

For the participants

- · Get an overview of the past bloat research
- · Get acquainted with Crossover Bias
- Learn how to implement Operator Equalisation (OpEq)
- · Understand the implications of different options
- Think about the open questions
- · Think about possible improvements

For the presenter

Gather ideas,

suggestions,

and criticisms

from the participants!

4

GECCO	DynOpEq following the target			
fuedneuck	<pre>accept(individual i, bin b): accept = false if b exists if b is not full or i is the new best-of-bin accept = true else if i is the new best-of-run create new bin b accept = true</pre>	•		
		35		

GECCO	DynOpEq benchmark results - experiments		
 4 problems Symbolic Regression Artificial Ant 5-bit Even Parity 11-bit Multiplexer 3 bin widths 1, 5, 10 	6 techniques No Limits Koza Max Depth 17 Dynamic Limits (Depth) (Dyn)OpEq 1 (Dyn)OpEq 5 (Dyn)OpEq 10		
1000 inc 50 gene 30 runs	lividuals rations		

				re	ejection	
Reject	tions falling outside the	target				
			Bin width			
		1	5	10	_	
	Regression	7.6%	0.5%	0.003%	-	
	Artificial Ant	5.0%	4.1%	4.6%		
	Parity	13.1%	4.9%	4.0%		
	Multiplexer	3.8%	2.8%	1.8%		
Possik • Ev	ble efficiency improvem valuate only individuals	ent: falling outsid	e the tar	get		

- MutOpEq runs faster than DynOpEq
- MutOpEq dynamics is different from DynOpEq
- MutOpEq learns slower than DynOpEq

- MutOpEq runs faster than DynOpEq
- MutOpEq dynamics is different from DynOpEq
- MutOpEq learns slower than DynOpEq
- MutOpEq overfits less

DynOpEq versus MutOpEq

89

- MutOpEq runs faster than DynOpEq
- MutOpEq dynamics is different from DynOpEq
- MutOpEq learns slower than DynOpEq
- MutOpEq overfits less

GECCO

MutOpEq produces short solutions more easily

