
INTERNET NETWORK SERVICES
MANAGEMENT FRAMEWORK

B. Dias(*)<dias@uminho.pt> A. Santos(*)<alex@uminho.pt>, F. Boavida(**) <boavida@dei.uc.pt>

(*)Departamento de Informática, Universidade do Minho

(**)Departamento de Engenharia Informática, Universidade de Coimbra

ABSTRACT

This document presents a new approach to Internet Network
Management without changing the basic rules of the interface and
encapsulation mechanisms of standard management transport
protocols. The Internet Network Services Management
Framework (INSMF) tries to overcome the most important
limitations of the Internet Network Management Framework
(INMF) by adding a new extension-model to it, using a network
service management distributed architecture that provides
services management functions with any desired level of
functionality. The specification of a generic Domain Name
Service (DNS) Management Service is presented, as a way to
illustrate the capabilities and potential of the proposed
framework.

1. INTRODUCTION

The growing complexity of distributed Internet Services and
Applications, supported across various network service
providers that use numerous network hardware and software
technologies, has reinforced the importance of network
management. The hardware devices of a network have increased
in number and computational power. Also, a single network
device can support numerous protocols, services and
applications. All this demands new capabilities from the INMF.
Despite the latest improvements, the most important limitations
of the INMF model are the excessive centralized agent/manager
paradigm [18,22,23,24] and the simplified abstraction [18,19]
provided by the Management Information Base (MIB) objects.
These limitations are difficult to overcome without a substantial
change or extension to the model.

Although there has been continuous evolution in the INMF, the
most recent achievements being the group of documents that
form the 3rd Version of the Simple Network Management
Protocol (SNMPv3), that is, INMFv3 [1,2,3,4,5,6,7,8], and the
2nd Version of the Remote Monitoring Management Information
Base (RMONv2) [10], it is recognized that this framework is not
providing what its users demand: an efficient mechanism for
global management of Network Services . IETF efforts
[9,10,13,14,15,16,17] try to use indirect mechanisms to provide
some of the mid or high-level functionalities lacking on the
original framework. The problem with the majority of these

mechanisms is the integration with each other and with the low-
level functionalities already available leading to an excessive
number of indirect objects to manage and complex manipulation
procedures. This is also true with respect to the model and
mechanisms used to implement and provide security and access
control [5,6].

The main limitations of the model and INMF mechanisms are:

• Lack of high-level functionalities available for building
Network Management Applications. This is due to the
excessive simplicity of the semantics associated with
MIB objects [18,19].

• Low efficiency regarding the large amount of non
compressed raw data transferred between managers and
agents, since the processing of the raw data has to be
done mainly on the managers/management application
side. Also, object manipulation, like tables, is somewhat
complex because managers can only rely on very basic,
low-level procedures/methods. So, to accomplish
something more complex than trivial manipulation, the
manager has to issue a group of related low-level
operations, all of them transmitted to the agents.
Generally, all these operations have individual responses
that are also transmitted through the network, increasing
even further the impact on network bandwidth, which
tends to be the most expensive resource on a distributed
system.

• Scalability problems due to the over-centralized
manager/agent model. This client/server architecture is
very limited in the creation of various levels of
management since the objects represent local resources
on an individual network device. The problem has been
identified since the INMF creation and some alternative
management architectures [21] or SNMP extension
mechanisms [24] were proposed to overcome this.

• Complexity of the access control and security
procedures of the model created for SNMPv3. Despite
being powerful, these mechanisms still use complex
chains of small operations and need a large management
burden for their extensive list of associated objects.

Some of these problems have been addressed in the past few
years with the creation of mechanisms that try to increase the

functionality level of the managed objects and make the model
less centralized. Such efforts include distributed management
[22,23] and management by delegation [22] concepts that are
partially implemented in the Remote Monitoring [10], Event
[15], Notification Log [16], Expression [17], Script [14],
Scheduler [13] and Manager-to-Manager MIBs. Nevertheless, the
functionality of individual objects within these MIBs is still very
limited and their management, from the managers point of view,
still complicated and resource consuming.

In the approach defined on this article, these concepts of
distributed management and management by delegation are
implemented using the same integrated mechanism in the INSMF
model and can be provided directly to the user as Services
Management Functions (SMF).This model is intended for
managing network services and distributed applications and can
still use the encapsulation protocols and syntax rules of the
INMF. The integration with the INMF is simple or, in some
cases, straightforward, and all the MIBs can be re-used as object
resources . So, the most relevant and recent concepts in network
management are natively incorporated into the INSMF model.

2. THE INSMF MODEL

The framework of the proposed model tries to overcome the
above limitations with a highly distributed architecture. This
model is oriented to the management of Network and Application
Services, not to the management of individual hardware/software
network device resources. While the concept of Network Services
Management is not new [20,26], it is not directly applicable on
the INMF due to limitations on the management resources
(MIBs) definition and usability.

The INSMF architecture is like an extension to the INMF
architecture, it does not require it, nor replaces it. It can use the
same protocol for transferring the management information
(SNMP) and it should understand the semantics and syntax of
the INMF standard MIB objects used as management
information resources .

This new extension model should permit defining, on a per
network service/application management basis, any level of
management functionality and as many management levels as
needed. Also, an unique management entity should be capable of
implementing a management service with different functionality
levels.

Figure A shows a generic management system with some
possible interactions between standard INMF entities, INSMF
entities and other types of management entities.

Typically, if an INSMF entity resides on a small network device
dedicated to a limited number of simple tasks (or, more generally,
a network or application service) with a limited set of hardware
resources, it will implement a group of Service Management
Functions (SMF) related to those tasks.

Due to resource limitations of this device, the implemented
SMFs will have a low level functionality, somewhat closer to the
standard INMF MIB objects, but the form in which the
management information can be presented to a higher
management level entity and the mechanisms available to
manipulate it will be of a different nature, more oriented to
management of network services than to local resources
management. An example of this type of device is a small
Ethernet or ATM switch. In these cases, the INSMF entity acts
in the role of a management service agent – an entity that
implements and makes SMFs, available to other remote entities.
These remote entities using the SMFs are management service
managers.

Generic Management Application

INMF Manager
and Application

(M2M MIB)

INMF Manager
and Application

(M2M MIB)

INMF Agent
(MIB View)

Figure A: The INMF model with the INSMF extension.

INSMF Agent
(Low-Level SMFDB)

INSMF Server
(Mid-Level SMFDB)

INSMF Server and
Manag. Application
(High-Level SMFDB)

SNMP SNMP/Other

INSMF Entity

 SMF Library Resources

SMF-RR SMF-CR SMF-EL SMF-RL

Controller

Management Information Resources

Internal Resources:

MIBs
SMFDBs

Logs
Other resources

External Resources:

MIBs
SMFDBs

Other resources

On a broader network service, like an Ethernet LAN or ATM
WAN backbone, we can find powerful devices dedicated to more
complex tasks of various network services, linking all the smaller
devices. The SMFs implemented on these bigger devices will
have a higher level of functionality and can use the management
information available from the smaller devices through their lower
level SMFs, so these devices act in the role of a management
service agent and manager, that is, a management service
server.

An INSMF management service manager becomes an INSMF
management service application when there is an additional
interaction with an entity outside the INSMF framework that
uses the management service to perform some other tasks and
makes the results available by means of an interface different than
SMFs.

Since SNMP can still be used as the management information
transport protocol, the use of SMFs by SNMP management
entities can be very useful and simple to accomplish.

2.1 The INSMF Entity

Figure B depicts the logical structure of an INSMF generic Entity
tha can act both as an agent and a manager, that is, a management
service server. The entity is divided into three main logical
blocks:

• Management Information Resources – This block
defines which resources are available/needed in the
implementation of the SMF declared in the SMFL.
These resources can be classified as internal or external.
An internal resource is a resource available locally,
directly accessible to the entity (this doesn’t mean that
the resource must be in the same device of the entity,
only that his access is transparent and direct to the SMF
code or controller tasks). An external resource is not
directly accessible to the entity, it must be accessed
with a non-transparent communication protocol, usually
SNMP. The internal resources part has three sub-blocks
dedicated to logging: the External Resources Log, the
Configuration Log and the SMF Execution Log. The
external resources log should register relevant
information when accessing all the external resources,
meaning, all the information needed to implement the
SMFL. The configuration log should register the
information about the INSMF entity working
configuration/status. This information is essential to the

implementation of the SMFL and the Management
Service Backup (MSB) mechanism. The SMF execution
log registers, when required, pertinent information from
each SMF execution on the entity. This type of
information is important for the implementation of the
SMF dedicated to the management service itself (just
like the SNMP Objects Group of the standard INMF
MIB).

• Controller – This logical block represents the generic

hardware and software resources (RAM, CPU,
dispatcher, etc) of the device allocated to the execution
and control of the scheduled SMF, to the
implementation of the MSB, security and access control
mechanisms and all the tasks related to an INSMF
entity (transport mapping, logs management, etc)
implementation. The controller is the brain, super
visioning all the activities of the entity.

• Services Management Functions Library Resources

(SMFLB) - This block represents the logical resources
directly involved in the implementation of all the SMF
that the entity is capable of and is divided in to four
sub-blocks:

The SMF Reference List (SMF-RL) - the list of all the
SMF that the entity is capable of implement. The SMF-
RL is further divided in three types of SMF references:
− SMF dedicated to the management of generic

Network or Application Services (IP Routing,
DNS, NFS, for example); these SMF should be
defined in standard SMF Definition Bases (IP
Routing SMFDB, DNS SMFDB, NFS SMFDB,
for example);

− SMF dedicated to the management of the Generic
Management Service itself; these SMF should be
defined in a special SMFDB named Generic
Management Service Functions Definition Base
(GMSFDB); and the

− delegated SMF, usually, by a higher level entity;
the code for these SMFs is transferred from one
entity to another by request (as part of the code of
a another SMF) or by normal delegation from an
entity acting as a manager to another entity acting
as an agent; the references for these delegated SMF
are, then, included in the SMF-RL of the entity;
these delegated SMF can be defined on a standard
SMF Base or created as needed by a Management
Application and should use a very simple and
limited programming language, named SMF
Programming Language (SMF-PL).

Figure B: The INSMF Entity Architecture.

The SMF Execution List (SMF-EL) - the list of all the
SMF that are scheduled to execute on the entity. The
scheduling attributes should permit conditional
execution and repetition.

The SMF Code Repository (SMF-CR) - where the code
for the delegated SMF is maintained. Note that the code
really recorded on the SMF-CR can be in any compiled
form or in the original SMF-PL. It’s up to the entity
software implementation creators to decide in which
form to record and execute the code (compiled,
interpreted or in between). Depending on certain code
recording parameters and later execution parameters, the
code for a certain delegated SMF can be maintained
indefinitely on the repository (in these cases, the
compiled may be preferable) or for a conditional amount
of time or number of executions (for example, the code
for a SMF can decide itself its own maintenance on the
repository).

The results from the execution of the SMF from the
SMF-EL are recorded on the SMF Results Repository
(SMF-RR). The results to record depend on the default
SMF definition and on extra results recording
parameters defined on a per SMF execution basis.
Results can be immediately transferred to the calling
entity, maintained for later retrieval or just as a
temporary place for passing information among SMFs.

2.2 Services Management Functions

The concept of SMF is the heart of this new service management
approach. This new concept permits the implementation of
various distributed management concepts and other important
network management mechanisms that are not directly
implemented in the original INMF. Also, it can be seen as an
evolution of the Open Systems Interconnection (OSI) Systems
Management Functions concept [25].

In addition, the SMF concept makes possible the coexistence of
various levels of management functionality, ranging from the low
level functions implemented on small devices to high level
functions implemented on mid-level managers, available to other
managers or management applications.

Because the INSMF model has a new overall object of
management - network or application services – the entities in the
service management system access management information by
means of functions defined in a definitions base or through code
delegation. Each network or application service should have an
individual SMFDB and each SMFDB should have the SMF
definitions divided by levels of functionality and type of
management (like Monitoring, Configuration, Accounting,
Performance and Security), when applicable. There is a special
group of functions dedicated to the management of the Network

Management Service itself. These funtions are defined on the
Generic Management Service SMFDB.

The use of INSMF functions instead of INMF objects will
simplify the manipulation of management information. The
execution of complex manipulation tasks can be shifted to the
entity acting as an agent or to the entity acting as a manager,
depending on the functionality level available from each entity.
As a result, the number of interactions and quantity of
intermediate data transferred will relevantly decrease, increasing
the efficiency of the model. Also, all the important distributed
management mechanisms can be directly implemented and its use
is simple and transparent to the manager.

• Events/Alarms – this mechanism is easily implemented
on the INSMF through the use of a SMF, delegated or
not, with conditional execution parameters; or on the
SMF code itself. The first approach permits using any
SMF as an event/alarm handler, while the second is
preferable when creating dedicated event/alarm handlers
with more complex trigger conditions.

• Expression Evaluation – this is done in a completely
transparent way on the SMF definition or explicitly on
a delegated SMF code by means of the use of SMF-PL
commands and parameters.

• Operations Scheduling – all types of conditional
execution are available with the SMF concept, either by
means of direct conditional execution parameters or
SMF code definition.

• Script Delegation, or more generally, Management
Delegation, is obtained through the use of delegated
SMF. In this case, there’s only one possible
programming language to delegate the SMF code, but the
actual form of execution (compiled or interpreted) is not
defined. The SMF-PL is intentionally simple but
powerful enough for efficient delegation of management
code. This pragmatic approach favors the ease of
implementation and the creation of various levels of
management.

2.3 SMF Definition

The code definition of an SMF, including his prototype
definition is usually done in an SMF Definition Base, or less
frequently, by an entity when delegates non standard SMF code
to other entity.

The tasks that a standard SMF, that is, a SMF defined on a
SMFDB, is expected to execute can be defined using any
language, including human-oriented languages, except for the SMF
prototype. The chosen language depends on the SMF definition
author. Usually, the author of the SMF definition is not the
future implementer on the network device, so the authors of this
type of definitions tend to use human languages to describe the
SMF behavior because it is harder to use formal languages when

the SMF denotes an high functionality level. The author of the
SMF definition must be careful and explicitly and with accuracy
describe all the tasks intended to be performed by the SMF and
all the execution and results parameters associated semantics.
There must be no room to ambiguity or unknown behaviors.

The SMF prototype definition must be written using a group of
syntactic rules defined on the SMF-PL. This prototype
definition should indicate the data type and default values of the
execution and results parameters, and the SMF identification
value.

So, the SMFs definition on the SMFDBs must include the
prototype definition followed by the function abstract, the
parameters description and the complete function description
and, optionally, the SMF-PL code.

functionID(execution-parameters; results-parameters)
{ function abstract }
{ execution-parameters description }
{ results-parameters description }
{ reserved-parameters description }
{ function complete description }
{ function SMF-PL code }

To make this approach more flexible, when an entity calls a SMF
does not need to use all the parameters and can use a parameter
with its default value. Here is the generic SMF call definition:

FunctionID.call (reserved-parameters; execution-parameters;
results-parameters)

The reserved parameters are needed for implementation of
labeling, execution and access control and security mechanisms
and are defined on a framework basis, that is, these parameters
are defined for use on all SMFs, some being mandatory others
being optional. They are not defined on a SMF basis, but the
author of the SMF can further describe those reserved parameters
behavior with a greater importance for his SMF implementation.

The entities running the called SMF always issues, at least, one
SMF complete response.

ResponseID.call (reserved-parameters; results-parameters)

A powerful feature is that it is not necessary to end the execution
of a SMF to inspect the results parameters values. Results
parameter inspection is possible on defined check points of the
SMF code. In the same way, it’s possible to change SMF
execution parameters on defined check points, if that’s the
intention of the SMF definition. This is very useful, for example,
on the creation of SMF dedicated to gathering indirect statistics
on a certain period of time or to monitor the status of a given
group of objects or resources.

2.4 SMF Code Delegation

A manager can delegate a SMF code definition written on SMF-
PL. This delegated SMF will be part of the SMFLB of the entity
receiving the code for a period of time defined by the delegating
manager.

2.5 SMF SNMP-PDU Encapsulation

SMF calls and responses can be encapsulated on any
management transport protocol. There’s no standard choice here,
although SNMP seems to be a logical one, since it’s a standard
Internet protocol and the ISNM first objective is to become an
extension of the INMF, despite its capacity of being a standalone
network management system.

Each SMF call or response is encapsulated in an SNMP PDU. In
this case, an SMF call will be mapped into one or several set-
request operation PDUs and a SMF response will be mapped
into one or several set-response operation PDUs. The
mapping mechanism is simple: the entire SMF call or SMF
response (or parts, if needed) is to be inserted on the variable
bindings part of the PDU. The SMF call or response is, prior to
be encapsulated, encoded using some SMF Rules of Encoding
(SMFROE). There are various options to use as SMFROE, one
of them being based on the Basic Encoding Rules (BER) used on
the INMF framework. Each SMFROE option can be chosen on a
per Management Session basis.

2.6 Security and Access Control

Despite major advances in the INMF security and access control
model conveyed in version 3 of SNMP, it has to be said that the
mechanisms needed to implement it are complicated and some
argumentation has being made, mainly on the IETF SNMP
mailing lists, in the sense that it lacks configuration flexibility
since it can’t allow the use of new, or most recent encryption
mechanisms, like 3DES or AES. There is some draft work done in
this area in order to enable the use of AES on the INMF.

Also, security mechanisms are configured on an agent/manager
pair basis and the access control can be done on a per object
granularity (or groups of objects), the object being an abstraction
of an agent’s resources (hardware, software or data).

In the INSMF model, it is not allowed to directly access these
resources. The only way to control the behavior of the agent is
issuing SMF calls. The code of these SMFs will manipulate a set
of internal resources, most of them unknown to the manager. So,
what’s relevant here is “what can a manager do?”, that is,
“which SMFs” and “in what way the manager is authorized to
use”, and not “what resources the manager can directly
manipulate.” It’s much harder to define a security and access
control policy based on the resources than based on the actions
that manipulate those resources.

2.7 INSMF User Access & Security Model

The INSMF User Access & Security Model (UACM) is divided
in two parts:

• User Access Control - management of the users access,
including User Identification, User Quotas (Execution
Time, Bandwidth and Memory) and Logs and SMF
Library Resources Quotas. This part must be
completely implemented by any INSMF entity.

• User Security - management of all the security

mechanisms that implement confidentiality, integrity
and authentication. This part of the model has several
options to be implemented, including a minimum-
security option that could be used if it’s used a secure
management transport protocol, like SNMPv3.

2.8 Other features

The ISNMF Model and the SMF concept convey other
important features that aim to create a vast array of high
functionality management mechanisms available to Network
Management and Systems Applications:

• Management sessions – A management session delimits
an exchange of SMFs calls and responses. This is useful
for time synchronization, time execution delimitation,
error recovery and resources control.

• Execution times and conditional execution – the
capability to delimit a SMF execution in terms of time
consumed and to indicate a list of external conditions to
the SMF definition itself (these conditions can be
checked before or during the SMF code execution)
facilitate the implementation of event/alarm handlers and
any type of management monitors.

• Generic SMFDBs – Since any SMF code definition can
use other SMFs already defined, there’re some groups
of base SMFs definitions on generic SMFDBs. These
base SMFs are dedicated to generic network
management procedures (INMF MIB object instance
manipulation, INSMF entity configuration, etc) or just
generic programming functions (math/statistics, flow
control, conditions, code delegation, data manipulation,
database systems interface, etc). This way, it’s possible
to re-use SMF definitions and define new libraries of
SMFs with higher levels of management functionality.

• Remote recording and manipulation of SMF results
parameters on standard Database Systems – To
overcome possible problems of entity resources
consumption there’re some mechanisms that permit to
record and manipulate management data outside the
INSMF entity (agent or manager) using standard
Database Systems to process the management data.

• Pre or post processing of management data – The
possibility to process the management data with
external methods to the SMF code itself augments the
portability and adaptability of the SMF definitions and
decreases the network resources consumption.

• INSMF Entity Backup – This mechanism is inspired on
the DNS backup mechanism and uses the concepts of
primary and secondary INSMF Entities per level of
Network Management Domains.

3. DNS MANAGEMENT SERVICE

As an illustration of the proposed management model, this
section presents an example of how a DNS Management Service
could be defined and installed. This service is to be structured in
two levels of functionality:

• A low level management service (LLMS) with separate
management functions for DNS resolvers and for DNS
servers. These low level SMFs should, whenever
possible, access/manipulate local or remote DNS
Resolver [11] and DNS Server MIB objects [12]. The
INSMF entities implementing this LLMS could reside
on the DNS resolver or DNS server but it is not
necessary if the SMFs of this LLMS could be
implemented using only MIB variables manipulation
(local or remote). The simplest way is to let each
implementer of the SMFs to decide whether to use MIB
variables manipulation or some other management
resources and manipulation processes. This last option
would be more efficient and secure if the only
management resources used were local and the
implementer of the DNS software would integrate the
SMFs of this LLMS just like they do with the DNS
MIB modules. If the LLMS implementation is done
independently of the DNS software, probably,
depending on the Operating System, the only way of
accessing some important DNS management information
is through the MIB variables/SNMP interface since the
DNS MIB modules are always integrated in the DNS
software. Let us assume, in this example, both
situations.

• A high level management service (HLMS) that uses

those low level SMFs. Each INSMF Entity
implementing these high level SMFs could manage one
or several DNS domains on behalf of human
administrators or other network services or applications.
In the first case, the interface between the INSMF
entity and the human user is done through a DNS
Management Service Application. Regardless of its
location, this application would let the DNS

administrator to manage the DNS service using high level
tools that would permit:
− Remote configuration by means of application

forms (without the need to know each operating
system or DNS software syntax configuration) and
immediate data validation;

− Graphic visualization of domain names hierarchy
and some configuration automation of primary and
secondary servers and resolvers;

− Maintenance of a user database for access control
to the DNS management service application;

− Automatic zone transfers, if desired, after Resource
Records actualization;

− Capability of automatic configuration of reverse
mappings domains from address data on regular
type A resource records;

− Reports of servers and resolvers statistics and
network usage followed by automatic re-
configuration of DNS server parameters;

− Automatic detection of anomalous situations, like
DNS loops, server unavailability, etc;

− Easy configuration of a list of Automatic
Management Procedures to be issue after a certain
alarm has been produced (there should be a list of
pre-defined/default procedures);

− Maintenance of a management backup system; this
mechanism permits the automatic substitution of a
faulty INSMF server (not the management
application).

These generic requirements for a DNS management application
are independent of the management framework used. But, if the
management framework lacks high functionality native
procedures, it must be implemented by the management
application itself, which increases the development time and
costs for network services management applications, increases
network traffic and the availability of the high level management
procedures to others management services or applications is very
limited (at least through a standard management protocol). Using
the INSMF model the management application can be dedicated
to the user interface and to the implementation of the strategic
network service management decisions.

3.1 DNS Management Service Architecture

Figure C represents a generic architecture for a DNS Management
Service. Note that all the SMFs on the HLMS can be accessible
through SNMP. If it’s used a secure version (like SNMPv3),
there’s no need for extra security integrated on the INSMF
portion of the system. If the SNMP version used is not secure
(like SNMPv2), there will be the need for implementation of the
security features possible on the INSMF mode. These
considerations are also applicable to any other management
transport protocol other than SNMP, when desired.

4. CONCLUSIONS AND FUTURE WORK

This article describes the overall architecture and the most
important concepts behind the INSMF model, which can be
regarded as an extension model to the INMF model since it tries
to overcome its major limitations, but also as a standalone
management framework that can use a management information
transport protocol other than SNMP.

The specification of a generic DNS management service is
presented as an illustration of a complete management framework
that uses standard SNMP and DNS MIBs, as well as other
specific management resources, as a basis for the definition of
low level SMFs. Using these low level SMFs, other SMFs, with
a higher level of management functionality, are defined that, in
turn, should be used by other management services (like routing
management) or end user management applications. By adding
any desired level of functionality we can increment the usability
of standard MIB objects and, at the same time, hide their
complex manipulation procedures and save network bandwidth.

The implementation of the referred DNS management service is
being done as part of the global project, that is, the INSMF
framework complete specification. This includes the definition of
the SMF Programming Language, the User Access Control model
and some SMFDBs for generic management and other basic
programming functions (math, flow control, conditional
execution, etc).

The mechanisms that will need major developments in their
definitions are the User Security and the Management Service
Backup.

DNS Primary Server

LLMS Resources

DNS Secondary Server

LLMS

DNS Resolver

Management

Service Server

DNS HLMS
Management

Service Applications

DNS Man. App. Other Other

MIB

MIB

SNMP/Other SNMP Internal Manipulation

Figure C: DNS Management Service Architecture.

5. APPENDIX: DNS SMFDB

Here’re some extracts of some LLMS SMF definitions:

DNS.LLMS.SOA.Configuration.1(
*’ID:SNMP-RESOURCE’ snmp-resource,
‘CHAR:DNS-DOMAIN’ mname,
*’CHAR:E-MAIL’ rname,
*‘INTEGER:DNS‘ serial,
*‘TIME:DNS‘ refresh,
*‘TIME:DNS‘ retry,
*‘TIME:DNS‘ expire,
*‘TIME:DNS‘ minimum;
‘LIST:SOA-REPORT’ report ‘RATE’/’DWR’/’BIR’)
{ Function to configure a SOA resource record […] }
{ The first optional parameter indicates a local or remote SNMP DNS MIB
resource […] }
{ The results parameter is a list of status records indicating the result of each
parameter configuration.
 RATE: Return At The End
 DWR: Delete When Returning
 BIR: Big Relevance […] }
{ The reserved execution parameters should be used in a normal
way […] }
{ […] complete description of code behavior […] }

DNS.LLMS.RR.Configuration.1(
*’ID:SNMP-RESOURCE’ snmp-resource,
(0,6) ‘CHAR:DNS-NAME’,’INTEGER:DNS-RR-
TYPE’,‘INTEGER:DNS-RR-CLASS‘,
 ‘TIME:DNS‘, ‘INTEGER:DNS-RR-DATA-LENGTH’, ‘DATA:DNS-RR’
rr (name, type, class, ttl, length, data);
 ‘LIST:RR-REPORT’ report ‘RATE’/’DWR’/’BIR’)
{ Function to configure a list of generic resource record different than SOA
[…] }
{ The first optional parameter indicates a local or remote SNMP DNS MIB
resource […] }
{ The results parameter is a list of status records indicating the result of each
resource record configuration […] }
{ The reserved execution parameters should be used in a normal away […]
}
{ […] complete description of code behavior […] }

DNS.LLMS.Server.Statistics.1(
*’ID:SNMP-RESOURCE’ snmp-resource,
‘CHAR:DNS-NAME’ name;
 (0) ‘CHAR:DNS-SERVER-STATS’ statistics ‘ROD’/’DWR’/’SOR’)
{ Function to gather a list of statistics for DNS server. This function can be
executed like a monitoring procedure. […] }
{ The first optional parameter indicates a local or remote SNMP DNS MIB
resource […] }
{ The results parameter is a list of status records indicating the result of each
resource record configuration.
 ROD: Return On Demand

 SOR: Some Relevance […] }
{ The reserved execution parameters should be used in a normal
way […] }
{ […] complete description of code behavior […] }

And some examples of SMF prototype definitions for HLMS:

DNS.HLMS.Domain.Configuration.1(
‘CHAR:DNS-DOMAIN’ domain_name,
‘CHAR:DNS-HOST’ primary_server,
(0) ’CHAR:DNS-HOST’ secondary_servers,
*’CHAR:E-MAIL’ rname,
*‘INTEGER:DNS‘ serial,
*‘TIME:DNS‘ refresh,
*‘TIME:DNS‘ retry,
*‘TIME:DNS‘ expire,
*‘TIME:DNS‘ minimum;
‘LIST:SOA-REPORT’ report ‘RATE’/’DWR’/’BIR’,
 ‘LIST:DNS-SERVERS-REPORT’ report ‘RATE’/’DWR’/’BIR’)
{ Function to inicialize or re-configure a complete DNS domain;
 Except for RRs different than SOA […] }
{ The first parameter indicates the Domain Name […] }
{ The first results parameter is a list of status records indicating the result of
each SOA parameter configuration. The second is a list of status records wit
the result for each server indication.
 RATE: Return At The End
 DWR: Delete When Returning
 BIR: Big Relevance […] }
{ The reserved execution parameters should be used in a normal
way […] }
{ […] complete description of code behavior […] }

DNS.HLMS.RR.Configuration.1(
 ‘CHAR:DNS-DOMAIN’ domain_name,
 ‘CHAR:DNS-HOST’ primary_server,
 *‘FLAG:FORCE-ZONE-TX’ z_tx_flag,
 (0,6) ‘CHAR:DNS-NAME’,’INTEGER:DNS-RR-
TYPE’,‘INTEGER:DNS-RR-CLASS‘,
‘TIME:DNS‘, ‘INTEGER:DNS-RR-DATA-LENGTH’, ‘DATA:DNS-RR’
 rr (name, type, class, ttl, length, data);
 ‘LIST:RR-REPORT’ rr_report ‘RATE’/’DWR’/’BIR’,
 *‘LIST:ZONE-TX-REPORT’ z_tx_report ‘RATE’/’DWR’/’BIR’)
{ Function to configure a list of generic resource records different than SOA.
If indicated, there’ll be an automatic forced zone transfer. The actualization of
the serial number is also automatic […] }
{ The first results parameter is a list of status records indicating the result of
each resource record configured.
 The second results parameter is a list of status records indicating the result
of each zone transfer
 […] }
{ The reserved execution parameters should be used in a normal
way […] }
{ […] complete description of code behavior […] }

6. REFERENCES

[1] J. Case, R. Mundy, D. Partain, B. Stewart, Introduction to
Version 3 of the Internet-standard Network Management
Framework, RFC 2570, April 1999.

[2] D. Harrington, R. Presuhn, B. Wijnen, An Architecture
for Describing SNMP Management Frameworks,
October 2001.

[3] J. Case, D. Harrington, R. Presuhn, B. Wijnen, Message
Processing and Dispatching for the Simple Network
Management Protocol, Version 3, October 2001.

[4] D. Levi, P. Meyer, B. Stewart, SNMP Applications, RFC
2573, November 2001.

[5] U. Blumenthal, B. Wijnen, The User-Based Security Model
(USM) for Version 3 of the SNMP, RFC 2574,
November 2001.

[6] U. Blumenthal, B. Wijnen, The View-Based Access Control
Model (VACM) for Version 3 of the SNMP, RFC 2575,
November 2001.

[7] K. McCloghrie, R. Presuhn, J. Case, M. Rose, S.
Waldbusser, Transport Mappings for the Simple Network
Management Protocol, October 2001.

[8] K. McCloghrie, R. Presuhn, J. Case, M. Rose, S.
Waldbusser, Version 2 of the Protocol Operations for the
Simple Network Management Protocol, October 2001.

[9] K. McCloghrie, D. Perkins, J. Schoenwaelder, J. Case, M.
Rose, S. Waldbusser, Textual Conventions for SMIv2, RFC
2579, April 1999.

[10] S. Waldbusser, Remote Network Monitoring Management
Information Base, Version 2 using SMIv2, RFC 2021,
January 1997.

[11] R. Austein, J. Saperia, DNS Resolver MIB Extensions, RFC
1612, May 1994.

[12] R. Austein, J. Saperia, DNS Server MIB Extensions, RFC
1611, May 1994.

[13] D. Levi, J. Schoenwaelder, Definitions of Managed Objects
for Scheduling Management Operations, RFC 2591,
May 1999.

[14] D. Levi, J. Schoenwaelder, Definitions of Managed Objects
for the Delegation of Management Scripts, RFC 3165,
August 2001.

[15] D. Levi, J. Schoenwaelder, Event MIB, RFC 2981,
August 2000.

[16] B. Stewart, R. Kavasseri - Editor, Notification Log MIB,
RFC 3014, November 2000.

[17] B. Stewart, R. Kavasseri - Editor, Distributed Management
Expression MIB, RFC 2982, October 2000.

[18] B. Dias, Gestão de Redes Internet, PAPCC, Universidade do
Minho, 1996.

[19] A. Brites, P. Simões, P. Leitão, E. Monteiro, F. Fernandes,
A High-Level Notation For The Specification Of Network
Managament Applications, Proc. INET’94/JENC95.

[20] T. Saydem, T. Magedanz, From Networks and Network
Management into Service and Service Management - Guest
Editorial, pp. 345-348, Journal of Network and Systems
Management, Vol.4 – N.4, December 1996.

[21] F. Stamatelopoulos, T. Chiotis, B. Maglaris, A Scalable,
Platform-Based Architecture for Multiple Domain Network
Management, National Technical University of Athens.

[22] G. Goldszmidt, Y. Yemini, Distributed Management by
Delegation, Proc. 15th Int. Conf. On Distributed Computing
Systems, June 1995.

[23] K. Meyer, M. Erlinger, J. Betser, C. Sunshine,
Decentralizing Control and Intelligence in Network
Management, Proc. 4th Int. Symposium on Integrated
Network Management, May 1995.

[24] M. Siegl, G. Trausmuth, Hierarchical Network Management
– A concept and its Prototype in SNMPv2, 1996.

[25] Aiko Pras, Network Management Architectures , PhD
Thesis, February 1995.

[26] N. Freed, S. Kille, Network Services Monitoring MIB, RFC
2788, March 2000.

