in groups of 32 threads called warps controlled by a single instruc-
tion sequencer. At each cycle, the SM thread scheduler chooses a warp to be
executed. Since each of the 8 ALUs supports up to 128 concurrent thread
contexts, i.e. each ALU can be aware of up to 128 concurrent threads operat-
ing in it, it is possible to have 8×128 = 1024 concurrent threads executing on
a single SM — in a 30-SM GPU, this amounts to up to 30720 simultaneous
threads being executed at any given time.

CHAPTER 3. CUDA 37

Figure 3.3: The streaming multiprocessor, building block of the GT200 ar-
chitecture.

Each ALU unit can compute simple arithmetic instructions, be it integer,
logical or single precision floating point, per cycle. Moreover, each ALU can
compute a MAD (multiply-and-add) operation per cycle. Each SFU unit
can compute transcendental functions (e.g. sin, cos), and contains 4 floating
point multipliers. Thus, an SM can compute 8 × 2 + 4 × 2 = 24 floating-
point operations per cycle — a 30-SM GPU at 1476 MHz can (theoretically)
compute 24 × 30 × 1476000000 = 1062720000000 floating-point operations
per second, a little over 1 Tflop/s.

The GT200 architecture introduced one double precision floating point
unit per SM, doubled the register number (16384 32-bit registers as opposed
to 8192 in the G80 architecture) and increased the memory bandwidth and
SM amount. The double precision performance, however, is far from being on
par with the single precision counterpart — in the same 30-SM GPU at 1476
MHz, the peak throughput is 2×30×1476000000 = 88560000000, a mere 88
Gflop/s. In comparison, the PowerXCell 8i processor has a double-precision
performance of 102.4 Gflop/s with 8 cores [2]; on the other hand, the Intel
Core i7-965 has 51.2 Gflop/s with 4 cores [3].

CHAPTER 3. CUDA 38

Figure 3.4: The GT200 architecture — a scalable array of SMs

Chapter 4

Library

4.1 Objectives

One of the objectives of this project, as stated in Section 1.2, was to develop
a library that made use of the algorithms studied and developed. More
precisely, we intend to enable developers to use the GPU’s computing power
to perform cryptographic tasks. Furthermore, the library must be easy to
use and integrate with other applications that already use cryptography.

4.2 Requirements

The library will be used by programmers who already deal with cryptog-
raphy in their software, be it secure servers, file encryption applications,
certificate handling, etc. To be easily integrated in already existent software,
it should be easy to replace current cryptographic libraries with ours. The
most widespread of these cryptographic libraries is OpenSSL — this makes
it a good candidate to start with.

Some use cases of this library are:

• Fast encryption of long streams of data, e.g. files, backups, video, etc.

• Multiple small message encryption and decryption, e.g. an SSL web
server.

• Batch public key operations, e.g. SSL handshake handling.

39

CHAPTER 4. LIBRARY 40

4.3 Design

Since ease of use and integration was one of the design goals, it would seem
a good idea to integrate the developed cryptographic code into an OpenSSL
‘ENGINE’, which is a mechanism the library uses to extend its support to
external cryptographic hardware or alternative implementations [78]. How-
ever, OpenSSL does not provide any type of batching or even asynchronous
functions; this would render the throughput advantages of GPU comput-
ing moot. Thus, we opted to create an external library that provided easy
batching to users.

However, to retain some compatibility and to avoid ‘reinventing the wheel’,
we employ the data structures (this includes the BIGNUM, RSA, DH, DSA
and AES KEY structures) already existent in OpenSSL. Also, the book-
keeping and other miscellaneous arithmetic operations, such as the final CRT
multiplication and addition in RSA decryption, are performed by calls to
OpenSSL.

The chosen programming language was ANSI C [7]. This relates to the
fact that OpenSSL is developed in ANSI C and that the CUDA compiler is
also (officially) ANSI C. However, the CUDA compiler’s frontend is in reality
C++. Thus, to avoid redundancy in some kernels and enable the compiler to
perform some optimizations that would be hard to do otherwise, we employed
one particular feature of C++ — function templates. These allow to define
different functions for different parameter sets during compile-time, which
can be very useful in a resource-scarce architecture like GT200. Nevertheless,
all exported functions are compatible with ANSI C by the usage of the extern
"C" directive.

Error handling is performed by return codes — it would be unwise to kill
a whole server process when a request cannot be processed. Errors related to
the library have negative return codes; errors related to the CUDA runtime
have positive return codes. Successful functions return 0.

Temporary memory used to communicate between the GPU and the host
is allocated as non-pageable memory. This enables DMA transfers do be per-
formed between the GPU’s global memory and the host’s RAM, speeding up
such transfers considerably [63]. However, allocating too much non-pageable
memory can be harmful to a system; by default, no more than 16 MB are
allocated.

CHAPTER 4. LIBRARY 41

4.4 Functionality

This section will list and succinctly explain the various functions exported
by the library. These are just the functions exported to the user — the inner
workings of each are detailed in Chapter 5.

4.4.1 Symmetric encryption primitives

The following functions perform symmetric-key encryption by the AES or
Salsa20 ciphers described in Section 2.2.

int cudaAES_set_key(AES_KEY ∗aeskey, u8 ∗key, int bits, int enc);

This function takes as input an array of bytes, key, and depending on
the value of the input bits derives 10, 12 or 14 round keys for 128, 192 and
256-bit keys respectively. Any other values of bits are not accepted.

If the input value enc is different from 0, the round keys generated are
for the encryption process. If enc is set to 0, decryption round keys are
generated.

The resulting round keys are stored in aeskey, a structure defined in
OpenSSL’s aes.h header file.

int cudaAES_ecb_encrypt(u8 ∗in, u8 ∗out, AES_KEY ∗aeskey, u32 len,

int enc);

The above functions respectively encrypt and decrypt a stream in of len
bytes, where len is a multiple of AES_BLOCK_SIZE bytes. It is required that
aeskey be initialized with cudaAES_set_key before calling either function.

The output is stored in out ; in and out can be the same.

int cudaAES_ctr128_encrypt(u8 ∗in, u8 ∗out, u32 length, const

AES_KEY ∗key, u8 ∗iv, u8 ∗rem, u32 ∗num);
int cudaAES_ctr128_decrypt(u8 ∗in, u8 ∗out, u32 length, const

AES_KEY ∗key, u8 ∗iv, u8 ∗rem, u32 ∗num);

The cudaAES_ctr_encrypt function encrypts a long stream of length
bytes, pointed to by in, in the CTR mode. The rem array might contain
a partially used block from a previous run; the index of the last used byte
is pointed to by num. It is required that aeskey be initialized with cud-

aAES_set_key.

CHAPTER 4. LIBRARY 42

When the function terminates successfully, rem contains the last gener-
ated block and num contains 16− (length mod 16), i.e. the remaining usable
bytes for a subsequent encryption. The output is stored in out ; in and out
can be the same.

Given the symmetry of the CTR mode, the encryption and decryption
process is the same. Thus, cudaAES_ctr_decrypt is simply an alias for cu-
daAES_ctr_encrypt.

int cudaAES_cbc_decrypt(u8 ∗in, u8 ∗out, u8 ∗iv, AES_KEY ∗aeskey,
u32 len);

The cudaAES_cbc_decrypt function performs a decryption of a long
CBC-encrypted stream. The absence of an encryption counterpart is not
a mistake — CBC encryption cannot be parallelized.

The input is a stream in of len bytes, where len is a multiple of 16. The
output is stored in out, which can overlap with in.

int cudaAES128_ecb_encrypt_batch(u8 ∗∗in, u8 ∗∗out, AES_KEY ∗keys,
const u32 length, const u32 nmsg);

int cudaAES192_ecb_encrypt_batch(u8 ∗∗in, u8 ∗∗out, AES_KEY ∗keys,
const u32 length, const u32 nmsg);

int cudaAES256_ecb_encrypt_batch(u8 ∗∗in, u8 ∗∗out, AES_KEY ∗keys,
const u32 length, const u32 nmsg);

int cudaAES128_ecb_decrypt_batch(u8 ∗∗in, u8 ∗∗out, AES_KEY ∗keys,
const u32 length, const u32 nmsg);

int cudaAES192_ecb_decrypt_batch(u8 ∗∗in, u8 ∗∗out, AES_KEY ∗keys,
const u32 length, const u32 nmsg);

int cudaAES256_ecb_decrypt_batch(u8 ∗∗in, u8 ∗∗out, AES_KEY ∗keys,
const u32 length, const u32 nmsg);

int cudaAES128_ctr128_encrypt_batch(u8 ∗∗in, u8 ∗∗out, AES_KEY

∗keys, u8 ∗∗iv, const u32 length, const u32 nmsg);

int cudaAES192_ctr128_encrypt_batch(u8 ∗∗in, u8 ∗∗out, AES_KEY

∗keys, u8 ∗∗iv, const u32 length, const u32 nmsg);

int cudaAES256_ctr128_encrypt_batch(u8 ∗∗in, u8 ∗∗out, AES_KEY

∗keys, u8 ∗∗iv, const u32 length, const u32 nmsg);

int cudaAES128_ctr128_decrypt_batch(u8 ∗∗in, u8 ∗∗out, AES_KEY

∗keys, u8 ∗∗iv, const u32 length, const u32 nmsg);

int cudaAES192_cbc_encrypt_batch(u8 ∗∗in, u8 ∗∗out, AES_KEY ∗keys,
u8 ∗∗iv, const u32 length, const u32 nmsg);

int cudaAES256_cbc_decrypt_batch(u8 ∗∗in, u8 ∗∗out, AES_KEY ∗keys,
u8 ∗∗iv, const u32 length, const u32 nmsg);

CHAPTER 4. LIBRARY 43

The above functions are functional equivalent to the long stream ver-
sions. However, CTR mode no longer keeps track of usable bytes, i.e. it
assumes each message is independent. The added parameter, nmsg, defines
the amount of messages to encrypt/decrypt at once. Thus, in and out and
pointers to nmsg small streams of length bytes, while keys is a pointer to an
array of nmsg AES_KEY structures.

int cudaSalsa20_set_key(SALSA_KEY ∗key, u8 ∗key_bytes, u32 bits);

int cudaSalsa20_set_iv(SALSA_KEY ∗key, u8 ∗iv);

These functions respectively set the key and IV in a SALSA_KEY structure.
The parameter bits defines the key length — accepted values are 128 and 256.
The IV is constant, set at 8 bytes long.

int cudaSalsa20_encrypt(u8 ∗in, u8 ∗out, const SALSA_KEY ∗skey,
u32 len);

int cudaSalsa20_decrypt(u8 ∗in, u8 ∗out, const SALSA_KEY ∗skey,
u32 len);

The cudaSalsa20_encrypt function encrypts a stream in, with len bytes,
into an encrypted stream out using the key skey. skey must be previously ini-
tialized with the functions cudaSalsa20_set_key and cudaSalsa20_set_iv.

Much like the CTR mode of operation in block cipher, the encryption
process is the same as the decryption; once again, cudaSalsa20_decrypt is
simply an alias for cudaSalsa20_encrypt.

4.4.2 Asymmetric cryptographic primitives

This section describes the public-key functions implemented, described in
Section 2.3.

int RSA_generate_key(RSA ∗rsa, int bits);

RSA_generate_key generates an RSA keypair and stores it in rsa. The
public modulus’ size, i.e. bits, can be 1024 or 2048 bits. The public exponent
used is 65537.

int cudaRSA1024_public_encrypt(u8 **from, u8 **to, RSA **rsa,

int batch);

CHAPTER 4. LIBRARY 44

int cudaRSA1024_private_decrypt(u8 **from, u8 **to, RSA **rsa,

int f4, int batch);

int cudaRSA2048_public_encrypt(u8 **from, u8 **to, RSA **rsa,

int batch);

int cudaRSA2048_private_decrypt(u8 **from, u8 **to, RSA **rsa,

int f4, int batch);

The above functions perform public-key encryption and decryption. The
input is a list of batch arrays of bytes, in. If the 1024-bit variants are used,
the arrays in in and out are assumed to contain 128 bytes; the 2048-bit
variants assume 256 byte inputs and outputs. The public and/or private key,
stored in rsa, must match the appropriate size. As an example, using a 2048-
bit key with RSA1024_public_encrypt_batch will cause an error. The, f4
indicates if the public exponent is equal to 65537, in which case an optimized
exponentiation method will be used instead.

The same functions can also be used to verify RSA signatures — simply
put, if the inputs are message digests, one can perform an ‘encryption’ and
verify whether the signature matches the digest.

int cudaDH1024_generate_key(DH **dh, int batch);

int cudaDH1024_compute_key(u8 **key, BIGNUM **pub_key, DH **dh,

int batch);

int cudaDH2048_generate_key(DH **dh, int batch);

int cudaDH2048_compute_key(u8 **key, BIGNUM **pub_key, DH **dh,

int batch);

DH1024_generate_key_batch and DH2048_generate_key_batch gener-
ate a new ephemeral key for the Diffie-Hellman key exchange. This consists
of generating a secret x, and computing y = gx (mod p). The DH struc-
tures are assumed to already have been initialized with suitable primes and
generators, such as the ones from [39].

DH1024_compute_key_batch and DH2048_compute_key_batch take as
input a public-key from the third party performing the key exchange, pub key,
and computes a shared secret using both pub key and dh, as described in Sec-
tion 2.3.1. The resulting shared key is stored in key.

int cudaDSA1024_sign(const u8 *dgst, u8 **sig, DSA **dsa,

int batch);

int cudaDSA1024_verify(int *status, const u8 **dgst, u8 **sig,

DSA **dsa, int batch);

CHAPTER 4. LIBRARY 45

int cudaDSA2048_sign(const u8 *dgst, u8 **sig, DSA **dsa,

int batch);

int cudaDSA2048_verify(int *status, const u8 **dgst, u8 **sig,

DSA **dsa, int batch);

The above functions, as the name would imply, perform batch signatures
and verifications simultaneously. The messages’ digests, computed using
SHA-1, is input in dgst ; the signature in sig. If a signature is being per-
formed, dsa must contain the secret exponent x. In the verification functions,
the results of each signature are stored in the array status — 0 for invalid
signature, 1 for valid signature.

4.5 Testing

In security, having fast functions is simply not enough: they have to be
correct. In order to ensure the correctness of the functions described in
Section 4.4, several small applications were created to verify that the outputs
do indeed match the expected.

Each of these applications starts with a pseudorandom seed, harvested
from an adequate randomness source, e.g. /dev/urandom. From this seed,
various random parameters are generated, such as encryption keys, IVs, ex-
ponents, etc. Then the library functions are called with these inputs, and
compared against OpenSSL’s output, which is assumed to be correct. If an
error is detected, the problem can be easily reproduced and debugged by
reusing the seed which caused it.

While in symmetric cryptography testing the procedure is fairly straight-
forward, in public-key it is not as simple. In multiple precision and modular
arithmetic there exist many corner-cases that are difficult to catch by simply
performing arithmetic in random numbers. Thus, to test the modular arith-
metic correctness, we performed exponentiations with numbers in the highest
and lowest ranges for each of the numbers. Results were then verified step
by step, and were compared against the correct results obtained using the
MAGMA algebra system [20]. This helped uncover some arithmetic flaws,
which were promptly corrected.

Chapter 5

Implementation Details

During the course of this project, research was done on cryptographic prim-
itives and their implementation. In this chapter, we present the techniques
and results on the GPU implementation of the algorithms introduced in Sec-
tion 2.

Optimization of massively parallel GPUs is quite different from usual
performance guidelines for CPUs. Whereas in CPUs most care goes into
avoiding pipeline stalls and keeping memory accesses cached, GPU programs
have other properties that can be exploited to increase the overall throughput
of a kernel. [73] defines 4 main guidelines for the optimization of CUDA
kernels:

1. Hide memory latency by raising occupancy. The G80 and GT200 GPU
architectures allow up to 768 and 1024 simultaneous threads per exe-
cution unit, respectively. Global memory accesses are often very slow,
ranging from 200 to 600 cycles. Thus, by having many concurrent
threads active, one can avoid execution stalls due to slow memory ac-
cesses.

2. Make use of on-chip fast memory. Current NVIDIA GPUs contain fast
on-chip memory, either in the form of registers or shared-memory. Us-
ing this memory instead of global memory not only speeds up accesses
but reduces the bandwidth needs of the kernel.

3. Avoid thread divergence. The G80 and GT200 hardware groups threads
in groups of 32 and executes them in a SIMD-like fashion. Whenever
one of the threads diverges from the execution path of the others, the
hardware serializes the execution of the threads until the divergence is
over. This, naturally, creates a large performance penalty that should
be avoided.

46

CHAPTER 5. IMPLEMENTATION DETAILS 47

4. Avoid inter-block communication. CUDA provides intra-block synchro-
nization and communication through shared-memory and the sync-
threads function. Whenever inter-block communication is required, this
can either be done by atomic functions or by decomposing the kernel
into multiple kernel calls with different parameters; either way, this can
slow down a kernel considerably.

Throughout this chapter we’ll be referring to these principles whenever a
decision regarding efficiency has to be made. This is particularly important
for bandwidth-bound kernels, as the ones in the following section.

5.1 Symmetric Cryptography

There are two different use cases under the symmetric cryptography category:
long message encryption and multiple short packet encryption. The former
is used e.g. to encrypt files, among other common uses. The latter is widely
used in network communications, such as IPSec, SSL, or other encrypted
protocols in use.

In the case of block ciphers, such as the AES, long message encryption in
the GPU is only practical when the mode of operation of the cipher allows
its parallelization. Such modes are e.g. ECB and CTR; the popular CBC
mode is not parallelizable (in encryption), rendering long message encryption
in this mode in the GPU not practical [19].

5.1.1 AES

The implementation of the AES cipher in this project was based on the
one found in the OpenSSL library [78]. One common optimization done is
to combine the mixing steps of each round and transform them into table
lookups, yielding four 1024 byte tables (4KB). This way, the encryption pro-
cess is transformed into a series of XORs and table lookups, simplifying and
speeding up significantly the cipher in most architectures [28] [17].

In our parallel implementation, each GPU thread is responsible for the
encryption of a 128-bit block. Alternatively, it would be possible to divide
each block encryption into 4 threads, as described by Manavski in [52]. How-
ever, this is not of much practical advantage, since 128-bit blocks can too be
loaded with a single memory access per thread, resulting in coalesced mem-
ory accesses across threads [63]. Thus, as recommended by guideline 1 of
Section 5 we opted to perform more computations per thread, allowing more
blocks to be simultaneously processed.

CHAPTER 5. IMPLEMENTATION DETAILS 48

Type of Memory Peak Throughput (MB/s)
Global 246.174
Constant 519.887
Shared 2872.080
Texture 1152.804

Table 5.1: Peak throughput of AES in CTR mode and a 128-bit key for each
memory type available to the GPU.

The main challenge when implementing fast AES in the GPU is the
lookup table storage. In order to store the lookup tables, we could choose
between the GPU’s global memory, constant memory, texture memory and
shared memory. Given that the encryption process is mostly bounded by
table access speed, it was critical that the fastest option be chosen here.
Since the table lookup indexes are pretty much random, we can’t rely on
contiguous access speed. This rules out global memory (latency of around
400-600 cycles, can be amortized if several threads access contiguous mem-
ory addresses), constant memory (cached, as fast as reading a register if all
threads in a half-warp read the same address) and texture memory (cached,
optimized for addresses that are close together). The best option seems to
be shared memory, since it has a relatively high number of 16 ports (or as
NVIDIA calls them, banks) and is as fast as accessing registers as long as
there are no bank conflicts between groups of 16 threads. Experimental mea-
surements of conflicts showed that each shared memory access had in average
5.4 conflicts; constant memory had almost always 16 conflicts.

To conclude which table storage approach was the best, we performed
several encryptions with AES in the CTR mode and a 128-bit key on a
256MB dataset. Table 5.1 presents the results that corroborated the above
hypothesis.

Storing lookup tables in shared memory has a disadvantage, though —
each thread block must be large enough so as to amortize the overhead of
copying the tables to shared memory. Thus, we used a block size of 256, which
effectively turns the table creation into 4 extra instructions per thread, a
rather small overhead. Also, to avoid repeating this process multiple times,
the same threads are reused to perform the whole encryption (up to the
GPU’s global memory size). When a thread finishes encrypting a block, it
encrypts the block corresponding to the thread index plus the total number
of threads running, which is constant. This total number is chosen in a way
so as to maximize the GPU’s execution unit occupancy, i.e. prevent that
execution units stop waiting for a memory access or a pipeline stall. The

CHAPTER 5. IMPLEMENTATION DETAILS 49

chosen number was the number of SMs in the GPU — a lower number would
leave SMs unused, a higher number would not improve performance, as all
SMs would be already filled with threads.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30 35 40 45 50

P
ea

k
T

hr
ou

gh
pu

t (
M

B
/s

)

Grid size

Peak AES throughput for different grid sizes

NVIDIA GTX260 (192 ALUs)

Figure 5.1: AES performance for various grid sizes.

In order to confirm this hypothesis, we performed a series of through-
put measures with grid sizes ranging between 1 and 50, using the NVIDIA
GTX260 with 24 SMs (refer to Section 3.6). Figure 5.1 shows the results.
One can observe that the best throughputs are obtained when the grid size
is equal or a multiple of the number of SMs in the GPU. Since there seems to
be no advantage of having a multiple of this number as grid size, we choose
to simply set the grid size to the number of SMs.

5.1.2 Salsa20

Our implementation of this stream cipher was based on the specifications
and reference implementation provided by its author [15]. The implemented
variant was the 12-round Salsa20 recommended by the eSTREAM commit-
tee, also called Salsa20/12 [8]. Given that as described in Section 2.2.2 this
cipher works on 64-byte blocks, we can use the same techniques used in AES
to parallelize Salsa20. While it would still be possible, not unlike AES, to
separate a single block’s execution into 4 threads, there are no advantages in

CHAPTER 5. IMPLEMENTATION DETAILS 50

doing so: it would require too many synchronizations. This cipher simplifies
our task, though, since it does not have lookup tables. Thus, our main ob-
jective is to keep the GPU’s execution units busy during encryption. Once
again, one thread per 512-bit block was the method employed. Reusing the
same threads for further encryption was also implemented. The thread block
size used was the same as AES’s, 256.

5.2 Asymmetric Cryptography

5.2.1 Modular Exponentiation

Modular exponentiation, as remarked in Section 2.3, is the most important
operation in the vast majority of public-key algorithms. Thus, our attention
on our implementation focused on speeding this operation up.

The serial case

Our starting point was Algorithm 17 and 12 for multiplication and modular
reduction respectively. These cost 2n2+n single precision multiplications and
2n space, for n digit numbers. This approach was called Separated Operand
Scanning (SOS) in [50]. The same paper describes some other approaches
for computing Montgomery multiplications. We chose the Coarsely Integrated
Operand Scanning method instead, since it takes n + 2 space and the same
number of single-precision multiplications. The same method also seems to
perform better in all tests, since it also has the least number of additions and
memory accesses.

Barrett modular reduction was considered, but rejected. While it requires
the same type of precomputation as Montgomery’s algorithm, it is non-trivial
to perform this type of reduction with less than 2n space and not clear
whether it would present any performance advantage at all. We chose, then,
the Montgomery method instead.

Algorithm 21 still needs a final subtraction, analogous to Step 4 in Algo-
rithm 17. Results by Colin Walter and later by Hachez and Quisquater show
that as long as m < βn−1, for β ≥ 4, such step is not necessary [80] [37]. The
reported performance hit (due to the extra digit needed) indicates a slow-
down ranging from 2.1% to 8.5% for cryptographically significant sizes of m.
In light of the hardware being employed to perform these multiplications, it
is of advantage to remove the unpredictable final subtractions, since they not
only add complexity to the implementation but also cause divergence across
threads, possibly limiting the throughput.

CHAPTER 5. IMPLEMENTATION DETAILS 51

Algorithm 21 Montgomery Multiplication — Coarsely Integrated Operand
Scanning

Require: x, y,m,m′ = m−1 mod β
Ensure: z = xy mod m

1: t← 0
2: for i = 0 to i = n− 1 do
3: t← t+ xyi
4: µ← m′t0 mod β
5: t← t+ µm
6: t← t/β
7: end for
8: z ← t
9: return z

Another significant improvement that can be made is to notice that, in an
exponentiation, at least half of the multiplications are actual squarings (cf.
Algorithm 14). In a squaring, due to the symmetry of the operands, many
of the partial products are equal. Consider a 2-digit integer a to be squared.
The classic method to square a is presented as follows:

a1 a0

× a1 a0

a0a1 a0a0

a1a1 a1a0

z3 z2 z1 z0

One can observe that a0a1 = a1a0, rendering one of the 4 total multi-
plications unnecessary. One can also also notice that the diagonal partial
products aiai are always unique and cannot be reduced. All the other sub-
products, however, can be reduced in half. Thus, we can compute a squaring
as described in Equation 5.1, in about (n2 + n)/2 operations.

(
n−1∑
i=0

xiβ
i)2 =

n−1∑
i=0

β2ix2
i + 2

n−1∑
j=i+1

βi+jxixj (5.1)

Practical tests showed a reduction of at least 12% in time of exponentia-
tion when using the optimized squaring code.

In order to minimize the amount of multiplications during exponentiation,
we employed Algorithm 15 with a window size of 4. Measurements showed
a reduction of 20-25% in time of exponentiation compared to Algorithm 14.

CHAPTER 5. IMPLEMENTATION DETAILS 52

Another critical aspect of our implementation pertains to the location of
the various numbers involved. The temporary variable t (cf. Algorithm 21),
where temporary multiplications are performed is stored in shared memory,
due to its fast access. Temporary variables used in the exponentiation are
stored in local memory, where all accesses are always coalesced [63]. When
the same modulus is used for a large number of computations, it is stored in
constant memory. The exponent can be different for each thread; although
it may inflict a small performance loss, the cost of having divergent threads
is less than the cost of computing every multiplication and subsequently
deciding whether to store the value or not through, e.g., logical operations.
When every exponent is the same across a warp, no penalty exists. Using
local memory for often used variables also allows the compiler to map such
accesses to registers (mostly by loop unrolling), considerably speeding up the
exponentiations.

The parallel case

The implementation described in the previous section is meant to be used for
large load scenarios, where a large number of public-key operations has to
be performed simultaneously. For smaller loads a faster approach (per oper-
ation) would be preferred. One of the approaches we used was to parallelize
the underlying arithmetic, i.e. multiplication and addition/subtraction. The
crux of this method lies in the observation that addition can be made in
essentially constant time, given a large enough base β.

Consider the following numbers a = 9169766787456036090883820023-
0623439402 and b = 338298265791763513998413517820620220116. Using the
classic representation of Section 2.5.1 and a base β = 232, we have:

a = 4238731818 + 232796305440 + 2642486365495 + 2961157387284

b = 4157908692 + 2321366941397 + 2644273596754 + 2964269924418

Adding a to b, using Algorithm 10, yields:

a+ b = 4101673214 + 2322163246837 + 2642464994953 + 2961132344406

c = 0 + 2321 + 2640 + 2961 + 21281

Now it remains to add the carries, c, to the partial sum a + b. Notice,
however, that the digits of c are composed of only either 1 or 0; further carries
will only be produced if one of the digits of a+ b is equal to β − 1. Thus, for
arbitrary inputs this will only happen with very low probability.

CHAPTER 5. IMPLEMENTATION DETAILS 53

From the above observation one can devise a parallel method to add
numbers — add each digit individually in parallel, add the previous digit’s
carry and finally (with very low probability of happening) add whatever
carries are left. Algorithm 22 describes this method.

Algorithm 22 Parallel addition
Require: x, y
Ensure: z = x+ y

1: j ← 2
2: for each node i in parallel do
3: zi, c← xi + yi
4: zi+1, c← zi + c
5: while c 6= 0 for any node i do
6: zi+j, c← zi+j−1 + c
7: j ← j + 1
8: end while
9: end for

10: return z

One can observe that, for a base β and after Step 4, the likelihood of a
digit having again a carry out is less than nβ−1. For commonly used bases,
such as 232 or 264, this gives us a constant-time addition for most inputs.
Furthermore, with constant-time addition, one can reduce the average com-
plexity of Algorithm 12 to O(n), by computing all partial products of the
inner loop in parallel and adding the resulting carries in O(1). This method,
along with Algorithm 21 seems to be very similar to the one described in
[31] for the MasPar parallel computer. The drawback of this method is the
many synchronizations needed; we addressed this issue by employing the vote
functions provided by the NVIDIA GT200 architecture, which perform the
testing for carries in an entire warp in a very efficient manner. This proved to
be particularly advantageous for 512 and 1024 bit integers, which fit entirely
inside a warp, not needing explicit syncthreads() calls.

Another drawback of this method is that it is fairly simple to mount
a denial of service attack against a server using this implementation. By
ensuring that most, or all, additions take O(log n) time instead of O(1), the
throughput would be severely hit. There is no good solution for this, aside
from just using another method for parallel arithmetic.

CHAPTER 5. IMPLEMENTATION DETAILS 54

Operation Kawamura Bajard ECRT Improved ECRT
Multiplications 2k2 + 9k 2k2 + 8k k2 + 3k k2 + 3k

Divisions 0 0 k 0

Table 5.2: Operation counts for various RNS modular multiplication algo-
rithms.

Residue Number Systems

As detailed in Section 2.5.5, numbers can be represented by their residues
modulo a set of coprimes. Despite the limitations of classical residue number
systems, modulo reduction can be performed by either the Explicit Chinese
Remainder Theorem or by the analogous of Montgomery multiplication in
these number systems. Table 5.2 summarizes the operation counts of the
several approaches described in Section 2.5.5 for modular multiplication in
such systems.

Provided that the divisions in the Explicit CRT approach can be elim-
inated or replaced by less costly multiplications, this method has the best
operation count. Plus, it is considerably simpler to implement than the Mont-
gomery approaches. Hence we chose to study and efficiently implement this
method, instead of Montgomery’s.

Two main approaches were considered to implement the single-precision
modular arithmetic. The first was to use the native floating-point arithmetic
of the GPU. It has the advantage of having the largest theoretical through-
put in FLOPS, given the architecture described in Section 3.6. With this
approach, the moduli are 12 bits long, so as to take up a full 24-bit prod-
uct, the limit of single-precision floating point precision. Modulo reduction
is performed by the simple expression described in Equation 2.8.

In this approach, Algorithm 20 is implemented directly, with 1 digit being
handled per thread. Division, where applicable, is replaced by multiplication
by the reciprocal, 1/p, which is precomputed at the beginning of the kernel.
This is the most suited approach to the GPU. However, with 12 bit moduli
many primes are needed to represent cryptographically useful numbers —
for a 1024 bit modulus at least 175 primes are needed, and 192 to have a
warp-aligned kernel.

The second approach consists of using 32-bit moduli and integer arith-
metic. In this scenario, the integer modular reductions and divisions are the
bottleneck — NVIDIA simply says they are ‘particularly costly and should
be avoided’ [63]. Thus, we use the observations of Section 2.5.4 to produce
faster single-precision modular arithmetic.

CHAPTER 5. IMPLEMENTATION DETAILS 55

The basis employed is, then, the set of primes from 232 downwards, until
there are enough primes to represent the desired number(s). Theorem 2 shows
that there are enough such primes close to 232 for most cryptographic uses.
For instance, representing a 4096-bit integer requires 129 32-bit primes. By
Theorem 2, and assuming log 232 ≈ log(232 − c), we have c/ log 232 = 129 ≡
c ≈ 28611. Division can also be sped up in a similar way. However, we’ll
show that with the above basis, one can avoid divisions altogether.

Let u be a positive integer and P the product of k moduli pi. [18, Theorem
2.1] states that α−round(α) = u/P , i.e. u/P must be less than 1/2. One can,
by adding a few bits of dynamic range, improve the guarantee that α is very
close to a positive integer; in fact, it is possible to choose how close! Forcing
P > ut, for some integer constant t, will guarantee that α− round(α) < 1/t.

Suppose that one chooses the moduli as described above, of the form
232 − ci. The divisions are performed by fixed-point arithmetic — ti/pi is
computed as b232ti/pic. Observe, now, that one can approximate b232ti/pic
as b232ti/2

32c— since 232ti < 264, the maximum error of this approximation is
b(264−1)/(232−ci)c−b(264−1)/232c = ci+1. This means we can approximate
α without performing any division with an error of at most 2−32

∑k
i ci + 1.

Thus, we can compute α without divisions (or multiplications!) at all, as
long as u/P < 2−32

∑k
i ci + 1.

As a practical example, consider an arbitrary modulus m of 512 bits. [18]
shows that ECRT modular multiplication requires that P > 2(m

∑k
i pi)

2.
To represent this quantity, we can take the first 35 primes below 232 —
〈232 − 5, . . . , 232 − 959〉. The maximum error bound is 2−32

∑k
i ci + 1 ≈

3.99 × 10−6. The maximum possible m renders u/P ≈ 5.70 × 10−7. Since
u/P < 2−32

∑k
i ci + 1, no changes to the basis are needed and divisions are

avoided altogether.

5.2.2 RSA

Key Generation

As stated in Section 2.1.3, it is easy to make a compositeness test from a
number of simple exponentiations. Thus, one can perform a primality test
by exponentiating and comparing the result with 1. This turns out to be
very useful in RSA key generation, where the bottleneck is searching for two
primes that make up the modulus N .

Primes can be generated by selecting random numbers p and checking
that 2p−1 ≡ 3p−1 ≡ 5p−1 ≡ 7p−1 ≡ 1 (mod p) — this is the Fermat primality
test. By Theorem 2, a 1024-bit RSA key needs about 2 × 4 × log 2512 ≈

1The actual precise value is 2759.

CHAPTER 5. IMPLEMENTATION DETAILS 56

Algorithm 23 Improved Explicit CRT Modular Multiplication

Require: ai = A mod mi, bi = B mod mi,mi, N
Ensure: zi ≡ AB (mod mi)

1: Precompute qi = (M/mi)
−1 mod mi, ci = M mod p mod mi, dij =

M/mi mod p mod mj

2: ti ← aibiqi
3: α← 0
4: for i in 1 to r do
5: α← α + ti . α = α + ti/2

32

6: end for
7: α← (α + 231)/232 . bα + 0.5c
8: for i in 1 to r do
9: sum← 0

10: for j in 1 to r do
11: sum← (sum+ tjdij) mod mi

12: end for
13: prod← αci mod mi

14: zi ← (sum− prod) mod mi

15: end for

2800 512-bit exponentiations; a 2048-bit RSA key needs about 5600 1024-bit
exponentiations. Thus, one can see that the results obtained in Section 5.2.1
directly apply to the key generation performance of RSA.

A stronger test, keeping the same complexity, is devised by noticing that
the only square roots of 1 in a prime field are 1 and -1 [49, Chapter 5].
Thus, the square root of ap−1, a(p−1)/2 is either 1 or -1 (mod p). Repeatedly
checking whether this identity holds true for several different a was first
proposed as a compositeness test by Solovay and Strassen in [75]. In this
test, there does not exist a class of numbers that can ’fool’ every base a, like
the Carmichael numbers described in Section 2.1.3. Each iteration has a 1/2
chance of being erroneous — for k iterations of the Solovay-Strassen test,
there’s a (1/2)k chance of error [54].

By imposing certain restrictions on the structure of the prime being gen-
erated, one can devise an even stronger test for compositeness. First, define
the number to be tested to be congruent to 3 (mod 4). This is not a very
important restriction — asymptotically, half the primes are of this form2. To
test for compositeness, simply check if ap−1 ≡ ±1 (mod p), for arbitrary a.
Koblitz shows that the probability of error of this test is (1/4)k, for k trials

2It is easy to see that numbers of the form 0 (mod 4) are divisible by 4, and numbers
of the form 2 mod 4 are divisible by 2.

CHAPTER 5. IMPLEMENTATION DETAILS 57

Bits Number of trials
512 6
1024 3
2048 2

Table 5.3: Minimum amount of Rabin-Miller trials to reduce probability of
error to at least 2−80.

[49, Chapter 5]. This test is a particular case of the more general Miller-Rabin
primality test; it has the added advantage of requiring only 1 exponentiation
per trial for the same error probability [57] [68].

The (1/4)k probability is worst-case; the average probability is much more
favorable, as shown in [29]. Table 5.3 presents the number of iterations k
needed to achieve an average probability of error of at least 2−80 for several
relevant cryptographic ranges.

Algorithm 24 Prime Generation

Require: n = log2 p
Ensure: Prime p

1: p← randombits(n)
2: p← p− (p mod 4)
3: p← p+ 3 . Ensure p is congruent to 3 (mod 4)
4: repeat
5: repeat
6: p← p+ 4
7: until p mod {2, 3, 5, . . . , 257} 6= 0 . Weed out small factors
8: flag ← 0
9: for i = 1 to k do . k trials

10: a = randombits(n)
11: if a(p−1)/2 6= ±1 (mod p) then
12: flag ← flag + 1
13: end if
14: end for
15: until flag = 0
16: return p

CHAPTER 5. IMPLEMENTATION DETAILS 58

Encryption and Signature Verification

Although the public exponent in RSA is selectable by a user generating keys,
it often is selected with performance in mind. One very common exponent
is the prime 216 + 1 = 65537; in fact, it is the default exponent used in
OpenSSL’s RSA key generation [78]. Computing this power is very efficient,
given its low Hamming weight — it requires only 16 squarings and 1 multi-
plication.

Other common exponents, often used in low-power devices such as smart-
cards, are 3 and 17. Their low size and Hamming weight also allow for ef-
ficient exponentiations. However, there are some attacks that are possible
for very low exponents that do not apply for larger ones [24]. NIST’s guide-
lines regarding key sizes and exponents do not allow exponents smaller than
65537 [66]. Thus we decided not to support those smaller exponents explic-
itly. Still, all exponents different than 65537 are handled with the algorithms
from Section 5.2.1.

Algorithm 25 RSA Encryption — Public Exponent 216 + 1

Require: x, e = 216 + 1, N
Ensure: z = xe mod N

1: z ← x
2: for i = 0 to 16 do
3: z ← x2 mod N
4: end for
5: return zx mod N

Decryption and Signature Generation

One particular case of RSA is decryption. Since decryption (or signing) needs
the owner’s private key, one can also store the original primes p and q that
make up the public key. Based on this observation, Quisquater and Couvreur
in [67] introduced a faster way to perform RSA decryptions than the one pre-
sented in Algorithm 4 — by performing the exponentiation modulo the two
factors of the public modulus N and ‘pasting’ them together using the The-
orem 4, one is replacing 1 n-bit exponentiation by 2 n/2-bit exponentiations
and a couple of multiplications. Since the complexity of exponentiation using
simple multiplication algorithms is O(n3), one can expect this CRT approach
to be around 4 times faster. It also turns one exponentiation into two smaller
parallel ones, which suits the GPU paradigm very well.

CHAPTER 5. IMPLEMENTATION DETAILS 59

Algorithm 26 RSA CRT Decryption

Require: x, e, p, q, dP = e−1 mod (p − 1), dQ = e−1 mod (q − 1), qInv =
q−1 mod p

Ensure: z = xe mod pq
1: z1← xdP mod p
2: z2← xdQ mod q
3: h← qInv(z1− z2) mod p
4: z = z2 + hq
5: return z

5.2.3 Diffie-Hellman

Diffie-Hellman, in its classic form, relies on modular exponentiation alone as
the sole operation; since the modulus is prime, we cannot use the Chinese
Remainder Theorem to parallelize operations. Thus, we use the algorithms
of Section 5.2.1 directly to implement it.

5.2.4 DSA

DSA, unlike both RSA and Diffie-Hellman, requires more operations than
simple modular exponentiation. Its bottleneck, however, is still the modular
exponentiation. For the signing process, described in Algorithm 8, we use the
modular exponentiations from Section 5.2.1 and the remaining arithmetic is
performed in the CPU.

The verification step presents a different challenge — computing the prod-
uct of 2 modular exponentiations. There exist several ways to perform this
computation. The solution chosen is the simplest: compute every exponent
independently and subsequently multiply each pair together. This allows us
to take advantage of the GPU’s parallelism, not unlike the RSA decryption
described in Section 5.2.2.

Chapter 6

Results

The chapter presents the results obtained when benchmarking the meth-
ods described in the previous chapter. Unless otherwise stated, the GPU
employed was an NVIDIA GTX260 running at 1242 MHz, featuring 192 ex-
ecution units distributed across 24 SMs. The CPU used for comparisons was
an Intel Core 2 Duo E8400, running at 3.0 GHz and using a single core.

6.1 Symmetric Primitives

6.1.1 AES

Long message encryption

To determine the relative performance against a common CPU as well as the
overhead of encrypting data on a GPU, we performed encryptions on data
sets ranging from 1 KB to 256 MB. The algorithm was AES with a 128 bit
key, each block encrypted independently (also known as ECB mode). Figure
6.1 shows the results obtained. We can see that 64 KB is roughly the thresh-
old where the GPU starts to outperform the CPU in bulk AES encryption.
Furthermore, these figures clearly show the bottleneck in GPU symmetrical
encryption: PCIe bandwidth. Ignoring transfers between the host and GPU,
we obtained peak throughputs of over 35 Gbit/s, matching the best pub-
lished performances of dedicated AES VLSI circuits and outperforming the
best current software implementations [41] [43]. Current PCIe bandwidth
on the testing hardware is allegedly 4 GB/s; measurements revealed it was
slightly lower than that, at 3.1 GB/s. Taking into account that 2 transfers
are done to encrypt a block of data, one to send and one to receive, this
figure is cut in half, explaining the results shown on Figure 6.1. Upcoming

60

CHAPTER 6. RESULTS 61

PCIe revisions1 will double the available bandwidth between the host and
the GPU.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 1 4 16 64 256 1024 4096 16384 65536 262144

T
hr

ou
gh

pu
t (

M
B

/s
)

Length of message (KB)

Long AES-ECB encryption performance

Intel E8400 3 GHz (1 core)
NVIDIA GTX260 without copies (192 ALUs)

NVIDIA GTX260 (192 ALUs)

Figure 6.1: AES-ECB performance for various message sizes in a CPU and
GPU implementation.

Multiple message encryption

In order to test the GPU’s behavior when encrypting batches of small mes-
sages, we performed encryptions on large numbers of small messages with
lengths ranging between 1 and 16 KB. Each message had its own allocated
memory block, to simulate a real world scenario (i.e. L2 cache misses on the
CPU side).

Figure 6.4 shows the performance obtained for a typical number of mes-
sages of varying sizes2, with and without memory copies. Once again, copying
between the host and the GPU is the bottleneck. In this case the penalty
is heightened, since the copies are not done in bulk but individually, as each
message has its own memory address. As such, it becomes hard to surpass
the CPU’s performance, unless an irrealistic number of messages is processed
at once.

1http://www.pcisig.com/news_room/08_08_07/
2This number was chosen as the approximation of the total size of 1 second of requests

in a busy SSL server.

http://www.pcisig.com/news_room/08_08_07/

CHAPTER 6. RESULTS 62

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 4 16 64 256 1024 4096 16384 65536 262144

T
hr

ou
gh

pu
t (

M
B

/s
)

Length of message (KB)

Long AES-CTR encryption performance

Intel E8400 3 GHz (1 Core)
NVIDIA GTX260 without copies (192 ALUs)

NVIDIA GTX260 (192 ALUs)

Figure 6.2: AES-CTR performance for various message sizes in a CPU and
GPU implementation.

It is also interesting to notice the performance drop in higher message
sizes, when the individual message length raises. One can see that starting
at 1024 byte messages performance starts to drop dramatically. This seems
to be related to the memory access patterns — memory reads across threads
can be coalesced into a single memory transaction if they are close enough
together across threads. As message size increases, this will no longer happen
and a memory transaction per thread is issued, severely harming throughput.

6.1.2 Salsa20

For this cipher, we ran the same tests as the ones described in Section 6.1.1.
Figure 6.5 shows the results. Again, the bottleneck here is the PCIe band-
width: 1300 MB/s peak throughput including memory transfers against over
9000 MB/s without, by far the fastest reported speed of Salsa20/12 — the
best recorded timings of 2.57 clocks per byte give a throughput of roughly
1187 MB/s on a 3.2 GHz CPU [16].

CHAPTER 6. RESULTS 63

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 1 4 16 64 256 1024 4096 16384 65536 262144

T
hr

ou
gh

pu
t (

M
B

/s
)

Length of message (KB)

Long AES-CBC decryption performance

Intel E8400 3 GHz (1 Core)
NVIDIA GTX260 without copies (192 ALUs)

NVIDIA GTX260 (192 ALUs)

Figure 6.3: AES-CBC performance for various message sizes in a CPU and
GPU implementation.

6.2 Asymmetric Primitives

6.2.1 Modular Exponentiation

The relative performance between the various methods mentioned in Sec-
tion 5.2.1 with 512-bit integers and exponents is presented in Figure 6.8. One
can observe that the serial implementation offers the best throughput when
dealing with large numbers of messages, starting to outperform the CPU at
approximately 1500 simultaneous 512-bit modular exponentiations. Below
1500 concurrent exponentiations we have the parallel approach competing
with the CPU quite closely, whereas the residue number system approach
seems to be slower than all the other ones. At about 4600 exponentiations,
we see a drop in performance — this is the point where the GPU is saturated
with threads, having to wait for a whole block to finish before starting a new
one.

At the lower end of the spectrum, when very few exponentiations are
needed, the GPU performance worsens. Figure 6.7 shows the times for 1 to
32 exponentiations done concurrently.

As one can observe, modular exponentiation at this range doesn’t seem
to be faster using any method on the GPU. Still, the pattern remains: the

CHAPTER 6. RESULTS 64

 0

 500

 1000

 1500

 2000

 2500

 3000

 6 7 8 9 10 11 12 13 14

T
hr

ou
gh

pu
t (

M
B

/s
)

Log2(Length of message)

Multiple message AES performance

Intel E8400 3 GHz
NVIDIA GTX260 w/ copies (192 ALUs)

NVIDIA GTX260 (192 ALUs)

Figure 6.4: AES multiple message encryption performance for various mes-
sage sizes in a CPU and GPU implementation.

parallel Montgomery arithmetic is faster than the residue number system
counterpart. The point where the parallel approach starts to match the
CPU appears to be at about 128 exponentiations.

At 1024-bit exponentiations, the situation is slightly different. While
residue number systems maintain a poor relative performance against both
CPU and the other methods, the parallel Montgomery arithmetic is clearly
the winner, being consistently superior to both CPU and the GPU serial
approach starting at batches of about 48 numbers to exponentiate. The
superiority of the parallel approach is easily explained by the larger size of
numbers, where a larger speedup can be had in each multiplication. The RNS
approach is slower due to a larger required number of threads — 1024-bit dig-
its require 96 threads per exponentiation, whereas the parallel Montgomery
approach requires 32. As the number size grows, this difference should be-
come close to 0; for cryptographically useful numbers, however, it appears
RNS systems bring no significant advantages.

CHAPTER 6. RESULTS 65

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 1 4 16 64 256 1024 4096 16384 65536 262144

T
hr

ou
gh

pu
t (

M
B

/s
)

Length of message (KB)

Long Salsa20 encryption performance

Intel E8400 3 GHz (1 core)
NVIDIA GTX260 without copies (192 ALUs)

NVIDIA GTX260 (192 ALUs)

Figure 6.5: Salsa20 performance for various message sizes in a CPU and GPU
implementation.

6.3 Discussion

6.3.1 Symmetric-key primitives

Symmetric ciphers seem to be more well-suited to the GPU instruction set
than their public-key counterpart. However, they still suffer from a significant
bottleneck — bandwidth. The numbers in Table 6.1 clearly show that there
is potential for substantial speedups if more bandwidth is provided; this could
be done by either a new PCIe revision or by integrating the GPU in the CPU,
avoiding the transfers altogether.

Cipher Throughput (with copies) Throughput (without copies)
AES-ECB 1166 4406
AES-CTR 1032 2867
AES-CBC 1179 4378
Salsa20/12 1358 8868

Table 6.1: Peak throughputs, in MB/s, for the various parallel ciphers and
modes of operation implemented in the NVIDIA GTX260.

CHAPTER 6. RESULTS 66

 0

 1

 2

 3

 4

 5

 6

 7

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e

Number of Exponentiations

Modular Exponentiation Throughput

Intel E8400 3 GHz
NVIDIA GTX260 (Serial)

NVIDIA GTX260 (Parallel)
NVIDIA GTX260 (ECRT)

Figure 6.6: 512-bit modular exponentiation performance on the GPU and
CPU.

With regard to the performance obtained we are very close, or have sur-
passed, the state of the art. The best results in the literature for AES-CTR
encryption in a GPU are due to Harrison and Waldron, which obtain peaks
of 864.25 MB/s with memory transfers and 1927.875 MB/s without [40]. The
best results of AES-CTR in CPUs are due to Käsper and Schwabe, reaching
6.9 cycles per byte in the most recent Intel Core i7 CPUs [43]. This translates
to a peak of 414 MB/s (per core) at 3.0 GHz. Our results of 1032 MB/s for
AES-CTR with transfers and 2877 MB/s without are, as far as we know, the
best to date.

6.3.2 Public-key primitives

The public-key results, particularly modular exponentiation, are harder to
compare. Szerwinski et al. only measured performance for 1024 and 2048 bit
exponentiation — but one of the most common public-key operations, RSA
signing/decryption, can be performed modulo 512-bit integers! Assuming
the theoretical speedup of 4, they have achieved 3252 512-bit modular expo-
nentiations per second, against our 11686. At 1024-bit, Szerwinski achieved
813 modular exponentiations per second, against our result of 1215 [77]. The
considerable slowdown from 512-bit to 1024-bit is to be expected — the the-

CHAPTER 6. RESULTS 67

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 5 10 15 20 25 30 35

T
im

e

Number of Exponentiations

Modular Exponentiation Throughput

Intel E8400 3 GHz
NVIDIA GTX260 (Parallel)

NVIDIA GTX260 (ECRT)

Figure 6.7: 512-bit modular exponentiation performance on the GPU and
CPU, at lower message rates.

oretical slowdown is of about 8, as shown in Section 2.5.1.
The implementation of the the public-key algorithms considered in this

work heavily relies on the modular exponentiation, described in Section 5.2.1.
Thus, the results in throughput of these algorithms are extremely correlated
with the results shown in Section 6.2.1 — they present the very same behav-
ior, except for a small constant factor. Table 6.2 presents the throughputs
achieved for the various algorithms, using several different keys sizes, com-
pared against an Intel E8400 CPU, using the OpenSSL library.

Another aspect to consider is power efficiency. The NVIDIA GTX260
GPU has a thermal design power (TDP) of 182W; the Intel E8400 CPU
has a TDP of 65W. At 512-bit exponentiations, the GPU can perform 64
exponentiations per watt, whereas the CPU reaches 47 exponentiations per
watt. At larger key sizes the power efficiency decreases: 6 exponentiations per
watt against 8 from the CPU. With symmetric ciphers, ignoring bandwidth
constraints, we obtain 16 MB/s per watt AES-CTR encryption in the GPU,
against 13 MB/s per watt in the CPU. The difference in Salsa20/12 is the
most striking — 50 MB/s per watt in the GPU, versus 15 MB/s per watt in
the CPU.

CHAPTER 6. RESULTS 68

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
im

e

Number of Exponentiations

Modular Exponentiation Throughput

Intel E8400 3 GHz
NVIDIA GTX260 (Serial)

NVIDIA GTX260 (Parallel)
NVIDIA GTX260 (ECRT)

Figure 6.8: 1024-bit modular exponentiation performance on the GPU and
CPU.

Algorithm
1024-bit 2048-bit

Encrypt Decrypt Encrypt Decrypt

RSA
GPU 43457 6022 8947 590
CPU 27980 1524 8796 265

DH
GPU 1215 1215 71 71
CPU 530 530 80 80

DSA
GPU 5653 3256 813 418
CPU 2878 2468 906 768

Table 6.2: Peak throughputs for several public-key algorithms and key sizes
using the NVIDIA GTX260 GPU and Intel E8400 CPU.

Chapter 7

Conclusions and Future Work

Over the course of the last few years, GPUs have risen in relevance in many
computational areas. Their impressive computing power in floating-point al-
lowed GPUs to provide significant speedups in computational finance, chem-
istry, etc. In fact, a GPU-based cluster recently reached the Top 500 Super-
computer list, at 170 TFlops [53].

With this in mind, we started this project to harvest the computing power
to perform encryptions, decryptions and other cryptographic operations in
the GPU. The objective of this work was, then, the implementation in an
efficient manner of symmetric and public-key algorithms: AES, Salsa20, RSA,
Diffie-Hellman, DSA.

One of the main obstacles, especially in symmetric cryptography, is the
overhead incurred in copying data to the GPU and back. From this re-
sults that using the GPU for cryptography is most fruitful when aiming for
high-throughput, e.g. batching many operations together or encrypting long
streams. Another obstacle to good performance in modular exponentiation
was the poor integer multiplication in the GPU — only 24-bit multiplications
are supported.

We believe that we were successful: the algorithms were indeed imple-
mented. Not only were they implemented, the performance figures beat the
state of the art implementations in the literature. This was accomplished
by a careful study and development of the algorithms, particularly in multi-
precision arithmetic: we’ve improved the Explicit Residue Number System
approach, developed an innovative parallel classic arithmetic method and
compared them with the classic serial approach. By using the best method
for each key and batch size, we obtained some of the best throughputs to date
in GPUs. Our results of 1032 MB/s AES-CTR encryption and 1358 MB/s
Salsa20/12 encryption are the best known on software; the RSA-1024 en-
cryption and decryption rates are the best on GPU to date, and outperform

69

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 70

the CPU by a large margin.
Finally, we bundled the aforementioned algorithms together in a function

library, depending on OpenSSL, that enables developers to perform symmet-
ric and public-key encryptions in a GPU more easily.

7.1 Future work

A whole class of primitives have been willingly ignored from this work —
hash functions. While GPUs have been successfully used in computing hash
functions for small strings, e.g. passwords, less success has been had in
using GPUs to speed up hash computations of large streams. This relates to
the structure of the most common hash functions — MD5, SHA-1, SHA-2
all share the same design, the Merkle-Damg̊ard construction, which is non-
parallelizable [56]. There are, however, alternative modes of operation that
allow a hash computation to be parallelized. The most famous of these is
the Merkle tree, where the original message is seen as the leaves of a tree and
hash computations are performed in a divide and conquer fashion until the
final result is reached [55]. Not only hash computations would benefit from
this mode of operation; hash-based message authenticators, such as HMAC,
would also benefit from this mode of operation [12].

Elliptic curve groups were first proposed by Koblitz for cryptographic
uses in 1987 [48]. Since then, they’ve continuously grown in popularity, due
to their best security per bit of key length than classic systems: elliptic curve
key sizes of 160 bits are roughly equivalent in security to 1024-bit RSA [70].
The smaller number arithmetic could favor GPU implementations as well.

Shacham and Boneh improved the RSA handshake performance by group-
ing computations together in batches [74]. However, their technique is rather
limited — only works for RSA decryption and very low exponents. Nev-
ertheless, they proposed an architecture for a batching web server, where a
server process receives requests and groups them together in batches. We can
extend this idea for a GPU server process that receives handshake requests,
packet encryption/decryption requests, etc, and processes them in batches
as described in [74]. This could effectively turn a GPU into an off-the-shelf
cryptographic accelerator.

NVIDIA is not the only GPU manufacturer — CUDA, however, is NVIDIA-
specific. A new, vendor-neutral, open standard for heterogeneous computing
named OpenCL has been released by the Khronos Group, also responsible
for the OpenGL standard [61]. The SDK is not available for any major GPU
vendor as of yet. Nonetheless, using OpenCL in the future for GPU compu-
tation appears to be a more compatible and easier to maintain choice than

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 71

the more restrictive CUDA.

Bibliography

[1] http://3.14.by/en/read/md5_benchmark (accessed 3 July 2009).

[2] http://www-03.ibm.com/technology/resources/technology_cell_

pdf_PowerXCell_PB_7May2008_pub.pdf (accessed 3 July 2009).

[3] http://www.intel.com/support/processors/sb/cs-023143.htm

(accessed 3 July 2009).

[4] Secure Hash Standard. National Institute of Standards and Technology,
Washington, 1995. Note: Federal Information Processing Standard 180-
1.

[5] Digital signature standard (DSS). National Institute of
Standards and Technology, Washington, 2000. URL:
http://csrc.nist.gov/publications/fips/. Note: Federal In-
formation Processing Standard 186-2.

[6] Ager, Bernhard, Holger Dreger, and Anja Feldmann: Exploring the Over-
head of DNSSEC. 2005.

[7] ”American National Standards Institute”, ”1430 Broadway, New York,
NY 10018, USA”: American National Standard Programming Language
C, ANSI X3.159-1989, December 14 1989.

[8] Babbage, S. et al.: The eSTREAM Portfolio (rev. 1). http://www.

ecrypt.eu.org/stream/portfolio_revision1.pdf, September 2008.

[9] Babbage, Steve, Christophe De Cannière, Anne Canteaut, Carlos Cid,
Henri Gilbert, Thomas Johansson, Matthew Parker, Bart Preneel, Vin-
cent Rijmen, , and Matthew Robshaw: The eSTREAM Portfolio. April
2008.

[10] Bajard, Jean Claude and Laurent Imbert: A Full RNS Implementation
of RSA. IEEE Trans. Comput., 53(6):769–774, 2004, ISSN 0018-9340.

72

http://3.14.by/en/read/md5_benchmark
http://www-03.ibm.com/technology/resources/technology_cell_pdf_PowerXCell_PB_7May2008_pub.pdf
http://www-03.ibm.com/technology/resources/technology_cell_pdf_PowerXCell_PB_7May2008_pub.pdf
http://www.intel.com/support/processors/sb/cs-023143.htm
http://www.ecrypt.eu.org/stream/portfolio_revision1.pdf
http://www.ecrypt.eu.org/stream/portfolio_revision1.pdf

BIBLIOGRAPHY 73

[11] Barrett, P.: Implementing the Rivest Shamir and Adleman public key
encryption algorithm on a standard digital signal processor. In Odlyzko,
A.M. (editor): Advances in Cryptology - CRYPTO ’86, Santa Barbara,
California, volume 263 of LNCS, pages 311–323. Springer, 1987.

[12] Bellare, Mihir, Ran Canetti, and Hugo Krawczyk: Keying hash
functions for message authentication, 1996. URL: http://www-

cse.ucsd.edu/ mihir/papers/hmac.html.

[13] Bernstein, Daniel J.: Pippenger’s exponentiation algorithm. URL:
http://cr.yp.to/papers.html.

[14] Bernstein, Daniel J.: Multidigit modular multiplication with
the explicit Chinese remainder theorem. 1995. URL:
http://cr.yp.to/papers.html.

[15] Bernstein, Daniel J.: The Salsa20 Family of Stream Ciphers. New Stream
Cipher Designs: The eSTREAM Finalists, pages 84–97, 2008.

[16] Bernstein, Daniel J. and Tanja Lange (editors): eBACS: ECRYPT
Benchmarking of Cryptographic Systems. http://bench.cr.yp.to, ac-
cessed 17 June 2009.

[17] Bernstein, Daniel J. and Peter Schwabe: New AES software speed
records. In Progress in Cryptology - INDOCRYPT 2008, volume 5365 of
Lecture Notes in Computer Science, pages 322–336. Springer, 2008.

[18] Bernstein, Daniel J. and Jonathan P. Sorenson: Modular exponentiation
via the explicit chinese remainder theorem. Mathematics of Computa-
tion, 76(257):443–454, January 2007.

[19] Bielecki, Wlodzimierz and Dariusz Burak: Biometrics, Computer Secu-
rity Systems and Artificial Intelligence Applications, chapter Paralleliza-
tion of Standard Modes of Operation for Symmetric Key Block Ciphers,
pages 101–110. Springer US, Secaucus, NJ, USA, 1st edition, November
2006.

[20] Bosma, Wieb, John Cannon, and Catherine Playoust: The magma al-
gebra system i: the user language. J. Symb. Comput., 24(3-4):235–265,
1997, ISSN 0747-7171.

[21] Brauer, Alfred: On addition chains. Bulletin of the American Mathe-
matical Society, 45:736–739, 1939, ISSN 0273–0979.

http://bench.cr.yp.to

BIBLIOGRAPHY 74

[22] Brent, Richard P. and Paul Zimmermann: Modern Computer Arith-
metic. Version 0.3, 2009. http://www.loria.fr/~zimmerma/mca/

pub226.html.

[23] Cook, D., J. Ioannidis, A. Keromytis, and J. Luck: CryptoGraphics:
Secret Key Cryptography Using Graphics Cards, 2005. citeseer.ist.

psu.edu/cook05cryptographics.html.

[24] Coppersmith, Don: Small solutions to polynomial equations, and low
exponent RSA vulnerabilities. Journal of Cryptology, 10:233–260, 1997,
ISSN 0933–2790.

[25] Costigan, Neil and Peter Schwabe: Fast elliptic-curve cryptography on
the Cell Broadband Engine. In Progress in Cryptology – AFRICACRYPT
2009, volume 5580 of Lecture Notes in Computer Science, pages 368–385.
Springer, 2009.

[26] Costigan, Neil and Michael Scott: Accelerating SSL using the Vector
processors in IBM’s Cell Broadband Engine for Sony’s Playstation 3.
Cryptology ePrint Archive, Report 2007/061, 2007. http://eprint.

iacr.org/.

[27] Crandall, Richard and Carl Pomerance: Prime numbers. A Computa-
tional Perspective. Springer-Verlag, New York, 2005, ISBN 978-0-387-
25282-7,0-387-25282-7.

[28] Daemen, Joan and Vincent Rijmen: Aes proposal: Rijndael, 1998.

[29] Damg̊ard, I., P. Landrock, and C. Pomerance: Average case error esti-
mates for the strong probable prime test. 61(203):177–194, 1993.

[30] Diffie, Whitfield and Martin Hellman: New directions in cryptogra-
phy. IEEE Transactions on Information Theory, 22:644–654, 1976,
ISSN 0018–9448.

[31] Dixon, B. and A. K. Lenstra: Massively parallel elliptic curve factoring.
Lecture Notes in Computer Science, 658:183–193, 1993.

[32] Downley, P., B. Leong, and R. Sethi: Computing sequences with addition
chains. SIAM J. Comput., 10(3):638–646, 1981.

[33] ECRYPT: The eSTREAM Project. http://www.ecrypt.eu.org/

stream/.

http://www.loria.fr/~zimmerma/mca/pub226.html
http://www.loria.fr/~zimmerma/mca/pub226.html
citeseer.ist.psu.edu/cook05cryptographics.html
citeseer.ist.psu.edu/cook05cryptographics.html
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/

BIBLIOGRAPHY 75

[34] ElGamal, Taher: A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Transactions on Information Theory,
31:469–472, 1985, ISSN 0018–9448.

[35] Fleissner, Sebastian: GPU-Accelerated Montgomery Exponentiation. In
ICCS ’07: Proceedings of the 7th international conference on Computa-
tional Science, Part I, pages 213–220, Berlin, Heidelberg, 2007. Springer-
Verlag, ISBN 978-3-540-72583-1.

[36] Garner, Harvey L.: The residue number system. In IRE-AIEE-ACM ’59
(Western): Papers presented at the the March 3-5, 1959, western joint
computer conference, pages 146–153, New York, NY, USA, 1959. ACM.

[37] Hachez, Gaël and Jean Jacques Quisquater: Montgomery exponentiation
with no final subtraction: Improved results. In Ç.K. Koç, C. Paar (ed-
itor): Proceedings of Cryptographic Hardware and Embedded Systems -
CHES 2000, pages 293–301. Springer-Verlag, 2000.

[38] Hardy, Godfrey H. and E. M. Wright: An introduction to the theory
of numbers. Oxford University Press, 5th edition, 1979, ISBN 0–19–
853170–2.

[39] Harkins, D. and D. Carrel: The Internet Key Exchange (IKE), 1998.
http://www.ietf.org/rfc/rfc2409.txt.

[40] Harrison, Owen and John Waldron: Practical symmetric key cryptogra-
phy on modern graphics hardware. In SS’08: Proceedings of the 17th
conference on Security symposium, pages 195–209, Berkeley, CA, USA,
2008. USENIX Association.

[41] Hodjat, A. and I. Verbauwhede: Minimum area cost for a 30 to 70 Gbit/s
AES processor. pages 83–88, Feb. 2004.

[42] Kahn, David: The Codebreakers: The Story of Secret Writing. Scribner,
New York, NY, USA, revised edition, 1996, ISBN 0-684-83130-9.

[43] Käsper, Emilia and Peter Schwabe: Faster and Timing-Attack Resistant
AES-GCM. In Proceedings of CHES 2009, 2009. to appear.

[44] Kaufman, C.: Internet Key Exchange (IKEv2) Protocol. RFC 4306
(Proposed Standard), December 2005. http://www.ietf.org/rfc/

rfc4306.txt, Updated by RFC 5282.

http://www.ietf.org/rfc/rfc2409.txt
http://www.ietf.org/rfc/rfc4306.txt
http://www.ietf.org/rfc/rfc4306.txt

BIBLIOGRAPHY 76

[45] Kawamura, Shin ichi, Masanobu Koike, Fumihiko Sano, and Atsushi
Shimbo: Cox-rower architecture for fast parallel montgomery multiplica-
tion. In EUROCRYPT, pages 523–538, 2000.

[46] Kivinen, T. and M. Kojo: More Modular Exponential (MODP) Diffie-
Hellman groups for Internet Key Exchange (IKE). RFC 3526 (Proposed
Standard), May 2003. http://www.ietf.org/rfc/rfc3526.txt.

[47] Knuth, Donald E.: The Art of Computer Programming, Volume 2:
Seminumerical Algorithms. Addison-Wesley, Reading, 3rd edition, 1997,
ISBN 0–201–89684–2.

[48] Koblitz, Neal: Elliptic curve cryptosystems. Mathematics of Computa-
tion, 48:203–209, 1987, ISSN 0025–5718.

[49] Koblitz, Neal: A course in number theory and cryptography. Springer-
Verlag, New York, 2nd edition, 1994, ISBN 0–387–94293–9.

[50] Koç, Çetin Kaya, Tolga Acar, and Burton S. Kaliski, Jr.: Analyzing
and Comparing Montgomery Multiplication Algorithms. IEEE Micro,
16(3):26–33, 1996, ISSN 0272-1732.

[51] Lindholm, Erik, John Nickolls, Stuart Oberman, and John Montrym:
NVIDIA Tesla: A Unified Graphics and Computing Architecture. IEEE
Micro, 28(2):39–55, 2008, ISSN 0272-1732.

[52] Manavski, Svetlin: Cuda compatible GPU as an efficient hardware accel-
erator for AES cryptography. In IEEE International Conference on Sig-
nal Processing and Communication, ICSPC 2007, pages 65–68, Dubai,
United Arab Emirates, November 2007.

[53] Matsuoka, Satoshi: The TSUBAME Cluster Experience a Year Later,
and onto Petascale TSUBAME 2.0. In Proceedings of the 14th Euro-
pean PVM/MPI User’s Group Meeting on Recent Advances in Parallel
Virtual Machine and Message Passing Interface, pages 8–9, Berlin, Hei-
delberg, 2007. Springer-Verlag, ISBN 978-3-540-75415-2.

[54] Menezes, Alfred J., Paul C. van Oorschot, and Scott A. Vanstone: Hand-
book of applied cryptography. CRC Press, Boca Raton, Florida, 1996,
ISBN 0–8493–8523–7. URL: http://cacr.math.uwaterloo.ca/hac.

[55] Merkle, R. C.: A digital signature based on a conventional encryption
function. In Pomerance, Carl (editor): Advances in Cryptology - Crypto
’87, pages 369–378, Berlin, 1987. Springer-Verlag.

http://www.ietf.org/rfc/rfc3526.txt

BIBLIOGRAPHY 77

[56] Merkle, Ralph: Secrecy, authentication, and public key systems. PhD
thesis, 1979.

[57] Miller, Gary L.: Riemann’s hypothesis and tests for primality. Journal
of Computer and System Sciences, 13:300–317, 1976, ISSN 0022–0000.

[58] Montgomery, Peter L.: Modular multiplication without trial division.
Mathematics of Computation, 44:519–521, 1985, ISSN 0025–5718.

[59] Montgomery, Peter L. and Robert D. Silverman: An FFT extension to
the P−1 factoring algorithm. Mathematics of Computation, 54:839–854,
1990, ISSN 0025–5718.

[60] Moss, Andrew, Dan Page, and Nigel Smart: Toward Acceleration of
RSA Using 3D Graphics Hardware. In Cryptography and Coding,
pages 369–388. Springer-Verlag LNCS 4887, December 2007. http:

//www.cs.bris.ac.uk/Publications/Papers/2000772.pdf.

[61] Munshi, Aaftab: OpenCL 1.0 Specification. Khronos Group, May 2009.
URL: http://www.khronos.org/registry/cl/.

[62] National Institute of Standards and Technology: Federal Information
Processing Standard 197, The Advanced Encryption Standard (AES).
2001.

[63] NVIDIA: NVIDIA CUDA Compute Unified Device Architecture - Pro-
gramming Guide, 2009. URL: http://developer.download.nvidia.
com/compute/cuda/2_2/toolkit/docs/NVIDIA_CUDA_Programming_

Guide_2.2.pdf.

[64] Payne, Bryson R. and Markus A. Hitz: Implementation of residue num-
ber systems on GPUs. In SIGGRAPH ’06: ACM SIGGRAPH 2006
Research posters, page 57, New York, NY, USA, 2006. ACM, ISBN 1-
59593-364-6.

[65] Pohlig, Stephen C. and Martin E. Hellman: An improved algorithm
for computing logarithms over GF(p) and its cryptographic signifi-
cance. IEEE Transactions on Information Theory, 24:106–110, 1978,
ISSN 0018–9448.

[66] Polk, W. Timothy, Donna F. Dodson, and William E. Burr: Cryp-
tographic Algorithms and Key Sizes for Personal Identity Verification
(NIST SP 800-78). Technical report, NIST, August 2007.

http://www.cs.bris.ac.uk/publications/Papers/2000772.pdf
http://www.cs.bris.ac.uk/publications/Papers/2000772.pdf
http://www.khronos.org/registry/cl/
http://developer.download.nvidia.com/compute/cuda/2_2/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.2.pdf
http://developer.download.nvidia.com/compute/cuda/2_2/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.2.pdf
http://developer.download.nvidia.com/compute/cuda/2_2/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.2.pdf

BIBLIOGRAPHY 78

[67] Quisquater, J. and C. Couvreur: Fast Decipherment Algorithm for RSA
Public-key Cryptosystem. Electronics Letters, 18(21):905–907, October
1982.

[68] Rabin, Michael O.: Probabilistic algorithm for testing primality. Journal
of Number Theory, 12:128–138, 1980, ISSN 0022–314X.

[69] Rapuano, S. and E. Zimeo: Measurement of performance impact of SSL
on IP data transmissions. 2007.

[70] Rechberger, Christian and Vincent Rijmen: ECRYPT Yearly Report on
Algorithms and Keysizes (2007-2008). Technical report, 2008.

[71] Rivest, Ronald L., Adi Shamir, and Leonard M. Adleman: A method for
obtaining digital signatures and public-key cryptosystems. Communica-
tions of the ACM, 21:120–126, 1978, ISSN 0001–0782.

[72] Rosenberg, Urmas: Using Graphic Processing Unit in Block Cipher Cal-
culations. Master’s thesis, University of Tartu, 2007.

[73] Ryoo, Shane, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S.
Stone, David B. Kirk, and Wen mei W. Hwu: Optimization principles
and application performance evaluation of a multithreaded GPU using
CUDA. In PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Sym-
posium on Principles and practice of parallel programming, pages 73–82,
New York, NY, USA, 2008. ACM, ISBN 978-1-59593-795-7.

[74] Shacham, Hovav and Dan Boneh: Improving SSL Handshake Perfor-
mance via Batching. In CT-RSA 2001: Proceedings of the 2001 Confer-
ence on Topics in Cryptology, pages 28–43, London, UK, 2001. Springer-
Verlag, ISBN 3-540-41898-9.

[75] Solovay, Robert M. and Volker Strassen: A fast Monte-Carlo test for
primality. SIAM Journal on Computing, 6:84–85, 1977, ISSN 0097–
5397.

[76] Sorenson, Jonathan P.: A sublinear-time parallel algorithm for integer
modular exponentiation. In Odlyzko, Andrew M., Gary Walsh, and Hugh
Williams (editors): Conference on the mathematics of public key cryp-
tography: the Fields Institute for Research in the Mathematical Sciences,
Toronto, Ontario, June 12–17, 1999, 1999.

[77] Szerwinski, Robert and Tim Güneysu: Exploiting the Power of GPUs for
Asymmetric Cryptography. In Cryptographic Hardware and Embedded
Systems — CHES 2008, pages 79–99. 2008.

BIBLIOGRAPHY 79

[78] The OpenSSL Project: OpenSSL: The open source toolkit for SSL/TLS.
www.openssl.org, April 2009.

[79] Vitkar, Sameer and Monish Shah: Performance report on hardware ac-
celerator with EMC Retrospect 7.5. Technical report, 2007.

[80] Walter, Colin D.: Montgomery exponentiation needs no final subtrac-
tions. Electronics Letters, 35(21):1831–1832, October 1999.

[81] Yamanouchi, Takeshi: AES Encryption and Decryption on the GPU. In
Nguyen, Hubert (editor): GPU Gems 3, chapter 36. Addison Wesley
Professional, August 2007.

[82] Zhao, Li, R. Iyer, S. Makineni, and L. Bhuyan: Anatomy and Perfor-
mance of SSL Processing. In ISPASS ’05: Proceedings of the IEEE Inter-
national Symposium on Performance Analysis of Systems and Software,
2005, pages 197–206, Washington, DC, USA, 2005. IEEE Computer So-
ciety, ISBN 0-7803-8965-4.

www.openssl.org

	Introduction
	Motivation
	Objectives
	Results
	Work Distribution
	Outline

	State of the Art
	Mathematical Background
	Groups, Rings and Fields
	The distribution of primes
	Fermat's Little Theorem
	Chinese Remainder Theorem

	Symmetric-Key Cryptography
	AES
	Salsa20

	Public-Key Cryptography
	Diffie-Hellman Key Exchange
	RSA
	DSA

	Cryptography in GPUs
	Implementing Public-Key Algorithms
	Classic arithmetic
	Barrett Modular Multiplication
	Montgomery Multiplication
	Special Moduli
	Residue Number Systems

	CUDA
	Function Types
	Variable Types
	Calling a Kernel
	Built-In Variables
	An Example
	The GT200 Architecture

	Library
	Objectives
	Requirements
	Design
	Functionality
	Symmetric encryption primitives
	Asymmetric cryptographic primitives

	Testing

	Implementation Details
	Symmetric Cryptography
	AES
	Salsa20

	Asymmetric Cryptography
	Modular Exponentiation
	RSA
	Diffie-Hellman
	DSA

	Results
	Symmetric Primitives
	AES
	Salsa20

	Asymmetric Primitives
	Modular Exponentiation

	Discussion
	Symmetric-key primitives
	Public-key primitives

	Conclusions and Future Work
	Future work

