
MC-ANT: a Multi-colony Ant Algorithm

Leonor Melo, Francisco Pereira, and Ernesto Costa

Instituto Superior de Engenharia de Coimbra, 3030-199 Coimbra, Portugal
Centro de Informática e Sistemas da Universidade de Coimbra, 3030-790 Coimbra,

Portugal
leonor@isec.pt

{xico,ernesto}@dei.uc.pt

Abstract. In this paper we propose an ant colony optimization variant
where several independent colonies try to simultaneously solve the same
problem. The approach includes a migration mechanism that ensures the
exchange of information between colonies and a mutation operator that
aims to adjust the parameter settings during the optimization.
The proposed method was applied to several benchmark instances of the
node placement problem. The results obtained shown that the multi-
colony approach is more effective than the single-colony. A detailed anal-
ysis of the algorithm behavior also reveals that it is able to delay the
premature convergence.

Key words: Ant Colony Optimization, Multiple colony, Node Place-
ment Problem, Bidirectional Manhattan Street Network

1 Introduction

Ant Colony Optimization (ACO) is one of the most successful branches of swarm
intelligence [4]. ACO takes inspiration from social insects such as ants. While
foraging real ants deposit pheromone on the ground to guide the other members
of the colony. ACO mimics this indirect way of communication. The first ant
algorithms were proposed by [6], [7] as a multi-agent approach to solve difficult
combinatorial optimization problems like the traveling salesman problem. Since
then a wide range of variants were proposed and applied to different classes of
problems (see [8] for an overview).

In this paper we propose MC-ANT, a multi-colony ACO. The idea behind this
approach is to allow for the simultaneous exploration of several search locations
and to dynamically intensify the search on the most promising ones. Each colony
maintains its own trail and set of parameters, but the most successful colonies
transfer information to the worst ones. Specifically the trails of the worst colonies
are periodically updated, which hopefully will help them to escape from local
optima and move towards more promising locations.

We illustrate our approach by addressing the problem of finding the optimal
node assignment in a multi-hop Wavelength Division Multiplexing (WDM) light-
wave network with a virtual Bidirectional Manhattan Street Network topology



2 Leonor Melo, Francisco Pereira, and Ernesto Costa

[16]. One advantage of this type of network is the ability to create a virtual
topology different from the underlying physical topology. The assignment of the
physical nodes to the virtual topology is a strong factor in the efficiency of the
network.

The results obtained are encouraging as they show the advantage provided
by the existence of several colonies. Migration is able to enhance the algorithm
performance without causing the convergence of the colonies to the same trail.

The structure of the paper is the following: in sec. 2 we briefly describe Ant
Colony Optimization algorithms and in sec. 3 we present the Node Placement
Problem. Section 4 comprises the presentation of our multi-colony approach.
Results from experiments are presented in sec. 5 and, finally, in sec. 6 we provide
the main conclusions.

2 Ant Colony Optimization

In many species, an ant walking to or from a food source leaves a substance
in the ground called pheromone. The other ants tend to follow the path where
the pheromone concentration is higher [3]. [11] proved that this pheromone lay-
ing mechanism is used to guide the other members of the colony to the most
promising trails.

In an ACO algorithm, artificial ants use an artificial trail (together with some
heuristic information) to guide them in the process of building a solution to a
given problem. While the heuristic information is static the pheromone trail is
updated according to the solutions found in previous iterations. Starting from
an empty solution, components are probabilistically added one by one until a
complete solution is obtained. Some heuristic knowledge can also be used to
bias the choice. The specific formula used to select the next solution component
depends on the ACO variant.

The general ACO algorithm consists of three phases (see fig. 1). After the
initialization and until some termination condition is met the following steps are
repeated: each ant builds a solutions, the best(s) solution(s) are improved by a
local search (this step is optional) and at last the pheromone trail is updated.

set the parameters

initialize the pheromone trail

while termination condition not met do

construct ant solutions

apply local search (optional)

update pheromone trail

end_while

Fig. 1. The ACO metaheuristic



MC-ANT 3

2.1 ACO Algorithms

ACO algorithms have been applied to many problems. Examples are the applica-
tions to assignment problems, scheduling problems and vehicle routing problems
[8]. Among other applications, ACO algorithms are currently state-of-the-art for
solving the sequential ordering problem (SOP), the resource constraint project
scheduling (RCPS) problem, and the open shop scheduling (OSS) problem [8].

Ant System (AS) [6], [7] was the first ACO algorithm. Since then some some
variants have been derived, being the MAX-MIN Ant System (MMAS) [19] and
Ant Colony System (ACS) [5] some of the most successful and most studied of
them [8]. A common characteristic of ACS and MMAS is that they focus their
search in a specific region of the search space [8]. We thus hope that by using
an island model approach a bigger portion of the landscape can be covered. Our
method is inspired in the ACS, partly because is considered the most aggressive
of the two [8] and is able to find better solutions in short computation times,
although it converges sooner to a suboptimal solution. We hope the multi-colony
method helps avoiding the premature convergence while retaining the ability to
reach good solutions fast.

2.2 Ant Colony System (ACS)

ACS tries to diversify the solutions landscape covered by the ants in an iteration
by introducing a pheromone update during the construction step. At each deci-
sion point, each of the ants updates the trail by slightly decreasing the pheromone
level of the component it just choose.

The regular pheromone update at the end of each iteration considers only
one ant, either the iteration best, the best-so-far or a combination of both. The
formula used is (1) where Lbest is the quality of the solution found by the selected
ant.

τij =
{

(1 − ρ) · τij + ρ
Lbest

if cij is in the solution
τij otherwise

(1)

The mechanism used to select the next component uses a pseudo-random
proportional rule. Depending on the value of a parameter q0 the rule may favor
either exploration or exploitation.

2.3 Multi-colony ACO

In multi-colony ant algorithms several colonies of ants cooperate in order to find
good solutions for the problem being solved [18]. The cooperation takes place
by exchanging information about good solutions.

There are a few proposed multi-colony variants of the ACO. Many of them
are used to solve multi-objective problems (see [10] or [1] for an overview of
the approaches) or specially implemented for parallel computing environment,
where p colonies run in p parallel processors (for a review of some of the models
see [12], [18], [9], [8]).



4 Leonor Melo, Francisco Pereira, and Ernesto Costa

Fewer variants are used on single objective problems as island model alterna-
tives to the classic ACO. Two examples of the latter are ACOMAC [21] where
periodically each colony uses its current trail τi to update another colony trail
τi+1 in a circular manner (τi = w × τi + (1−w)× τi+1), and AS-SCS [17] which
has two types of colonies working at the same time but with slightly different
construction methods.

3 Node Placement Problem

The Bidirectional Manhattan Street Network (BMSN) is a 2d-toroidal mesh
where every node is directly connected to 4 other nodes (see fig. 2).

Fig. 2. A 3 by 4 BMSN

Let us consider a BMSN with x × y = n nodes. The network can be repre-
sented as a graph G = (V,E), where V is the set of nodes slots and E is the
set of bidirectional edges. Each of the n nodes (0, 1, ..., n− 1) can be assigned to
the n slots of the graph without duplication. Two nodes i, j can communicate
directly if they are in adjacent slots in the graph, otherwise they must use inter-
mediate nodes to communicate and the number of hops increase. The number of
hops should be as low as possible to minimize package forwarding. The topology
optimization problem in regular topologies, such as the BMSN, is studied as
optimal Node Placement Problem (NPP) [15], [13].

The amount of traffic among each pair of nodes i, j is given by a traffic
matrix T where tij denotes the traffic from i to j, with tij ∈ IR+

0 . Let h(i, j) be
a function that returns the hop distance of the shortest path between two nodes
i and j. The objective of NPP is to minimize the average weighted hop distance
between the nodes, i.e. to minimize the function f indicated in equation 2, where
n is the number of nodes.

f(σ) =
n−1∑
i=0

n−1∑
j=0

tij · h(i, j) (2)

In recent years several approximate methods were proposed to solve NPP. Most
of them use a combination of greedy methods, local search, tabu search, ge-
netic algorithm, simulated annealing, multi-start local search and variable depth
search [14], [15], [22], [13]. The best performing one at the moment is [20].



MC-ANT 5

4 MC-ANT

Our approach is a multiple colony variation inspired in the ACS. The most
relevant features of our proposal are:

1. the optimization algorithm maintains several colonies
(a) all colonies have the same number of ants
(b) all colonies run for the same number of iterations
(c) all colonies share the same heuristic function

2. each colony has its own trail, in an attempt to maximize the search area
explored.

3. each colony has its own set of parameters (α, β, ρ, q0), and is able to tune
them therefore adjusting its search strategy.

4. There is no step-by-step on-line pheromone update as that is a computa-
tionally costly step and we expect to preserve the diversity by using multiple
colonies/trails.

The main algorithm is presented in Figure 3.

set the parameters and initialize the pheromone trails

while termination condition not met do

for each colony do

construct ant solutions

apply local search

end_for

migrate best solution

update pheromone trails

end_while

Fig. 3. The MC-ANT algorithm

The termination condition is met if a predefined number of iterations is
reached.

In the construct ant solutions step each of the ants builds a solution.
This step is clearly dependent on the problem being solved and we explain it in
further detail in sec. 4.1.

In the apply local search step one or more of the best solutions from
the current iteration is improved through local search. We used a greedy search
algorithm with a first improvement 1-swap neighborhood and a don’t look bit
mechanism [2]. In our experiments the total number of solutions improved per
iteration was the same irrespectively of the number of colonies (i.e. in the con-
figurations with a smaller number of colonies a bigger number of solutions per
colony were subjected to local search).

In the migrate best solution step, for each colony we consider only the
best solution found in the present iteration. We use these solutions to determine



6 Leonor Melo, Francisco Pereira, and Ernesto Costa

the best and worst colonies. Let hdbest and hdworst stand for the value of the
solution found by the best and worst colonies respectively. The migration takes
place if (hdworst − hdbest)/(hdbest) > x, where x is a random variable uniformly
distributed over [0, 1]. In that case the best-so-far solution of the best colony
is sent to the worst colony to be used in the trail updating step. The solution
received is used in the same manner as if it was found by the colony that receives
it. The idea is to slightly move the worst trail to a more promising area and, as a
consequence, intensify the search effort on the preferred area. The trails should
remain apart, to preserve diversity, but nearer than before.

The worst colony also suffers a slight disturbance in its parameters. The am-
plitude of the disturbance, δ, is itself a parameter. For each disturbed parameter
a value d is calculated as a uniformly distributed value over [−δ, δ]. Let p be the
parameter to be disturbed, its value after the disturbance if given by (3),

p =

pb + d if p ∈ {ρ, q0} ∧ pb + d ∈]0, 1[
pb + 10 · d if p ∈ {α, β} ∧ pb + 10 · d ∈]0, 10[
p otherwise

(3)

with pb being the value of parameter p in the best colony. Equation (3) can
be read as follows, should the migrated parameter value plus the disturbance
be within the parameter range the change is accepted, otherwise the value is
unaltered. Since the range for α and β is 10 times superior to that of ρ and q0

so is the added disturbance.
In the update pheromone trails step each colony uses its’ best-so-far so-

lution to update the pheromone trail using (2), with Lbest being equal to the
quality of the solution.

4.1 The Construct Ant Solutions Method

In the construction phase, the heuristic information and the trail are used for
two different purposes. The first node, i, is randomly selected and positioned
at random in the graph. Then the heuristic information is used to ascertain
which unplaced nodes (if any) should be the neighbors of i. Afterwards, for each
of those potential neighbors the trail is used to select the slot (from the free
slots that are immediately North, East, South or West from i) where it should
be placed. After all the possible neighbors are placed, the node i is said to be
connected, and the process is repeated for each of the new neighbors. If all the
placed nodes are connected but there are still some unplaced nodes, one of them
is randomly selected and placed at a random free slot in the graph in order to
continue the construction of the solution. This process is repeated until all the
nodes are placed.

For each pair of nodes i, j the heuristic ηij value is equal to tij + tji (this
information is extracted from the traffic matrix, T ).

Given the way we construct the solution we are also interested in the relative
orientation of the nodes. As such, the trail is used to assign a value to each
triple (i, d, j), where i and j are nodes and d ∈ {North,East, South, West}.



MC-ANT 7

τidj denotes the value associated with placing j to the d of i, (for example, if
d = North, τidj stands for the value of placing j immediately to the north of i).

For a given placed node i let C be the set of all the available nodes j for
which ηij > 0. If C is empty no neighbor is selected and i is considered connected.
Otherwise we use a pseudo-proportional rule to select the next neighbor to be
placed (4) where q is a uniformly distributed variable over [0, 1], q0 ∈ [0, 1] is a
preset parameter and argmaxxf(x) represents the value of x for which the value
of f(.) is maximized.

j =

{
argmaxj∈C

{
ηβ

ij

}
if q < q0

variable selected using (5) otherwise
(4)

Equation 5 give us the probability pij of a node j in C to be selected as the next
neighbor of i to be placed.

pij =
ηβ

ij∑
l∈C ηβ

il

(5)

The placed but unconnected nodes are stored in a FIFO queue.
The formula used to choose the slot where to place a given node j (selected

to be a neighbor by i) is also a pseudo-proportional rule. Let D be the set of
directions in which the slots surrounding i. The direction to by used, e, is given
by (6), where q is once again a uniformly distributed variable over [0, 1].

e =

{
argmaxd∈D

{
τα
idj

}
if q < q0

variable selected using eq. (7) otherwise
(6)

The probability of choosing direction f ∈ D is calculated using (7)

pidj =
τα
idj∑

d∈D τα
idl

(7)

5 Experiments

Several experiments were performed to compare the results obtained by MC-
ANT as we vary the number of colonies. The benchmark instances used were
the ones proposed by [13] and also used by [20]. The benchmark set consists of
80 instances of 4 problem sizes (n = 4 × 4, n = 8 × 8, n = 16 × 16, n = 32 × 32)
with 20 matrices for each given size. We selected the first 10 problems in the
n = 8 × 8 and n = 16 × 16 data sets to perform the experiments reported here.

In the experiments performed all the colonies shared the same initial param-
eters: α = 1, β = 2, ρ = 0.1, q0 = 0.9 and δ = 0.05. The value τ0 is set to 1/L
where L is the optimal solution quality. Each experience has run 30 times.



8 Leonor Melo, Francisco Pereira, and Ernesto Costa

5.1 Results

In the following, when referring to the problem sets we identify them by size,
such as n = 4×4, and to the configurations as c×a, where c denotes the number
of colonies and a the number of ants per colony. Note that for a given problem
size, the total number of ants (and hence, the number of explored solutions) is
the same regardless the configuration.

In table 1 we present the mean best-fitness (MBF) and best-run, worst-run
solution’s qualities discovered in the 30 runs, both for the n = 08 × 08 and
n = 16 × 16 data sets. The results are averages of the 10 instances. In general,
for each instance, the MBF decreases as the number of colonies increases.

Table 1. MBF, best-run and worst-run solutions discovered for the n = 08 × 08 (a),
and n = 16 × 16 (b). The results are averages over 10 problem instances.

dimension optimum configuration best-run MBF worst-run

01x064 76.1 76.9 79.0
n08x08 76 02x032 76.1 76.7 78.7

04x016 76.1 76.5 77.9
08x008 76.1 76.3 77.1

01x256 321.1 340.1 360.6
02x128 317.7 338.0 356.9

n16x16 307 04x064 316.6 335.3 356.6
08x032 315.7 333.4 350.3
16x016 317.1 332.3 349.2

In each one of the n = 08 × 08 instances, the quality of the best solution
found was the same for all the configurations. For the MBF and worst solutions
the relative order of the global performance depicted in table 1 is the same as
the one observed in the individual instances. As for the n = 16 × 16 data set,
the 16× 16 configuration achieved the lowest MBF for nearly all instances. The
best solutions were usually found by configurations with multiple colonies. The
single colony configuration was the least effective in all the performance measures
displayed.

To complement the previous results, in fig. 4 we present the evolution of
the MBF. The results displayed are averages of the 10 instances for the n =
16 × 16 data set. As the number of iterations increases, the difference in the
quality of the solutions found by each configuration becomes more noticeable,
apparently favoring those with more colonies. It is visible that the solutions
are still improving even after 2500 iterations, when the simulation was stopped.
The line slopes vary slightly according to the problem, but as a general rule
the configurations with more colonies are the ones showing the highest rate of
improvement at the end of the simulation. These results suggest that the multi-
colony approach is able to postpone convergence.



MC-ANT 9

0 500 1000 1500 2000 2500

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

iterations

hd
_a

ls

01x256
02x128
04x64
08x32
16x16

Fig. 4. Evolution of the MBF averaged over the 10 instances for the n = 16 × 16

To gain a deeper insight into the algorithm behavior we also studied the
migration flow. As expected it tends to be more intense in the beginning of the
runs and then it slowly becomes less frequent, although it does not stop. Still,
for instances where the optimal solution was harder to find, the frequency of
migration remained higher when compared with instances that were more easily
solved. Configurations with more colonies have a higher frequency of migration
as expected.

One important point to investigate is whether the migration is so intense
that leads to all the colonies converging to the same path. In order to ascertain
this we measured the evolution of the average distance between the trails of each
pair of colonies. In fig. 5 we present two examples of trail differences (averaged
over 30 runs each): in panel a) we display results for the p09 instance from the
n = 16 × 16 data set; in panel b) we can see the results for the p08 instance
from the n = 8 × 8 data set. The same trend is visible for the other instances.
Initially all colonies have the same trail and, as expected, in the early stages of
the optimization they become distinct. Results form the chart depicted in fig. 5
reveal that the trails are able to remain separated until the end of the execution.
The (average) distance increases slightly with the number of colonies.

In the n = 16×16 data set, for some instances (specifically the ones for which
the algorithm was able to find better solutions) the gap between the values for
the 16 × 16 and 8 × 32 versus the other configurations seems to be larger. In
instances where the algorithm is less effective the difference seems to be bellow
the average specially for the configurations with more colonies. For the moment
it is still not clear why this happens and how relevant it is for the behavior of
the algorithm, but we plan to address this issue in our future research.

In the smaller instances after the initial rise in the distances there is a slight
decrease and then the curves remain stable as can be seen in fig. 5 b). We believe
that the decrease is due to a more intense migration as soon as some colonies
find high quality solutions. After some iterations, all the colonies are able to find
a very good solution and as such there is little alteration in the paths.



10 Leonor Melo, Francisco Pereira, and Ernesto Costa

0 500 1000 1500 2000 2500

0
2

4
6

8

a)

pr
ob

 n
16

x1
6 

−
 tr

ai
l d

iff
er

en
ce

01x256 02x128 04x064 08x032 16x016

0 500 1000 1500 2000 2500

0
1

2
3

4
5

b)

pr
ob

 n
16

x1
6 

−
 tr

ai
l d

iff
er

en
ce

01x064 02x032 04x016 08x008

Fig. 5. Trail distance (averaged for 30 runs) for p09 in the n = 16× 16 (a) and p08 in
the n = 08 × 08 (b)

In addition to the migration of solutions, the proposed architecture allows for
the self-adaptation of parameters. Due to space constraints we cannot present
a complete analysis of its influence on the behavior of the algorithm. We never-
theless provide some evidence that our approach is able to converge to specific
settings that increase the likelihood of finding good solutions.

For each run of a given instance we recorded the current value of the param-
eters when the best solution was found. This allowed us to determine a range
(rgeneral) and an average value (ageneral) for each of the parameters. We then
selected the subset of runs that found the highest quality solution (for that in-
stance) and calculated the range (rbest) and the average value (abest) obtained
considering only those runs. These results were taken for each configuration.

An example is depicted in table 2 showing the values obtained by 08 × 32
configuration on instance p01 of the 16 × 16 problem set. This is an example of
a situation were the best solution was found by several colonies.

This holds true for other configurations and instances from the n = 16 × 16
data set. This result confirms that the parameters have influence in the quality
of the solution found and allowing for the parameters to adjust may improve the
algorithm performance, particularly in situations where the optimal settings are
not known in advance.

As for the smaller instances (n = 8 × 8), the very best solution was typi-
cally found hundreds of thousands of times by each configuration (as opposed



MC-ANT 11

Table 2. Parameters ranges obtained by 08 × 032 for p01 in the n = 16 × 16

α β ρ q0

general maximum 2.74 3.74 0.24 1.00
general minimum 0.02 0.49 0.00 0.73
general average 1.14 2.02 0.11 0.91

best maximum 1.73 1.86 0.11 0.98
best minimum 1.35 1.40 0.10 0.97
best average 1.54 1.63 0.11 0.98

to usually much less than one hundred for the n = 16 × 16) and rbest is almost
identical to rgeneral.

6 Conclusions

This paper presents MC-ANT, a multi-colony variation for the ACO. Each colony
has its own trail and parameters settings and, periodically, information may be
exchanged in order to improve the search abilities of the algorithm. Additionally,
mutation mechanism allows for the self-adaptation of the parameters.

The proposed approach was applied to several instances of the NPP. Re-
sults show that the multi-colony configurations consistently outperforms the
single colony. For almost every instance the MBF decreases as the number of
colonies increases. Also, the multi-colony configurations were able to avoid pre-
mature convergence, this effect being more noticeable in configurations with
more colonies. The migration flow behaved as expected, being stronger in the
beginning and in the configurations with more colonies and gradually decreasing.
Still the migration was gentle enough to allow for the trails to remain separated
and thus avoid the convergence of the colonies to the same trail.

A brief analysis of how parameters values adjust during the optimization
shows that they can create a positive bias towards promising areas of the search
space, improving the algorithm performance. This is a key issue in our approach
and it will be studied in depth in the near future.

Acknowledgments. This was supported by Fundação para a Ciência e Tec-
nologia, under grant SFRH/BD/38945/2007.

The original publication is available at www.springerlink.com

References

1. Angus, D., Woodward, C.: Multiple objective ant colony optimisation. Swarm In-
telligence (3), 69–85 (2009)

2. Bentley, J.L.: Fast algorithms for geometric traveling salesman problems. ORSA
Journal on Computing 4, 387–411 (1992)



12 Leonor Melo, Francisco Pereira, and Ernesto Costa

3. Deneubourg, J.L., Aron, S., Goss1, S., Pasteels, J.M.: The self-organizing ex-
ploratory pattern of the argentine ant. Journal of Insect Behavior 3(2) (1990)

4. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization - artificial ants
as a computational intelligence technique. Technical report, Université Libre de
Bruxelles, Institut de Recherches Interdisciplinaires et de Développements en In-
telligence Artificielle (September 2006)

5. Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning ap-
proach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation 1(1), 53–66 (1997)

6. Dorigo, M., Maniezzo, V., Colorni, A.: Positive feedback as a search strategy. Tech.
rep., Politecnico di Milano, Italy (1991)

7. Dorigo, M., Maniezzo, V., Colorni, A.: Optimization by a colony of cooperating
agents. IEEE Transactions on Systems, Man, and Cybernetics 26(1), 29–41 (1996)

8. Dorigo, M., Stutzle, T.: Ant Colony Optimization. A Bradford Book, MIT Press,
Cambridge Massachussetts (2004)

9. Ellabib, I., Calamai, P., Basir, O.: Exchange strategies for multiple ant colony
system. Information Sciences: an International Journal 177(5), 1248–1264 (2007)

10. Garćıa-Mart́ınez, C., Cordón, O., Herrera, F.: A taxonomy and an empirical anal-
ysis of multiple objective ant colony optimization algorithms for the bi-criteria tsp.
European Journal of Operational Research 180(1), 2007 (116-148)

11. Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M.: Self-organized shortcuts in
the argentine ant. Naturwissenschaften 76, 579–581 (1989)

12. Janson, S., Merkle, D., Middendorf, M.: Parallel Metaheuristics, chap. Parallel Ant
Colony Algorithms, pp. 171–201. John Wiley & Sons (2005)

13. Katayama, K., Yamashita, H., Narihisa, H.: Variable depth search and iterated
local search for the node placement problem in multihop wdm lightwave networks.
In: IEEE Congress on Evolutionary Computation, 2007. pp. 3508–3515 (2007)

14. Kato, M., Oie, Y.: Reconfiguration algortihms based on meta-heuristics for mul-
tihop wdm lightwave networks. In: Procedings IEEE International Conference on
Communications. pp. 1638–1644 (2000)

15. Komolafe, O., Harle, D.: Optimal node placement in an optical packet switching
manhattan street network. Computer Networks (42), 251–260 (2003)

16. Maxemchuk, N.F.: Regular mesh topologies in local and metropolitan area net-
works. AT&T Technical Journal 64, 1659–1685 (1985)

17. Michel, R., Middendorf, M.: New ideas in optimization, chap. An ACO Algorithm
for the Shortest Common Supersequence Problem, pp. 51–61. McGraw-Hill, Lon-
don (1999)

18. Middendorf, M., Reischle, F., Schmeck, H.: Multi colony ant algorithms. Journal
of Heuristics 8(3), 305–320 (2002)

19. Stützle, T., Hoos, H.H.: The max-min ant system and local search for the travelling
salesman problem. In: Piscataway, T. Bäck, Z.M., Yao, X. (eds.) IEEE International
Conference on Evolutionary Computation. pp. 309–314. IEEE Press (1997)

20. Toyama, F., Shoji, K., Miyamichi, J.: An iterated greedy algorithm for the node
placement problem in bidirectional manhattan street networks. In: Proceedings of
the 10th annual conference on Genetic and evolutionary computation. pp. 579–584.
ACM, New York, NY, USA (2008)

21. Tsai, C.F., Tsai, C.W., Tseng, C.C.: A new hybrid heuristic approach for solving
large traveling salesman problem. Information Sciences 166 (166), 67–81 (2004)

22. Yonezu, M., Funabiki, N., Kitani, T., Yokohira, T., Nakanishi, T., Higashino, T.:
Proposal of a hierarchical heuristic algorithm for node assignment in bidirectional
manhattan street networks. Systems and Computers in Japan 38(4) (2007)


