
MPI Farm programs on non-dedicated clusters

Nuno Fonseca1, João Gabriel Silva2

1CISUC - Polytechnic Institute of Leiria, Portugal, nfonseca@estg.ipleiria.pt
2CISUC - DEI - University of Coimbra, Portugal, jgabriel@dei.uc.pt

Abstract. MPI has been extremely successful. In areas like e.g. particle physics
most of the available parallel programs are based on MPI. Unfortunately, they
must be run in dedicated clusters or parallel machines, being unable to use for
long running applications the growing pool of idle time of general-purpose
desktop computers. Additionally, MPI offers a quite low level interface, which
is hard to use for most scientist programmers. In the research described in this
paper, we tried to see how far we could go to solve those two problems,
keeping the portability of MPI programs, but drawing upon one restriction -
only programs following the FARM paradigm were to be supported. The
developed library - MpiFL - did provide us significant insight. It is now being
successfully used at the physics department of the University of Coimbra,
despite some shortcomings.

1. Introduction1

MPI has made possible a very important development among scientists: parallel
program portability. Up to not many years ago, parallel number crunching programs
in areas like e.g. particle physics were made for particular combinations of operating
systems and communication libraries, severely hindering their widespread use. With
MPI, things changed. An MPI program made for a very expensive massively parallel
machine also runs on a cheap cluster made of PCs. Other middleware communication
packages had the same potential, but none managed to become a de facto standard
like MPI did.

Unfortunately, MPI does not tolerate node failures. If a single machine in a cluster
fails, the whole computation is lost. Non-dedicated clusters, built by bringing together
the idle time of workstations with other uses, are out-of-reach of MPI programs, since
in those ad-hoc clusters nodes become unavailable quite often. The reason can be a
network cable that is plugged out, or a computer switched off, or simply because the
owner of a node launches a task that uses up all available CPU time. Even in
dedicated clusters failures do happen, although much less frequently, forcing many
programmers to resort to "hand-made" checkpointing, regularly saving intermediate

1 The authors would like to thank Hernani Pedroso and João Brito (Critical Software); Paulo

Marques and Fernando Nogueira (University of Coimbra); Nelson Marques and Patricio
Domingues (Polytechnic Institute of Leiria) for their help. This work was partially supported
by the Portuguese Ministry of Science and Technology and by the European Union, under
R&D Unit 326/94 (CISUC), projects POSI/EEI/1625/95 (PARQUANTUM) and
POSI/CHS/34832/99 (FT-MPI).

2

data, and manually restarting application from that data when the computation
crashes. There are essentially two approaches to deal with this problem.

One is to use a different middleware altogether, capable of tolerating failures and
cycle stealing. The best example is probably the Condor system [Tannenbaum 02],
which can handle non-dedicated clusters in a very efficient way. Still, Condor has a
different API, and quite different execution model, from MPI. Switching to Condor
means losing the main advantage of MPI: program portability. While Condor is
becoming popular in clusters, it has little expression in dedicated parallel machines. If
Condor usage becomes more widespread, it may be able to offer similar portability to
MPI, but it is hard to say whether that will happen. It is true that Condor is capable of
running MPI programs, but to do so fault-tolerance is lost. MPI and non-dedicated
clusters are thus not brought together by Condor.

The other solution is to change MPI to make it fault tolerant. There have been
several attempts for doing that, like Co-check [Stellner 96], Startfish [Agbaria 99],
MPI-FT [Louca 00], FT-MPI [Fagg 00] and MPI/FT [Batchu 01]. Some of these
systems provide transparent fault-tolerance and run unmodified programs, others
require changes to user programs, with some (like e.g. Startfish) supporting both
mechanisms. The underlying tradeoff is that there is a bigger performance penalty for
transparent checkpointing, and implementation is significantly more complex. Still,
none of these systems are readily available, and most did not go beyond the state of
limited prototypes. This is anyhow a promising approach, but a complex one, that will
still take some time before becoming mainstream.

Without denying the merits of any of these approaches, we decided to explore a
different route. In order to keep full portability, we tried to build a layer above MPI
that could run over any unmodified MPI implementation, but would support non-
dedicated clusters by offering fault-tolerance.

As a secondary goal, we wanted to offer a higher-level API, better adapted to the
type of problems scientists were facing, e.g. at the Physics department of the
University of Coimbra. After analyzing their programs were concluded that all of
them were already implemented in the farm paradigm (also known as master/worker),
or could be easily changed to fit that paradigm. In the farm paradigm there is one
master node that distributes subtasks to the other nodes (known as workers or slaves)
The slaves do not communicate among themselves, only with the master, which
collects the slave outputs and from them computes the collective result of the
computation (for a discussion of the main paradigms of parallel programs see [Silva
99]).

The farm paradigm is very interesting for fault-tolerance purposes because, since
everything goes through the master, that node becomes an obvious place to do
checkpointing. Since non-dedicated clusters are generally heterogeneous, load
balancing is also required; otherwise the slowest node would limit the whole
computation. Fortunately, in the farm paradigm this balancing is obtained almost for
free: faster nodes will finish their jobs first, and request more jobs from the master,
thus getting a bigger share of the job pool than slower nodes, which will get less jobs
to perform. This works well as long as the number of jobs to distribute is significantly
above the number of available nodes.

The library we built was thus called MpiFL (MPI-Farm Library).
Any library so devised necessarily has a drawback, similar to what was pointed

before to Condor - it has a different API than MPI. This is the price to pay to provide
the user a higher level API. But, contrary to Condor, we have the potential not to lose

 3

the main advantage of MPI - portability. If, of course, we are able to build such a
library to run over any MPI implementation, from big machines to small clusters.

The idea to build such libraries is not new. Among them is MW, built over Condor
[Goux 01]; we have developed in the past something similar for the Helios OS [Silva
93]; and in the Edinburgh Parallel Computing Centre a number of such libraries was
also developed some years ago over MPI, but with no fault tolerance [Chapple 94].
The algorithmic skeleton community has also started to work on libraries for MPI,
which promise some level of standardization of the particular skeletons used, and
allow the programmer to go on using their familar environments, like C++ and MPI
[Kuchen 02], but do not address the complex issues of faults, errors and failures.

In spite of several other variations reported in the literature, we could not find any
other farm library over MPI that had been built with our set of requirements in mind:
high portability over MPI implementations, support for non-dedicated clusters (i.e.
fault-tolerance) and an high-level, easy to use API. These are the goals of MpiFL.

The paper is structured as follows. After this introduction, section 2 discusses how
far fault-tolerance can be obtained under the chosen constraints. Section 3 then
discusses the interface the library offers to programmers. Section 4 describes the
internals of the library and some results of its usage. Section 5 closes the paper,
presenting some conclusions and future research directions.

2. Fault-Tolerance over MPI

Loss of nodes. In both version 1 and 2 of the MPI standard [mpi 1.1][mpi 2.0], fault
tolerance is specified only for the communication channels, which are guaranteed to
be reliable, but not for process faults. If a process or machine fails the default
behaviour is for all other nodes participating in the computation to abort. The user
may change this by providing error handlers, but the system may not even be able to
call them, and even if it does they are useful only for diagnostic purposes, as only
sometimes (implementation dependant) will it be possible to continue the
computation after the execution of the error handler, as the standard does not specify
the state of a computation after an error occurs.

In a master worker configuration we would like to be able to continue using the
remaining workers if one of them fails. Although the standard does not guarantee that,
a particular implementation may sometimes make it possible to just ignore the failed
processor and go on using the others, depending on the type of fault. We can benefit
from that possibility whenever it is available, through what we call "lazy fault-
recovery": the default behaviour of aborting everything when a single process is lost
is switched off by defining new error handlers and, as long as most of the worker
nodes still make progress, the computation is kept alive. When it is judged that the
price of a global restart of the application is outweighed by the benefit of adding to
the virtual machine the nodes that in the meantime became available (possibly
including some or all of the failed workers, if the problem that led them to stop was
transient) the computation should be stopped and relaunched with the full set of
available machines. With this approach we manage to use up as much capacity to
work in a degraded mode as each MPI implementation provides.

4

"Lazy fault-recovery" is made possible because of another feature of MpiFL,
which is also useful for load balancing. Even in the absence of faults, since in non-
dedicated clusters nodes can have quite different processing capabilities, when the list
of tasks to be distributed to the workers is exhausted, MpiFL distributes to the idle
workers the jobs that have already been distributed to some worker but whose result is
not yet available. In this way, a fast node may finish a job faster than the slow node it
was originally distributed to. This also works when a task is assigned to a node that
fails - since that node will not return a result, the task will eventually be sent to a
different worker, and the application reaches completion.

Please note that the notion of "failed node" includes the case when the rightful
owner of a machine starts using it heavily and stalls the process running on behalf of
MPI, which runs with low priority. A slow node is thus equivalent to a failed node. If
later the slow node still produces the result of its assigned job, it will simply be
ignored. There is one drawback to this scheme - we are not able to stop a worker that
is processing a job whose result we already know is not needed. The only way to do
that is abort the whole computation and restart it. MpiFL gives the user the possibility
of specifying this behaviour.

System monitoring. As should result clear from the previous section, MPI has no
mechanism no determine when a node fails, or when a new one becomes available.
An external monitoring service is needed. This service is operating system (OS)
specific, and so is not portable across different MPI implementations running on
different OSes, constituting the biggest limitation to a full MpiFL portability. Even if
such a monitor could be based only on MPI calls, we would need to have it separate
from the main computation, so that the monitor could survive when the MPI
computation aborts, not only to be able to signal that a particular MPI process died,
but also to be able to relaunch an MPI application that aborted because a remote
machine died.

The type of diagnostic made by this monitor must be more fine-grained than just
the usual detection of machine crashes - even if a machine is up, it has to detect
whether all the requirements for an MPI process to run are satisfied, and also whether
the machine has sufficient idle time to be able to constructively participate in a
computation.

In the current version of MpiFL, the loss of the monitor in the master machine is
the sole case that requires manual intervention to restart the MPI computation. A
mechanism to do this automatically is not difficult to build, and may be included in a
future version.

Recovery and restart. To recover a computation after a crash we use periodic
checkpoints, which are written to disk by the master (optionally to several disks in
different machines, to make the system tolerant to crashes of the master machine).
The content of the checkpoints is basically the results of the already executed tasks,
which makes it easy to migrate the checkpoints, even across different architectures
and OSes.

Since there are still very few implementation of the MPI-2 standard, we decided to
base MpiFL on MPI version 1.1 [mpi 1.1]. On MPI-2 we could add dynamically new
processes, but on MPI 1.1 a restart is needed to add new machines, which results in
some wasted processing. When a restart is needed because of a computation crash, we

 5

obviously seize the opportunity to include all available nodes. Otherwise the monitor
has to force an abort to include new machines, a decision that is only taken when the
estimate of the time to complete the application with the new machines is clearly
lower than without them, even taking into account the cost of the abort and the restart.

Master Slave

#include <mpifl.h>
main() {
int a,b;
MpiFL_MasterInit();

// Handle Non-deterministic
// code here (optional)
if (MpiFL_FirstStart()) {
 scanf("%d",&a)
 b=rand(); }
MpiFL_Restart (&a, sizeof(a));
MpiFL_Restart (&b, sizeof(b));

//deterministic code
// Produce jobs
for ()
 MpiFL_SendJob(..);
// Consume
for ()
 MpiFL_GetResults(..);
…
MpiFL_MasterClose();
}

#include <mpifl.h>
main() {

MpiFL_SlaveInit();

while
 (MpiFL_GetJob()>0){
 //Process
 …
 MpiFL_SendResults()
 }
MpiFL_SlaveClose();
}

Figure 1 - Templates for master and slave. Other more complex variations are also
possible, like generating new jobs based on the results of the previous ones.

3. High-Level interface for Farm programs

The programmer only has to provide the master, that produces the jobs for the
workers and collects the results, the workers that process the jobs (see figure 1), and
the configuration file, that indicates where the master, workers and checkpoints
should be. The library does everything else.

When the MPI computation crashes, the monitor restarts it. The master executes
from the beginning, and at the call to MpiFL_MasterInit the library reads the
checkpoint contents. The master then proceeds to generate the jobs again, but the
library will recognize those that have already been processed before and replays their
results to the master without calling any worker. Only those that had not been
processed before will be forwarded to the workers. The master redoes all its
processing after each restart, which can be inconvenient; but to do otherwise, we
would have to ask the user to do additional calls to the library to set checkpoints, or
do transparent checkpoints and lose portability [Silva 95][Silva 98]. We chose
portability and the simpler interface.

6

With this model, the programmer must assure that in the case of a restart, the
master deterministically recreates identical jobs. If it has non-deterministic code, it
will have to execute that code only once, using the MpiFL_FirstStart function (see
figure 1). Since the MpiFL_FirstStart function only returns true in the first execution
of the program, the code inside the if will only be executed once. The variables that
store the outcome of that non-deterministic code (a and b in the example of Figure 1),
are saved by the call to MpiFL_Restart in the first execution, and restored in
executions that result from a restart caused by a failure.

4. MpiFL Library

The internal structure of MpiFL is presented in figure 2. All communication is done
through MPI, except between the master and the monitor, that use pipes, although
they could use TCP sockets. The checkpoints can be replicated in several machines to
ensure their survivability.

We have made two implementations of MpiFL, one for Windows (using WMPI
from Critical Software - http://www.criticalsoftware.com/HPC/), and one for Linux
(using MPICH - http://www-unix.mcs.anl.gov/mpi/mpich/). Both versions of the
library support C, C++ and Fortran90.

Figure 2 - MpiFL

We have subject both versions of MpiFL to many faults, like the abrupt killing of
MpiFL process, many kinds of communication problems (removal of network cables,
disabling of NIC’s, stopping networking services, etc.), machine problems (reboots,
stopping MPI services, etc), checkpoint problems (inconsistent checkpoint files,
removal of checkpoint files, etc), and the library recovered always, except when the
monitor in the master machine was affected.

 7

The library was also tested for two weeks in a non-dedicated cluster composed of
30 machines in computer rooms used by computer engineering students, a particularly
hostile environment (only the master machine was in a restricted access lab), and it
was never down, in spite of the frequent node losses and additions.

To judge the performance penalty the library might represent, many test were made
with a traveling salesman optimization problem, with different mixes of machines and
granularity of tasks, and the overhead introduced by the library was always negligible
(below 1%). The experience of usage in real problems in the Physics department
points in the same direction, although measurements were not done systematically
there. Generically, with different programs the performance overhead can become
relevant, being determined essentially by the amount of data that has to be saved to
disk, as is well known for a long time [Elnozahy 92].

5. Conclusions and Future Work

The main conclusion of this research is indeed the strong need for a clean failure
semantics in MPI. The parallel machines that were dominant when MPI was first
devised have now been largely replaced by clusters that have high failure rates that
must be dealt with. In the case of non-dedicated clusters because these are inherently
unstable environments; in the case of dedicated clusters because of the rapidly
growing number of machines. If MPI is not able to solve this problem, it will
probably soon lose the dominant position it now has as the preferred execution
environment for parallel programs.

In spite of this shortcoming of MPI, we have shown that very useful levels of fault-
tolerance can be achieved without significantly compromising portability, while at the
same time offering the average scientist programmer a much easier programming
model for the farm paradigm.

For the MpiFL library we are considering three enhancements: a fully automatic
restart also for the case of loss of the monitor in the master machine; using the
dynamic process creation capability of MPI 2.0 to add new nodes without having to
restart the whole computation; and perfecting the "lazy fault recovery" mechanism to
better use all capability that each particular MPI implementation may have to go on
working with lost nodes.

References

[Agbaria 99] A. Agbaria and R. Friedman. "Starfish: Fault-Tolerant Dynamic MPI Programs on
Clusters of Workstations". In the 8th IEEE International Symposium on High Performance
Distributed Computing, pages 167-176, August 1999.

[Batchu 01] Rajanikanth Batchu, Jothi P. Neelamegam, Zhenqian Cui, Murali Beddhu,
Anthony Skjellum, Yoginder Dandass, Manoj Apte, "MPI/FT(tm): Architecture and
Taxonomies for Fault-Tolerant, Message-Passing Middleware for Performance-Portable
Parallel Computing," The Third International Workshop on Software Distributed Shared
Memory (WSDSM'01), May 16 - 18, 2001, Brisbane, Australia.

8

[Chapple 94] Simon Chapple and Lyndon Clarke "PUL: The Parallel Utilities Library"
Proceedings of the IEEE Second Scalable Parallel Libraries Conference, Mississipi, USA,
12-14 October, 1994, IEEE Computer Society Press, ISBN 0-8186-6895-4.

[Elnozahy 92] E.N. Elnozahy, D.B.Johnson, W.Zwaenepoel "The Performance of Consistent
Checkpointing", Proc. 11th Symposium on Reliable Distributed Systems, pp. 39-47, 1992,
IEEE Computer Society Press.

[Fagg 00] Graham E. Fagg, Jack J. Dongarra "FT-MPI: Fault Tolerant MPI, supporting
dynamic applications in a dynamic world", ; EuroPVM/MPI, User’s Group Meeting 2000,
Spring-Verlag, Hungary, September 2000, pp. 346-353.

[Goux 01] J.-P Goux, S. Kulkarni, J. T. Linderoth, and M. E. Yoder, "Master-Worker: An
Enabling Framework for Applications on the Computational Grid'', Cluster Computing 4
(2001), pp. 63-70.

[Kuchen 02] H. Kuchen, "A Skeleton Library" Proceedings of Euro-Par 2002, LNCS, Springer-
Verlag, 2002.

[Louca 00] Soulla Louca, Neophytos Neophytou, Adrianos Lachanas And Paraskevas
Evripidou "MPI-FT: Portable Fault Tolerance Scheme for Mpi" Parallel Processing Letters,
Vol. 10, No. 4 (2000) 371-382.

[mpi 1.1] "MPI: A Message-Passing Interface Standard", Version 1.1, Message Passing
Interface Forum, June 12 1995, http:\\www.mpi-forum.com

[mpi 2.0] "MPI-2: Extensions to the Message-Passing Interface", Message Passing Interface
Forum, July 18, 1997, http://www.mpi-forum.com

[Silva 93] Luís Moura e Silva, Bart Veer e João Gabriel Silva "How to Get a Fault-Tolerant
Farm", In R. Grebe, J. Hektor, S.C. Hilton, M. R. Jane, P.H. Welch (eds.) "Transputer
Applications and Systems '93" Vol. 36 in the Series "Transputer and Occam Engineering",
IOS Press, 1993, Amsterdam. Vol. 2, pp 923-938, ISBN 90-5199-140-1.

[Silva 95] Luís M. Silva, João Gabriel Silva, Simon Chapple, Lyndon Clarke "Portable
Checkpointing and Recovery" 4th IEEE International Symposium on High Performance
Distributed Computing (HPDC-4), Pentagon City, Virgínia, USA, August 2-4, 1995, pp188-
195, IEEE Computer Society Press, ISBN 0-8186-7088-6

[Silva 98] Luís M. Silva, João Gabriel Silva. "System-Level versus User-Defined
Checkpointing". 17th IEEE Symposium on Reliable Distributed Systems, 1998, October 20-
23, West Lafayette, USA, IEEE Computer Society, p. 68-74, ISBN 0-8186-9218-9

[Silva 99] Luis Moura Silva, Rajkumar Buyya, "Parallel programming models and paradigms",
in R. Buyya (ed.), "High Performance Cluster Computing: Architectures and Systems:
Volume 2", Prentice Hall PTR, NJ, USA, 1999.

[Stellner 96] Georg Stellner. "CoCheck: Checkpointing and Process Migration for MPI". In
Proceedings of the International Parallel Processing Symposium, pages 526-531, Honolulu,
HI, April 1996. IEEE Computer Society Press.

[Tannenbaum 02] Todd Tannenbaum, Derek Wright, Karen Miller, and Miron Livny, "Condor
- A Distributed Job Scheduler", in Thomas Sterling, editor, Beowulf Cluster Computing
with Linux, The MIT Press, 2002, ISBN 0-262-69274-0.

