
Wireless Networks manuscript No.
(will be inserted by the editor)

Single-Step Creation of Localized Delaunay Triangulations

Filipe Araujo1, Lúıs Rodrigues2

1 CISUC, Department of Informatics Engineering, University of Coimbra, Portugal,

e-mail: filipius@dei.uc.pt

2 IST/INESC-ID, Portugal, e-mail: ler@ist.utl.pt

Received: July 17, 2006 / Revised version: October 9, 2007

Abstract A localized Delaunay triangulation owns the following interesting properties for sensor

and wireless ad hoc networks: it can be built with localized information, the communication

cost imposed by control information is limited, and it supports geographical routing algorithms

that offer guaranteed convergence. This paper presents two localized algorithms, FLDT1 and

FLDT2, that build a graph called planar localized Delaunay triangulation, PLDel, known to be

a good spanner of the Unit Disk Graph, UDG. Our algorithms improve previous algorithms with

similar theoretical bounds in the following aspects: unlike previous work, FLDT1 and FLDT2

build PLDel in a single communication step, maintaining a communication cost of O(n log n),

which is within a constant of the optimal. Additionally, we show that FLDT1 is more robust than

previous triangulation algorithms, because it does not require the strict UDG connectivity model

to work. The small signaling cost of our algorithms allows us to improve routing performance,

by efficiently using the PLDel graph instead of sparser graphs, like the Gabriel or the Relative

Neighborhood graphs.

Key words Wireless communication – Routing protocols – Delaunay triangulation

2 Filipe Araujo, Lúıs Rodrigues

1 Introduction

In wireless ad hoc and sensor networks, nodes typically self-organize and communicate with each

other using radio broadcast. Nodes operate on batteries and thus need to run programs with

small memory footprints, low CPU requirements and energy-conserving communication protocols.

It is therefore utterly important to rely on routing schemes with small state and communication

overhead. To meet these requirements, nodes can run a localized routing scheme, where they only

need to maintain information about other nodes within a restricted neighborhood. Additionally,

for the sake of efficiency, a routing scheme should also be competitive, i.e., a path found by the

scheme should be at most c times longer than the shortest path.

Position-based routing algorithms usually follow a simple approach to forward packets that

takes into account the current position of the node holding the packet and the position of the

destination. For instance, in the very simple greedy routing algorithm [11], nodes forward the

packet to the neighbor that is closest to destination. Occasionally, packets reach a local minimum

node that does not have any available forwarding alternative. One common approach to overcome

these minima is to use a right-hand routing algorithm [6], which however needs a planar graph

(i.e., without intersection of edges). These algorithms are based on the idea of escaping from a

maze by never lifting the right hand from the wall. This form of routing is inefficient, specially in

planar graphs with a small number of edges. Hence, this creates a challenge: we want to build a

planar graph and yet it should be as dense as possible.

One way of achieving competitive routing with a planar graph is to build a (global) Delaunay

triangulation [7]. Unfortunately, it is not possibly to create a global Delaunay triangulation in

wireless ad hoc networks, because: i) edges may be longer than communication range; ii) it cannot

be built with local information and therefore, communication cost would be too high. In fact, we

know that, in general, there is no way of ensuring competitive routing with a localized routing

scheme [20]. Despite this negative result, a localized variation of the Delaunay triangulation is an

interesting component for position-based routing schemes, because it creates a graph with many

edges within the constraint of being planar, thus allowing routing algorithms to achieve good

Single-Step Creation of Localized Delaunay Triangulations 3

performance. Our main motivations to use a localized variation of the Delaunay triangulation are

precisely the theoretical economy of the triangulation, the performance of the routing algorithm

and the fact that all the approaches that we know to create triangulations have some important

drawbacks.

In the literature, one can find several algorithms that build Delaunay triangulations for routing

purposes, e.g., [23,24,25,14,21]. All these algorithms have some form of trade-off between the

number of communication steps that they need and the communication cost involved. We define

a communication step as the period required for one or more nodes sending causally unrelated

messages and for the destination(s) to receive it. As we describe in Section 3, the most efficient

algorithms that build provably good variants of the Delaunay triangulation may require a single

communication step. On the other hand, their communication cost can grow to O(n2 log n) bits,

as each node may need to advertise each single neighbor that it sees1. On the contrary, the

most efficient algorithms in terms of asymptotic communication cost require as many as four

communication steps, which is too much of a burden in a real wireless ad hoc or sensor network.

For these reasons, simpler algorithms that create sparser planar graphs (like the Gabriel graph

that we review in Section 2) are often preferred. These simpler graphs require no communication

step besides a beacon message from each node. Nodes use a total communication cost of O(n log n)

bits to send this beacon message.

In this paper, we improve the work of Li et al. [23,24], by presenting two algorithms that

are considerably simpler and yet build the same Planar Localized Delaunay Triangulation graph

(PLDel), with the same asymptotic communication cost, but with just a single communication

step. We call “Fast Localized Delaunay Triangulation 1” (FLDT1) and “Fast Localized Delaunay

Triangulation 2” (FLDT2) to our algorithms. We believe that one of the interesting aspects of

our work is that we consider the use of a pair of models that goes beyond the unit dist graph

(UDG). In the UDG model, two nodes are neighbors if and only if their distance is at most

1. Despite being unrealistic it is difficult to overcome the simplicity of UDG for position-based

1 We assume that the identification and the position of nodes need O(log n) bits in an n-node network.

4 Filipe Araujo, Lúıs Rodrigues

routing algorithms, because under this model, designers can be sure that nodes see neighbors

located in some specific places and remove the edges that intersect. However, in FLDT1, we do

not need a strict unit dist graph (UDG) and nodes are not required to know their communication

range. We show in this paper that the minimal graph model where FLDT1 can create connected

and planar graphs is tightly related to the Relative Neighborhood Graph and therefore we call

it the “Relative Neighborhood Model”. The FLDT2 algorithm is an optimization of FLDT1 that

(like the other aforementioned triangulations) only works in unit disk graphs where nodes are

aware of their communication range. This enables FLDT2 to use a very small number of messages,

especially in denser networks.

Both FLDT1 and FLDT2 are well suited to wireless environments for the following reasons:

i) they are very efficient as they require a single communication step; ii) they are applicable to

dynamic and asynchronous settings (see Section 6.2), such as those found in a sensor or mobile

network, where nodes can exhaust their batteries or move away from communication range; iii)

they are localized, only requiring nodes to receive information broadcast by direct neighbors, thus

having a communication cost within a small constant of the optimal (assuming that a beacon

message of O(log n) bits in an n-node network is necessary per node); iv) they require nodes to

keep track of only a constant number of neighbors in the average; v) under the constraint of

preserving planarity, they build a graph with good density; finally vi) FLDT1 always creates a

connected and planar graph in the more realistic Relative Neighborhood Model.

In a previous conference version of this paper [1], we have presented FLDT1 2. Here, we present

FLDT2, we show that FLDT1 can work under more general models than UDG and, finally, we

compare PLDel(V) with an additional triangulation, called “Partial Delaunay Triangulation” [25].

The rest of the paper is structured as follows. For self-containment, we provide a short overview

of the necessary background concepts in Section 2. In Section 3, we provide a survey of related

work on Delaunay triangulations in wireless networks. In Section 4, we describe our algorithms

2 In that paper, we did not need to distinguish this algorithm from another one and therefore, we called

it simply FLDT.

Single-Step Creation of Localized Delaunay Triangulations 5

and prove their correctness. In Section 5 we show that FLDT1 can operate under more general

connectivity models. In Section 6, we experimentally evaluate our algorithms. Section 7 concludes

the paper and points directions for future work.

2 Preliminaries

2.1 Notation

Throughout this paper, we will use the following conventions for notation: a triangle defined by

nodes A, B and C is denoted 4ABC; an angle (< π) between edges AB and AC defined at A is

denoted ∠BAC or ∠CAB; the disk whose diameter is defined by two nodes A and B is denoted

d(A, B); the circumcircle of nodes A, B and C is denoted ©ABC.

2.2 Initial Graph Model

We assume that nodes can determine their own position either with a GPS-like receiver or with

some other alternative mechanism. We also assume that nodes can determine the position of

their neighbors, usually through the exchange of beacon messages. Given a set of nodes V in a

two-dimensional space, the unit disk graph UDG(V) is comprised of all nodes V and all edges

connecting pairs of nodes of V whose distance is at most 1, i.e., in this model, two nodes A and

B are direct neighbors (or simply neighbors) if and only if ||AB|| ≤ 1. Nodes A and B are k-hop

neighbors if they can reach each other in k or fewer hops. The set of k-neighbors of node A is

denoted Nk(A), while for the special case k = 1, this is simply denoted N(A). Of the triangulations

that we present in this paper, only FLDT1 does not strictly assume the UDG model.

2.3 Spanning-ratio

Given an initial graph G and a subgraph H , we say that H is a “t-spanner of G” if and only if

there is a constant t such that:

6 Filipe Araujo, Lúıs Rodrigues

max
∀S,D∈V

{‖ΠH (S, D) ‖
‖ΠG (S, D) ‖

}

≤ t

where S and D are respectively the source and destination of a path and ||ΠH (S, D) || is the

length of the shortest path between S and D in graph H . This means that for all nodes S and

D, the shortest path between S and D in H , ΠH (S, D), is at most t times longer than in G,

ΠG (S, D), where t is known as the “length stretch factor”. When the graph G is the complete

Euclidean graph determined by V , the above expression defines an “Euclidean t-spanner”. In a

sense, this factor indicates the quality of the subgraph. The smaller t is, the better the subgraph

is and the more likely it is that a packet will use shorter routes (which translates to either fewer

and/or shorter hops).

Due to the severe energy constraints that usually affect wireless nodes, authors often focus in

energy metrics instead of geographical or topological distances. In this case, the cost of relaying

a message is not proportional to the distance between nodes A and B, ||AB||, as implied in

the definition of the spanning-ratio above, but includes a factor ||AB||α, with α ≥ 2 (see for

instance [29,31,4]). Interestingly, Kozma et al. [17] showed that a Delaunay triangulation placed

in the unit disk is energy efficient for routing and for flooding, although their analysis cannot be

directly applied to the case we consider in this paper, because we do not constrain the placement

of nodes to a disk. Additionally, we create restricted Delaunay triangulations instead of complete

Delaunay triangulations (in general, this is impossible in wireless ad hoc networks— see Section 3

for more details about triangulations).

2.4 Localized Routing Schemes

A routing scheme is comprised of two parts: i) a pre-processing algorithm that prepares data

structures needed to support routing decisions (e.g., routing tables or a subgraph of the initial

connection graph), and ii) a distributed routing algorithm running at each node that determines

the next hop for a message. Given the frequent topology changes and the limited resources available

in wireless ad hoc networks, it is very convenient to limit the control information used for routing to

Single-Step Creation of Localized Delaunay Triangulations 7

S

A

B
C

D

E

T

Figure 1 Greedy Perimeter Stateless Routing

the minimum possible. Localized routing schemes [18,8,23,15] address this goal. A routing scheme

is localized if i) nodes only collect information of neighbors that are at most at a constant number

of hops away; ii) in addition, nodes are required to store information of at most a constant number

of other nodes and iii) messages can only store information of a constant number of nodes, like

the origin and the destination.

2.5 Position-based Routing Schemes

Localized routing does not come without costs, because localized knowledge can cause message

delivery to fail. One of the simplest ways to ensure message convergence is to use an algorithm

based on the right-hand rule [6]. However, algorithms based on the right-hand rule, also called

face or perimeter algorithms, can only ensure convergence in planar graphs (such as FACE-1 [18]

and FACE-2 [8]). Furthermore, these algorithms tend to have poor performance. Therefore, to

improve routing performance, the right-hand rule can be combined with other approaches, like

the Greedy algorithm [11], to create hybrid algorithms such as GFG [8], GPSR [15] (very similar to

GFG) or GOAFR+ [19]. When possible, GPSR uses the greedy strategy of forwarding messages to

the neighbor closest to destination. When it finds a local minimum, GPSR switches to perimeter

mode and routes around faces. As soon as it finds a node closest to destination than the previous

local minimum, GPSR goes back to greedy mode. Figure 1 illustrates the idea. Routing from S

to T uses greedy routing in the links S −A−B −C and D−E − T . However, since node C sees

itself as a local minimum with respect to T , it must use the perimeter mode to route to D.

8 Filipe Araujo, Lúıs Rodrigues

A B

C

Figure 2 An edge of the Relative Neighborhood

Graph

A B

C

Figure 3 An edge of the Gabriel Graph

Figure 4 Delaunay Triangulation, Voronoi tessellation and the emtpy circumcircle property

In previous stages of this work, we have made some experiments to evaluate routing perfor-

mance in typical wireless graphs, including some triangulations [1,2]. We have used the GPSR

routing algorithm, because it is very simple and it does not compromise routing performance in

most cases. However, contrary to what has been thought until recently, Kim et al. [16] showed that

GPSR and GOAFR+ could fail to find a feasible path even though one existed. Later, Frey and

Stojmenovic [13] extended this work to find that other routing algorithms could also fail under

certain circumstances, while showing that GFG ensures routing convergence in arbitrary graphs.

Although quite relevant, this fact has little or no impact on the work we present here, because we

focus on the construction of a spanner graph and not on the routing algorithm that works atop

such graph.

2.6 Basic Planar Subgraphs

The initial wireless connection graph, e.g., UDG, is typically not planar, specially in denser net-

works. Hence, one of the most fundamental problems of position-based schemes is the creation

of a planar subgraph from the initial graph (be it UDG or other), such that GPSR (or a similar

Single-Step Creation of Localized Delaunay Triangulations 9

algorithm) is guaranteed to converge. This is the role of the pre-processing algorithm. Among the

simplest planar graphs, we have the “Relative Neighborhood Graph” (RNG) and the “Gabriel

Graph” (GG). One of the strongest points of these graphs is that nodes can create their own local

views using only position and identification of their neighbors.

The RNG is comprised of all edges AB such that there is no node C for which ||AC|| < ||AB||

and ||BC|| < ||AB|| (i.e., node C, cannot be simultaneously closer to A and B than A and B are

from each other). In Figure 2, edge AB is a RNG edge if and only if the gray area is empty of

nodes. The GG is comprised of all edges AB such that d(A, B) does not contain any other node

of V . This is represented in Figure 3, where the gray area must be empty of nodes. The edges

of the GG are called Gabriel edges. It should be noted that RNG is a subgraph of GG. While

using few resources to create a planar graph is important, it is only part of the problem. It is also

desirable to create good spanners of the initial connection graph. Unfortunately, this is not the

case of RNG and GG, which are bad spanners of UDG: their use seriously compromises routing

performance [10,2].

A denser planar graph is the “Delaunay triangulation” (DT) of a node set V , also represented

as Del(V). Del(V) is the set of edges satisfying the “empty circle” property: edge AB belongs to

the triangulation if and only if there is a circle containing A and B, but not containing any other

node. An important property of the Delaunay triangulation, known as the “empty circumcircle”

property, states that the circumcircle of a triangle does not contain any node of V . The Delaunay

triangulation has an associated dual concept called, the “Voronoi tessellation”. The Voronoi tes-

sellation partitions the space into convex polytopes in the following way. Given a node set V , the

polyhedron of node N is comprised of the points that are closer to N than to any other node of V .

Figure 4 illustrates the relation between the Voronoi tessellation and the Delaunay triangulation:

two nodes share a Delaunay edge if and only if their Voronoi cells have a common border. We

can also see the empty circumcircle property for two of the triangles, as no fourth node is inside

the gray circumcircles. The DT is a supergraph of the GG and, consequently of the RNG. The

Delaunay triangulation naturally emerges as a good subgraph, because it is a 1+
√

5
2 π-spanner of

10 Filipe Araujo, Lúıs Rodrigues

the complete Euclidean graph3 [9] and can be computed in a deterministic way if nodes share the

same information. In [26], Liebeherr et al. proposed an algorithm to build a Delaunay triangula-

tion that serves as an overlay network on top of IP. Unfortunately a Delaunay triangulation is not

suitable for wireless environments for two main reasons: i) it may have edges longer than 1; and

ii) it cannot be built by a localized algorithm. In fact, ensuring the empty circumcircle property

may require knowledge of nodes that may be arbitrarily distant in terms of hops, even if physically

close. For these reasons, most triangulations used in wireless environments are variations of the

Delaunay triangulation. Some of the triangulations that we present in the next section are still

good spanners of UDG without incurring in the problems of a complete Delaunay triangulation.

3 Related Work

Under the UDG model, a complete Delaunay triangulation may not exist, because some edges

may be longer than 1. As a result of this impossibility, many variations of the Delaunay trian-

gulation have been proposed in the recent past. Perhaps the most obvious variation is the Unit

Delaunay triangulation, defined as UDel(V) = Del(V) ∩ UDG(V), which is a (4
√

3π)/9-spanner

of UDG(V) [23]. Gao et al. define the Restricted Delaunay Graph, RDG, as any planar subgraph

that contains UDel(V). Of central importance to us, in this paper, is the definition proposed

by Li et al. in [23] of k-localized Delaunay graph over a node set V , LDel (k)(V). LDel (k)(V) is

comprised of two types of edges (not longer than 1):

i) all edges from the GG; and

ii) edges of all triangles ABC for which there are no nodes inside ©ABC reachable by A, B or

C in k or fewer hops.

Li et al. [23] proved that LDel (k)(V) is planar for k ≥ 2, but edges may intersect for k = 1.

Unfortunately LDel (2)(V) is more difficult to create than LDel (1)(V). For this reason, Li et al.

proposed the graph PLDel(V) in [23] and used a slightly different definition in a later work [24].

3 This bound was later improved to (4
√

3π)/9 [23].

Single-Step Creation of Localized Delaunay Triangulations 11

Lan and Wen-Jing also create a similar graph in [21]. Hence, we assume a broad definition of

PLDel(V) to be a planar subgraph of LDel (1)(V), which is also a super-graph of LDel (2)(V).

Note that both LDel (k)(V) and RDG are super-graphs of UDel(V), i.e., RDG ⊇ UDel(V)

and LDel (k)(V) ⊇ UDel(V). Hence RDG, PLDel(V) and LDel (k)(V), for all k, are (4
√

3π)/9-

spanners of UDG(V).

The reader should notice that the communication cost to build the triangulations may vary. Gao

et al. [14] need a communication cost of O(n2 log n) to build an RDG. Lan and Wen-Jing [21] also

need a communication cost of O(n2 log n) to build PLDel(V). Only the algorithm of Li et al. [23,

24] has an optimal communication cost of O (n log n). However, this algorithm needs four com-

munication steps to converge. For random graphs resulting from a uniform distribution of nodes,

Avin [3] presented an algorithm that creates an RDG that can achieve a cost of O
(√

n logn log n
)

with high probability, provided that nodes achieve a critical radius guaranteeing connectivity (dif-

ferently from what we do in this paper, this cost assumes that nodes are aware of each other,

otherwise, the cost of beacons would inevitably raise to O(n log n)).

The Partial Delaunay Triangulation, PDT , introduced by Li et al. in [25], only requires knowl-

edge in direct neighbors. The PDT graph includes all Gabriel edges as well as the following ones.

If d(A, B) contains nodes in both sides of edge AB then, AB /∈ Del(V) and therefore A deletes

it. Hence, consider that d(A, B) only contains nodes in one side of edge AB. There must be some

node C that maximizes ∠ACB. Let α = ∠ACB. A can add edge AB if i) ©ACB is empty of

nodes from N(A) and ii) sin α > d
R

, where R is the transmission range of the nodes and d = ||AB||.

The rationale for this is that if the diameter of the circumcircle ©ABC is not greater than the

communication range of node A and B, A (and B) may be certain that the circumcircle is empty

of nodes (the reader is referred to Figure 5). Although this algorithm is simple and requires no

additional communication step after neighbors are known, the PDT graph has fewer edges than

any of the aforementioned triangulations, because due to its conservative approach, it removes

some edges that belong to UDel(V). In Figure 6, we illustrate the relations of inclusion between

the graphs presented before (in this figure, a graph of a given layer includes all the graphs of the

12 Filipe Araujo, Lúıs Rodrigues

A B
d

C

<R

α−π/2
α

Figure 5 How to determine if edge AB belongs to the PDT graph

UDG

LDel (1)(V)

Non
-pl

an
ar

go
od

spa
nn

er
gra

ph
s

PLDel(V)

LDel (k)(V), k ≥ 2

UDel(V)

R
D

G Plan
ar

go
od

spa
n-

ne
r gra

ph
s

PDT

GG

RNG

Minimum Spanning Tree

Plan
ar

wors
e

spa
nn

er
gra

ph
s

Figure 6 Relation between some well-known graphs

underlying layers; as a result, density increases from the bottom to the top). The graphs on top do

not fulfill our needs, because they are not planar. The double lines depict the limits of the planar

variants of the Delaunay triangulation that are super-graphs of UDel(V). All the graphs that are

between those lines are (4
√

3π)/9-spanners of UDG(V).

To compute any of the former triangulations, nodes also need an algorithm to compute the

Delaunay triangulation of a point set. In literature, we can find several algorithms that build

Delaunay triangulations, e.g. [22,12,28]. Of particular interest to us are the algorithms that allow

Delaunay triangulations to be computed in an incremental way [5,30], as new nodes that arrive

later do not force a recomputation of the entire triangulation.

Single-Step Creation of Localized Delaunay Triangulations 13

4 Triangulation Algorithms

In this section, we present the Fast Localized Delaunay Triangulation algorithms (FLDT1 and

FLDT2) that create the PLDel(V) graph. Our algorithms improve the results of Li et al. [23,24].

Although the asymptotic communication cost of all these algorithms is O(n log n), our algorithms

require one communication step, while [23] requires 4 communication steps. In fact, our algorithms

are optimal in the sense that given the knowledge of direct neighbors, at least one communication

step is needed to create a super-graph of UDel(V). Furthermore, the total signaling cost of both

our algorithms is much smaller than that of previous ones, as we will show in the evaluation

section. The reason for this is that, in FLDT1 and FLDT2, nodes send only a subset of their

Delaunay triangulation in a single communication step (if the subset is empty no message is sent).

Although FLDT1 uses more messages than FLDT2, it does not require nodes to know their

communication range. Such knowledge is required by the algorithm of Li et al. [23,24], PDT , and

FLDT2. Additionally, we will show that FLDT1 resists to graph models that extend the UDG

model. We believe that these are considerable advantages in practical settings.

4.1 Description of FLDT1

The FLDT1 algorithm is decentralized, as it does not rely on any centralized component, and

localized, since nodes are only required to gather knowledge about some nodes in their 2-hop

neighborhood. The algorithm builds a triangulation that ensures routing between any pair of

nodes as long as UDG(V) is connected. The algorithm consists of the following logical steps:

1. The neighbor discovery step. The purpose of this step is to allow nodes to discover

their neighbors. For sake of clarity, we first describe and analyze the algorithm in the context of

a fixed setting, where all nodes know their neighbors a priori. The discussion of the use of our

algorithm in the context of dynamic settings (that may require the exchange of beacon messages)

is postponed to Section 6.2.

2. The triangulation step. The purpose of this step is to let each node compute and advertise

the relevant Delaunay triangulations to its neighbors. Based on the information collected during the

14 Filipe Araujo, Lúıs Rodrigues

neighbor discovery step, each node P locally computes a Delaunay triangulation. For convenience

of exposition, we introduce the predicate Delaunay4P (Q, R) that holds true at P if, according to

the triangulation computed by node P , triangle 4PQR should exist. Delaunay4PQR will also

be used when referring to the predicate at no particular node. When Delaunay4P (Q, R) holds at

P , if ∠QPR ≥ π/3, then P broadcasts a triangulate 4PQR message to all nodes within range.

The purpose of the π/3 condition is to ensure that no node will issue more than 6 triangulate

messages by its own initiative (as in [23]). Since no additional messages are sent in the following

steps, total communication cost of FLDT1 is O (n log n). In practice, the constant involved in this

bound is small, because, as we show in Section 6, each node announces less than 6 other nodes in

average.

3. The sanity step. The purpose of this step is to let neighbor nodes eliminate inconsistent

Delaunay triangulations. They do so by comparing triangulations computed locally with the trian-

gulations computed by their neighbors in Step 2, as advertised by triangulate messages. Note

that by processing triangulate messages, nodes may learn about new nodes that are not their

direct neighbors. This addititional information will never create new Delaunay triangulations, as

triangulations must be formed with direct neighbors. However, triangulate messages may inval-

idate some of the triangulations computed in Step 2. This may happen at P if: i) Q or R broadcast

a triangulate message with some node T that invalidates 4PQR, i.e., T ∈ ©PQR, or ii) some

node W sends a triangulate message with an intersecting triangle WXZ, where either X or Z

invalidate 4PQR, i.e., X ∈ ©PQR or Z ∈ ©PQR. Case i) ensures that a node only maintains a

predicate if its neighbors are not aware of some node that invalidates it, while case ii) avoids the

existence of intersections4.

4. The Gabriel edges step. The purpose of this step is to add to the graph all missing

Gabriel edges. Otherwise, despite always being correct, a Gabriel edge PQ for which no predicate

Delaunay4P (Q, R) holds at P (e.g., after switching to false in Step 3) would not be included

by P . This step will increase the density of the graph, while keeping O(n) edges (note that a

4 Note that case i) can also prevent some intersections.

Single-Step Creation of Localized Delaunay Triangulations 15

S
Q

P

R

Figure 7 Edge announced by FLDT2

Gabriel edge always belongs to the Delaunay triangulation and can be determined locally without

additional exchange of information).

Optimization. To simplify our algorithm, all triangulate messages should be sent in a

single control message. �

When comparing FLDT1 with previous solutions [23,21] one must notice that the simplicity of

our algorithm comes from two insights, that we later prove correct in Section 4.3. First, proposals

sent in triangulate messages, alone, suffice to confirm or reject triangulations proposed by

neighbors in their own triangulate messages (and vice-versa), i.e., there is no need to dedicated

replies. This insight builds on the observation that two Delaunay neighbors do not need to agree

on some predicate Delaunay4PQR. It can hold at P but not at Q and R if these two latter nodes

are out of range of each other. The fundamental issue is, in fact, to ensure that two nodes P and

Q always agree on whether edge PQ should exist (Lemma 5). Second, if three nodes P , Q and

R wrongly assume the existence of 4PQR, intersected by 4WXZ, such that one of the nodes

of 4WXZ is inside ©PQR, then P , Q and R will listen to the same triangulate message on

4WXZ, thus commuting the predicate Delaunay4PQR to false simultaneously at P , Q, and R

(Lemma 10).

4.2 Description of FLDT2

The FLDT2 algorithm differs from FLDT1 in step 2. In FLDT1, a node P announces all triangles

PQR for which Delaunay4P (Q, R) holds at P and ∠QPR ≥ π/3. However if all the nodes

16 Filipe Araujo, Lúıs Rodrigues

of the triangle are aware of each other, announcing the triangle works like a kind of positive

acknowledgment from the announcing node. In many triangles, this is pointless (because the three

nodes agree on the triangle). It is better to let one of the nodes, say P , announce a node that

rejects the triangle if P is aware of such a node. In a sense this will implicitly work as a negative

acknowledgment for the triangle. P only announces triangles when the other two neighbors Q and

R are not aware of each other, i.e., where besides the previously stated conditions, ||QR|| > 1.

This prevents Q and R from creating wrong triangulations (possibly with P). Figure 7 gives an

example where node P needs to announce 4PQR. Since Q is not aware of R, it is assuming that

4QPS is correct. However, it will switch predicate Delaunay 4Q(P, S) to false after receiving

the announcement from P . On the other hand, Delaunay 4PRS holds at the three nodes and all

the edges are short. This makes any announcement of this triangle unnecessary. Hence, we only

change step 2 of FLDT1 to:

2. The triangulation step. When Delaunay4P (Q, R) holds at P , if ∠QPR ≥ π/3 and

||QR|| > 1, then P broadcasts a triangulate 4PQR message to all nodes within range.

In FLDT2, nodes need to infer whether or not two of their neighbors are within range of each

other. This limits the use of FLDT2 to scenarios where nodes are aware of their communica-

tion range (algorithms like the one of Li et al. [23,24] and PDT also have similar limitations).

Nevertheless, FLDT2 is an optimization of FLDT1 that saves many messages in a strict UDG

model.

4.3 In the UDG Model, FLDT1 and FLDT2 Create PLDel(V) in a Single Communication Step

From the algorithms, it follows that nodes running FLDT1 and FLDT2 use a single communication

step. Hence, in this section we need to prove that these algorithms build, in fact, the graph

PLDel(V). In Lemma 6, we show that if non-Gabriel edge AB exists at A, there must be some

C ∈ d(A, B) such that Delaunay 4ABC holds at the three nodes. This result stands on top

of Lemmas 1 to 5 and we use it to prove, in Lemma 9, that intersections are impossible at the

end of step 3 of the algorithms. From this point, we prove in Lemma 10 that no intersection is

Single-Step Creation of Localized Delaunay Triangulations 17

A
B

C
X

Y

Figure 8 Possible intersection

possible at the end of the algorithms and in Lemma 11 that the final graph is a planar subgraph

of LDel (1)(V). Our final result is Theorem 1, which proves that we build, in fact, PLDel(V). We

state all the proofs for the FLDT2 algorithm, but they can be trivially extended for FLDT1. One

crucial aspect here is that most Lemmas also hold for FLDT1 in other models beyond UDG. In

this way, we can adapt demonstrations to other more general models (see Section 5). In all the

proofs, we assume that there are no four co-circular nodes. Simple tie-breaking mechanisms can

remove co-circularities, if they ever occur in practice.

The proofs of Lemmas 1, 2 and 3 and of Corollary 1 are either straightforward or known results

(see, for instance [14] and [21]).

Lemma 1 If two edges AB and XY intersect, then at least one of the nodes is within communi-

cation range of the other three.

Lemma 2 Consider any circumference going through A and B and assume that edge XY intersects

edge AB, such that X and Y are both outside d(A, B). There is no circle going through X and Y

that does not include either A or B or both.

Lemma 3 If, at the end of the step 2 of the FLDT2 algorithm, non-Gabriel edge AB exists at

A and B, there must be some node C, such that C ∈ d(A, B) maximizes ∠ACB and Delaunay

4ABC holds at A and B.

18 Filipe Araujo, Lúıs Rodrigues

Corollary 1 If, at the end of step 2 of FLDT2, non-Gabriel edge AB exists at A, there must be

some node C, such that C ∈ d(A, B) maximizes ∠ACB and Delaunay 4A(B, C) holds.

Lemma 4 If, at the end of step 2 of FLDT2, Delaunay 4A(B, C) holds, but edge AB does not

exist at B, then B must have sent a triangulate message including some node D such that

D ∈ ©ABC and CD intersects AB.

Proof AB is not a Gabriel edge. From Corollary 1, if non-Gabriel edge AB exists at A, there is

some node C ∈ d(A, B) such that Delaunay 4A(B, C) holds. If AB does not exist at B there

must be some X and D such that XD intersects AB and Delaunay4B(X, D) holds at B. We

can assume without loss of generality that X and C are on the same side with respect to AB

and possibly X = C. Since C ∈ d(A, B), ©ABC ⊂ d(A, B) in the same side of AB as X and C

are, i.e., all the circumcircle ©ABC in the same side of X and C is visible to A. C ∈ d(A, B) is

visible to B. Hence, either X = C or X /∈ ©ABC which, from Lemma 2 and from the definition of

Delaunay triangle, implies that D ∈ ©ABC, otherwise, XD could not be a Delaunay edge. Since,

∠XBD > ∠ABD > π/3 and ||AD|| > 1, B must have sent information of D in its triangulate

messages.

Lemma 5 If at the end of the FLDT2 algorithm, edge AB exists at A it also exists at B.

Proof If AB is a Gabriel edge, step 4 ensures that it exists at A and B. If it is a non-Gabriel edge

and it exists at one of the nodes, but not in the other, it follows directly from Lemma 4 that the

node that has it must delete the edge AB at step 3 of FLDT2. Now assume that both nodes A

and B agreed on the edge at the end of step 2. From Lemma 3 there is a single node C such that

Delaunay 4ABC holds at A and B. It could occur that one of the nodes, say A deleted the edge

AB due to a message sent by some node X , not heard by B, announcing a triangle with some

node Y ∈ ©ABC such that XY intersected 4ABC. In this case, XY must intersect two edges

of 4ABC and since A and B are not aware of Y , from Lemma 1 they must be both aware of X .

Therefore, B and C would also have to listen to the message of X , thus contradicting the initial

assumption.

Single-Step Creation of Localized Delaunay Triangulations 19

Lemma 6 If, at the end of the FLDT2 algorithm, non-Gabriel edge AB exists at A, there must

be some third node C, such that C ∈ d(A, B) maximizes ∠ACB and Delaunay 4ABC holds at

A, B and C.

Proof If Delaunay 4ABC holds at A, from Lemmas 3 and 5, it must also hold at B and we

know that C maximizes ∠ACB. Since C ∈ d(A, B), ∠ACB > π/2 > π/3. Now assume that

Delaunay 4C(A, B) does not hold, because C is aware of at least one node inside ©ABC. In

this case, two possibilities exist: either C includes AC in its triangulation or it does not. If it

does not, from Lemma 5 it follows that Delaunay 4A(B, C) could not hold at the end of the

algorithm. Therefore, assume that AC exists (so does BC). In this case, there must be some node

D 6= B, such that Delaunay 4C(A, D) holds and CD intersects AB. D ∈ ©ABC, or otherwise,

©ACD would contain B, which would be a contradiction. Since ||AD|| > 1 and ∠ACD > π/3, C

would announce this triangle which would make A switch Delaunay 4A(B, C) to false. The same

reasoning could be made about B and the Lemma follows.

Lemma 7 If, at the end of the FLDT2 algorithm, XY intersects AB and Y is not aware of A

and B (and vice-versa), then there must be some node C ∈ d(A, B) such that Delaunay 4ABC

holds at A, B and C and Y ∈ ©ABC.

Proof From Lemma 5, AB must exist at A and B and XY must exist at X and Y . Since A and

B are not aware of Y (and vice-versa), from Lemma 1, we immediately know that X is within

range of the other three nodes. Since X is aware of A, B and Y , edge AB must not be a Delaunay

edge and consequently it is not a Gabriel edge. Then, from Lemma 6, there must be some node

C ∈ d(A, B) such that Delaunay 4ABC holds at A, B, C. Clearly X /∈ ©ABC, because A and

B are aware of X . Therefore, from Lemma 2, Y ∈ ©ABC, because X considers XY to be a

Delaunay edge.

Lemma 8 If at the end of the FLDT2 algorithm, edges AB and XY intersect, then for one of the

nodes, say Y , we have that Y is aware of X, but not of A or B.

20 Filipe Araujo, Lúıs Rodrigues

Proof From Lemma 1, one of the nodes is within range of the other three. To satisfy our hypothesis,

this could only be X . From Lemma 5, AB must exist at A and B and XY must exist at X and Y .

Assume that Y is in range of A. In this case, either A could not consider edge AB to be a Delaunay

edge, or X could not consider XY to be a Delaunay edge, because a Delaunay triangulation

cannot have intersections. Therefore, we must conclude that ||AY || > 1 and ||BY || > 1, because

by hypothesis and from Lemma 1 X is aware of A, B and Y .

Lemma 9 If two edges AB and XY intersect at the end of the step 2 of the FLDT2 algorithm,

at least one of them is deleted in the step 3 of the algorithm.

Proof Assume that the intersection persists at the end of step 3 of the FLDT2 algorithm. This

means that it will also exist at the end of the algorithm and from Lemmas 7 and 8, we can

assume without loss of generality that i) ||Y A|| > 1 and ||Y B|| > 1 and ii) there is some node

C ∈ d(A, B) such that Delaunay 4ABC holds at A, B and C at the end of the FLDT2 algorithm

and Y ∈ ©ABC. Also, from Lemma 2, X ∈ d(A, B) and it must be on the same side of AB as

C is, otherwise AB could never exist. However, from Lemma 6, C 6= X and either AC intersects

XY or BC does. We can assume without loss of generality that it is AC. Since X is aware of A,

C and Y , AC is not a Gabriel edge (otherwise, XY would not exist at X). Hence, AC is in the

same conditions as AB of the hypothesis of this Lemma. The only difference is that AC intersects

XY closer to X than AB does. This means that for any intersecting edge we can find another

intersecting edge different from any of the previous. This is a contradiction, because the number

of nodes is finite. The Lemma follows.

Corollary 2 If at the end of step 2 of the FLDT2 algorithm, Gabriel edge XY intersects non-

Gabriel edge AB, AB must be deleted at step 3.

At this point, we still need to prove that the last step of the FLDT2 algorithm (the Gabriel

edges step) cannot create a new intersection.

Lemma 10 At the end of the FLDT2 algorithm, there can be no intersections.

Single-Step Creation of Localized Delaunay Triangulations 21

Proof From Lemma 9, there can only be an intersection between AB and XY if one of them (a

Gabriel edge) is created at step 4 of the FLDT2 algorithm. Assume without loss of generality that

XY is the Gabriel edge. Also, assume that XY is created for the first time at step 4. Clearly,

edge AB is not a Gabriel edge and from Lemma 2, either X or Y ∈ d(A, B) (assume without loss

of generality that it is X). This means that the triangulation of X must have included at least

two triangles with XY implying that it must have existed at the end of step 2, thus contradicting

our initial assumption. Now, assume that edge XY was deleted at step 3 and re-added at step 4.

From Corollary 2, in this case, edge AB must have been deleted at step 3 and there will be no

intersection.

Lemma 11 In the UDG model, FLDT2 creates a subgraph of LDel (1)(V) without intersections.

Proof An edge AB that exists in the final graph must either be a Gabriel edge or an edge for which

there is some node C ∈ d(A, B) such that Delaunay 4ABC holds at A, B and C (Lemma 6).

This means that the final graph is a subgraph of LDel (1)(V). Since, by Lemma 10, there can be

no intersections, the Lemma follows.

Theorem 1 In the UDG model, FLDT2 builds PLDel(V).

Proof First, we note that if ∀K ∈ ©ABC, K /∈ N2(A), K /∈ N2(B)∧K /∈ N2(C), Delaunay 4ABC

will hold at A, B and C. From the definition of LDel (k)(V), this means that the final graph is

a supergraph of LDel (2)(V). Therefore, assuming the Definition of PLDel(V) of Section 3, this

Lemma follows from the fact that we build a planar subgraph of LDel (1)(V) (Lemma 11).

5 A More General Graph Model for FLDT1

5.1 The Relative Neighborhood Model and the Gabriel Model

Until now, we have assumed that FLDT1 operates in the UDG model and, in fact, FLDT1 strictly

requires the UDG model to create PLDel(V). However, FLDT1 can create a connected and planar

graph under more general (and therefore more realistic) graph models. In other words, although

22 Filipe Araujo, Lúıs Rodrigues

we cannot ensure construction of PLDel(V) in more realistic settings, we can nevertheless create

a graph where the GPSR algorithm will converge. Hence, one interesting question is to know in

which kind of models — less demanding than UDG — does FLDT1 work.

We will start by a model that is strongly related to the RNG. Therefore, we will call this the

“Relative Neighborhood Model” (RNM). In the RNM , if node A is aware of node B then, both

A and B are aware of any node C if ||AC|| < ||AB|| and ||BC|| < ||AB||. An equivalent way of

defining this model is to consider that given a triangle 4ABC, if the two nodes of the longest

edge, say A and B are aware of each other, then, the three nodes are all aware of each other. The

“visibility zone” of nodes A and B corresponds to the gray area of Figure 2. We shall prove that

FLDT1 works under the RNM .

We will also consider a model related to the GG, to which we call “Gabriel Model” (GM).

In the GM , if node A is aware of node B then, both nodes A and B are aware of any node C

such that C ∈ d(A, B). The “visibility zone” of nodes A and B corresponds to the gray area of

Figure 3. Although FLDT1 may not work under the GM , we are interested in this model, because

it is trivial to show that algorithms to create both the GG and the RNG also work under this

model (although the RNG algorithm may not create exactly the RNG).

One of the most interesting aspects of these models is that they do not assume that all nodes

have the same predetermined communication range. The range of a node can vary, even with the

direction of communication. In fact, the UDG model is contained in the RNM and the RNM is

contained in the GM , which is the most general of the three. The goal of these models is to define

minimal communication conditions that ensure proper operation of FLDT1. In other words, we

are interested in showing that FLDT1 works even if the UDG model does not hold for some nodes,

but the RNM does. If we get less than the RNM , the network may have intersections.

5.2 FLDT1 Creates a Planar Connected Graph Under the RNM

In the GM , it is possible to find a counter-example where the FLDT1 algorithm creates a graph

with intersections. Nevertheless, FLDT1 works in the RNM . The demonstration for this is a

Single-Step Creation of Localized Delaunay Triangulations 23

variation of the similar proofs for the UDG model. Therefore, we omit the parts of this proof that

are most similar to UDG and only include the most relevant differences, because the remaining

parts are easy to derive. One of the most significant differences of these proofs, when compared

with the UDG model is that here, in Figure 8, ∠AY B may be greater or equal than π/3.

Lemma 12 Consider the triangle ABC. Assume that A is aware of B and C and that B and C

are not aware of each other. In the RNM , this can only occur if ∠CAB ≥ π/3.

Proof Assume that ∠CAB < π/3. In this case, either AB or AC is the longest edge of the triangle.

Since A is aware of B and C, this is a contradiction, because the RNM ensures that B and C

must be aware of each other.

Lemma 12 is fundamental to prove that FLDT1 works under RNM . To understand why,

consider the FLDT2 algorithm in the UDG model and assume that Delaunay 4A(B, C) holds,

with ||BC|| > 1. In this case, ∠BAC > π/3 and A will announce the triangle 4ABC. In the

FLDT1 algorithm under RNM , we have a similar situation: if Delaunay 4A(B, C) holds, but B

and C are not aware of each other, by Lemma 12 we know that ∠BAC > π/3 and that A will also

announce the triangle 4ABC, just in the FLDT2/UDG case. This similarity is crucial for FLDT1

under the RNM and to the result that we state in Theorem 2, which is the RNM counterpart of

Lemma 11 for UDG. Given the conclusions of Lemma 12, we omit the proof of this theorem, as

this is straightforward given the FLDT2/UDG case.

Theorem 2 In the RNM , FLDT1 creates a subgraph of LDel (1)(V) without intersections.

Under the light of this theorem we reason as follows: we should use FLDT1 instead of the GG,

because it is a much better spanner under the ideal UDG. However, even if the communication

conditions deteriorate, we know for sure that FLDT1 still works as long as the RNM holds. This

means that in between the ideal UDG conditions and the limits of the RNM model, while all the

other triangulations fail, FLDT1 works and will create denser graphs (with more edges) than the

GG at approximately the same signaling cost.

24 Filipe Araujo, Lúıs Rodrigues

Table 1 Comparison of the pre-processing algorithms

Algorithm Neighbor. info. Steps Graph model (4
√

3π)/9-spanner

UDG 1 hop 0 UDG Yes

RNG 1 hop 0 GM No

GG 1 hop 0 GM No

PDT 1 hop 0 UDG No

Li et al. [24] 2 hop 4 UDG Yes

FLDT1 2 hop 1 RNM Yes

FLDT2 2 hop 1 UDG Yes

6 Evaluation

In this section, we compare the signaling cost of FLDT1 and FLDT2 versus the algorithm of [23]

and its optimized version [24]. Before we make a quantitative evaluation of the algorithms, we start

by comparing their most important features in Table 1. All these algorithms are localized and have

a communication cost of O(n log n) (we assume that nodes send at least one beacon message with

their own information). Therefore we do not depict this information. Some of them do not need

extra messages from neighbors to create the graph (1 hop neighborhood), while others need at least

some information about invisible nodes (relayed by the direct neighbors - 2 hop neighborhood).

The algorithms also differ in the communication steps they use (besides one beacon message

that we do not count, but, as we point out in Section 6.2, this message can make a difference

in dynamic scenarios) and in the communication model that they need to create a planar graph

(GM , RNM or UDG). Finally, only some of them are (4
√

3π)/9-spanners of UDG (in scenarios

where the UDG model holds). Figure 9 illustrates the graphs for the same set of 100 nodes.

6.1 Comparison of the Signaling Costs of the Algorithms

To compare the signaling cost of the algorithms we have always used the UDG model (given that

some algorithms only work with this model). Since node density has a crucial impact on both

Single-Step Creation of Localized Delaunay Triangulations 25

(a) RNG (b) GG (c) PDT

(d) PLDel (e) UDG (f) DT

Figure 9 Example of graphs

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 5 10 15 20 25 30 35

A
ve

ra
ge

 n
um

be
r

of
 n

od
es

 a
nn

ou
nc

ed

Average number of neighbors

FLDT2
FLDT1

Li et al. 2
Li et al.

Figure 10 Average number of nodes announced by

each node

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 5 10 15 20

N
ew

 tr
ia

ng
ul

at
e

m
es

sa
ge

s
pe

r
no

de
 th

at
 le

ft

Percentage of nodes that left

Figure 11 Nodes that resend their triangulate

message per node that leaves

the signaling cost and the performance of routing algorithms, we have randomly and uniformly

distributed a variable number of nodes (between 80 and 600) inside a square of fixed side (7.5

times the communication range). We omit a comparison of the performance of the graphs built

by the algorithms (see [2]) to conserve space, as similar studies already exist [23,25].

26 Filipe Araujo, Lúıs Rodrigues

We believe that the most significant criterion of comparison of the algorithms that create

PLDel(V) graphs is the signaling cost. Hence, we depict in Figure 10 the average number of

neighbors announced by each node, in the following algorithms: i) FLDT1, ii) FLDT2, iii) Li et

al. [23] and Li et al. 2 [24]. To obtain the averages that we present in Figure 10, we created 400

different graphs for each one of the varying node densities. Results of interest to us lie in the range

around 5 − 20 neighbors per node [2]. At lower densities, resulting topologies will most likely be

disconnected, while at higher densities greedy outperforms any right-hand algorithm. Unlike the

corresponding graphic that we presented in [1], here we count the node that sends the message.

This explains why the algorithm of Li et al. seems to announce more nodes here. On the other

hand, in the algorithm of Li et al. 2, we use all the optimizations that the authors propose. This

algorithm uses a little more than half the messages of the previous version to build a slightly

different PLDel(V) graph5. In our FLDT1 and FLDT2 algorithms, we used optimizations similar

to the ones proposed by Li et al. 2 [24]. In particular, we only announce each node once in a

triangulate message even if that node participates in two different triangles, thus saving one

redundant announcement. This explains why we get results that are similar to the ones presented

in [1], despite counting the sender of the message.

We can see that the number of nodes announced stabilizes in all the algorithms as the density

increases. For the densities of interest — up to 20 neighbors per node — FLDT1 can announce

up to 4.6 and 7.9 fewer nodes than the algorithms Li et al. 2 and Li et al., respectively. This

result is even better for FLDT2 (58.2 and 99.7), which approaches 0 messages per node as the

density of the network increases. Even in the lower densities, we never got more than an average

of 2 nodes announced by node. Finally, we emphasize that even more important than the number

of nodes announced is the number of messages used: while our algorithms need a single message,

both algorithms of Li et al. need four. These results show that our algorithms build PLDel very

efficiently. While FLDT2 looks better from a theoretical perspective, we believe that for a practical

5 According to the wide definition of PLDel(V) that we gave in Section 3. Nevertheless, this difference

seldom shows up.

Single-Step Creation of Localized Delaunay Triangulations 27

use FLDT1 is, in fact, the best algorithm to create PLDel(V) and is preferable than PDT , because

it does not require nodes to be aware of their communication range. Additionally, FLDT1 is more

robust, because it works in models that degenerate from UDG, like the RNM .

6.2 Dynamic Evaluation

In Figure 11, we depict the number of messages that are required to recreate the triangulation when

a node leaves the network (we assumed that neighbors of the departing node eventually become

aware of the fact and trigger the algorithm). We used 50 different graphs with 200 randomly and

uniformly distributed nodes each and removed an increasing number of nodes. For each set of nodes

that leaves, we recount which of the remaining nodes need to resend their triangulation. Although

the average node degree is around 6, for a small churn rate, only 4.5 nodes that stay must resend

their triangles for each node that leaves (the same would apply if the node was entering instead

of leaving). This results from the fact that some of these nodes may have no difference in their

triangulate message due to the rule of announcing only triangles when the local angle is greater

or equal to π/3. The graphic shows a decreasing line, because as more and more nodes leave it

becomes likelier that a single node sees two or more neighbors departing, thus contributing to a

better average (at a cost of maintaining outdated information). Besides the average, the figure also

shows the smallest and the largest number of nodes that had to send new triangulate messages

in all the 50 graphs we tried.

In practice, nodes usually announce that they are still alive by sending a periodic beacon

message: if a node fails to send that beacon for some time, its neighbors will consider that it left.

Our algorithms are particularly well suited for this kind of setting, as triangulate messages can

be easily piggybacked to (or even replace) beacon messages. Therefore, when periodic beacon

messages are required, our algorithms can be implemented with no additional messages, becoming

extremely competitive with regard to the Gabriel graph, the Relative Neighborhood graphs or

PDT .

28 Filipe Araujo, Lúıs Rodrigues

One interesting aspect of FLDT1 and FLDT2, that results from the use of a single message, is

that even if links are lossy, e.g., due to collisions of packets, it can be shown that, as long as links

are fair (i.e., if a message is sent infinitely often by a process p then it can be received infinitely

often by its receiver [27]), triangulation in a stable setting will eventually be correct.

7 Conclusions and Future Work

Routing protocols for wireless ad hoc networks may benefit from using a planar and localized

Delaunay triangulation to achieve good routing performance, while, at the same time, guaranteeing

convergence. Therefore, in this paper we presented two algorithms, FLDT1 and FLDT2, to build

a well-known graph called PLDel(V). Our experimental results show that we can use PLDel(V)

either to substitute UDG(V), when node density is small, or as a complementary graph that

ensures routing convergence for all node densities.

FLDT1 and FLDT2 have a communication cost of O(n log n), which is within a constant of

the optimal and require a single communication step, unlike previous algorithms that require 4

communication steps to create PLDel(V). Among the algorithms that only work in the UDG

model, FLDT2 is the best graph to build PLDel(V) as it requires fewer messages than the re-

maining. On the contrary, in the more general Relative Neighborhood Model (RNM), which goes

beyond the UDG model, FLDT1 is the only triangulation that works. Such graph model does not

impose a precise circular communication range of ray 1 and allows nodes to have different ranges

depending on the direction. Furthermore, in dynamic settings that require the exchange of beacon

messages, our algorithms requires no more messages than the algorithms used to build the very

simple but inefficient GG or RNG or even the PDT . Therefore, due to their efficiency and due to

the improved robustness of FLDT1, we believe that our algorithms have a practical relevance for

position-based wireless ad hoc networks.

As we stated before, FLDT1 does not work in the GM . However, we believe that it is possible

to introduce some changes in the algorithm to make it work under such model (e.g. by making all

the nodes announcing all their triangles). The real challenge should be to make those changes and

Single-Step Creation of Localized Delaunay Triangulations 29

still ensure a communication cost of O(n log n) as well as a single communication step. We leave

this problem as an open issue for future work.

References

1. F. Araujo and L. Rodrigues. Fast localized delaunay triangulation. In The 8th International Confer-

ence On Principles Of Distributed Systems (OPODIS 2004), pages 81–93, Grenoble, France, december

2004. Springer-Verlag, LNCS 3544.

2. F. Araujo and L. Rodrigues. Single-step creation of localized delaunay triangulations. Technical

Report TR 06/03, Centre of Informatics and Systems of the University of Coimbra, 2006. ISSN

0874-338X.

3. C. Avin. Fast and efficient restricted delaunay triangulation in random geometric graphs. In Workshop

on Combinatorial and Algorithmic Aspects of Networking (CAAN 2005), 2005.

4. M. Bhardwaj, A. Chandrakasan, and T. Garnett. Upper bounds on the lifetime of sensor networks.

In IEEE International Conference on Communications, pages 785–790, 2001.

5. J.-D. Boissonnat and M. Teillaud. On the randomized construction of the Delaunay tree. Theoretical

Computer Science, 112(2):339–354, 1993.

6. J. A. Bondy and U. S. R. Murty. Graph Teory with Applications. Elsevier North-Holland, 1976.

7. P. Bose and P. Morin. Online routing in triangulations. In 10th Annual Internation Symposium on

Algorithms and Computation (ISAAC), 1999.

8. P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed delivery in ad hoc wireless

networks. In International Workshop on Discrete Algorithms and Methods for Mobile Computing and

Communications (DIALM), pages 48–55, 1999.

9. D. Dobkin, S. J. Friedman, and K. J. Supowit. Delaunay graphs are almost as good as complete

graphs. Discrete Computational Geometry, July 1990.

10. D. Eppstein. Spanning trees and spanners. In Handbook of Computational Geometry, pages 425–461.

Elsevier North-Holland, Amsterdam, 2000.

11. G. Finn. Routing and addressing problems in large metropolitan-scale internetworks. Technical Report

ISU/RR-87-180, Institute for Scientific Information, March 1987.

12. S. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, (2):153–174, 1987.

30 Filipe Araujo, Lúıs Rodrigues

13. H. Frey and I. Stojmenovic. On delivery guarantees of face and combined greedy-face routing in ad

hoc and sensor networks. In MobiCom ’06: Proceedings of the 12th annual international conference

on Mobile computing and networking, pages 390–401, New York, NY, USA, 2006. ACM Press.

14. J. Gao, L. Guibas, J. Hershberger, L. Zhang, and A. Zhu. Geometric spanners for routing in mobile

networks. In 2nd ACM Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc 01),

2001.

15. B. Karp and H. Kung. GPRS: Greedy perimeter stateless routing for wireless networks. In ACM/IEEE

International Conference on Mobile Computing and Networking, 2000.

16. Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker. On the pitfalls of geographic face routing. In

DIALM-POMC ’05: Proceedings of the 2005 joint workshop on Foundations of mobile computing,

pages 34–43, New York, NY, USA, 2005. ACM Press.

17. G. Kozma, Z. Lotker, M. Sharir, and G. Stupp. Geometrically aware communication in random wireless

networks. In PODC ’04: Proceedings of the twenty-third annual ACM symposium on Principles of

distributed computing, pages 310–319, New York, NY, USA, 2004. ACM Press.

18. E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geometric networks. In 11th Canadian

Conference on Computation Geometry (CCCG 99), 1999.

19. F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger. Geometric ad-hoc routing: Of theory and

practice. In 22nd ACM Symposium on the Principles of Distributed Computing (PODC 2003), Boston,

Massachusetts, July 2003.

20. F. Kuhn, R. Wattenhofer, and A. Zollinger. Asymptotically optimal geometric mobile ad-hoc rout-

ing. In 6th International Workshop on Discrete Algorithms and Methods for Mobile Computing and

Communications (DIALM’02), 2002.

21. L. Lan and H. Wen-Jing. Localized Delaunay triangulation for topological construction and routing

on manets. In 2nd ACM Workshop on Principles of Mobile Computing (POMC’02), 2002.

22. D.-T. Lee and B. Schachter. Two algorithms for constructing a Delaunay triangulation. International

Journal of Computer and Information Sciences, 9(3):219–242, 1980.

23. X.-Y. Li, G. Calinescu, and P.-J. Wan. Distributed construction of a planar spanner and routing

for ad hoc wireless networks. In The 21st Annual Joint Conference of the IEEE Computer and

Communications Societies (INFOCOM), 2002.

Single-Step Creation of Localized Delaunay Triangulations 31

24. X.-Y. Li, G. Calinescu, P.-Jun Wan, and Y. Wang. Localized delaunay triangulation with application

in ad hoc wireless networks. IEEE Transactions on Parallel and Distributed Systems, 14(9):1035–1047,

October 2003.

25. X.-Y. Li, I. Stojmenovic, and Y. Wang. Partial delaunay triangulation and degree limited localized

bluetooth scatternet formation. IEEE Transactions on Parallel and Distributed Systems, 15(4):350–

361, April 2004.

26. J. Liebeherr, M. Nahas, and W. Si. Application-layer multicasting with Delaunay triangulation over-

lays. Technical Report CS-2001-26, University of Virginia, Department of Computer Science, Char-

lottesville, VA 22904, 5 2001.

27. N. Lynch. Distributed algorithms. In Data Link Protocols, chapter 16, pages 691–732. Morgan-

Kaufmann, 1996.

28. F. P. Preparata and M. I. Shamos. Computational geometry: An introduction. Springer-Verlag, New

York, 1985.

29. V. Rodoplu and T. Meng. Minimum energy mobile wireless networks. In 1998 IEEE International

Conference on Communications, ICC’98, volume 3, pages 1633–1639, Atlanta, GA, June 1998.

30. R. Sibson. Locally equiangular triangulations. The Computer Journal, 21(3):243–245, 1977.

31. I. Stojmenovic and X. Lin. Power-aware localized routing in wireless networks. IEEE Transactions

on Parallel and Distributed Systems, 12(11):1122–1133, 2001.

