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Abstract Desktop Grid systems reached a preeminent place
among the most powerful computing platforms in the planet.
Unfortunately, they are extremely vulnerable to mischief,
because computing projects exert no administrative or tech-
nical control on volunteers. These can very easily output
bad results, due to software or hardware glitches (result-
ing from over-clocking for instance), to get unfair compu-
tational credit, or simply to ruin the project. To mitigate this
problem, Desktop Grid servers replicate work units and ap-
ply majority voting, typically on 2 or 3 results.

In this paper, we observe that simple majority voting is
powerless against malicious volunteers that collude to attack
the project. We argue that to identify this type of attack and
to spot colluding nodes, each work unit needs at least 3 vot-
ers. In addition, we propose to post-process the voting pools
in two steps. i) In the first step, we use a statistical approach
to identify nodes that were not colluding, but submitted bad
results; ii) then, we use a rather simple principle to go after
malicious nodes which acted together: they might have won
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conflicting voting pools against nodes that were not identi-
fied in step i. We use simulation to show that our heuristic
can be quite effective against colluding nodes, in scenarios
where honest nodes form a majority.
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1 Introduction

Internet Desktop Grids [2,3] aggregate huge distributed re-
sources over the Internet and make them available for run-
ning a growing number of applications. In 2007, BOINC
[2], the most popular desktop grid (DG) platform, runs about
40 projects, aggregating more than 400,000 volunteer com-
puters yielding on average more than 400 TeraFLOPS [1].
Numbers are even larger by now.

A major concern in such a middleware is the support for
sabotage tolerance (ST). Since computations run in an open
and non-trustable environment, it is necessary to protect the
integrity of data and validate the computation results. With-
out a sabotage-detection mechanism, a malicious user can
potentially undermine a full computation that may have been
executing during weeks or even months [5].

All important ST techniques designed up-to-date for In-
ternet DGs are based on the strong assumption that workers
are independent from each other. While this assumption is
fulfilled, actual sabotage tolerance techniques perform very
well, supplying the required (very low) error rate for the
overall computation. In particular, BOINC uses replication
with majority voting which can bring an error rate of about
1×10−5 by validating each result with only two similar re-
sponses [12]. But, as Zhao et al. [21] acknowledge, a poten-
tial threat comes up when workers can devise some scheme
to interact, for example, with a distributed hash table.
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However, there are many signs suggesting that this kind
of peer-to-peer interaction among peers will become a stan-
dard in the near future. For example, collaborative techniques
are very attractive for data distribution [17,4], especially
when the DG runs a parameter sweep application. More, re-
searches advance in the direction of an entirely distributed
P2P desktop grid [11]. Some of the developers of XtremWeb [3]
are working on BitDew [7], which aims to provide services
for management and distribution of data on DGs.While very
powerful and well intentioned, all these solutions bring a
side effect with them: they can help malicious workers to
team up to defeat the project, thus violating the workers’ in-
dependence assumption.

Further, a P2P-enhanced desktop grid might become the
target for a Sybil attack [6]: an individual either creates mul-
tiple identities which appear as individual ones to the master
or gets control through a virus over a large number of work-
ers. Such a powerful individual can develop a collective ma-
licious behavior if the platform allows for peer-to-peer inter-
action.

This brings new challenges to the design of a desktop
grid system, because the master is not prepared to fight po-
tential collective malicious behaviors, resulting from orches-
trated workers.

To face the new collusion threat, this paper proposes a
novel approach as a complement to the actual replication-
based mechanism, which is the most popular ST technique
employed in the nowadaysmiddleware.With replication, the
master decides about the trustworthiness of a result imme-
diately after having collected all replicas of a work unit. In-
stead, in our approach the master will postpone the deci-
sion moment in the replicated voting pools until it gathers
enough information to infer the trustworthiness of the work-
ers. We present in this paper a statistical tool to analyze to-
gether the voting pools and to infer and classify a worker as
being malicious or not. Further, the master can mark a vot-
ing pool as being suspicious if a honest worker is losing the
decision. On these voting pools, the master can apply fur-
ther replication in order to conclude about the valid result.
We first presented this technique in [16]. In this paper, we
present a larger set of experiments, including comparisons
with k-means [13], one of the most well-know clustering al-
gorithms.

In contrast to other works on ST in DGs [15,21], we
evaluate our approach considering a wider range of mali-
cious saboteurs, including naive and colluding ones, as well
as transient saboteurs which change their profile during their
life.

The paper is further organized as follows. In Section 2
we present background information about desktop grids. We
describe the actual existing sabotage tolerance techniques
and up-to-date conclusions about their effectiveness. We de-
fine the type of saboteurs our approach intents to cover and

make a discussion about how efficient the respective sabo-
tage strategies are. In Section 3 we present our collusion-
resistant sabotage tolerance technique. We start by showing
how we can statistically model the voting behavior of work-
ers and howwe can classify the workers in malicious and not
malicious ones. Next, we present our global sabotage toler-
ance protocol. In Section 4 we present and discuss the re-
sults obtained with our sabotage tolerance protocol. Finally,
Section 5 concludes the paper.

2 Background

A desktop grid system consists of a server (referred further
as themaster) which distributes work units of an application
to workers. Workers are machines which voluntarily join the
computation over the Internet. Once a work unit is com-
pleted at the worker site, the result is returned back to the
master. A result error is any result returned by a worker that
is not the correct value or within the correct range of val-
ues [12].

The error rate ε is defined as the ratio of bad results or
errors among the final results accepted at the end of the com-
putation. Thus, for a batch of N work units with error rate
ε , the master expects to receive εN errors. For every appli-
cation, the master employs some sabotage-tolerancemecha-
nism for obtaining an acceptable error rate εacc with regard
to its application.

Redundancy is defined as the ratio of the total number of
replicas assigned to workers to the actual numberN of work
units. Usually, redundancy is larger than 1, which means
that we spend computing resources only for verification pur-
poses.

2.1 Related work

In this section we present previous work regarding sabotage
tolerance in desktop grids. All the methods herein reviewed
assume independence between workers.

BOINC, the most popular Internet desktop grids uses
replication with majority voting [2,15] as the sabotage tol-
erance mechanism. The master distributes 2m− 1 replicas
of a work unit to workers and when it collects m similar
results, it accepts that result as being the correct one. Each
collected result is seen as a vote in a voting pool with 2m−1
voters and with majority agreement being the decision cri-
teria. With the same sabotage model, Wong [19] presents
a variation of the replication with only 2 replicas, by con-
sidering the workers arranged as nodes in a graph and con-
nected by the work units. This protocol allows the host to es-
timate without auditing the proportion of untrusted workers
and how often these workers would submit incorrect results.
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From the redundancy point of view, a more efficient me-
thod for error detection is spot-checking [21], where a work
unit with a known result is distributed at random to work-
ers. Workers’ results are compared against the previously
computed and verified result. If the result for the spotter is
erroneous, then, the worker is blacklisted, in the sense that
all its previously and future results are discarded.

Credibility-based systems [15] use conditional probabil-
ities of the errors, based on the history of host result correct-
ness. It assumes that hosts that have computed many results
with very few errors are more reliable than hosts with a his-
tory of erroneous results. This method has problems to fight
against hosts that behave well for a long period of time, in
order to gain credibility, and after that start to sabotage.

Yurkewych et al. [20] presents a study regarding the col-
luding behavior in commercial desktop grids. As workers
receive money for their results, this study employs a game-
theoretical analysis, based on the traditional tax-auditing game.
They show that redundancy can eliminate the need for result
auditing when collusion is prevented. Non-redundant allo-
cation can work even with colluding scenarios, if the mas-
ter is able to impose high penalties on cheating workers,
given that some pre-defined positive audit rate is preserved.
We differentiate from this study, as in volunteer computing
no monetary means can be enforced to penalize malicious
workers.

Kondo et al. [12] performed the first study that charac-
terizes the errors in Internet Desktop Grids. They approached
only I/O errors and discussed the efficiency of the above sab-
otage tolerance methods. In their experiment, they observed
that 35% of hosts provide at least one error, the average er-
ror rate of an erroneous host is 0.0034, yielding for a global
error rate over all hosts of 0.0022. Moreover, 10% of the
erroneous hosts produce more than 70% of all errors, with
an average error rate of 0.0335. Additionally, distribution of
errors over time seems to be non-stationary, which reduce
the effectiveness of spot-checking and credibility-based sys-
tems, because they depend on high consistency of the er-
ror rates. They concluded that simply blacklisting erroneous
hosts can cost as much as 40% of the throughput, coming
from hosts that produce good results in general. They also
concluded that replication with majority voting is the most
reliable sabotage tolerance method in order to achieve a host
error rate of 1×10−5. This error rate is a must, if the overall
acceptable application error rate is 10−2. Therefore, we will
use the replication with majority voting as a starting point of
our approach.

2.2 Sabotage models

To characterize erroneous hosts, we consider two models
that define extreme behaviors: the first behavior is the naive
malicious, where a node randomly commits mistakes in some

work units independently of the behavior of other nodes.
Note that this could possibly happen because the node is
faulty, due, for instance, to malfunctioning hardware. In the
other extreme, we consider the colluding nodes that make
their behavior depend from the participation of other mali-
cious nodes in the voting pools. They introduce errors only
when they are sure that their sabotage can be successful, for
instance, when they know that othermalicious nodes are par-
ticipating in the voting pool, thus forming a majority. While
naive malicious nodes expose themselves to be detected and
possibly black-listed in a rather easy way, the colluding vot-
ers are much more subtle and can easily pass undetected.

We denote the basic naive malicious node by M1-type.
AM1-type worker submits bad results with a constant prob-
ability s, called sabotage rate. This naive sabotage model
assumes that workers are independent of each other and do
not communicate. Even if independent workers which do
not communicate are very unlikely to submit the same er-
roneous result, as the sabotage tolerance literature suggests
[15], from now on, we assume that all submitted erroneous
results are similar, regardless whether the workers can com-
municate or not.

If we assume the existence of a fraction f of M1-type
saboteurs in the total population of workers, then the ex-
pected error rate εM1( f ,s,m) of the majority-voting replica-
tion is given by Equation (1) [15]:

εM1( f ,s,m) =
2m−1

∑
j=m

(

2m−1
j

)

( f s) j(1− f s)2m−1− j (1)

Unlike the basic M1-type, a colluding saboteur (further
referred as M2-type) has the will and the means to reach
other saboteurs in order to develop malicious coalitions. In
modelM2, a dishonest workerwwill sabotage only if it finds
enough dishonest peers to join it to defeat the honest nodes
involved in the same voting pool. Thus, aM2-type malicious
worker will never sabotage without winning the decision in
its voting pool. We assume that there is a complete graph
connecting all the malicious nodes, such that communica-
tion between any two malicious nodes is always possible at
any point in time. However, at this stage of our work, we
impose a limit to the power of malicious nodes: they are not
aware of our sabotage detection mechanisms and they act to
conceal themselves from majority voting. With this assump-
tion, colluding saboteurs will attack whenever they are sure
they can win the voting decision against honest workers.

If the fraction of M2-type saboteurs in the total popula-
tion of workers is f , each saboteur being an active one with
probability s (i.e. s is the probability of a colluding saboteur
to launch the coalition-formation protocol), each of them
knowing all the rest of the workers, then the expected error
rate is given by Equation (2).
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εM2( f ,s,m) =
2m−1

∑
j=m

(

2m−1
j

)

(

1− (1− s) j
)

f j(1− f )2m−1− j

(2)

In eq. (2) we have to mention that at least one of the j
M2-type workers in a voting pool is sufficient to start (with
probability s) the collusion formation protocol, the remain-
ing colluding saboteurs in the voting pool participating by
default to the coalition. This leads1 to the multiplication
term 1− (1− s) j before f j, which denotes the probability
of finding exactly j M2-type workers in a voting pool of size
2m−1.

We consider yet another type of saboteurs deemed M3-
type, mixed malicious, which change their behavior during
their life, behaving either naive or colluding, but always per-
forming a dishonest role. For an M3-type saboteur, we de-
note with c the naive ratio, which is the fraction of work
units for which the worker behaves as an M1-type saboteur
with sabotage rate s1, while for the remaining 1− c fraction
of work units it behaves like a M2-type saboteur with sabo-
tage rate s2. In this case the expected error rate is the one of
Equation (3):

εM3( f ,c,s1,s2,m) = cεM1( f ,s1,m)+ (1− c)εM2( f ,s2,m)

(3)

2.3 Discussion

Given that M1-type saboteurs submit a rather small fraction
s of bad results (with an average of 0.0034 for independent
I/O errors [12]), it results that colluding saboteurs are much
more destructive than independent ones. Figure 1 shows the
comparison of the error rates achievedwith different number
of identical results requiredm, for f = 0.035 and s= 0.0335
in the case of both M1-type and M2-type saboteurs2. To al-
low for a better comparison, we used the same value of
s = 0.0335 for all types of colluders in Figure 1. However,
colluding saboteurs would be much more destructive if they
always try to sabotage, i.e., if s= 1 (naturally, this can leave
more traces of their intervention). The error rate ofM3-type
saboteurs is something in between M1 and M2-types, being
much closer to the latter. We considered c= 0.5 for an M3-
type saboteur, while keeping the same f and s1 = s2 = s.

We define the effectiveness of a saboteur as being the ra-
tio between the number of times it succeeds to defeat the
1 the overall probability that at least one worker out of j starts

the collusion formation protocol, given the individual probability s is:
( j
1
)

s(1− s) j−1+
( j
2
)

s2(1− s) j−2+ ...
( j
j
)

s j = 1− (1− s) j
2 We assumed the same error rate parameters as for the top 10%

erroneous hosts reported by Kondo et al. [12].
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Fig. 2 Relative effectiveness comparison between various types of ma-
licious workers against simple replication

sabotage tolerance mechanism versus the total number of
times it sabotages. While naive saboteurs succeed to de-
feat the master’s replication-based sabotage tolerance mech-
anisms only in a small fraction of the attempts, a colluding
saboteur will sabotage only when it is sure to win the ma-
jority voting, and therefore, its effectiveness is total (1). Of
course, the effectiveness of a naive saboteur increases with
its sabotage rate s; this being the sole parameter such a sabo-
teur can control. Figure 2 depicts the number of times col-
luding saboteurs of typeM2 and M3 are more effective than
the naive ones for various number of results required. The
effectiveness of the saboteurs was computed for the same
parameters as in figure 1. The effectiveness of the M2-type
saboteurs was computed assuming that they sabotage only
when at least a coalition of size 2 is formed. The relative
effectiveness of the colluding saboteurs increases exponen-
tially with the number of results required, because the suc-
cess rate of naive saboteurs is very small in the presence of
higher-order replication.
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We should also note that besides being less destructive,
naive saboteurs leave more traces behind them, making it
much easier for the master to spot them out.

3 A collusion-resistant sabotage tolerance protocol

In this section we propose a collusion-resistant sabotage tol-
erance protocol. Since the actual replication works very well
in the presence of M1-type naive saboteurs, we do not in-
tend to replace it. Instead, we complement it with a scheme
targeted to spot and defeat colluding saboteurs, which are
much more effective and can defeat the replication, as we
have seen in Section 2.3.

3.1 Overview

Kondo et al. [12] demonstrated that replication withm= 2 is
enough to cope with erroneous hosts withM1 saboteurs. Ad-
ditionally, we observe that DG projects that we are aware of,
set m to be 2 at most, while some of them initially use only
two replicas and ask for another one in case of conflicting
responses. Therefore, in our work we fix m= 2. This means
that the master replicates each task 2m−1= 3 times. How-
ever, instead of deciding on a result as soon as the master
gets a majority of 2 similar responses, it will wait and post-
pone the decision until it gets all three results from that work
unit and until it collects enough results of related workers
from different work units. We further consider each work
unit as a voting pool, where each worker is worth a vote.
After it collects a number of voting information (the most it
collects the better), the master will analyze the information
acquired from the voting behavior and will infer which are
the M1-type naive saboteurs. The rationale for this is that,
once these nodes are identified, the remaining contradictory
voting pools only contain colluding nodes of type M2 and
M3. Then, the master will reconsider these work units and
ask for further responses.

The master’s objective is to spot out malicious workers,
regardless of the sabotage model they fit in. From this point
of view, a voting pool that contains contradicting votes is
of interest for the master, because it contains, at least one
faulty node. If the size of the voting pool is 3, this means that
one loosing worker voted against two opponents. A valuable
observation is that in the case of naive M1-type workers,
the total number of such conflicting voting pools is higher
than in the case of M2 saboteurs, for the same f and s, re-
gardless their value. This makes it easier for the master to
spot out naive saboteurs than colluding ones. While a hybrid
M3 saboteur has a mixed behavior switching between being
naive and colluding, this model will give us less clues than
naive saboteurs, but more clues than with colluding ones.
Therefore, given thatM2 andM3 nodes are not aware of our
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Fig. 3 Comparison of conflicting voting pools

sabotage tolerance mechanism and only try to defeat ma-
jority voting, we expect a better response against M3 than
againstM2 saboteurs. Figure 3 shows the percentage of con-
flicting voting pools for various s, given f = 0.1, in pure
populations with only M1-type (respective M2-type) sabo-
teurs.

Considering a conflicting voting pool, it would be of in-
terest for the master to assess if the worker that is losing the
decision is behaving like a naive M1-type saboteur or not.
The master can do this assessment if it possesses a theoreti-
cal model of the voting pools world and a classification tool,
which we will describe in the following section.

3.2 Statistical modeling of the voting behavior

Consider a population SP consisting of honest and mali-
cious workers. Table 1 describes the meaning of each struc-
ture parameter. We impose that honest workers are in ma-
jority, i.e., f1 + f2+ f3 < 0.5. To enable evaluation, we as-
sume that the population structure is stable over time and the
workers fully comply with their models during all their life.
Additionally, there is an implicit assumption in the models
of workers that we devised: nodes are unaware of the algo-
rithm used by the master to spot collusion. Let the master
distribute replicated tasks from a set of work unitsSW , such
that, on average every worker gets N tasks.

A voting pool V = {v1,v2,v3} is a set of three (m = 2)
different workers vi ∈SP, each of which submitting a binary
vote in the pool. Consider a fixed worker v ∈ V . The num-
ber of votes against the worker collected in the voting pool
V can be modeled as a random variable Yv : {0,1,2} → R,
where Yv(i) = pv,i ≥ 0 is the probability that the worker v
has i votes against in the voting poolV , with ∑i pv,i = 1.

Due to the i) population structure stability; ii) worker’s
fully compliance with its model; and iii) the fact that work-
ers can not influence how the master distributes them in
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Table 1 Parameters describing the population structure

f1 proportion ofM1-type workers
s1 sabotage rate of M1-type workers
f2 proportion ofM2-type workers
s2 sabotage rate of M2-type workers
f3 proportion ofM3-type workers
c naive ratio for M3-type workers
s3,1 sabotage rate of M3-type workers while behaving asM1-type
s3,2 sabotage rate of M3-type workers while behaving asM2-type

the voting pools, any two voting pools for the same wor-
ker are statistically identical and independent and thus, we
can model the behavior of a worker during a sequence of N
voting pools as a multinomial experiment with N trials Yv.

We denote by Yv,N : {0,1, . . . ,2N}→ R the random vari-
able defining the probabilities for the worker v to collect a
given number of votes against over a total of N voting pools.

From the independence between two different voting pools,
we can infer that Yv,N = ∏N

t=1Yv = YNv . 3 In our case, as ev-
ery Yv is defined over the set {0,1,2}, for the sake of sim-
plicity, the discrete values of the random variable Yv,N can
be obtained by computing the corresponding coefficients of
a polynomial like the one of Equation (4):

(pv,0+ pv,1X+ pv,2X2)N (4)

These coefficients can be computed either by successively
multiplying the polynomials (as we did) or by applying the
multinomial theorem and using the trinomial coefficients [10].

As an example, if the random variable of a worker v is
Yv = {0.6,0.2,0.2}, meaning that the worker scored 0 votes
against in 60% of cases, 1 votes against in 20% of cases and
2 votes against in 20% of cases, if the worker participated
in 5 voting pools, then random variable Yv,5 can be obtained
by computing the polinomial (0.6+0.2X+0.2X2)5: which
gives 0.0778+0.1296X+0.216X2+0.2016X3+0.1776X4+
0.1059X5+0.0592X6+0.0224X7+0.008X8+0.0016X9+
0.0003X10. The random variable Yv,5 consists of the coe-
ficients of the before-computed polynomial and should be
read as follows (e.g.): the probability that after 5 voting pools
the worker v registers 6 votes against is 5.92%.

The joint distribution function of a voter v with Yv,N is
Fv : {0,1, . . .2N} → R, defined as Fv(i) = Prob(Yv,N ≤ i),
Fv(i) being the summation of all coefficients of the polyno-
mial (4) up to the i rank.

In the heart of our heuristic lies a simple intuition about
the distribution functions Fv: if we compare Fv for a hon-
est node and for an M1 malicious node there is a huge sep-
3 Given 2 random variables Y1 : {xi, i = 1, . . . ,n1} → R+, Y1(xi) =

pi, ∑i pi = 1 and Y2 : {x′i, i = 1, . . . ,n2} → R+, Y2(x′i) = p′i, ∑i p′i =
1, the product Y = Y1Y2 is defined by over the space {xi ∧ x′j, i =
1, . . . ,n1, j = 1, . . . ,n2} with the following expression: Y (xi ∧ x′j) =
pi p′j .

aration between both lines, because a typical honest node
gets much fewer votes against than a typical M1 node. For
a given population structure, after determining the initial
values pv,0, pv,1 and pv,2 and computing the coefficients of
Equation (4) using multiplications of polynomials, we got
distribution function curves like the ones depicted in Fig-
ure 4. The population we used to plot these curves was the
following: in each of them we considered f = 0.1 mali-
cious workers. Each worker has some predefined sabotage
rate of 0.5 and we assigned once N = 30 and N = 40 work
units per worker. First, in Figure 4(a) we considered only
naive M1-type workers. In Figure 4(b) we replaced naive
M1-type workers with colluding M2-type workers. We can
notice that for the same percentage of the malicious work-
ers ( f = 0.1) and the same sabotage rate (s = 0.5), the gap
between the distribution functions for N = 30 and N = 40
increases, while the distribution function of naive workers
shifts to the right. In Figure 4(c) we considered a mix ofM1
and M2-type workers, keeping the proportion of malicious
workers identical ( f1 + f2 = 0.1). We can notice that the
distribution function of the naive malicious is on the right
side, the distribution function of the honest workers is on
the left side, while the distribution function of the colluding
malicious is shifted a bit on the right of the honest workers
distribution.

After we analyzed extensively various population struc-
tures, using the mathematical procedure explained in the
above paragraph, the following important conclusions can
be drawn out:

– M1-type (naive) saboteurs always collect the biggest num-
ber of votes against, their joint distribution functions be-
ing the most-right ones in the graphic;

– for N large enough, there is a clear separation between
the distribution functions Fv for the case of honest work-
ers versus malicious workers;

– the honest workers have the distribution functions on the
left side of the graphic, the distances between a honest
worker distribution and a naive (M1) malicious one being
the biggest ones;

– as expected, the distribution function for anM3-typewor-
ker, not shown on the plots due to space consideration,
will lay down between distribution functions of M1 and
M2 workers, being placed on the left side of the distribu-
tion for theM1-type workers.

3.3 Spotting out naive saboteurs (M1 orM3)

Based on the theoretical conclusions drawn out in Section 3.2,
we now propose a method for spotting out saboteurs that be-
have permanently or intermittently as naive M1-type ones.
This includesM3-type workers.
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Fig. 4 Theoretical distribution functions Fv for various population structures

Suppose that the master distributes a batch of work units,
such that each worker takes place in an average of N voting
pools. For some particular worker i, the number of voting
pools is Ni and the master can count the number of times
c0,c1,c2, the worker registered 0, 1, and 2 votes against,
among its work units. These figures, divided by Ni give the
practical (sampled) probabilities p0, p1, p2 (as used in Equa-
tion 4) for that worker. Applying the procedure described in
Section 3.2, the master will obtain one distribution function
(similar to the ones of Figure 4) for each worker.

Figure 5 depicts the distribution functions for workers
participating in an experiment with a population structure
with f1 = f2 = 0.1, s1 = s2 = 0.5 and f3 = 0, for N = 30 and
for a small number of nodes (in order to facilitate the display
of the distributions on the plot). As expected from the the-
oretical results presented above, the distribution functions
of M1-type workers (solid lines) will agglomerate the right
side of the plot, while the ones of the honest workers (cir-
cled lines) andM2-type workers (squared lines) will stay on
the centre and left side. The honest workers that were not
placed in voting pools with malicious opponents have the
most left-sided distributions.

For two voters vi )= v j with the distribution functions
Fvi and Fvj computed after considering all voting pools they
took place in, we define in Equation 5 the distance between
their distribution functions:

d(vi,v j) =∑
k

(Fvi(k)−Fvj(k))
2 (5)

Now, consider the symmetrical matrix D= (di, j) of size
n×n, where its elements are defined as the distances di, j =
d(vi,v j). A row i of this matrix shows how statistically dif-
ferent is the behavior of worker vi from the rest of workers in
the population. The matrix D can be normalized to a matrix
C to make the values of each row sum 1, by dividing each
row by its own sum.

According to the theoretical findings (Section 3.2), the
distances between naive-behaving saboteurs and the major-
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Fig. 5 Distribution functions for a population with M1 and M2-type
saboteurs

ity of the population should be large. Having in matrix C a
measure of distance between any pair of nodes, we can use
the EigenTrust algorithm of Kamvar et al. [9] (Algorithm 1),
to give each node a single global score (its corresponding
eigenvalue).

EigenTrust algorithm aggregates private reputation val-
ues of a node for other nodes in the network in order to sup-
ply with the global reputation value for each node. Given
that two nodes are assigned with similar private reputation
values from the rest of the nodes in the network, EigenTrust
produces global values closed each to another for those two
nodes. In our case, the score produced by EigenTrust for
each node tells us how likely is that node to be dishonest.
Kamvar et al. proved that the algorithm will converge to
some global scores vector, t, if the initial matrixC is not sin-
gular. More, the global vector t contains only positive values
with ∑ti = 1.

To avoid obtaining singular matrices, we remove fromC
the rows and columns for workers that scored only 0 votes
against in all their voting pools. After we compute t, we sort
the scores of the nodes in ascending order assuming that
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Algorithm 1 The simple EigenTrust algorithm [9]
Input data:
C = (ci, j) a matrix of size n×n, with ∑ j ci, j = 1
some small error ε
t0 = (t(0)i ), with t(0)i = 1

n , for every 1≤ i≤ n
repeat
t(k+1) ←CT t(k)
δ ←‖t(k+1) − t(k)‖

until δ < ε
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Fig. 6 Distribution function and second order differences for the t val-
ues

each value represents a discrete probability and we compute
their corresponding distribution function.

In Figure 6 we depict a particular case for this distri-
bution function (for a population of 1000 workers process-
ing on average N = 30 work units each, with f1 = f2 = 0.1,
s1 = s2 = 0.5). The distribution function registers less than
1000 t-values, because we removed from the population the
workers that scored 0 votes against in all their voting pools
(around 50 workers in our case).

In most of our experiments we got a clear “knee” (indi-
cated by the arrow) in this plot, resulting from the differ-
ences between naive saboteurs and remaining population.
Identifying this knee, we can classify the workers in naive
malicious and not naive malicious ones. In the absence of
a knee, our algorithm should just not mark any worker as
naive malicious and assume that all of them are either hon-
est orM2-type nodes (in fact some of the nodes could beM3
behaving mostly asM2).

To locate the knee, when it exists, we use the second or-
der differences4 of the vector t values, as these emphasize
in a clearer way the fast growth in the zone of the knee. We
consider 10 consecutive values in the second differences and
we compute their statistical variance. The knee shows up
when these variances go above a given threshold (see Equa-

4 Given the vector X = {x1,x2, ...xn}, the first order difference vector
∇X is defined as the vector∇X =Y = {y1, ...,yn−1}with yi = xi+1−xi.
The second order difference vector ∇2X is defined as ∇2X = ∇Y .

tion (6)). In our experiments we set ϑ = 10−8. We also tried
other thresholds with a difference of up to 3 orders of mag-
nitude and we noticed no sensible difference. Thus, we can
consider θ = ticr , where icr is given by eq. (6) and classify
as naive malicious all workers i such us ti ≥ θ .

icr =max{i|var(ti−10,ti) < ϑ} (6)

In section 4 we will present the classification results. We
should be aware that our final goal is the identification of the
colluding saboteurs, while identifying with high certainty
the naive saboteurs represents only an intermediary step.

3.4 A general sabotage tolerance protocol

The theoretical modeling using multinomial experiments pre-
sented in Section 3.2 allowed us to define the classification
procedure presented in Section 3.3. With high certainty, the
master can identify malicious workers, especially those of
type M1, while keeping the classification error low - as we
will see in section 4.1. A low classification error means that
a small number of false positive workers, which are in fact
honest workers, are reported by the classification scheme.
In this section we go further and define our general sabotage
tolerance protocol.

Because actual replication is effective to defeat naive
saboteurs, our protocol identifies those cases where a wor-
ker that is not classified as (naive) malicious is defeated, and
asks further replication on those voting pools. Therefore, we
do not replace the actual replication-based sabotage toler-
ance protocol; rather we complement it with a tool to spot
out situations when colluding saboteurs win against honest
ones. Specifically, the master has to employ the general al-
gorithm described in Algorithm 2.

Algorithm 2 The general sabotage tolerance algorithm
1: Input data:
2: SW : the set of work units,SP: the set of workers
3: Begin
4: SV ← Distribute tasks(SW ,SP, 3);
5: SV,con f licting← Select conflicting pools fromSV
6: SMal ← Identify malicious workers
7: SV,suspect ← Select suspect pools fromSV,con f licting
8: SV,err ← Ask 2 more responses on pools fromSV,suspect
9: SM2∪M3 ← Identify colluding workers fromSV,err
10: SV,suspect1← Identify voting pools with consensus of only collud-

ing workers
11: Ask a new voting pool on every V ∈ SV,suspect1
12: Accept the results for allV ∈ SV by majority voting
13: End

Up to line 4 in Algorithm 2 the master applies the clas-
sical replication. In line 5 the master selects the conflicting
voting pools out of the initial replication results. Next, in
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line 6, the master applies the classification algorithm of Sec-
tion 3.3 and obtains a list of malicious workers. In line 7,
the master selects among the conflicting voting pools those
where another worker not a malicious one is defeated. On
each of these suspect voting pools, the master ask at most
two new response replicas (line 8), by putting the tasks on
honest workers. The honest workers are selected from the
ones that recorded zero votes against or from the ones that
registered the smallest t values in the classification proce-
dure. At the end of this step, the master identifies those vot-
ing poolsSV,err where the initial result was reverted. From
these voting pools, the master identifies the colluding work-
ers (line 9). Next, in step 10, the master traces back all non-
conflicting voting pools where three malicious workerswhere
initially assigned. On each of these voting pools, the master
invalidates the initial quorum and asks a new 3-times repli-
cation with honest workers as above. In the end, the master
accepts the results of each voting pool with a majority vot-
ing.

4 Results and discussion

4.1 Results

In this section we report the results achieved with our sab-
otage tolerance scheme. We considered various population
structures and we let the master assign tasks such that each
worker gets on average N = 30 tasks (i.e. 10000 work units
for a population of 1000workers). For each population struc-
ture we have run 100 experiments, to get a statistical confi-
dence on our results. However, for convenience, in our plots
we show only the average values.

To evaluate the performance of the proposed sabotage
tolerance scheme, we computed the final error rate and re-
dundancy obtained with our scheme and we compared them
against the ones obtained with the simple replication, before
applying our sabotage tolerance protocol. For a cost estima-
tion, we also compared the actual redundancy of our scheme
against a “theoretical” redundancy that would be obtained if
the sabotage tolerance protocol would ask for another task
replica on each voting pool with conflicting responses. This
theoretical redundancy is an optimistic value because it is
still not enough for establishing the correct result of a con-
flicting voting pool.

But, we are also interested in discovering the colluding
saboteurs, i.e. the ones that get defeated after applying the
algorithm presented in section 3.4. We can see this task as a
classification one and evaluate its performance by comput-
ing the classification error and the recall rates. As advised in
the data mining field [18], the classification error represents
the percentage of incorrectly classified examples (false pos-
itives) out of the total retrieved ones for some class. The
recall represents the percentage of the examples of some

class identified by the automated classification procedure.
We should note that obtaining a low classification rate is
usually achieved with a cost of a low recall. In what follows,
we will also report the classification error rates and recalls
for the classification tasks performed by our sabotage tol-
erance protocol. More precisely, we will report the global
results (i.e. classification error rate and recall with respect
to all saboteurs, regardless of their profile) and the results
concerning only the colluding saboteurs (i.e. saboteurs be-
longing toM2 andM3 types).

First, we applied our method in pure populations with
only M1 or M2-type workers (Figures 7 and 8). We plotted
the actual ST protocol error rates (with dotted lines) against
the ones obtained with simple replication (with solid lines).
We can note in Figure 7a that with onlyM1-type naive work-
ers, our sabotage tolerance protocol works pretty well, in-
creasing the effectiveness of the replication by at least 10
times and avoiding the verification of each conflicting voting
pool (Figure 7b). With only M2-type workers (Figure 8a),
the sabotage tolerance protocol works in its full power if
the workers are sabotaging with rates greater than 0.3, i.e.,
s2 ≥ 0.3. For smaller values of s2, like 0.05, results of our
algorithm are not so good, but even in this case, when simple
replication is effective, our protocol succeeds to improve er-
ror rate by about 10 times. We can note that defeating all col-
luding saboteurs (the cases with big sabotage rates) is done
with the cost of a bigger redundancy (Figure 8b), as for ev-
ery conflicting voting pool we ask two new results. This is
the reason why in this case the redundancy is higher than the
theoretical redundancy. But, we should note that redundancy
is still lower than 4 and the percentage of the saboteurs in the
population is very high.

Regarding the classification tasks for the M1-type pure
populations (figure 7c), our protocol correctly retrieves al-
most all naive saboteurs with an acceptable low recall, if
they sabotage consistently (i.e. s1 > 0.3). Also, the recall
is low if there are a considerable number of saboteurs. The
worse results are obtained for the cases with f1 = 0.05 or
s1 = 0.05, i.e. there are very few saboteurs or they do not re-
veal out their profile. In this case, classification rates are big-
ger (for example in the case f1 = 0.05 or s1 = 0.3) because
the classification procedure is a statistical one and records
some errors by classifying honest workers as M1-type ma-
licious ones. But, this situation does not affect globally our
ST protocol because it introduces only very few additional
auditing and redundancy. We can see in figure 7a that also
in this case, a 10-times gain in ST protocol error rate is
obtained. We should note that this population setup evalu-
ates the performance of the initial classification procedure
described in section 3.3, which spots out (with a good cer-
tainty) the naive saboteurs.

Regarding the classification tasks for the M2-type pure
populations (figure 8c), we should note that our algorithm
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Fig. 7 Results obtained for a population structure with only honest and M1-type nodes
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Fig. 8 Results obtained for a population structure with only honest and M2-type nodes

recalls almost all saboteurs if they are in an acceptable pro-
portion ( f2 > 0.05) and they reveal their identity (s2 > 0.3).
The bigger global classification error rates for the cases when
f2 = 0.05 are associated with low recall. This means that
step 6 of the algorithm 2 spots out very few naive saboteurs,
letting (as expected) the forthcoming replication on suspect
voting pools to spot out colluding workers with the price
of the increased redundancy. We should also note that the
classification error rate for colluding saboteurs is always 0
(figure 8c), because in M2-type pure populations there are
no other saboteurs to be classified as colluding malicious.

Next, we considered mixed population structures with
naive and colluding workers against honest ones (figures 9,
10 and 11). Specifically, we considered that the naive work-
ers are in a small, medium or large proportions ( f1 = 0.05,
f1 = 0.2 and f1 = 0.4) and we varied the structure parame-
ters regarding the colluding workers.

We can notice (figures 9a and 10a) that if the naive work-
ers do not overwhelm the colluding ones (the cases when
f1 = 0.05 and f1 = 0.2), then the ST protocol is very ef-
fective in spotting out the collusion, especially on the cases
when the colluding workers are well defined (the sabotage
rate is big enough). For the case when f1 = 0.4 (figure 11a),
colluding workers have only a very small influence on the
overall and we got a situation similar with a pureM1 popu-
lation. Still, we get 10 times improvement in the error rate.

In this mixed case, the redundancy (figures 9b, 10b and
11b) is in between the pure population cases. In majority
of cases, the redundancy is small, being very significantly
below the theoretical one. We can notice that for the case
when colluding workers are in a large proportion ( f2 = 0.4

- figure 9b), if the naive workers shows their profile by a
big sabotage rate (s= 0.5), the redundancy is lower than the
case of only pure M2-type workers, as the naive saboteurs
are spotted out by the procedure described in section 3.3.

In what regards the classification, the ST protocol cor-
rectly identifies most of the colluding saboteurs. We should
note that big classification error rates for the colluding sabo-
teurs are reported for the cases when naive saboteurs over-
whelm the colluding ones ( f1 > f2). But, this is achieved
concurrently with a very low global classification error (see
figures 10c and 11c). This means that our ST protocol also
identifies naive saboteurs that happened to vote together and
classified them as colluding.

As we discussed previously, a M3-type worker is a hy-
brid one. We again considered various proportions of M3-
type saboteurs ( f3 = 0.05, f3 = 0.2 and f3 = 0.4) and naive
rates (c= 0.1, c= 0.5 and c = 0.9) over a full combination
of sabotage rates s3,1 and s3,2 (figures 12, 13 and 14).

The ST protocol results for populations consisting on
M3-type workers ((figures 12a, 13a and 14a)) do not dif-
fer too much from the one presented up to now, being sim-
ilar with the case of mixedM1 and M2 populations. The re-
dundancies show up a similar pattern as explained before.
Again, our protocol is much effective when theM3 saboteurs
behave mostly as colluding ones (c < 0.5) and have a well
defined colluding profile (s3,2 ≥ 0.3). But, also, in the rest of
cases, we obtain at least a 10 times improvement comparing
with the basic replication. The results of the classification
procedures are also very good, the algorithm identifying al-
most all colluding saboteurs.
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Fig. 9 Results obtained for a population structure with honest, M1 and M2-type nodes, M1-type workers being in a small ( f1 = 0.05) proportion
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Fig. 10 Results obtained for a population structure with honest,M1 andM2-type nodes, M1-type workers being in a medium ( f1 = 0.2) proportion
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Fig. 11 Results obtained for a population structure with honest, M1 andM2-type nodes, M1 -type workers being in a large ( f1 = 0.4) proportion

MixingM3-type workers with pureM1 andM2 ones does
not change the above results.

4.2 Discussion

In the Section 4.1 we have drawn out the following conclu-
sions:

– we succeed to keep the error rate in the acceptable limit
of 10−4 for the most majority of cases

– if the malicious workers reveal their colluding profile
with high consistency (some sabotage rate s2 ≥ 0.3), our
sabotage tolerance heuristic spots them successfully, even
if the number of saboteurs is large

– in all cases, we get at least 10 times improvement com-
paring with the simple replication, without a meaningful
increase of the redundancy. Even in the worst case (with
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a large number of very effective colluding saboteurs),
the redundancy remains below an entire additional repli-
cation per work unit.

– the classification procedure is effective, spotting out most
of the colluding workers with a low classification error
rate.

From the experiments it appears that the most difficult
situation for our sabotage tolerance approach occurs when
there are many colluding saboteurs (e.g. f2 = 0.4) and when
they sabotage very infrequently (s2 = 0.05). Here, our pro-
tocol succeeds to lower the error rate, but it still remains
around 10−3. If possible, a solution might be to increase the
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number of voting pools per worker (N). Nevertheless, the
actual findings in DGs make us think that such a scenario
has a very low probability of occurring in practice. In fact,
our selection of N was balanced between the good results
it yields in most cases and the need to keep it within the
realistic assumptions of a DG environment.

When presenting the sabotage models in section 2.2 we
assumed that the malicious nodes are not aware of our sab-
otage detection mechanism and they act to conceal them-
selves from majority voting. Now, let suppose that some
‘very’ malicious M2-type nodes are aware of our ST proto-
col and they will sabotage only when all nodes in the voting
pools are also M2-type ones. If every M2-type node in the
population is exhibiting such a behavior, these nodes will
score no votes against and will be never discovered. This
behavior happens to be at the limit of the behavior presented
in the paragraph before, withM2-type nodes sabotaging very
infrequently - as the probability the master assigns threeM2-
type nodes in a voting pool is very low (0.064 if f2 = 0.4).
Although, for the moment have no solution against this situ-
ation, we believe that this situation is very unlikely to occur
and even if it would take place, the sabotage rate would re-
main low (around 10−3 as before).

We also think that colludingM2-type nodes aware of our
ST protocol and waiting for showing themselves up to the
auditing phases of the protocol (steps 8 and 9 from algorithm
2) might not undermine the power of our algorithm. Suppose
that M2-type nodes do not sabotage in the initial round of
voting. Therefore, conflicting voting pools will involve only
M1-type nodes which will be spotted out by the classification
algorithm. In this case, the number of remaining suspect vot-
ing pools will be very low (almost zero) and steps 8 and 9
of the algorithm will almost be avoided. This case is similar
with the one that onlyM1-type nodes live in the population,
besides the honest ones. More, if M2-types nodes sabotag-
ing in the initial phase are co-existing together withM2-type
nodes that sabotage only in the auditing phases, as the ST
protocol selects for auditing honest nodes, it will be very
unlikely that two or three such ST protocol-awareM2-types
nodes to be selected for auditing.

Another difficulty of the ST protocol occurs when the
number of naive malicious workers is large ( f1 = 0.4). The
effectiveness of our ST protocol is closely related to the
weakness of replication in these situations, as shown in [15].
In fact, although we succeed to get improvements, to in-
crease performance one might need to increase m.

Another issue with our heuristic concerns the fact that
we do not eliminate completely all erroneous results. This
results from a number of facts. First, we select “honest”
workers to verify the suspicious results. Although we have a
very good confidence that our selected workers are honest,
we can not eliminate the possibility of selecting malicious
workers instead. This situation can happen with higher prob-

ability if the number of saboteurs is very big. Second, the
classification algorithm of Section 3.3 is tuned for a compro-
mise between error classification (false positives) and recall
(total number of real positives identified). If we want a very
small classification error rate for this algorithm, the recall
may be lower and conversely, for a large recall we should
accept a larger classification error rate. The larger the classi-
fication recalls are, the lower will be the redundancy of the
ST protocol and the number of errors in our ST protocol. On
the other hand the lower the classification error is, the lower
gets the ST protocol error rate. In any cases, 100% recall is
not achievable by any possbile classification scheme.

Regarding the computational effort, the matrix multipli-
cation algorithm is the most costly part. Kamvar et al. in [9]
give a computational analysis for this cost. To compute the
initial probability estimates pv,i, our algorithm scans once
the total voting pool results. To compute the joint distribu-
tion functions Fv, the algorithm performs for each worker at
most N2 multiplication and addition operations. To compute
the matrix C, the algorithm performs a summation for each
pairs of workers (quadratic complexity).

Thus, although the computation is somewhat heavy, the
master has to perform only scalar operations with quadratic
complexity and this can be run off-line.

Although our algorithm is an off-line one, we do not
state that the master has to wait until the whole pool of client
requests have been processed. The master simply has to set
a proper value for N (like 30 in our experiments) and run
the enhanced ST protocol once an average number of N re-
sults have been collected per worker. As we mentioned pre-
viously, bigger this number is, better performances are ob-
tained. Practically, DG projects with average-to-short task
length which usually employ m = 2 replication can afford
values of N from 20 to 30, which is enough for provid-
ing a good protection against collusion. Such values of N
are equivalent to running the enhanced ST protocol at ev-
ery 1-2 weeks, for projects like the ones supported in Ein-
stein@Home or World Community Grid.

4.3 Classification alternatives

At the heart of the heuristic presented in section 3 resides
the initial classification procedure that identifies with a good
reliability the naive M1-type workers. We agreed upon the
presented statistical approach after we tested several alterna-
tives, offered by the machine learning field, presented in this
section. First, we should note that we have an unsupervised
learning task with the goal of identifying the naive sabo-
teurs. As presented in section 3.2, nodes belonging to dif-
ferent types are characterized by different number of votes
against collected during their life in the system. Thus, the
number of votes against represents the essential information
to profile a node.
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Literature suggests to apply clustering algorithms like
ROCK [8], applied to cluster the US Congressmen after their
voting behavior during some period of time. If we consider
each node represented as a categorical vector of votes per
voting pools, our volunteer computing setup differs from the
US Congress setup because a node votes only on very few
work units from the total number of work units generated
in the system. In the US Congress each congressman votes
in the majority of open issues. Thus, the distance measure
defined by [8] is not applicable in our case and we got very
unstable results with this approach.

For clustering, machine learning suggests k-means [13]
as a simple heuristic to unsupervised cluster individuals.We
tested various representation of our nodes. First, we em-
ployed the P× P matrix of votes against, where P is the
number of workers, each node having allocated a row in this
matrix. Because this matrix is very sparse, the euclidean dis-
tance used by k-means does not have a strong-definedmean-
ing. Thus, k-means succeeds to separate the naive workers
only when they sabotage strongly, i.e. s1 > 0.5, which is not
acceptable for a desktop grid environment. If each node is
represented by its distribution function Fvi , we got somehow
better results. But, in both cases, k-means does not guar-
antee the convergence. For cases with naive workers show-
ing up very infrequently (s1 < 0.1), the classification perfor-
mance of k-means is very poor. We got the best of k-means
for our problem if we represented each worker by the nor-
malized values of the total number of votes against and the
total number of voting pools where the node get defeated. In
this case, k-means succeeds to extract out a good number of
naive workers (high recall), but on the cost of big number of
false positives (high error rate). Figure 15 shows the classi-
fication results, with k-means compared with our statistical
approach for several population structures.
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Fig. 15 Classification error rates for k-means clustering procedure
against the statistical approach for various population structures

Retrieving a high number of false positive naive work-
ers strongly influence the performance of the auditing pro-
cedure of algorithm 2. Thus, there is a higher possibility to
select a malicious node to audit a suspect voting pool and

less voting pools will be considered suspicious, as the num-
ber of nodes classified as honest is lower. Figure 16 shows
global comparative results, plotting together the error rate
of the ST protocol when performing the classification with
k-means and with our statistical approach.
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Fig. 16 Error rates of the ST protocol when using k-means clustering
procedure against the statistical approach for various population struc-
tures

5 Conclusion

In this paper, we presented an algorithm that targets collud-
ing nodes in desktop grid systems. We argued that simple
majority voting is powerless against colluding behavior and
we observed that any DG system needs at least 3 replicas
to defeat such nodes. Then, we proposed an algorithm that
uses off-line processing on a moderately large set of voting
pools to spot malicious nodes, before accepting any com-
putation from volunteers. To evaluate our approach we used
three types of nodes, ranging from naive (M1) to colluding
(M2) ones, including nodes with commuting behavior (M3).
Our experimental results show that our statistical approach
identifies well the nodes acting in a naive way, leaving only
the colluding (M2) nodes undetected. Then, we go after M2
nodes on a voting-pool-by-voting pool basis, whenever we
find conflicting results. We succeed to keep the overall error
rate low, even in the presence of smart colluding nodes.

As future work, we intend to further improve and sim-
plify our mechanisms for finding M1 and M3 nodes. Ad-
ditionally, we believe that one important limitation of our
work results from the assumption that the nodes are not aware
of the algorithm the master uses to spot them. Although the
M3 model tries to conceal its pattern of behavior, it falls short
on that attempt and we still do not have some formal proof
or some evidence showing that no model can defeat our sab-
otage tolerance scheme.

We believe that our procedure to spot out various mali-
cious behaviors in voting environments can be extended to
accommodate more than three voters in a voting pool. For
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example, e-commerce environments like E-Bay use opin-
ions to create a profile of various actors: buyers and sell-
ers. A scheme similar with the one described in this paper
might be employed to spot out which responders cheat when
submitting opinions. Another application would be quorum
systems in Byzantine faulty environments, where replicated
machines need to come to a consensus about various items
like read/write operations. Research on this topic focuses on
devising protocols to accommodate as many faultymachines
as possible, but they do not tackle the problem of identify-
ing those faulty machines that exhibit a correlated behavior
over time [14]. Thus, we think that our approach is worth for
consideration at a higher conceptual level and, with a proper
generalization, might have a larger applicability in computer
science.
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