
1

Genetic Programming

Sara Silva
INESC-ID Lisboa, IST/UTL, Portugal

CISUC, Univ.Coimbra, Portugal

sara@kdbio.inesc-id.pt
sara@dei.uc.pt

2

Sara Silva – Biography

BSc (1996) and MSc (1999) in Informatics
• Faculty of Sciences of the University of Lisbon, Portugal

PhD (2008) in Informatics Engineering
• Faculty of Sciences and Technology of the University of Coimbra, Portugal

Research using different methodologies
• Neural Networks
• Genetic Algorithms
• Genetic Programming

Participation in several interdisciplinary projects
• Remote Sensing and Forest Science
• Epidemiology and Biomedical Informatics

Main contributions to GP
• Dynamic Limits
• Resource-Limited GP
• Operator Equalisation in practice

3

Goals of this tutorial

To provide you with

motivation,
intuition

and
practical advice

about Genetic Programming

…and very few technical details!

4

Agenda

Motivation

Representation

Running GP
• Population Initialization
• Fitness Evaluation
• Selection for Breeding
• Genetic Operators
• Selection for Survival
• Stop Condition

Properties of Solutions

Summary

Demos

Problems & Open Questions
• Bloat
• Overfitting
• Complexity
• Multiclass Classification

Project



5

Motivation
Origins

Genetic Programming (GP) is the youngest paradigm inside 
the research area called Evolutionary Computation (EC).

Created by John Koza (first book published in 1992), GP 
has its origins in Genetic Algorithms (GAs). John Koza was 
a PhD student of John Holland, the father of GAs.

The crucial difference between GP and GAs is the 
representation of the individuals:

GA representation – fixed length numerical strings

GP representation – variable length structures containing 
whatever ingredients are needed to solve the problem 

6

Motivation
Example – Symbolic Regression

Problem
Find an expression (f) that transforms a pair of numbers (x1, x2)
in a result such that:   f(2,3) = 5,   f(4,6) = 10,   f(5,1) = 6

f ( x1, x2 ) = x1 + x2

Problem
Find an expression (f) that transforms a triplet of numbers (x1, x2, x3)
in a result such that:   f(1,2,3) = 5,   f(6,2,5) = 14,   f(1,10,8) = 7

f ( x1, x2, x3 ) = x1 - x2 + 2 x3

Problem
Find an expression (f) that transforms a 100-tuple of numbers (x1,…, x100)
in a result such that:   …

7

Motivation
Potential

The goal of GP is to evolve computer programs. Given
all the elements of a programming language, GP has
the potential to find the computer program that solves
a particular problem.

Theoretically, GP can solve any problem whose candidate 
solutions can be measured and compared in terms of 
quality, or “how well they solve the problem”.

8

Motivation
Difficulties

Consider a GA using binary strings of length n. There are 
2n possible configurations of 0 and 1 bits. This is the size 
of the search space. 

Now consider one of the symbolic regression problems 
presented earlier. How many different functions can be 
built using variables, constants and arithmetic operators? 
With a variable length representation, the search space is 
potentially unlimited. 

Even if a maximum program length is established, how 
many different computer programs can be written using 
all the elements of a programming language?



9

Motivation
Applications

GP is not generally used to evolve computer programs, 
but it has been very successful in a vast number of 
applications.

• Modeling and regression
• Image and signal processing
• Time series prediction
• Control
• Medicine
• Biology and bioinformatics
• Arts and entertainment
…

… and almost anything else one can think of!

10

Motivation
Creativeness

John Koza and his “invention machine”
In 1995 John Koza saw his 
“invention machine” create
a complex electronic circuit 
from scratch, i.e, by combining 
basic electronic components 
like resistors and capacitors.

This circuit was a patented
low-pass filter, a circuit used
for cleaning up the signal 
passing through an amplifier.

Since then, GP has replicated many other previously patented items. New 
patents have been registered resulting from GP creativeness. In 2005 the 
invention machine earned one of the first patents ever granted to a non-
human designer, for developing a system to make factories more efficient.

11

Motivation
Creativeness

GP often yields results that are not merely academically 
interesting, but competitive with the work developed by 
humans.

Humies – Annual Awards for Human-Competitive Results 
Produced by Genetic and Evolutionary Computation
(http://www.genetic-programming.org/hc2010/cfe2010.html)

Antenna launched on NASA’s 
Space Technology 5 mission 

“What he got, several hundred generations
later, appeared to be a mistake”

“It looked like a bent paper clip”

12

Previous example:
Find and expression (…) such that (…)

f ( x1, x2, x3 ) = x1 - x2 + 2 x3

LISP-like expression

( + ( – x1 x2 )  ( + x3 x3 ) )

Other types of GP:
Linear GP
Graph GP

Representation
Common Types

Tree-based GP is 
the most popular 
because:

• Koza used/uses it

• Allows for simple
genetic operators

terminals

functions

Tree-based GP:

Parse tree

–

x32

+

*

x2x1



13

Previous example:
Find and expression (…) such that (…)

f ( x1, x2, x3 ) = x1 - x2 + 2 x3

Tree-based GP:

Parse tree

Representation
Common Types

–

x3x3

+

+

x2x1

= =  …

–

x32

+

*

x2x1

–

x1

x3

+

+

x2x3

=

14

f ( x1, x2, x3 ) = x1 - x2 + 2 x3

Representation
Ingredients

Function Set: { + , - , * }

Terminal Set: { x1 , x2 , x3 , 2 }

f ( 1, 2, 3 ) = 5
f ( 6, 2, 5 ) = 14
f ( 1, 10, 8 ) = 7

Previous example:
Find and expression (…) such that (…)

Function Set: { + , - , * , / }

Terminal Set: { x1 , x2 , x3 }

The success or failure of a GP run may depend on
the setting of the function and terminal sets.

• if the ingredients are not enough to represent the optimal solution,
the run will never reach it

• if there are too many superfluous ingredients, the search process
will get lost in a too large, too complex search space

15

Representation
Closure

Function Set: { + , - , * , / }

Terminal Set: { x1 , x2 , x3 }

What’s “wrong” with 
this function set?

–x3

/

x1x1

What happens if GP tries 
to evaluate this individual?

To verify the closure property, 
any output argument of any of 
the functions / terminals must
be a valid input for all the other 
functions.

Division must be “protected”
to avoid division by zero.

Defining protected division a//b:
if b=0 then 1 else a/b

Other operators need it, like log. 
Others require protection from 0, 
negative numbers, overflowing, etc.

In GP, protection
is preferred over 
repair procedures

16

Representation
Closure

Function Set: { + , - , * , // }

Terminal Set: { x1 , x2 , x3 }

x3

//

x1

Protected functions
have side effects on 
the search space.

= 1

x3

/

x1x1 0

if

=

Very close values of 
x1 may return very 
different results.This example is also useful

to introduce two advanced
options of GP:

• Strongly-Typed GP (STGP)

• Automatically Defined Functions (ADFs)



17

Representation
Closure

Function Set: { + , - , * , // }

Terminal Set: { x1 , x2 , x3 }

What’s “wrong” with 
this terminal set?

What if the optimal solution 
requires constants?

–x1 x3

+

x2

1

+

0.5

*

* 0.7

//

0

//

x1x1

1 //

x1

x1x1

+

0.5

0.7

random
constants

18

Representation
Practical Advice

When you don’t know anything about the problem
and possible solutions, use small function and
terminal sets.

Add / replace functions and constants if learning is
difficult (with a population that is already large).

If you know some ingredients that may help solve the
problem, use them! GP needs all the help it can get.

Specialized ingredients are allowed / encouraged,
like complex functions that perform specific
tasks on the data.

19

Representation
Other examples

Parity problem
Return true (1) if number of 1’s in the input
data is even; return false (0) otherwise. 

Data:

x1, x2, x3 f(x1, x2, x3)
0 , 0 , 0                 1
0 , 0 , 1                 0
0 , 1 , 0                 0
0 , 1 , 1                 1

… …

This can be solved like a symbolic regression
problem using logical operators. 

Function Set: { and, or, nand, nor }

Terminal Set: { x1 , x2 , x3 }

Adding ‘xor’ to the function set 
transforms many hard parity 
problems into easy problems!

20

Representation
Other examples

Artificial Ant problem
Evolve a strategy to follow a food trail. 

Function Set: { if-food-ahead,
prog2, prog3 }

Terminal Set: { left, right, move }

Maintains closure. Input/output 
arguments are current position 
and units of food eaten.

Example
( if_food_ahead ( move )

( prog2  left  move ) )



21

Running GP
Population Initialization

Initialization Methods 

Initial trees are generated so they don’t exceed a certain 
depth (typically 6). Koza described three initialization 
methods: Grow, Full, Ramped Half-and-Half.

Starting for the root of the tree, nodes are added until the 
leaves. The choice of nodes is mostly random among the 
function and terminal sets, obbeying the restrictions:

Grow - maximum depth cannot be exceeded

Full - tree must be full (all branches must reach maximum 
depth) - may not be appropriate for some function sets

Ramped - for each depth between 2 and the maximum 
depth, half of the trees are initialized with Grow and the
other half with Full

22

Running GP 
Population Initialization

Examples of Grow and Full trees 

–

x1

x3

+

+

x2x3

–x1 x3

+

x2

1

+

0.5

*

* 0.7

23

Running GP 
Population Initialization

Examples of Grow and Full trees 

–

x32

+

*

x2x1

x3

//

x1

24

Running GP 
Population Initialization

Examples of Grow and Full trees 

= 1

x3

/

x1x1 0

if



25

Running GP 
Population Initialization

Population Diversity

Ramped Half-and-Half ensures a high structural (genotypical) 
diversity of the trees in the initial population. This may not 
translate into semantic (phenotypical) diversity.

In GP the initial diversity is not so important. In regression 
problems most initial individuals are very unfit and quickly 
discarded by selection, but GP has a remarkable ability to 
maintain and/or recover diversity, even without using mutation. 

The population size (number of individuals) tends to be much 
more important than the initialization method. Typically GP 
uses larger populations than GAs, to cover the larger search 
space more effectively.

26

Running GP 
Population Initialization

Premature convergence vs Stagnation

Premature convergence is a rare event in GP, but it may 
happen very early in the run in highly complex problems. In 
case it happens, the initial population should be allowed 
deeper trees. Increasing the number of individuals without 
increasing the initial depth may be useless.

Stagnation is a common event in GP which can be mistaken 
by premature convergence. The cause is not loss of diversity, 
but the proliferation of redundant code. The result is similar: 
difficulty in learning. To be addressed in Problems & Open Questions.

Advanced options like using multiple populations and niching 
techniques, common for preventing premature convergence, 
are not helpful in preventing stagnation.

27

Running GP 
Fitness Evaluation

In GP the fitness value is usually a direct translation of the 
error, so the lower the fitness, the better the individual.

Typical fitness measures for symbolic regression problems:

• Absolute differences between expected and obtained results, 
summed for all samples of the data set
• Root mean squared error

Given the diversity and complexity of the problems that can be 
tackled by GP, evaluating the fitness may be a computationally 
expensive process. Multiobjective optimization can also used.

The fitness function is crucial for the success of GP. Ideally, it 
should promote small steps towards the optimum value. Use 
knowledge about the problem, if available.

28

Running GP 
Fitness Evaluation

Artificial Ant problem

Evaluating an individual of the Artificial Ant problem involves 
simulating the behavior of the ant inside the food trail.

The evolved strategy is repeatedly applied until a certain 
number of time steps in reached. Each action of the ant counts 
as a time step. Koza used 600 time steps in his first book, but 
wrongly reported it as 400, so both values are commonly used.

The fitness is the amount of food pellets eaten during this
time. It can also be measured as the amount of food pellets 
remaining in the trail after using all the time steps.



29

Running GP 
Selection for Breeding

The amount of selective pressure used to select the parents of 
each next generation is determined by the method used.

• Roulette methods impose a high selection pressure, which 
can be lowered by using SUS (Stochastic Uniform Sampling)

• Tournament methods allow a much finer control of selection 
pressure, by controlling the size of the tournaments. Some 
tournament methods (like Double Tournament) can be used to 
implement a multiobjective-like optimization

Lower selection pressure slows down
convergence and promotes diversity.

30

Running GP 
Genetic Operators

The most commonly used genetic operators in GP are 
standard subtree crossover and mutation.

generation n

apply crossover & mutation

generation n+1

31

Running GP 
Genetic Operators

In GP, mutation is not generally used within crossover, but 
rather as an independent operator, or not used at all. 
Crossover alone can maintain / recover genotypical diversity, 
being sometimes regarded as a ‘macromutation’ operator.

Standard subtree crossover is a highly destructive operator. 
Other crossovers, more “well-behaved”, have been 
developed, but they tend to require diversity-preserving 
measures. One-point crossover was very important in 
developing the ‘building blocks’ theory for GP.

Genetic operators can be specifically crafted to deal with 
particular representations, and to include knowledge about
the problem. STGP and ADFs also require special care.

32

Running GP 
Selection for Survival

The selection for survival is independent from the selection 
for breeding. It happens after the application of the genetic 
operators and decides, from among parents and offspring, 
which individuals will be part of the new generation.

Elitist strategies guarantee the survival of the best individuals 
to the next generation. Too much elitism reduces diversity 
and promotes premature convergence.

Criteria other than fitness may be used to decide which 
individuals survive.

Steady-state evolution is sometimes used in GP.



33

Running GP 
Stop Condition

Different stop conditions may be used in a GP system. 
Some examples are:

• Number of generations
• Fitness reaching a certain value
• Fitness not improving for a number of generations
• Number of “hits” (data samples being handled correctly)
• Other criteria related to tree size, overfitting, etc.

Typically, GP uses fewer generations than GAs.

34

Properties of Solutions
Diversity

GP is a highly stochastic process, and different runs will 
provide different solutions. They may be different because:

1) The trees are structurally different, although they represent
the same phenotype once the redundant code is removed

2) The trees represent different structures / genotypes but their 
phenotype does the same thing

3) The trees really represent different solutions, using the 
same, or even different, variables

Note that GP does automatic feature selection!

35

Properties of Solutions
Automatic Feature Selection

The features selected by GP may not be the same in each run, 
particularly in high dimensional difficult real-world problems.

Advantages
Robustness to difficult data. Can provide distinct alternative 
solutions for the same problem. Can reveal data redundancies. 
Results in creativeness and innovation. 

Disadvantages
Does not provide “exact” solutions. Interpreting one solution 
may already be difficult – even more for a set of different 
solutions. Low GP credibility among practitioners.

36

Properties of Solutions
Examples – easy real world problem



37

Properties of Solutions
Examples – difficult real world problem

38

Properties of Solutions
Redundant Code - Introns

Inviable code

+

*x2

–

x1 x1

x2 + ( (x1 – x1 ) * (   ) )

39

Properties of Solutions
Redundant Code - Introns

Unoptimized code

x3 * ( x2 – x2 + x1 – x1 + x2 )
x3

x2

*

+

x2 –

x1

x2x1

–

+

40

Summary
Properties and Abilities

GP differs from GAs in the representation used for the 
individuals of the population. The set of ingredients used to 
build the solutions is the most influential element in a GP run.

The enormous versatility of the GP representation allows it
to deal with any type of problem. As a last resort, GP can be 
instructed to evolve a computer program, but more realistic 
applications deal with more specific representations.

Given the “right” representation, GP is quite insensitive to
most of the running parameters.



41

Summary
Properties and Abilities

The GP representation lends itself to high genotypical diversity, 
but which may not be present at the phenotypical level.

Proliferation of redundant code is common. Bloat.
To be addressed in Problems & Open Questions.

GP is a highly stochastic process. The solutions exhibit high 
variability among different runs. Feature selection is 
automatically performed.

Different runs = different solutions = different features selected

42

Summary
Advanced Options

Most advanced options of GAs have also been 
used in GP, like multiple populations, niching 
techniques, and multiobjective optimization.

Other advanced options are specific to the GP 
representation, like Strongly-Typed GP and 
Automatically Defined Functions.

43

Demos
GPLAB – A GP Toolbox for MATLAB

http://gplab.sourceforge.net/

44

Demos
Examples

Symbolic Regression:

f(x) = x4 + x3 + x2 + x

Function set: { +, –, * }
Terminal set: { x }

0.0000
-0.1629
-0.2624
-0.3129
-0.3264
-0.3125
-0.2784
-0.2289
-0.1664
-0.0909
0.0000
0.1111
0.2496
0.4251
0.6496
0.9375
1.3056
1.7731
2.3616
3.0951
4.0000

-1.0000
-0.9000
-0.8000
-0.7000
-0.6000
-0.5000
-0.4000
-0.3000
-0.2000
-0.1000
0.0000
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
1.0000

demo_reg1 (25 gens, 500 inds)
plots: fitness, diversity, best

demo_reg2 (25 gens, 500 inds)
function set: { +, -, *, // , sin, cos, 
log }

demo_reg3 (50 gens, 25 inds)
demo_reg4 (50 gens, 25 inds)
plots: + approximations

expected
input           output



45

Demos
Examples

3-Bit Even Parity:
return true (1) if number of 1’s is even
return false (0) otherwise

Function set: { and, or, nand, nor }
Terminal set: { x1, x2, x3 }

1
0
0
1
0
1
1
0

0  0  0
0  0  1
0  1  0
0  1  1
1  0  0
1  0  1
1  1  0
1  1  1

demo_par1 (20 gens, 100 inds)
plots: fitness, best

demo_par2 (20 gens, 100 inds)
function set: { and, or, nand, nor, xor }

expected
input           output

46

Demos
Examples

Artificial Ant:
return a strategy to follow a food trail

Function set: { if-food-ahead,
prog2, prog3 }

Terminal set: { move, left, right }

demo_ant1 (10 gens, 20 inds)
plots: fitness, best

load trained_ant
antsim(vars)
drawtree(vars.state.bestsofar.tree)

input

matrix of 1’s and 0’s 
representing the food trail
1 = food (black)
0 = empty (white, grey)

47

Early History

1992 John Koza: edited the final solutions to remove pieces of redundant 
code; imposed a depth limit of 17 on the trees created by crossover

1994 Peter Angeline: adopted the name introns; noted they provided neutral 
points for crossover; based on their importance for genetic algorithms, 
remarked that

“it is important then to not impede this
emergent property as it may be

crucial to the successful development
of genetic programs”

Problems & Open Questions
Bloat

48

Definition

Excessive code growth
without a corresponding
improvement in fitness

Bloat is not specific to GP.
It affects all progressive search techniques based on variable-length 
representations and using static evaluation functions 

Problems & Open Questions
Bloat



49

Pros and Cons

Pros Code compression and parsimony (effective code is shorter?)
Protection against genetic operators (but is it really useful?)
Artificial introns beneficial to linear GP (but not tree-based GP)

Cons Exhaustion of computational resources
(storage, evaluation and swapping of useless code)
Stagnation of effective search
Poor readability of the solutions

Problems & Open Questions
Bloat

50

Theories

Problems & Open Questions
Bloat

Based on introns
Code growth occurs as a protection against the destructive effects 
of genetic operators: introns provide nodes for neutral variations; 
size itself increases the chances that the crossover / mutation 
nodes are deeper into the tree, thus reducing the probability of
serious disruption.

Based on drift
Code growth results from the structure of the search space: any 
stochastic search technique will tend to find the most common 
programs in the search space of the current best fitness – large 
programs are more common than small programs.

51

Theories

Crossover Bias

Most genetic operators, in particular standard subtree crossover,
do not add or remove any amount of genetic code from the population, 
they simply swap it between individuals. So the average program length 
in the population is not changed by crossover.

There is a bias of many genetic operators, in particular crossover, to 
create many small, and consequently unfit, individuals.

When these small unfit individuals are engaged in competition
for breeding, they are always discarded by selection in favor of
the larger ones. This is what increases the average program length.

Problems & Open Questions
Bloat

52

Methods

Bloat control is possible at different levels of the evolutionary process:

Fitness Evaluation
Parametric Parsimony Pressure, Tarpeian

Selection for Breeding
Multi-Objective Optimization, Special Tournaments

Genetic Operators
Special Genetic Operators

Selection for Survival
Size/Depth Limits, Operator Equalisation (size=length)

Others
Code Editing, Dynamic Fitness, Other Types of GP

Problems & Open Questions
Bloat



53

Methods

Fitness Evaluation
Parametric Parsimony Pressure

The fitness of an individual is a function of its raw fitness and its
size/length, penalizing larger individuals. Some techniques apply
adaptive pressure.

Pros
Can speed the evolution and produce very compact solutions

Cons
Tends to converge on local optima
Very dependent on parameters
(which depend on the problem and on the stage of the evolution)

Problems & Open Questions
Bloat

54

Methods

Selection for Breeding
Special Tournaments – Double Tournament

The winners of a first tournament are engaged in a second tournament.
The first is based on fitness and the second on size, or vice versa.
In the size tournament the smaller individual wins with probability D.
(0.5 < D < 1)

Pros
One of the best methods until recently

Cons
Difficult to find correct setting for D
(same problem as with parametric parsimony pressure)

Problems & Open Questions
Bloat

55

Methods

Genetic Operators
Special Genetic Operators – Homologous Crossover

Selects the crossover node on the first parent randomly, like in standard
subtree crossover. Selects the crossover node on the second parent so
that the swapped nodes are similar in structure and position in the tree.     

Pros
Effectively controls bloat

Cons
Weak exploration of the search space
Requires a larger population and larger initial individuals
Requires mutation

Problems & Open Questions
Bloat

56

Methods

Selection for Survival
Size/Depth Limits – Fixed Limits

Whenever crossover creates an individual that breaks the fixed
predetermined size/depth limit, the individual is rejected and
1) one of its parents is accepted instead, 2) crossover is repeated
with the same parents, or 3) crossover is repeated with new parents. 

Pros
Effectively prevents bloat beyond a certain point

Cons
The fixed limit is arbitrary
Option 1 actually speeds bloat until the limit is reached

Problems & Open Questions
Bloat



57

Methods

Selection for Survival
Size/Depth Limits – Dynamic Limits

Works like the Fixed Limits, except that the limit is not static. The initial
limit is set to a very low value, and only increased whenever that is
needed to accept a new best-of-run individual. 

Pros
Does not allow code growth unless it is necessary
Allows enough code growth to solve very complex problems

Cons
For some problem types bloat still happens
(typically in very hard regression problems)

Problems & Open Questions
Bloat

58

Methods

Selection for Survival
Operator Equalisation (Program Length Equalisation)

Based on the Crossover Bias theory, controls the distribution
of program lengths by filtering which individuals are accepted
in the population, based on their size/length and fitness. 

Pros
Effectively eliminates bloat!!
Based on Dynamic Limits ideas, allows code growth when needed

Cons
Two versions available: one is computationally expensive,
the other is a slow learner

Problems & Open Questions
Bloat

59

Problems & Open Questions
Overfitting and Complexity

bloat
control

size

• Operator Equalisation eliminates bloat

overfitting
control

“shorter solutions generalize better”

60

bloat
control

size

• Bloated solutions = Shorter effective code? Not in our problems

simpler

complexity

≠

Problems & Open Questions
Overfitting and Complexity

• For overfitting, size doesn’t matter – complexity does

, overfitting remains / increases• Operator Equalisation eliminates bloat

overfitting
control

“shorter solutions generalize better”



61

Problems & Open Questions
Mathematical vs Visual Complexity

sin (x)

-10 -5 0 5 10
-1

-0.5

0

0.5

1

-10 -5 0 5 10
-1

0

1

2

3

4

5
x 105

1
3

x6 2
3

x5+– 1
3

x4 2
3

x3+– –1
3

x2 2
3

x 1
3+

62

Problems & Open Questions
Multiclass Classification

–x1 x3

+

x2

1

+

0.5

*

* 0.7

Typical Limitation of GP
Each individual of tree-based GP 
returns only one value for each 
data sample.

How to perform, e.g., multiclass 
classification?

(note that a 2-class problem can 
be handled like a regression 
problem with application of a 
cutoff to the result)

63

Problems & Open Questions
Multiclass Classification

How to perform n-class 
classification?
How to perform n-class 
classification?

- Divide the problem into
n single-class problems

How to perform n-class 
classification?

- Divide the problem into n
2-class problems

- Use if-then-else in the 
function set and constants 
in the terminal set as class 
identifiers (similar to 
decision trees)

= 1

x3

=

x1

x1 0

if

2

if

3

64

Problems & Open Questions
Multiclass Classification

How to perform n-class 
classification?

- Divide the problem into n
2-class problems

- Use if-then-else in the 
function set and constants 
in the terminal set as class 
identifiers (similar to 
decision trees)

- Use n trees to represent 
each individual

–x1 x3

+

x2

1

+

0.5

*

* 0.7

–

x1

x3

+

+

x2x3



65

Problems & Open Questions
Multiclass Classification

How to perform n-class 
classification?

- Divide the problem into n
2-class problems

- Use if-then-else in the 
function set and constants 
in the terminal set as class 
identifiers (similar to 
decision trees)

- Use n trees to represent 
each individual

- Use trees with n roots
(similar to Graph GP)

–x1 x3

+

x2

1

+

0.5

*

* 0.7

–x3

+

+

x2x3

66

Project

EnviGP – Improving Genetic Programming for the Environment 
and Other Applications” (PTDC/EIA-CCO/103363/2008)

• Bloat

• Overfitting

• Complexity

• Interpretability of Solutions

• Multiclass Classification

• Applications in earth sciences and biomedical informatics

67

Project

Sara Silva
Susana Vinga
PhD student
MSc student

Maria José Vasconcelos
João M.N. Silva
Marco Lotz

Leonardo Vanneschi
Mauro CastelliFrancisco B. Pereira

MSc student

Students welcome!Students welcome!

68

Reading and Working Material

Books on Genetic Programming

A Field Guide to Genetic Programming, 2008
by Riccardo Poli, Bill Langdon, Nick McPhee (with contributions by John Koza)
http://www.gp-fieldguide.org.uk  (PDF freely available)

Genetic Programming – an introduction, 1998
by Wolfgang Banzhaf et al.
Morgan Kaufmann

Genetic Programming – on the programming of computers by means of 
natural selection, 1992
by John Koza
MIT Press

Foundations of Genetic Programming, 2002
by William Langdon, Riccardo Poli
Springer



69

Programação Genética – Darwin e o teu computador
http://academy.dei.uc.pt/page/artigos/proggenetica

Humies – Annual Awards for Human-Competitive Results Produced by
Genetic and Evolutionary Computation
http://www.genetic-programming.org/hc2010/cfe2010.html

GPLAB – A Genetic Programming Toolbox for MATLAB
http://gplab.sourceforge.net
ECJ – Evolutionary Computation in Java
http://cs.gmu.edu/~eclab/projects/ecj/
Disciplus
http://www.rmltech.com/

Genetic Programming and Evolvable Machines
http://gpemjournal.blogspot.com/

Miscellaneous Links

Reading and Working Material

70

For those of you still listening to me…

ThankThank youyou!!

"Genetic Programming is one of the few technological methods 
that has never killed a person"

[Riccardo Poli, 2006]


