
1

The Genetic and Evolutionary Computation Conference

Handling Bloat in GP

Sara Silva
INESC-ID Lisboa, Portugal
CISUC, Coimbra, Portugal

sara@kdbio.inesc-id.pt
sara@dei.uc.pt

Copyright is held by the author/owner(s).
GECCO’10, July 7–11, 2010, Portland, Oregon, USA.
ACM 978-1-4503-0073-5/10/07.

2

Instructor Biography

� BSc (1996) and MSc (1999) in Informatics
• Faculty of Sciences of the University of Lisbon, Portugal

� PhD (2008) in Informatics Engineering
• Faculty of Sciences and Technology of the University of Coimbra, Portugal

� Research using different methodologies
• Neural Networks
• Genetic Algorithms
• Genetic Programming

� Participation in several interdisciplinary projects
• Remote Sensing and Forest Science
• Epidemiology and Biomedical Informatics

� Main contributions to GP
• Dynamic Limits
• Resource-Limited GP
• Operator Equalisation in practice

3

Agenda

Bloat
• History and Definition
• Theories and Methods

Crossover Bias
Operator Equalisation

• Idea and Initial Results
DynOpEq

• How Does It Work
• Benchmark Results
• Efficiency Problems
• Brainstorming

break

MutOpEq
• Differences from DynOpEq
• Benchmark Results

Real World Results
• Drug Discovery
• Remote Sensing

Open Questions
• Pros and Cons of OpEq options
• Bloat vs Overfitting vs Complexity

Future
• Improvements and Extensions
• Brainstorming

4

Objectives of the Tutorial

For the participants
• Get an overview of the past bloat research
• Get acquainted with Crossover Bias
• Learn how to implement Operator Equalisation (OpEq)
• Understand the implications of different options
• Think about the open questions
• Think about possible improvements

For the presenter
• Gather ideas,

suggestions,
and criticisms

from the participants!

5

Bloat
Early History

1992 John Koza: edited the final solutions to remove pieces of redundant
code; imposed a depth limit of 17 on the trees created by crossover

1994 Peter Angeline: adopted the name introns; noted they provided neutral
points for crossover; based on their importance for genetic algorithms,
remarked that

“it is important then to not impede this
emergent property as it may be

crucial to the successful development
of genetic programs”

6

Bloat
Pros and Cons

Pros Code compression and parsimony (effective code is shorter! why?)
Protection against genetic operators (but is it really useful?)
Artificial introns beneficial to linear GP (but not tree-based GP)

Cons Exhaustion of computational resources
(storage, evaluation and swapping of useless code)
Stagnation of effective search
Poor readability of the solutions

7

Bloat
Definition

A formal definition will very soon be introduced in:
“Measuring Bloat, Overfitting and Functional Complexity
in Genetic Programming” by Vanneschi, Castelli, Silva

to appear in GECCO-2010

Excessive code growth
without a corresponding
improvement in fitness

Bloat is not specific to GP.
It affects all progressive search techniques based on variable-length
representations and using static evaluation functions

8

Bloat
Theories

Hitchhiking, 1994 (Tackett) Based on genetic algorithms, where unfit
building blocks propagate in the population because they join highly fit
building blocks. Introns in GP propagate because they are hitchhikers.

Defense Against Crossover, 1994-1998 (Altenberg, Blickle and Thiele,
McPhee and Miller, Nordin and Banzhaf, Smith and Harries, Soule, etc)
Genetic operators seldom create better individuals than their parents.
Offspring who have the same fitness as their parents have a selective
advantage. Introns provide code where changes will not affect fitness.
Developed mostly in the context of linear GP. Difference between
inviable code and unoptimized code is important in tree-based GP.
Alternative names: Replication Accuracy Theory, Intron Theory,
Protection Theory.

9

Bloat
Theories

Removal Bias, 1998 (Soule and Foster) Based on defense against
crossover. To maintain fitness the removed branch must be contained
within the inviable region, while the inserted branch can have any size.

Fitness Causes Bloat, 1998 (Langdon and Poli) The first theory not
blaming introns as the cause of bloat. Because genetic operators
are destructive, maintaining fitness is advantageous. There are many
more longer ways than shorter ways to represent the same program,
so a natural drift occurs to longer programs.
Alternative names: Solution Distribution, Diffusion Theory, Drift,
Nature of Search Spaces, Entropy Random Walk.

Beyond a certain program length, the distribution of fitness
converges to a limit, 2002 (Langdon and Poli)

10

Bloat
Theories

Modification Point Depth, 2003 (Luke) When a genetic operator modifies
an individual, the deeper the modification point the smaller the change in
fitness. Small changes are less likely to be disruptive, so there is a
preference for deeper modification points, and consequently a preference
for larger trees.
Alternative names: Depth-correlation, or Depth-based Theory.

� All these theories “make sense”
� If you remove the search for fitness the reasons for bloat disappear

(if selection is random, there is no code growth with “normal” genetic operators)
� But we cannot avoid the search for fitness!

11

Bloat
Theories

Crossover Bias, 2007 (Dignum and Poli)

Most genetic operators, in particular standard subtree crossover,
do not add or remove any amount of genetic code from the population,
they simply swap it between individuals. So the average program length
in the population is not changed by crossover.

There is a bias of many genetic operators, in particular crossover, to
create many small, and consequently unfit, individuals.

When these small unfit individuals are engaged in competition
for breeding, they are always discarded by selection in favor of
the larger ones. This is what increases the average program length.

12

Bloat
Methods

Bloat control is possible at different levels of the evolutionary process:

Evaluation
Parametric Parsimony Pressure, Tarpeian

Selection
Multi-Objective Optimization, Special Tournaments

Breeding
Special Genetic Operators

Survival
Size/Depth Limits, Operator Equalisation (size=length)

Others
Code Editing, Dynamic Fitness, Other Types of GP

13

Bloat
Methods

Evaluation
Parametric Parsimony Pressure

The fitness of an individual is a function of its raw fitness and its
size/length, penalizing larger individuals. Some techniques apply
adaptive pressure.

Pros
Can speed the evolution and produce very compact solutions

Cons
Tends to converge on local optima
Very dependent on parameters
(which depend on the problem and on the stage of the evolution)

14

Bloat
Methods

Selection
Special Tournaments – Double Tournament

The winners of a first tournament are engaged in a second tournament.
The first is based on fitness and the second on size, or vice versa.
In the size tournament the smaller individual wins with probability D.
(0.5 < D < 1)

Pros
One of the best methods until recently

Cons
Difficult to find correct setting for D
(same problem as with parametric parsimony pressure)

15

Bloat
Methods

Breeding
Special Genetic Operators – Homologous Crossover

Selects the crossover node on the first parent randomly, like in standard
subtree crossover. Selects the crossover node on the second parent so
that the swapped nodes are similar in structure and position in the tree.

Pros
Effectively controls bloat

Cons
Weak exploration of the search space
Requires a larger population and larger initial individuals
Requires mutation

16

Bloat
Methods

Survival
Size/Depth Limits – Fixed Limits

Whenever crossover creates an individual that breaks the fixed
predetermined size/depth limit, the individual is rejected and
1) one of its parents is accepted instead, 2) crossover is repeated
with the same parents, or 3) crossover is repeated with new parents.

Pros
Effectively prevents bloat beyond a certain point

Cons
The fixed limit is arbitrary
Option 1 actually speeds bloat until the limit is reached

17

Bloat
Methods

Survival
Size/Depth Limits – Dynamic Limits

Works like the Fixed Limits, except that the limit is not static. The initial
limit is set to a very low value, and only increased whenever that is
needed to accept a new best-of-run individual.

Pros
Does not allow code growth unless it is necessary
Allows enough code growth to solve very complex problems

Cons
For some problem types bloat still happens
(typically in very hard regression problems)

18

Bloat
Methods

Survival
Operator Equalisation

program length? ?

Beyond a certain program length,
the distribution of fitness converges
to a limit (Langdon and Poli, 2002)

Many small unfit individuals are created by crossover, and then discarded
by selection in favor of the larger ones (Dignum and Poli, 2007)

19

program length

Control the distribution of program lengths
inside the population, biasing the search
towards the desired lengths.

0 5 10 …

fre
qu

en
cy

Operator Equalisation
initial idea

Operator Equalisation
(Dignum and Poli, 2008)

Program Length

20

program length0 5 10 …

fre
qu

en
cy

Operator Equalisation
initial idea

21

program length0 5 10 …

fre
qu

en
cy

Operator Equalisation
initial idea

You can choose any target distribution…

22

program length0 5 10 …

fre
qu

en
cy

Operator Equalisation
initial idea

You can choose any target distribution…

23

program length0 5 10

fre
qu

en
cy

Operator Equalisation
initial idea

You can choose any target distribution…

24

program length

Limitations of the initial idea:

0 5 10

fre
qu

en
cy

?

• Fixed number of bins

• Fixed predetermined target distribution

? ?

Operator Equalisation
initial idea

25

Target is fitness proportional
• Based on the average bin fitness on the previous generation

DynOpEq
calculating the target

program length0 5 10 …

av
er

ag
e

fit
ne

ss
DynOpEq (Dynamic Operator Equalisation)
(Silva and Dignum, 2009)

26

DynOpEq
calculating the target

program length0 5 10 …

DynOpEq (Dynamic Operator Equalisation)
(Silva and Dignum, 2009)

Target is dynamic
• Self adapted every generation

Example
Symbolic Regression
Generation 5

fre
qu

en
cy

27

program length0 5 10 …

fre
qu

en
cy

DynOpEq
calculating the target

DynOpEq (Dynamic Operator Equalisation)
(Silva and Dignum, 2009)

Target is dynamic
• Self adapted every generation

Example
Symbolic Regression
Generation 25 • Variable number of bins

28

program length0 5 10

fre
qu

en
cy

Example –

65605515 … …

DynOpEq
following the target

29

program length0 5 10

fre
qu

en
cy

Example – generation of a new population
Best fitness so far: 30 (lower is better)

New individual: (5 example cases)

65605515 … …

target

occupied

DynOpEq
following the target

30

program length0 5 10

fre
qu

en
cy

Example – generation of a new population
Best fitness so far: 30 (lower is better)

New individual: CASE 1 – length 12, fitness 50

65605515 … …

target

occupied

DynOpEq
following the target

31

program length0 5 10

fre
qu

en
cy

Example – generation of a new population
Best fitness so far: 30 (lower is better)

New individual: CASE 2 – length 28, fitness 40

65605515 … …

target

occupied

be
st

of
bi

n:
 3

5

DynOpEq
following the target

32

program length0 5 10

fre
qu

en
cy

Example – generation of a new population
Best fitness so far: 30 (lower is better)

New individual: CASE 3 – length 28, fitness 33

65605515 … …

target

occupied

be
st

of
bi

n:
 3

5

DynOpEq
following the target

33

program length0 5 10

fre
qu

en
cy

Example – generation of a new population
Best fitness so far: 30 (lower is better)

New individual: CASE 4 – length 63, fitness 30

65605515 … …

target

occupied

DynOpEq
following the target

34

Best fitness so far: 30 (lower is better)

program length0 5 10

fre
qu

en
cy

Example – generation of a new population

New individual: CASE 5 – length 63, fitness 28

65605515 … …

target

occupied
28

DynOpEq
following the target

35

program length0 5 10 …

fre
qu

en
cy

DynOpEq
following the target

36

4 problems
Symbolic Regression
Artificial Ant
5-bit Even Parity
11-bit Multiplexer

3 bin widths
1, 5, 10

6 techniques
No Limits
Koza Max Depth 17
Dynamic Limits (Depth)
(Dyn)OpEq 1
(Dyn)OpEq 5
(Dyn)OpEq 10

1000 individuals
50 generations
30 runs

DynOpEq
benchmark results - experiments

37

Results presented in 3 different ways:

• Optimistic view

• Pessimistic view

• Realistic view

DynOpEq
benchmark results – 3 flavors

38

DynOpEq
benchmark results – optimistic / pessimistic

39

DynOpEq
benchmark results – optimistic / pessimistic

40

DynOpEq
benchmark results – optimistic / pessimistic

41

DynOpEq
benchmark results – optimistic / pessimistic

42

Very high number of rejections

=

Efficiency problem

DynOpEq

43

DynOpEq
rejections

Regression:
Bin width 1
16% of rejections
happen in the
first 5 generations
to individuals of
length 1-10
Bin width 5,10
75-76%

Multiplexer:
10%, 23%, 40%
Artificial Ant
and Parity: < 2%

44

DynOpEq
target / actual length distribution

Many rejections occur to small individuals, in the beginning of the run…
… and they mostly occur within the target distribution

(target) (actual)

45

Possible efficiency improvement:

• Evaluate only individuals falling outside the target

• Why this can be a problem

DynOpEq
rejections

Rejections falling outside the target

46

(regardless of the efficiency problem)

Most end users of GP want
simple and accurate solutions
regardless of how long it takes

DynOpEq
benchmark results – realistic view

The relationship between fitness and
program length is important!

This is what bloat is about

47

DynOpEq
benchmark results – realistic view

48

DynOpEq
benchmark results – realistic view

49

DynOpEq
benchmark results – realistic view

50

DynOpEq
benchmark results – realistic view

51

• Dynamic self-adaptive target distribution

• Variable number of bins

Operator Equalisation (Silva and Dignum, 2009)

Operator Equalisation (Dignum and Poli, 2008)

• Fixed predetermined target distribution

• Fixed number of bins

DynOpEq

Operator Equalisation
summary

52

MutOpEq

MutOpEq (Mutation-Based Dynamic Operator Equalisation)
(Silva and Vanneschi, 2009)

To avoid the efficiency problem, individuals are not rejected.
Instead, they are mutated if necessary to fit the target.

The deeper the modification point the smaller the change in fitness.

Soft mutations:

Shrink Choose a terminal branch and replace it with one of its
terminal nodes (terminal branch = subtree of minimum
depth, but not terminal)

Grow Choose a terminal node and replace it with a terminal
branch where one of the arguments is the terminal node

53

MutOpEq
following the target

program length0 5 10 …

av
er

ag
e

fit
ne

ss
MutOpEq (Mutation-Based Dynamic Operator Equalisation)
(Silva and Vanneschi, 2009)

54

program length0 5 10

fre
qu

en
cy

Example – generation of a new population
Best fitness so far: 30 (lower is better)

New individual: (5 example cases)

65605515 … …

target

occupied

MutOpEq
following the target

55

program length0 5 10

fre
qu

en
cy

Example – generation of a new population
Best fitness so far: 30 (lower is better)

New individual: CASE 1 – length 12, fitness 50

65605515 … …

target

occupied

MutOpEq
following the target

56

program length0 5 10

fre
qu

en
cy

Example – generation of a new population
Best fitness so far: 30 (lower is better)

New individual: CASE 2 – length 28, fitness 40

65605515 … …

target

occupied

be
st

of
bi

n:
 3

5

• Choose the closest bin

• Apply soft mutations

• Prefer Shrink to Grow

MutOpEq
following the target

57

program length0 5 10

fre
qu

en
cy

Example – generation of a new population
Best fitness so far: 30 (lower is better)

New individual: CASE 3 – length 28, fitness 33

65605515 … …

target

occupied

be
st

of
bi

n:
 3

5

MutOpEq
following the target

58

program length0 5 10

fre
qu

en
cy

Example – generation of a new population
Best fitness so far: 30 (lower is better)

New individual: CASE 4 – length 63, fitness 30

65605515 … …

target

occupied

MutOpEq
following the target

59

Best fitness so far: 30 (lower is better)

program length0 5 10

fre
qu

en
cy

Example – generation of a new population

New individual: CASE 5 – length 63, fitness 28

65605515 … …

target

occupied
28

MutOpEq
following the target

60

• Dynamic self-adaptive target distribution

• Variable number of bins

Operator Equalisation (Silva and Dignum, 2009)

Operator Equalisation (Dignum and Poli, 2008)

• Fixed predetermined target distribution

• Fixed number of bins

DynOpEq

• No rejections

• Individuals are mutated to fit the desired length

Operator Equalisation (Silva and Vanneschi, 2009)

MutOpEq

Operator Equalisation
summary

61

Operator Equalisation
pseudocode

accept unchanged
accept mutated

62

Operator Equalisation
pseudocode

63

MutOpEq
benchmark results – realistic view

64

MutOpEq
benchmark results – realistic view

65

MutOpEq
benchmark results – realistic view

66

MutOpEq
benchmark results – realistic view

67

• MutOpEq runs faster than DynOpEq

• MutOpEq dynamics is different from DynOpEq

• MutOpEq learns slower than DynOpEq

DynOpEq versus MutOpEq

68

2 hard real-life problems
Symbolic Regression
Drug Discovery Applications
Bioavailability:

241 variables
359 samples

Toxicity:
626 variables
234 samples

Training (70%) + Test (30%) data
(30 random partitions)

Previous experiments identified
bloat and overfitting as problems

3 techniques
StdGP (max depth 17)

DynOpEq (no limits)

MutOpEq (no limits)

500 individuals
100 generations

30 runs…

Real World Results
experiments - drug discovery

69

2 hard real-life problems
+
1 easy real-life problem

Symbolic Regression
Classification of Satellite Imagery
Identification of Burned Areas:

7 variables
3637 samples
(2 classes)

Training (70%) + Test (30%) data
(30 random partitions)

No previous work done on this data

3 techniques
StdGP (max depth 17)

DynOpEq (no limits)

MutOpEq (no limits)

500 individuals
200 generations

30 runs…

Real World Results
experiments – satellite imagery

70

The following plots concern:
• Bloat (fitness, program length, relationship between them)

• Overfitting (training fitness, test fitness, evolution of both)

They ignore:
• Time spent on rejections in DynOpEq and StdGP

• Time spent on mutations in MutOpEq

Real World Results
disclaimer

71

Training Test

Real World Results
bioavailability

72

Training Test

Real World Results
bioavailability

• DynOpEq overfits • MutOpEq and StdGP do not overfit

73

Real World Results
bioavailability

• StdGP bloats (?) • DynOpEq and MutOpEq do not bloat

74

Training Test

Real World Results
bioavailability

75

StdGP

DynOpEq

MutOpEq

Bloats Overfits

!!!

Real World Results
bioavailability – bloat versus overfitting

Eliminating bloat should have an impact on overfitting
“shorter solutions generalize better”

Is the
effective
code
shorter?

76

Real World Results
bioavailability - actual solutions

After removing inviable code and simplifying the expressions:

77

Real World Results
bioavailability - actual solutions

After removing inviable code and simplifying the expressions:

Is this the effective code?
It is not shorter for StdGP!

78

Training Test

Real World Results
toxicity

79

• Overfitting proportional to learning

Training Test

Real World Results
toxicity

• All techniques overfit

80

Real World Results
toxicity

• StdGP bloats (?) • DynOpEq and MutOpEq do not bloat

81

Training Test

Real World Results
toxicity

82

StdGP

DynOpEq

MutOpEq

Bloats Overfits

Real World Results
toxicity – bloat versus overfitting

Overfitting is
simply proportional
to learning?

Very hard problem and… still no bloat with OpEq!
(work in progress is revealing that Dynamic Limits
and Double Tournament bloat on this problem)

83

• MutOpEq runs faster than DynOpEq

• MutOpEq dynamics is different from DynOpEq

• MutOpEq learns slower than DynOpEq

DynOpEq versus MutOpEq

• MutOpEq overfits less

84

Real World Results
burned areas

85

Real World Results
burned areas

• No overfitting at all

Training Test

86

Real World Results
burned areas

• StdGP bloats (?) • DynOpEq and MutOpEq do not bloat

0 50 100 150 200
0

100

200

300

400

Generations

A
ve

ra
ge

 L
en

gt
h

87

Real World Results
burned areas

Training Test

88

After removing inviable code and simplifying the expressions:

Real World Results
burned areas - actual solutions

Several short solutions were produced

89

• MutOpEq runs faster than DynOpEq

• MutOpEq dynamics is different from DynOpEq

• MutOpEq learns slower than DynOpEq

DynOpEq versus MutOpEq

• MutOpEq produces short solutions more easily
• MutOpEq overfits less

90

Real World Results
burned areas – noisy data

After changing the x4 values ramdomly by 10%:

• StdGP is the only one showing generalization ability!

91

Open Questions

Eliminating bloat does not seem to help generalization at all.

So what is necessary for good generalization ability?

• The size of the effective code seems to be irrelevant
• Small size does not mean low complexity
• Complexity does mean lack of readability
• Complexity should be related to overfitting

“Measuring Bloat, Overfitting and Functional Complexity
in Genetic Programming” by Vanneschi, Castelli, Silva

to appear in GECCO-2010

92

Open Questions

MutOpEq runs faster, overfits less, produces shorter solutions.

Is it really better than DynOpEq?

• Cons of MutOpEq

MutOpEq is a slow learner because
1) By not rejecting individuals, it is less selective than DynOpEq
2) By mutating individuals, it may be making them worse

MutOpEq mutates without first evaluating. It risks spoiling the perfect
individual without even knowing it (never happens with DynOpEq)

• Cons of DynOpEq (besides the obvious efficiency problem)

93

Open Questions
DynOpEq

Why was DynOpEq not good in simple Symbolic Regression?
Plots of bin width 1. Notice the jagged patterns.

(target)

94

Open Questions
DynOpEq

Compare with the patterns of Parity. Bin width 1.

(target)

95

Open Questions
DynOpEq

Compare the actual distributions of DynOpEq and StdGP. Bin width 1.

(DynOpEq) (StdGP)

96

Open Questions
DynOpEq

• The patterns of Parity are completely jagged because this
problem uses only binary operators, so with bin width 1 some
bins never receive individuals
• The patterns of Regression are also jagged, only slightly in
DynOpEq, and very much in StdGP

- Regression uses unary and binary operators, but apparently the
individuals of even size are difficult to create, thus the jagged pattern
- DynOpEq forces the creation of even size individuals by rejecting the
odd size ones, whose bins fill up quickly. So the actual length
distribution of DynOpEq is quite smooth when compared to StdGP

97

Open Questions
DynOpEq

• This forced creation of even size individuals increases
genotypical diversity:

98

Open Questions
DynOpEq

• Unfortunately this seems to be achieved by allowing an
atypical (in Regression) proliferation of inviable code:

99

Future Work
Improvements

How to improve the efficiency of DynOpEq?
• Evaluating only the individuals that fall outside the target is not a good idea:

- Not overriding the target means waiting a long time for it to be filled
- Also means slower learning
- Not evaluating introduces the risk of rejecting the perfect individual

How to speed the learning of MutOpEq?
• Minimize impact on fitness:

- Using smarter mutations, e.g. that act on inviable code, is expensive
- Delay mutations: save individuals that do not fit the target, mutate only
when there are enough for a new generation; maybe calculate fitness to
decide whether to mutate or to replace by another individual, e.g. a parent

100

Future Work
Improvements

A hybrid DynOpEq / MutOpEq approach?

Each individual that does not fit the target can be:
- accepted
- mutated
- replaced
- rejected

Depending on:
- length and fitness
- current state of target

Any other suggestions?
Please…? ☺

101

Future Work
Extensions

Incorporating OpEq into other elements of the
evolutionary process:

Whenever the decision involves the size/length of the individual,
let it involve “how well the individual fits the target” instead.

Examples:
Parametric Parsimony Pressure

Let fitness be a function of raw fitness and
“how well the individual fits the target”

Double Tournament
Let the size/length tournament be replaced by a
“how well the individual fits the target” tournament

102

Future Work
Extensions

Incorporating OpEq into other elements of the
evolutionary process:

Whenever the decision involves the size/length of the individual,
let it involve “how well the individual fits the target” instead.

Examples:
Special Genetic Operators

Choose the crossover point on the second parent so that
the offspring “fits the target well”

Advantages: “how well the individual fits the target”
dynamically changes along the run

Disadvantages: How to calculate such a measure?

103

� S. Dignum, R. Poli, Generalisation of the limiting distribution of program sizes in tree-based
genetic programming and analysis of its effects on bloat. In Proceedings of GECCO-2007, ed.
by D. Thierens et al. (ACM Press 2007), pp. 1588–1595

� S. Dignum, R. Poli, Operator equalisation and bloat free GP. In Proceedings of EuroGP-2008,
ed. By M. O’Neill et al. (Springer 2008), pp. 110–121

� W.B. Langdon, R. Poli, Foundations of genetic programming (Springer 2002)

� R. Poli, W.B. Langdon, N.F. McPhee, A Field Guide to Genetic Programming. Published via
http://lulu.com and freely available at http://www.gp-field-guide.org.uk, 2008. (With contributions
by J. R. Koza)

� S. Silva, Controlling bloat: individual and population based approaches in genetic programming.
PhD thesis, Departamento de Engenharia Informatica, Universidade de Coimbra (2008)

� S. Silva, S. Dignum, Extending operator equalisation: Fitness based self adaptive length
distribution for bloat free GP. In Proceedings of EuroGP-2009, ed. by L. Vanneschi et al.
(Springer 2009), pp. 159–170

� S. Silva, L. Vanneschi, Operator equalisation, bloat and overfitting - a study on human oral
bioavailability prediction. In Proceedings of GECCO-2009, ed. by F. Rothlauf et al. (ACM Press
2009), pp. 1115–1122

� L. Vanneschi, M. Castelli, S. Silva, Measuring Bloat, Overfitting and Functional Complexity
in Genetic Programming, to appear in GECCO-2010

References / Suggested Reading

104

� Leonardo Vanneschi and Stephen Dignum

� Project “EnviGP – Improving Genetic Programming for the
Environment and Other Applications” (PTDC/EIA-CCO/103363/2008)
from Fundação para a Ciência e a Tecnologia, Portugal

� You, who are still listening to me!
Or maybe not…

Acknowledgements

ThankThank youyou!!

