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CRITERIA FOR LOCALISATION OF HIGHLY IRREGULAR

ELLIPTICAL SHAPES

Abstract�

Detection of elliptical shapes is of extreme importance in several computer vision ap�

plications� In this paper a new method for irregular elliptical shapes localization in multi�

connected regions is described� This method �rst computes a set of elementary arc segments

which are then aggregated using geometrical decision criteria and a posteriori aggregation

probabilities obtained from a neural network for Bayes classi�cation� To identify and char�

acterize the elementary arc segments a cluster identi�cation� a contour grouping strategy

and some extensions to Fitzgibbon�s ellipse �tting method are introduced� These methods

are applied successfully in the setup of an automatic lime granule inspection system� The

algorithm has proven to be very robust since it is able to correctly detect elliptical shapes

even when noisy data are present�
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I� Introduction

Segmentation and localisation of elliptical shapes is a fundamental operation in several com�

puter vision applications which comprehend many di�erent areas� such as the detection of

tumors in medical image analysis or the identi�cation of components in industrial applica�

tions� Localisation of these shapes is a relative simple task when their regions are found to be

isolated in the treated images� However� whenever in the presence of partial juxtaposition or

superposition of adjacent regions� there is a substantial increase in the problem�s complexity�

since� in these circumstances� it is not possible to identify the contours of the several distinct

regions in their entire extension� In these situations� the problem solution usually involves

some model search procedure� In this category of methods� techniques such as the Hough

transform� least square and least median square �t algorithms are included�

The Hough transform� in spite of being robust� exhibits several limitations� as due to

its high memory requirements� as due to its low computational e	ciency� Namely� it is

veri�ed that sequential Hough transform implementations for elliptical shapes search exhibit

behaviors of order O
n��� If the gradients direction is known� then the complexity is reduced

by a factor of n ��
�

There exist basically two type of methods for ellipse �tting ��
 ��
� 
i� the least square

�tting methods and 
ii� the least median �tting methods� It is veri�ed that� in principle� these

methods exhibit e	cient localisation behaviors whenever the intended shapes are regular�

However� in the presence of irregular shapes� as is the case for lime granules� the results

obtained by these strategies tend to decline rapidly� Usually it is seen that 
i� several ellipses

are identi�ed for each segment and that 
ii� it is not straightforward to determine the ellipses

in multi�connected regions due to the di	culty of deciding which boundary segments of the

region belong to each elliptical structure�
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It is important to the pulp and paper industry to recycle intermediate reagents for both

economical and environmental reasons� One of these paths is used for bleaching liquor

recovering which is performed by a causticizing chemical reaction� The velocity of this

reaction and consequently its e	ciency is highly conditioned by the quality of the lime

used� This fact leads to the need for the analysis of lime granules properties� usually left

to human inspection� However� the high costs of manual inspection and the fatigue of

human operators� which introduce high variances in the resulting data� are stimulating the

development of computer�based systems for inspection tasks� Lime granules are more or less

elliptical in shape and therefore their automatic visual inspection can be seen as an elliptical

object localization and measurement problem�

In this paper a new and robust method� based on geometrical properties and a neural

network used as a Bayes estimator� is introduced for localisation of irregular elliptical shapes

in multi�connected regions� This method is applied in the setting of an automatic lime gran�

ule visual inspection system� The algorithm is inspired in human visual perception theory�

namely on the Gestalt�s principals for perceptual organisation� According to this theory�

perceptual organisation of visual information is governed by a set of properties� which are

partially quanti�ed in this paper for arc segments by several geometric measures� Learning�

based on past experience is also recognised to play an important role in perception by the

Gestalt theory ��
� In the developed method� learning is encompassed by a neural network�

Several work exist on perception in general 
see ��
 for a survey� and on perception using

neural networks in particular by exploring their optimisation capabilities ��
��
 and dynam�

ics ��
� We use a neural network as a noise tolerant tool to compute non parametrically

aggregation probabilities between arc segments� i� e�� to compute accurate probability val�

ues even when large biases occur in some of the applied features� Using the classi�cation
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structure proposed in ��
� this method may be considered a �D structural level perception

organisation algorithm� since �D features are involved in the reconstruction of �D shapes�

In ��
� Kanizsa suggests that perception of shapes is performed by �rst identifying in the

visual �eld regular regions in space or time� After separation of the visual �eld the process

continues with the perception inference of completion of whatever is absent or occluded ��
�

This strategy is followed in this paper� Namely� the algorithm applies a two�stage process�


i� in a �rst stage elementary arc segments 
arc segments which are bounded by contact

points between distinct regions� are identi�ed and some measures� which quantify some of

the properties mentioned in the Gestalt psychology� are extracted� This stage is described in

section II�� 
ii� In a second stage� described in section III�� the obtained elementary arcs are

grouped together using geometrical properties and a neural network classi�er to reconstruct

the elliptical shapes present in the image� In section A� a new contour grouping method

based on the Green�s discrete theorem is introduced� This method enables the identi�ca�

tion of all clusters of elliptical regions in the image� In section B� the methodology applied

throughout the identi�cation and characterisation of elementary arc segments is described�

In this section some extensions to Fitzgibbon�s ellipse estimation algorithm are presented�

Namely� a strategy to avoid inversion problems is developed� due to near singularity de�ni�

tions of the scatter matrix� which is needed for measure extraction� Section III� describes

the aggregation algorithm used for elliptical shape reconstruction from the elementary arc

segments� This method is based on geometrical properties and uses a Bayes classi�cation

approach implemented with a neural network� Finally� in section IV� the main conclusions

and results are presented�
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II� Localization of irregular elliptical shapes

Let F be the original digital image and FB the binary image obtained from F � In this

paper it is required that all inner areas of the elliptical regions in the image be �lled with

the same gray level� For discussion purposes� it will be assumed that these regions are �lled

with the maximum gray level 
white� and that the image�s background is �lled with the

minimum gray level 
black�� This is very easy to accomplish whenever a threshold selection

algorithm 
see ��
 for a survey� can be used for image segmentation� which� for industrial

applications� is relatively straightforward� since light and acquisition conditions are usually

controllable� In the outlined inspection problem we use a minimum cross�entropy threshold

selection method ���
 ���
�

Once the binary image is obtained� the localization procedure for clusters of irregular

elliptical shapes is initiated� The method described in this paper is composed by two�stages�


i� elementary arc segment identi�cation and characterisation � these operations will be

described in the following sections� and 
ii� elementary arc segment grouping � the grouping

strategy will be outlined in section III��

A� Contour grouping using the Green�s theorem

Elementary arc segments 
EAS� are obtained from the contours of the clusters of regions

identi�ed in the binary image� In this step� the contour tracing algorithm must be able

to identify each independent group of contours belonging to each cluster of multi�connected

elliptical regions in the image 
a cluster of multi�connected regions may include in its interior

other independent clusters of regions��

Before describing the cluster�s identi�cation strategy� let us �rst introduce some de�ni�

tions which will be used along the paper�
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De�nition � A contour point is a point that does not exhibit ��connectness�

De�nition � For external contours� the cluster�s region lies always inside the area de�ned

by the contour�

De�nition � For internal contours� the cluster�s region lies always outside the area de�ned

by the contour�

De�nition � A cluster of irregular multi�connected elliptical regions is considered to be any

set of multi�connected irregular elliptical regions� such that there exists a continuous path�

completely included inside the cluster�s region� connecting any two points of the set� �See

�gure � �a	� Contours Cont��� and Cont��� de�ne one of the several clusters exhibited in the

image�	

Let SCj
def
� fContj��� ���� Contj�ng be the set of contours of the jth cluster of regions in

the image and Contj�i be its ith contour� Whenever a new contour starting point p
def
� 
x� y�

is detected 
new contour points are detected by an image horizontal� from top to bottom�

scanning procedure�� it is determined whether it belongs to an outer contour of a new

cluster of regions or to an internal contour of an already identi�ed cluster� This task is

performed using the Green�s discrete theorem ���
 ���
 
validation of equation ��� Namely�

point p belongs to an internal contour of an already identi�ed cluster if and only if point p

is included inside an external contour 
most outer contour� of an already scanned cluster� i�

e�
���

� j � �� ���� K � p � Contj�� 
��

Contj�� � contour number � of cluster j
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K � number of identi�ed clusters

If equation � is veri�ed for some j� then the new contour is appended to set SCj� else

a new cluster has been detected and� therefore� K is incremented by one and a new set

SCK � fContK��g is created�

The inclusion test in equation � is easily performed with the Green�s discrete theorem ���


���
� let Contj��
def
� fp�� p�� ���� png� n � number of points in the contour� be the set of points

that form the contour� where each point pz
def
� 
xz� yz� dz� is described by its co�ordinates


xz� yz� and by its chain code direction dz� If equation � is corroborated� then point p is

included inside Contj��� Since equation � has to account for the contour�s direction� functions

Cy and Dy should be rede�ned as in equations � and � 
see proof � in appendix��

nX
z��

�� 
xz � x� yz � y�Dy 
dz��� dz� � J 
xz � x� yz � y�Cy 
dz��� dz�
 � � 
��

J 
x� y� �

�������
�� x �� � or y �� �

�� x � � and y � �


��

� 
x� y� �

�������
�� x � � and y � �

�� x � � or y �� �

��

Cy 
a� b� �

�������
�� a � 
b� ��mod�

t� else


��

Dy 
a� b� �

���������������
t� b � f�� �� �� �g � a � f�� �� �� �g

�t� b � f�� �� �� �g � a � f�� �� �� �g

�� else


��
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t �

�������
�� counterclockwise direction contours

��� clockwise direction contours


��

Given that equation � depends on the contour�s direction� it is imperative that it is clearly

determined prior to the use of the Green�s theorem� For this purpose equation �� can be

applied 
see proof � in appendix�� let Cont be a closed contour�
Pn

k�� hx 
dk� � �� hx
d� �

horizontal displacement for chain code d� such that there are no common points in Cont�

that is� 
�� holds�

�i� j � f�� ���� ng � pi � pj � i �� j 
��

Further� let pi
def
� 
xi� yi� di� � Cont� such that pi is not a local extreme point� that is�

pi � Cont � hx 
di�hx 
di��� � � 
��

and let S be the set of all points pj
def
� 
xj� yj� dj� � Cont� such that xj � hx 
dj� � xi and

points pi and pj exhibit inverse chain code directions� that is

jX
k�i

hx 
dk� � �� j � � �� i � hx 
dj�hx 
di� � � 
���

or

xj � xi� i �� j� hx 
di� hx 
dj� � � 
���

then� it is seen that�

Dir �

�������
Clockwise� �� 
i� S� � �

CounterClockwise� �� 
i� S� � �


���

�� 
i� S� �
X

j�S
hx 
dj�

�
j��X
k�i

hy 
dk�

�

���
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Points pj obtained with equation �� may not correspond to local extreme points� If� however�

this happens� then a new point pi and a new set S must be computed� Valid points must�

therefore� verify

hx 
dj��� hx 
dj� � � 
���

Functions hx 
d� and hy 
d� are� respectively� the horizontal and the vertical pixel displace�

ment for chain code d�

This contour grouping strategy identi�es the whole set of independent clusters 
clusters

not included inside any other cluster� of multi�connected regions in the image� All external

contours are always the �rst Contj�� in their cluster SCj� Furthermore� it is veri�ed that the

inclusion order of the contours in each SCj is increasing� that is� there does not exist a pair

of contours fContj�i� Contj�wg � SCj such that

i � w � Contj�i � Contj�w 
���

It often happens that some clusters are completely included inside other clusters 
see

�gure � 
a��� In these cases� the grouping algorithm only identi�es one external contour �

the most outer contour of the cluster that is not included inside any other cluster � and�

therefore� only one set SCj will be created by the outlined grouping strategy 
see �gure � 
a�

� only set SC� exists�� To solve these situations� all contours� sets are inspected to identify all

levels of clusters� Solving these situations at this stage has several advantages� 
i� computing

requirements are reduced� Given that the region of one ellipse is always de�ned in one

independent cluster� it is useless to inspect adjacent clusters to identify the ellipse� 
ii� For

neighbour clusters it is further avoided to perform physically non�causal ellipse identi�cation�

which could arise under highly noisy situations� These false identi�cations could of course

be detected by performing a convexity test on the identi�ed structures� However� this would
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increase unnecessarily the algorithm�s complexity and computational requirements�

To identify the whole set of clusters� �rst an inclusion tree is constructed� In these trees

each node represents a contour belonging to the same set SCj� Whenever a node exhibits a

link to a child node� it is implied that the child node contour is included inside the father

node contour� Note that the tree�s root is Contj���

To perform the inclusion test the Green�s discrete algorithm is once again applied� Note

that� given the property expressed in equation ��� any contour Cont �nds always its correct

order in the inclusion tree� In �gure � 
b� the obtained inclusion tree from the set of contours

of �gure � 
a� is shown� These inclusion trees exhibit some useful properties�

�� If a child node of an extern contour node has links to child nodes� then it represents

an internal contour of a cluster�

�� Those nodes which do not exhibit any links to child nodes may represent internal or

external contours

�� Those child nodes whose father nodes represent internal contours can represent internal

or external contours�

The last step of the grouping procedure is to identify all clusters present in each inclusion

tree� This is performed with a recursive algorithm based on the above stated properties� For

each inclusion tree the following steps are applied 
the initial argument is the tree�s root�

note that only those contours which correspond to the several Contj��� j � �� ���� K� are

initially marked as external contours��

Inputs�

node � a node of the tree� initial value� the tree�s root
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Outputs�

Identi�ed sets of clusters

Algorithm of Determineclusters 
node�

Begin

For �each childnode of node	 do

If � �childnode has childnodes and node represents an external contour
 or �childnode

represents an internal contour
	 then

Mark childnode as an internal contour

Determineclusters � childnode	

Else

Mark childnode as an external contour

Disconnect child node and all its descendant nodes from the tree

Increment K and construct a new cluster SCK with them

Delete all Cont included in the new tree from the previous SCj

End

External and internal contours are easily identi�ed using the following function � 
see

proof � in appendix�� choose point pi � 
xi� yi� di� � Cont such that 
xi� yi � ��� 
xi� yi � ��

�� Cont and di� di�� � f�� �� �g or di� di�� � f�� �� �g
function �� 
d�� d�� is de�ned in table

���

Cont �

�������
Extern� �
xi� yi� di� di��� � ��

Intern� �
xi� yi� di� di��� � ��

���

��



�
x� y� d�� d�� �
fB 
x� y ��� 
d�� d���� fB 
x� y ��� 
d�� d���

fB 
x� y�

���

This test enables the detection of any level of inclusions of clusters which might exist in

the image� At the end of this step a set SC � fSC�� ���� SCKg of contours is obtained 
K �

number of clusters in the image��

Finally� external contours of clusters must be stored in counterclockwise direction and

internal ones with the inverse direction�

B� Computing elementary arc segments

Once all clusters have been determined� the elementary arc segments are identi�ed� An

elementary arc is de�ned as a set of sequential points of a contour Contk�j that are delimited

by two adjacent contact points 
a subset of corner points� between distinct elliptical regions�

There are currently two categories of methods that can be applied for corner point detec�

tion� 
i� polygonal approximation methods ���
 ���
 and 
ii� curvature based methods ���
�

While the �rst ones try to �t a polygon� by minimizing the �tting error� to the curve� the

second type of methods use a curvature measure 
direct estimation� curvature estimation

after gaussian �ltering or scale�space curvature estimation� to compute maximum and min�

imum curvature points� Curvature based methods exhibit the advantage of their accuracy

in corner point localisation� However� it is generally seen that their computing requirements

are higher than for polygon approximation methods�

In this work� corner points are obtained by the incremental splitting polygonal approx�

imation method ���
 which is computationally very e	cient� Let pi� pj � Cont be the two

points in a contour with the maximum distance between them� To compute the corner points

of Cont the splitting method proceeds as follows�

�� Find point pz � Cont� such that pz is a point between pi and pj on the contour� with
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maximum distance to the chord de�ned by pi and pj�

�� If the distance between pz and pipj is greater than T 
prede�ned threshold�� then pz

is taken as a corner point and Goto step � else Stop�

�� Apply recursively the algorithm to segments dpipz and dpzpj�
The distance between pipj and any point pz is obtained with the use of the incremental

distance� let fpi� pi��� ���pjg be the ordered sequence of points of the contour between pi and

pj� and distz be the distance from pz to pipj� then�

distz � distz�� � � 
dz��� 
���

dist� � �

� 
� � function de�ned in table �� Note that � 
d� � �� 

d� ��mod��

di�chain code direction of point pz to point pz��

After the calculation of all corner points� the contact points between the elliptical shapes


corner points which delimit convex regions� are identi�ed with the application of the fol�

lowing criterion�

Convexity Criterion� elementary arcs are convex� Kim and Rosenfeld ���
 have shown

that an arc segment is convex if every point of a line segment� de�ned by any two points of

that arc segment� lie inside the region of support�

Let pi
def
� 
xi� yi� be the ith corner point obtained by the incremental splitting method

in contour Contk�j� Point pi is considered to be a contact point if and only if its region of

��



support is non convex 
it delimits two distinct convex regions�� that is�

fB 
Pm� � black 
���

where fB 
Pm� represents the pixel gray level in the binary image at coordinates Pm
def
�


xm� ym�� Pm represents the middle point of the line segment de�ned � points to the right

and to the left of pi 
see �gure � 
a��� By this way� for each contour Contk�j a set of contact

points CPSk�j
def
�
n
CP k�j

� � ���� CP k�j
ncp

o

 CP k�j

i � ith contact point of Contk�j� ncp � number of

contact points in contour Contk�j� is obtained� In �gure � some results obtained with this

method are shown� Thresholds T and � could be avoided by using a scale�space approach

for contact point determination as in ���
 
actually these values de�ne indirectly the scale

of each curve� or an adaptive scale method ���
���
� One the one hand� it is seen that the

former methods are quite computationally intensive and that the later ones exhibit high

noise sensibility ���
� On the other hand� it is veri�ed that the aggregation algorithm is

able to coupe with incorrectly identi�ed contact points� i� e�� identi�cation of contact points

which are physically non existent� The algorithm is however not able to treat situations

where physically relevant contact points have been missed� We� therefore� use threshold

values which de�ne a scale representation where all signi�cant� and probably some non�

signi�cant� contact points are identi�ed� Since contact points are de�ned by accentuated

concave neighbourhoods it is veri�ed that the number of identi�ed contact points varies

smoothly with scale de�nition�

An elementary arc segment 
EAS� is formed by a subset of contiguous contour points

belonging to the same contour that are bounded by two adjacent contact points� that is� for

each Contk�j 
pz � Contk�j��

EASk�j
i

def
�
n
CP k�j

i � ���� pz� ���� CP
k�j
i��

o

���

��



�� Characterization of elementary arc segments

Once all elementary arcs have been identi�ed� a set of ellipse related measures 
center�

eccentricity� are computed for each EAS� These measures are later used in the elliptical

shapes reconstruction procedure� In this section an extension to Fitzgibbon� Pilu and Fisher�s

���
 algorithm� used for the above mentioned measures estimation� is presented�

Given the general conic represented by an implicit second order polynomial

F 
x� a� � xa � ax� � bxy � cy� � dx� ey � f � � 
���

where a �

�
a b c d e f

�
and x �

�
x� xy y� x y �

�T
the �tting is generally

approached by minimizing the algebraic distance error�

Er �

npX
i��

F 
xi� a�
� � kDak� 
���

D �

�
x� x� x� ��� xnp�� xnp

�T

���

np� number of points in the curve

For highly irregular arc segments it is seen that the scatter matrix S � DTD is very often near

singularity which leads to inversion problems� since the matrix�s condition number 
de�ned as

the ratio between the largest singular value of S to the smallest� is usually higher than �����

For double precision �oating point representation to prevent a roundo� error the condition

number should be less than ����� Therefore� direct estimation using equation �� is avoided�

In our approach the ellipse center is �rst estimated using a gradient descent method� At

this step the arcs are assumed to be circular� Each estimated center is then corrected using

a set of geometrical properties� Using the estimated center as a constraint� the singularity

source in S is reduced 
a rede�nition of S which exhibits much smaller condition numbers�
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usually in the order of ���� is introduced� and equation �� is applied to compute the intended

parameters�

The initial estimation of the centers is performed with Landau�s algorithm ���
 ���
� Given

an elementary arc segment EASk�j
i

def
� f
x�� y�� � ���� 
xz� yz� � ���� 
xnp� ynp�g 
CP k�j

i

def
� 
x�� y���

CP k�j
i��

def
� 
xnp� ynp�� np � number of contour points in the elementary arc segment�� for each

point a radial vector �	r i is de�ned� If a circular arc of radius R and center �	a def
� 
xa� ya� is

outlined� then its radius and center may be computed iterating equations �� and ���

�	a v�� �
�

np

npX
w��

h�	r w � Rv
�	
l ��r w ��	a v

i

���

Rv �
�

np

npX
w��

j�	r w ��	a vj 
���

�	
l ��r w � unity vector with the same direction as

�	r w

�	a i � estimated center vector in the ith iteration

Ri � estimated radius in the ith iteration

For the initial center and radius the method described in ���
 is applied� let P�
def
� 
x�� y�� be

the middle point of the EASk�j
i � and P�

def
� 
x�� y�� the middle point of the chord de�ned by

points CP k�j
i and CP k�j

i�� 
see �gure � 
b��� the initial center
�	a � and radius R� are obtained

by

� � tan��
	
y� � y�
x� � x�




���

R� �

�
D
�

��
� h�

�h

���

��



�	a � � 
x� � 
R� � h� cos 
�� � y� � 
R� � h� sin 
��� 
���

D� h � computed as shown in �gure � 
b�

In the proposed method equations �� and �� are iterated until the required precision Tp


we use Tp � ���� is obtained at a maximum number � of iterations 
we use a �xed value of

� � ����� Therefore the stop condition is given by�

j�	a v�� ��	a vj � Tp or v � � 
���

Tp � prede�ned precision

These threshold values are not critical� since centers are further corrected using a set of

geometrical properties as will be explained below�

It is seen that Landau�s method produces satisfactory results if the EAS are smooth and

approximately circular� However� given the irregular shapes which characterize most of the

regions� the number of points of each elementary arc segment is often reduced� It is also

common to �nd several EAS with almost linear shapes� These two factors are responsible

for abnormal centers identi�cation 
see �gure � 
a��� To overcome this problem� a set of

correcting steps is introduced� These steps are based on the following geometrical properties�

Property �� Let 	 be the internal angle between OP and PW 
see �gure ��� Let PW

be the line segment normal to the tangent line segment PK at point p and 
 be the length

relation between the ellipse�s axes as de�ned in 
���� It is seen that the maximum value of

	 for p � ellipse is given by 
��� 
see proof � in appendix��

	max � max
������

�

 f	 
��g � tan��

	

 � �
�
p






���

��



For lime granules usually 
 � ����� �
 � hence� 	max � ������� ����
 degrees� However� given

the irregular shapes of most EAS� a maximum deviation of � degrees 
it is suggested to take

� � 
���� is allowed� The ful�llment of this property is imposed by the following procedure�

if 	 � � then vector
�	
P�a is rotated� with respect to point P�� by 
 � �	 degrees� that is�

a �


��� cos
 � sin


sin
 cos


���� �a� P�
 � P� 
���

Property �� The center of an ellipse lies always inside the region bounded by its border

contour� Therefore� the estimated center a must lie inside its region of support Rk 
see �gure

�� of segment EASk�j
t � This property is veri�ed and its ful�llment is imposed to the identi�ed

elementary arc segments through the following steps� 
i� determine point P� 
P� � P���	P�a�

as shown in �gure �� 
ii� if
����	P�a � Rk

��� � �����	P�P� �Rk

��� then apply equation �� with 
 � ��


iii� if fB 
xa� ya� �� Rk 
outside the object� then determine line segment P�P� such that

�
P�P�� � �
P�a� and P�P� � Rk� that is� determine point P� such that the obtained line

segment P�P� 
same slope as P�a� lies entirely inside the region of support R
k 
see �gure ���


iv� obtain the new center a as in equation �� 
j�	r � Rj represents the length of vector �	r

that lies inside region R��

a �
�

�

P� � P�� 
���

To compute point P� the following method can be applied� if line segment P�P	 intercepts

a region Rk� then it is seen that there exists at least one point of Rk�s contour 
Contk�

which belongs to line segment P�P	� A point belongs to a line segment if two conditions

are veri�ed� 
i� the point lies on the line de�ned by the line segment� and 
ii� the point is

situated between that line�s segment start and end points� If Rk�s contour is considered a

��



continuous parametric function� condition 
i� implies that�

� pz � Contk � �� f
t� cos 
��� g
t� sin 
�� � � 
���

Contk �

�������
x � f 
t�

y � g 
t�

pz � 
f
t�� g
t��

� � x cos 
�� � y sin 
�� � polar equation of the line de�ned by P�P	

Since� however� Rk�s contour is discrete 
�nite set of pixels of coordinates pz � 
xz� yz���

the equality of equation �� is only obtained under certain conditions� Therefore� instead of

equation �� it is considered that point pz lies on the line segment de�ned by P�P	 if P�P	

intercepts pixel of coordinates pz� that is�

j��zj � j�� xz cos 
��� yz sin 
��j �
p
��� 
���

An e	cient implementation of equation �� is suggested in ���
� let ��z be the Euclidean

distance between the line de�ned by P�P	 and pixel pz of contour Contk� then�

��� � �� x� cos 
��� y� sin 
�� 
���

��z�� � ��z � � 
dz� 
���

� 
� � function de�ned in table �

dz � chain code direction of pixel pz � Contk

��



As for condition 
ii� it is seen that pz lies between the endpoints of line segment P�P	 if

equation �� is veri�ed ���
 
function � 
� is de�ned in equation ����

� 
p��� p��� a� � 
p��� p��� P	� � � 
���

p�� �

	
xz 
 ��


xz 
 �� sin 
��� �

cos 
��



� � � Rn f�g 
���

Property �� For those arc segments which are perfectly elliptical� it is veri�ed that

the modulus of the identi�ed radius is exactly half the modulus of the diameter with the

direction of the vector de�ning the radius� Given the irregular shapes of regions in natural

scenes� it is frequently seen that abnormal values are identi�ed� To correct this problem�

minimum values for radius 
R� are imposed� that is� R � �
��P�a

��� � �
�� ��� The several
identi�ed R values are limited in the upper bound by a function of the diameter�s modulus

with the direction of P�a� These conditions are imposed by the following procedure� 
i�

determine line segment P�P� as explained in property �� 
ii� rotate vector
�	
aP� 
vector whose

origin is the identi�ed center� by � � � radians with respect to point a� In this way point

P	 is determined 
see �gure ��� 
iii� if R � �
��P�a

�� or P	 � P�a and
��P�a

�� � �
��P�a

�� then
obtain the new center as in equation �� 
in our implementation � � ���� all shown results

where obtained with this value��

In �gure � several results obtained by Landau�s method and with the described correction

algorithm are presented� As can be observed� this simple algorithm enables the corrections

of the centers in those situations where Landau�s method fails�

To compute the intended eccentricity measure� the function F 
x� a� has to be estimated

for each elementary arc segment� In order to �t an ellipse to each of the elementary arc

segments we use a least square approach with the following constraints 
constraint � assures

that the estimated function corresponds to an ellipse ���
� 
xa� ya� � identi�ed center��

��



�� Constraint �� xa �
��cd�be
	ac�b�

�� Constraint �� ya �
��e�bd
	ac�b�

�� Constraint �� �ac� b� � �

Substituting constraints � and � into equation �� it is seen that��������
x� � x� xa

y� � y � ya


���

F 
x�� a�� � a�x� � ax�� � bx�y� � cy�� � f� � � 
���

where a� �

�
a b c f�

�
and x� �

�
x� xy y� �

�T
� Following Fitzgibbon� Pilu and

Fisher ���
� the �tting problem is�

min 
Er� � min
�kDa�k�� subjected to the quadratic constraint aT�Ca� � � 
���

C �


�����������

� � � �

� �� � �

� � � �

� � � �

������������

���

Applying the Lagrange multiplier �� the solution of equation �� is equivalent to�

�DTDa� � ��Ca� � � 
���

aT�Ca� � �

which may be rewritten as�

Sa� � �Ca� 
���

aT�Ca� � � 
���

S � DTD 
���

��



The solution to this system may be computed using the generalized eigenvectors� The

solution which yields the lowest residual baTi Sbai � �i should be taken� where bai � �iui and

�i �

s
�i

uiSu
T
i


���

It should be noted that the scatter matrix S is now invertible� since the singularity problems


see �gure � for a comparison between condition numbers� are avoided by taking out of D

the x and the y columns� In �gure � the centers and ellipses estimated with the proposed

method are shown and in �gure � a comparison of center identi�cation using this approach

and the methods of Fitzgibbon� Pilu and Fisher ���
 and Wu and Wang ���
 is presented�

III� Reconstruction of elliptical regions using a neural

network and geometrical decision criteria

After characterization of elementary arc segments� a new stage is initiated to reconstruct the

elliptical shapes from the identi�ed EAS� This task is accomplished through an aggregation

procedure between EAS based on a posteriori probability analysis� computed with a neural

network� and a set of geometrical decision criteria� These criteria are used both for measures

de�nition 
applied to compute a feature vector which is used as the input to the neural

network� and as decision criteria which are applied in the aggregation method�

�� Geometrical decision criteria

According to Gestalt psychologists� visual perception is highly in�uenced by properties such

as proximity� continuity� similarity� closure and symmetry ��
� Through the analysis of some

of the geometrical properties of the elementary arc segments a subset of these properties

are used to establish aggregation validation criteria and several measures which allow to

quantify some of these properties� Namely the aggregation point and the shared adjacency

��



criteria are inspired on the continuity property� These criteria enable the method to assert if

continuity is physically plausible� The proximity property is measured by the proximity and

the concentricity criteria� while closure in�uenced the de�nition of the completeness and the

center position criteria� Similarity is quanti�ed by the curvature criterion�

Aggregation Point Criterion� the aggregation between two arc segments EASk�j
i and

EASk�l
q must preserve the contour direction� When this operation is performed� it should

a�ect the pair of contact points which are closest to each other� Since internal contours are

stored in the clockwise direction and external contours are stored in the inverse direction� to

ful�l this criterion� it is seen that� the aggregation may only be performed between contact

points 
CP k�j
i � CP k�j

q��� or 
CP
k�j
i��� CP

k�j
q �� If other combinations were chosen� it would not be

possible to assure the contour direction preservation of the resulting segment�

Proximity Criterion� contact points of sequential elementary arc segments belonging to

the same object tend to be localized at smaller distances from each other than to other

contact points� This criterion leads to the de�nition of an aggregation distance measure� let

EASk�j
i and EASk�l

q be two aggregation candidates� their aggregation distance measure is

de�ned by�

D
�k�j�l
i�q � min

����CP k�j
i CP k�j

q��

��� � ���CP k�j
i��CP

k�j
q

���� 
���

The aggregation candidate of EASk�j
i is EASk�l

q if and only if 
N � number of EAS in cluster

k��

q � MinArgz�������i���i�������N

n
D

�k�j�l
i�z

o

���

Concentricity Criterion� let EASk�j
i and EASk�l

q be two convex arc segments with centers

a� and a�� respectively� They belong to the same elliptical object if they are concentric�

that is� their centers lie in relative proximity� This criterion leads to the de�nition of second

��



aggregation distance measure�

D
�k�j�l
i�q � ja�a�j 
���

Completeness Criterion� Almost complete arc segments tend to aggregate with less com�

plete arc segments� A completeness measure for an EASk�j
i arc can be de�ned by 
see �gure

� 
b���

Ck�j
i �

Radius

Chord Height
�

��P�a
����P�P�

�� 
���

It is seen that Ck�j
i � 
��
��

The introduced proximity� concentricity and completeness criteria enable the introduction of

an �energy measure� for the resulting aggregation between two EAS� This measure should

be inversely proportional to the probability of both EAS belonging to the same elliptical

object� It is seen that this probability decreases whenever the measures of equations ��� ��

and the inverse of equation �� increase� Therefore� this measure is de�ned by�

Ek�j�l
i�q �

�
D

�k�j�l
i�q �D

�k�j�l
i�q

�
�
�
� �

�

Ck�j
i

�
�

Ck�l
q

�

���

In ���
 and ���
 the perceptual grouping problem is formulated as an energy minimisation

problem� where the energy function includes� as in this case� terms related to closure and

proximity� In our method the energy de�nition is given by the sum between the distance

measures plus the sum of the closure measures weighted by the sum of the distance measures�

In practice it is observed that the proximity measures are much higher than the closure

measures� Therefore� this weighted sum is used to avoid almost complete arcs to exhibit

small energy measure� Although� theoretically� almost complete arcs may exhibit values of

C which may tend to �� in practice it is observed that these values are usually greater than ����

If the simple summation would be applied� E would be dominated mainly by the proximity

��



terms� However� by taking the weighted terms� E is increased� in these cases� between �

and � times its values due to the proximity measures alone� As for the less complete arcs�

it is seen that the sum of the inverse closure measures is usually less than �� leading to a

domination of E by the proximity measures� Therefore� E will increase for almost complete

arcs and will decrease 
for similar proximity values� whenever in the presence of combinations

between incomplete arcs or between almost complete and very incomplete arcs�

Curvature Similarity Criterion� If two arcs belong to the same elliptical object� then

they should exhibit similar curvatures� The similaritymeasure should account for geometrical

similarity and for scale similarity� A suitable measure is 
b� c� f� as computed in equation

���

 � !Ec 
���

Ec �

�������
p

� � ��� 
 � �p
�� 
� �� 
 � �

� eccentricity 
���

! �

�������
A�� 
 � �

B �� 
 � �

� 
 �
A

B

���

A �

r
�f�
a�


���

B �

r
�f�
c�


���

a� � cos� � � b cos � sin � � c sin� � 
���

c� � sin� � � b cos � sin � � c cos� � 
���

��



� �
�

�
cot��

	
�� c

b




���

Let EASk�j
i and EASk�l

q be two aggregation candidates with  de�ned respectively by  �

and  �� then their similarity measure is de�ned by�

CESk�j�l
i�q � max

�
 �

 �
�
 �

 �

�

���

Reciprocity Criterion� if arc segment EASk�j
i is adjacent to arc segment EASk�l

q � then the

inverse is also true�

In the proposed aggregation algorithm� this criterion is used to eliminate aggregations when�

ever the aggregation choice is not mutual� That is� the aggregation between arcs EASk�j
i and

EASk�l
q only takes place if the �rst chooses the second as its preferred aggregation candidate

and vice�versa�

Shared Adjacency Criterion� if two arc segments EASk�j
i and EASk�l

q are adjacent with

aggregation points 
CP k�j
i � CP k�j

q���� then it is also veri�ed that EAS
k�j
i�� and EASk�l

q�� are

adjacent by the same set of points and should therefore be aggregated together� However� if

the aggregation set of points is given by 
CP k�j
i��� CP

k�j
q �� then the same property is veri�ed

but in relation to arcs EASk�j
i�� and EASk�l

q��� This criterion enables the correction of some

aggregation situations� namely� when less correct identi�ed centers lead to less well de�ned

outputs from the neural network�

Note that whenever an aggregation is performed it is implied that a physical connection

exists between the two EAS as well as between their adjacent EAS which share the same

contact points used for aggregation� Therefore� there always exists a redundancy in data for

performing the aggregation decision� As can be observed in �gure �� EAS with almost linear

shapes may lead� under certain circumstances� to biased estimations of centers� These biases

result in less correct D�� CES and E measures� which in turn may saturate the output of the

��



neural network classi�er� This e�ect is minimised by training the neural network explicitly

with all the de�ned features to enable it to learn a noise tolerant behaviour� However�

classi�cation errors may occur� In these cases� data redundancy is used� as will be explained

later� to recover from these situations�

Center Position Criterion� if two EAS 
let them be EAS� and EAS� with centers a� and

a�� respectively� aggregate together� then their centers must lie on the same side of the line

segment de�ned by the set of contact points obtained with the aggregation point criterion


let it be fCP�� CP�g�� This is mathematically expressed by�

� 
CP�� CP�� a�� � 
CP�� CP�� a�� � � 
���

� 
p�� p�� p�� � 
x� � x�� 
y� � y��� 
x� � x�� 
y� � y�� 
���

This is another closure motivated criterion� Note that whenever 
��� is not veri�ed� the two

EAS are not su	ciently �faced� to each other� in order to be considered for aggregation�

�� The neural network classi�er

It is intuitively known that if two EAS exhibit appropriate values of the measures in equa�

tions ��� ��� ��� �� and ��� they belong to the same elliptical region� However� the exact

nature of the relationship among the above mentioned measures is unknown� Neural net�

works are well known for their capability to learn non linear relationships between input

and output data� In this work we use a neural network to compute the a posteriori aggre�

gation probability between all pairs of EAS of a cluster of elliptical regions� Basically� the

purpose is to assure that objects with similar characteristics may be assigned and cataloged

accordingly to a prede�ned set of classes�

In recent years� neural networks have been used as pattern classi�ers in several �elds

��



of application� Their massively parallel distributed architecture and their ability to learn

from experience makes them adequate for classi�cation and function approximation problems

which are tolerant to noise but to which hard rules cannot be easily applied� These classi�

�ers often provide reduced error rates when compared to conventional statistical approaches

and are a powerful and �exible means for mapping a �xed number of inputs into a set of

discrete classes� It has been proven by several researchers ���
���
 that given in�nite training

data� consistent neural classi�ers trained using least square error minimisation approximate

the Bayesian decision boundaries to arbitrary precision� If they are reasonably well trained�

network outputs are expected to approximate the corresponding a posteriori class probabil�

ities and can be summed to one� Estimation accuracy depends on the network�s complexity�

the amount of training data� and the degree to which training data re�ect true likelihood

distributions and a priori class probabilities�

Usually� classi�ers are seen as a three block system� where the �rst two blocks are respec�

tively responsible for creating a measures vector and a feature vector which can then be

applied in the classi�cation phase 
third block�� The �rst two blocks have been described

in the preceding section� We will now focus our analysis on the last block� Its task is to

map an input vector xC � RG into a symbol C 
xC� � K def
� f��� ��� ���� �NK

g� which di�

vides the G�dimension Euclidean space in NK regions� so that each region corresponds to

a class �i� Since our goal is to identify the EAS that aggregate from those who do not�

we simply have NK � �� For the Bayes optimum decision� a vector xC is assigned to class

i if P 
�ijxC� � P 
�jjxC�� �j �� i� so the Bayes optimal boundary is the loci of all points

x�C � P 
�ijx�C� � P 
�jjx�C� � � for a two�class problem� If we de�ne the neural classi�er

as a function " � RG 	 RV � where xiC are the input or feature vectors of G dimensions

and yi the target vectors of V dimensions� such that yi � T def
�
�
!��!�� ����!NK

�
� each one

��



codifying one of the NK possible classes� then we can estimate y� such that by � "
xC�� Each
component of by can be obtained in such a way that

#yi � "�i 
xC� �

NKX
j��

!j
iP 
yi � !

j
i jxC� 
���

where "� is the estimator that minimizes the Euclidean mean squared error� i�e� the optimum

estimator� If the !i � T vectors are of NKdimensions and if its component i clearly identi�es

the �i class� that is�

!i
i �� !k

i � �i�f������NKg� �k�f������NKg�fig 
���

then the last term of equation �� can be simpli�ed and

#yi � !�
iP 
��jxC� � ��� �!NK

i P 
�NK
jxC�� �i�f������NKg 
���

that is� the outputs are the estimates of the linear combinations of a posteriori probabilities

of the NK classes�

One of the main problems one can encounter when designing a multilayer feedforward

neural network is related to the number of hidden layers to use and the number of neurons

per layer� Several thoroughly discussions can be found in ���
���
���
� In order to reduce the

probability of getting stuck in a local minimum the network was tuned using the momentum

with an adaptive learning rate algorithm from ���
 with a training set composed by ��� pairs

of EAS� It was considered� for training purposes� that

AGP k�j�l
i�q �

�������
���� EASk�j

i � EASk�l
q � same ellipse

���� EASk�j
i � EASk�l

q �� same ellipse


���

where AGP k�j�l
i�q is the a posteriori aggregation probability between EASk�j

i and EASk�l
q � We

assume that the application maps the classes into target vectors such that �� 	 ��� and

�� 	 ��� 
� and � could be used instead� however� as pointed out in ���
 this should be

��



avoided since sigmoids will exhibit these values only when their inputs are very large�� and

therefore we have V � �� Replacing these results in equation �� comes

#y� � ���P 
y� � ���jxC� � ���P 
y� � ���jxC� � ���P 
��jxC� � ���P 
��jxC� 
���

Since the classes are mutually exclusive and since they use up all classi�cation possibilities�

it is seen that P 
��jxC� � �� P 
��jxC��and therefore we can rewrite this equation as�

#y� � ��� � ���P 
��jxC� 
���

The neural network inputs xC re�ect several geometrical measures of each EAS as well

as joined measures of pairs of EAS 
�gure ��� The input vector for each pair of EAS


EASk�j
i � EASk�l

q � is composed by six measures� D
�k�j�l
i�q � D

�k�j�l
i�q � Ek�j�l

i�q �ln
�
� � ord

�
D

�k�j�l
i�q

��
�

CESk�j�l
i�q � C

k�j
i and Ck�l

q 
ord
�
D

�k�j�l
i�q

�
is a function which returns the number of possible

aggregation combinations with EASk�j
i with less D� measure than Ek�j�l

i�q �� These measures

are all normalized to the interval ��� �
�

Several neural networks with di�erent architectures have been trained and tested� net�

works with one and two hidden layers� with di�erent numbers of neurons as well as di�erent

activation functions in the hidden layer� although all from the sigmoid type since we needed

to learn the nonlinearities in the data� The sigmoid activation function of the output layer

has been kept constant and of type logsig� so that the network outputs would be in the

interval ��� �
� Table � shows the best training results obtained with di�erent networks�

The simplest architecture was chosen� composed by � input� � hidden and � output neurons�

all with logsig type activation functions� Although� in theory� equation �� should hold� in

practice� if we have noisy pairs of EAS then it is seen that the AGP k�j�l
i�q may exhibit values

di�erent from the ideal ones� Therefore we say that an output n is wrong if A
n� � ��� and

T 
n� � ���� or A
n� � ��� and T 
n� � ���� where A is the output matrix and T the target

��



matrix� The interval ����� ���
 is� therefore� considered to be inde�nite� Table � shows the

results obtained with the chosen neural network 
N
�� �� �� with logsig activation funtions�

as well as other tested networks� An error of �����$ was obtained with the validation set


��� EAS� for a network trained only with arti�cial EAS 
this was performed to test the

neural network�s generalisation capabilities�� This error became smaller by tuning the neural

network with a training set of EAS of real lime granules�

�� Aggregation of elementary arc segments using a posteriori aggregation probabilities and

geometrical decision criteria

Although the a posteriori aggregation probabilities obtained by the neural network are re�

liable� it is seen that� for highly irregular pairs of EAS incorrect values may be obtained�

To solve these problems a method based on a subset of the mentioned decision criteria and

a voting strategy for critical boundary situations 
when an aggregation candidate set of

EAS exhibit con�icting AGP values among some of them� is developed� In this method�

the aggregation point and the proximity criteria are always applied to determine the pairs

of aggregation candidates� These pairs are validated using the reciprocity 
this criterion is

applied using the neural networks output values� and the center position criteria� Whenever

an aggregation is performed between a pair of EAS the shared adjacency criterion is applied

to their neighbors�

Using the neural network outputs� we assume� for decision purposes� that a pair of EAS

belongs to the same elliptical region if its a posteriori aggregation probability degree is

greater than ���� Since we only have two classes� each EAS should be classi�ed in such a

way that veri�es P 
�jjxC� � ���� ��j � K� that is� it should be assigned to the class with

��



the highest a posteriori probability� Replacing this result in equation �� comes

#y� � ���
���

� ����� #y� � ��� 
���

For each cluster k of identi�ed elliptical regions a matrix AN�N 
N � number of EAS in

cluster k�

AN�N �i� q
 � AGP k�j�l
i�q 
���

is constructed� It should be noted that this matrix is symmetrical with respect to its di�

agonal� since AGP k�j�l
i�q � AGP k�j�l

q�i � From AN�N the absolute maximum value AN�N �i� q


is obtained� which represents the strongest a posteriori probability between two EAS� For

each of identi�ed EAS� their relative maximum values are searched in AN�N � that is� if pairn
EASk�j

i � EASk�l
q

o
has been found to have the absolute maximum AGP value in AN�N then

segments EASk�z
w and EASk�x

y are searched� such that��������
AN�N �i� w
 � ���

AN�N �q� y
 � ���


���

where w� y � f�� �� ���� Ng � w �� i and y �� q� Whenever a new relative maximum has been

found� the described search procedure is repeated with the obtained EAS� All EAS obtained

with 
��� are organised in a tree structure� The tree�s root is formed by
n
EASk�j

i � EASk�l
q

o
and the �rst level of nodes is composed by all EAS such that 
��� is veri�ed� Nodes are

appended to the tree only once� even when they are chosen multiple times� The second level

of tree nodes are obtained using the same procedure and by substituting q or i in 
��� by the

node�s EAS number� These trees will be used to implement an hierarchical voting scheme to

assert majority� Whenever a set of EAS are candidates for a given elliptical structure it may

occur that� due to misclassi�cation� there exist con�icting AGP values among them� In these

cases� the aggregation will be considered with such an EAS if the majority of the candidate

��



EAS exhibit correct AGP values regarding this arc segment� However� it is seen that if the

arc does not physically belong to the ellipse under analysis it will probably add several EAS�

i� e�� in the case it de�nes a di�erent ellipse which is constituted by several EAS� to the

tree� Therefore� the misclassi�ed EAS could easily win majority� To avoid these situations�

majority for a node of level z is computed only with the tree�s nodes of level w � z if z � � or

w � � if z � �� w � Z�
� � Each tree de�nes a candidate set� noted here by CAS� of EAS for

an elliptical structure� Once a tree has been computed the aggregation algorithm is initiated�

A �owchart of the aggregation method is exhibited in �gure ��� From �gure �� it can be

observed that if the number of EAS in CAS is � 
only one pair of candidates for aggregation

exists�� then the aggregation point and the proximity criteria are applied to compute the

aggregation points� With these points the center position criterion is tested and� if the test is

positive� both EAS are aggregated and the shared adjacency criterion is applied to establish

the aggregation between their neighbors� else the aggregation decision is postponed 
it may

happen that another EAS chooses one of this candidates for aggregation�� However� if the

number of EAS � CAS is greater than �� then the reciprocity criterion must be veri�ed

for all possible pairs of EAS � CAS� If this condition holds� then the aggregation point

and the proximity criteria are used to establish the best aggregation pair 
with the smallest

D� measure between each pair�� The aggregation operation is only performed if the center

position criteria is veri�ed for the identi�ed pair fEASj� EASig � CAS� in which case the

new pair forms a new EAS� This procedure is repeated until only one EAS exists in CAS�

Once again� if the aggregation conditions are met then the shared adjacency criterion must

be executed� However� if� at least� one EAS of the aggregation set CAS does not ful�l the

reciprocity criterion with respect to another EAS � CAS� then the aggregation cannot be

performed without further information� To solve these situations� a voting strategy is used�

��



Each EASi � CAS votes once for each EASq � CAS of level w � z if z � � or w � � if

z � � whenever AGP kjl
iq � ���� After the voting operation all EAS which have received more

than ��$ of the votes are excluded from the aggregation set� For each EASi with less than

��$ of the votes� the proximity criterion is applied to obtain its aggregation candidate EASq�

If its candidate exhibits � votes then it is a strong aggregation candidate and� therefore� the

center position criterion should be applied to con�rm the aggregation� Otherwise� if EASq

has received at least � vote� then it is an unreliable candidate� In this case� its neighbors�

de�ned by their aggregation points 
see the shared adjacency criterion�� must be veri�ed

for all the criteria and if the conditions are met� then� by applying the shared adjacency

criterion� segments EASi and EASq are aggregated� Note that whenever it is not possible to

assure a correct aggregation decision between a pair of EAS� the decision process is carried

out with their neighbor information� This redundancy has proven to be very robust� as noisy

data can be rejected with the voting and neighborhood analysis strategies�

Figure �� 
a� shows a cluster of elliptical regions� For simplicity� only the granule formed

by segments f�� �� ��� ��� ��g will be considered� The AGP values for these segments are

listed in �gure �� 
a�� Three misclassi�cation values have been intentionally introduced to

test the aggregation algorithm�s performance with noise� Assume that the new absolute

maximum value has been computed for segments � and �� According to the algorithm� their

relative maximum values are computed� From �gure �� 
a� it is seen that the reciprocity

criterion does not hold for all segments� In consequence� we proceed with the voting system�

Segments � and �� have � vote each� segment �� has � votes and segments � and �� have �

votes� as can be derived from �gure ��� The �rst segment of CAS is segment �� Since it has

less than ��$ of the votes� we apply the aggregation point criterion to its contact points�

Segment �� is chosen as a possible candidate� Since it has � votes� we apply the center

��



position criterion and if it holds we aggregate the two EAS� The shared adjacency criterion

is executed and segments � and �� are aggregated� Since the contour direction must be

preserved� the next EAS chosen is segment ��� despite its � votes against� This implies that

we must check its neighbours 
segments � and ���� Since they aggregate� segments � and ��

must also aggregate 
shared adjacency criterion�� The process is then repeated for all the

other segments of the CAS set 
�gure �� 
b�� and� �nally� a new absolute maximum value is

computed for the remaining EAS� A special case exists between segments � and ��� In this

case the shared adjacency can not be performed since the two aggregation points coincide�

In these cases the shared adjacency criterion is skipped� The whole process is repeated for

all EAS in the cluster� Figure �� 
b� shows the results�

The described algorithm was able to correct several noisy informations introduced in the

neural network output during the test procedures� On the other hand� it is seen that the

output information obtained with the neural network is highly reliable� This is partially

veri�ed by the small errors obtained during its learning stage with respect to the learning

set as well as to the validation set�

�� Discussion and results

In this section several results obtained with the described method will be shown and its

robustness discussed�

The algorithm employs several threshold values which� however� are not critical to its

successful behaviour� In our implementation most of these values are taken constant� For

contact point computation two threshold values are applied 
T and ��� In �gure �� the

variation e�ects of these parameters are illustrated� As can be observed the number of

identi�ed contact points changes smoothly with T and �� The aggregation method will only

��



breakdown if physical contact points are missed by the identi�cation procedure� i� e�� the scale

parameters are taken to high� as shown in �gure �� 
e�� In these cases� several EAS may be

identi�ed as one� being the algorithm unable to split them� since it operates only with EAS

aggregation� When the scale parameters are taken too low� several physical non�existent

contact points will be identi�ed as in �gure �� 
a�� The aggregation algorithm is able to

solve these situations� since the analysis departures from EAS properties� Therefore� if these

EAS exhibit appropriate feature measures they will be correctly classi�ed and aggregated by

the method� As will be shown� even when feature values lead to incorrect classi�cation� the

aggregation method solves these situations in most cases using the redundancy in data� The

main disadvantage of detecting non signi�cant contact points is the increased computational

load� In �gure �� 
c�� �� 
f� and �� 
i� the aggregation results of the identi�ed EAS in �gure

�� 
a�� �� 
d� and �� 
g� are shown� As expected� in �gure �� 
i�� not all physically existent

granules have been obtained� since� as can be observed in �gure �� 
h�� due to incorrect

scale de�nition some contact points have been missed� These situations may� however� be

partially avoided if a scale�space approach is used for contact point determination�

With regard to threshold Tp� it is observed from 
��� that it only serves as an early stop

condition for the iterative center estimation method� that is� if the EAS is su	ciently circular

then the intended precision for center estimation may be obtained in a few iterations� For

less circular arcs� usually the maximum iteration condition serves as stop condition� The

obtained precision is not critical� since the identi�ed centers are further treated with the

enumerated geometrical correction principals 
see section II���

Threshold � is always taken as � � ���� since if convergence is not obtained after ���

iterations then it is seen that the arc segment is highly irregular and� therefore� it probably

requires several hundreds of iterations for its center to converge 
not necessarily to a correct

��



value�� However� since further correction steps are taken� we stop the estimation process

after � iterations�

For center estimation correction another threshold 
�� is applied� This threshold controls

maximum and minimum values of the radius� In our implementation� � � ��� and all results

shown in this paper where obtained with this value�

The described aggregation method uses extensively data redundancy to recover from clas�

si�cation failure situations� This data redundancy is expressed in the shared adjacency

criterion� Namely� whenever a given EAS exhibits less than ��$ of rejection votes from

its CAS members� the shared adjacency criterion is applied to establish the aggregation

decision� This mechanism only fails when there are insu	cient number of votes for a given

EAS 
this condition may be relaxed and be performed for any number of votes� or when the

adjacent EAS used with the criterion exhibit noisy feature values that prevent their aggrega�

tion� Both situations are unlikely to happen simultaneously given the good responses of the

neural network and the center estimation method� Potential failures are mainly due to large

biased center identi�cation� which usually may occur for very small or for very linear EAS�

Even in these situations� biases are largely reduced by the correction method�s property ��

As for the voting mechanism� it is seen that when more than ��$ of votes are obtained there

is still a signi�cant chance of aggregation between these EAS if they are rejected due to

misclassi�cation� This occurs if their adjacent EAS are analysed before them 
note that an

aggregation establishes a physical connection��

In �gure �� the robustness of the neural network is tested by varying the D� and D�

measures 
and indirectly the E� CES and C�� for pair fEAS�� EAS�g of �gure �� 
a�� D�

has been varied by shifting EAS��s center� For this pair of EAS the normalised measures

are D� � ����� and D� � ������ Possible D� values for centers of EAS� 
such that the

��



center position is physically plausible� are D� � ��� �����
 and D� � ��� �����
� respectively

for centers positioned above and under EAS��s center� As can be observed from �gure ��

both intervals are slightly above the correct classi�cation ranges� This means that the neural

network would output correct classi�cation results even under misidenti�ed centers for EAS�

as long they are physically plausible 
included inside the granule�� In this particular case�

improper classi�cation would be achieved when EAS� radius 
R� approximates � 
D� �

������ or for large values of R 
D� � ������ i� e�� R is almost outside the granule� This

behaviour is obtained� since noisy data sets have been included in the neural network�s

training database� All feature values are explicitly shown to the network to enable it to

learn a noise tolerant behaviour�

Typical results obtained with the outlined method are shown in �gures �� to ��� Note

that in these results several non physical contact points have been detected�

IV� Conclusions

A new and robust algorithm for highly irregular elliptical object localization in multi�

connected regions� applied to a lime granule inspection system� is presented in this paper�

The method �rst identi�es all clusters of granules in the image� For this propose a new

inclusion method based on the Green�s theorem is described� For each cluster� the algorithm

decomposes all regions into a set of EAS and several measures are extracted from each EAS�

Since some of these measures are ellipse related measures� an extension to Landau�s method

is described for center estimation� and Fitzgibbon�s direct ellipse estimation technique is

reformulated to avoid inversion problems of the scatter matrix� An ordered set of EAS for

each elliptical region is then constructed upon a posteriori probabilities� which are computed

by a neural network and a search path method based on geometrical properties analysis� All

��



critical situations 
where classi�cation results alone may lead to contradictions� are solved

with the aid of a voting method and a neighborhood analysis scheme to con�rm aggregation�

This system has proven to be very reliable� Namely� it was able to correct several noisy

informations introduced in the neural network output during the test procedure� Given the

noise rejection ability of the path search method and the reduced errors obtained by the

neural network� this method exhibits a robust behavior in lime granule localization� Other

advantages come from the use of a neural network to solve the problem� It is well known

that its generalization capabilities allow us to deal with noisy data situations� as it was the

case when� for test purposes� a neural network� trained only with arti�cial EAS� was tested

with real EAS�

The method employs several threshold values� However� it is seen that only two of these

values � T and �� which code indirectly the curves� scale for contact point estimation�

in�uence the algorithm�s performance� since all the other threshold values are constant in

the system�s implementation� Further� T and � may be avoided by using a scale�space

approach for contact point detection�

Appendix

Proof �


In this section� we derive 
��� the direction invariant discrete Green theorem implementa�

tion�

Proof� Given the Green�s theorem

I



�Mdx �Ndy
 �

ZZ
R

�
�N

�x
� �M

�y

�
dxdy 
���

��



where

% � closed� piecewise smooth and counterclockwise plane curve

R � region bounded by %

M�N � continuous functions with continuous �rst order derivatives in R

it can be shown that� for a clockwise closed curve� the Green�s theorem may be rewritten as

I

�
�Mdx �Ndy
 � �

ZZ
R

�
�N

�x
� �M

�y

�
dxdy 
���

where

%
�

� closed� piecewise smooth and clockwise plane curve

leading to

I

�
�Mdx �Ndy
 � �

I



�Mdx �Ndy
 
���

Tang ���
 has shown that

I



�Mdx �Ndy
 �
X

L
�Fx 
x� y�Dy 
x� y� � f 
x� y�Cy 
x� y�
 
���

where

f 
x� y� �
�N

�x
� �M

�y

Fx 
x� y� �
xX
i��

f 
i� y�

��



L � counterclockwise discrete contour path of R

Combining equation �� and ��� it is veri�ed that

H

�
�Mdx �Ndy
 � �PL �Fx 
x� y�Dy 
x� y� � f 
x� y�Cy 
x� y�
 �

�
P

L
�

�
Fx 
x� y�D

�

y 
x� y� � f 
x� y�C
�

y 
x� y�
� 
���

L
�

� clockwise discrete contour path of R

and therefore �������
Dy � �D�

y

Cy � �C �

y


���

This result is expressed in equation ��

Proof �


In this section we will prove equation �� for counterclockwise traced contours� For clock�

wise traced contours the prove is similar�

Proof�

Property �� If Cont is a closed contour 

Pn

k�� hx 
dk� � ��� then it is veri�ed that for all

points pj � Cont� that do not correspond to local extreme points� that is� hx 
dj���hx 
dj� �

�� there exists at least one pk � Cont� k � � �� j� such that
Pk

z�j hx 
dz� � �� That is� there

exists at least one point pk�� � Cont with the same horizontal displacement as point pj� It

can be shown that under these conditions the following equality holds hx 
dj� � hx 
dk� � ��

For counterclockwise traced curves it is veri�ed that the enclosed region�s area may be

computed using the Green�s theorem 
equation ��� by taking M � �y and N � �� that is

Area �

ZZ
R

dxdy � �
I



ydx � � 
���

��



which� for our coordinate system 
inverted y axes�� has to be rewritten to

Area � �
ZZ

R

dxdy �

I



ydx � � 
���

For discrete curves dx � hx 
d�� therefore equation �� is approximated byI



ydx �
nX
i��

yihx 
di� 
���

Integrating equation �� along a slice of width hx 
di� at point pi 
see �gure ��� it is seen that


note that for vertical point transitions hy 
� � ���

Area � yihx 
di� �
X

j�S
yjhx 
dj� � � 
���

Rewriting equation �� with yj � yi �
Pj��

k�i hy 
dk� we get

hx 
di� yi �
X
j�S

hx 
dj�

�
yi �

j��X
k�i

hy 
dk�

�
� � 
���

Grouping the terms with common yi equation �� is obtained�

yi

�
hx 
di� �

X
j�S

hx 
dj�

�
� �

X
j�S

hx 
dj�

�
j��X
k�i

hy 
dk�

�

���

From property �� it is seen that for closed contours� under constraint of equation ���

hx 
di� �
X
j�S

hx 
dj� � � 
���

Hence� combining equations �� and �� we �nally get�

X
j�S

hx 
dj�

�
j��X
k�i

hy 
dk�

�
� � 
���

Proof �


In this section function � 
xi� yi� di� di��� is derived�

Proof�

Closed contours exhibit the following properties�

��



�� For counterclockwise traced contours it is seen that for all points with code directions

di � f�� �� �g 
hx 
di� � �� the bounded region is found to be in the decreasing y

direction to the point and it is found to lie in the increasing y direction if di �

f�� �� �g 
hx 
di� � ���� Proof� we have already shown that for counterclockwise

traced contours 
see proof � �

X
j�S

hx 
dj�

�
j��X
k�i

hy 
dk�

�
� � 
���

Substituting
Pj��

k�i hy 
dk� � yj � yi it is seen that

X
j�S

hx 
dj� �yj � yi
 � � 
���

Without loss of generality� let us consider that there exists only one point pj � S


for more points it can be proven by grouping pairs of points in set S�� In this

case equation �� resumes to

hx 
dj� �yj � yi
 � � 
���

From equation ��� it is seen that

hx 
dj� � �hx 
di� 
���

Therefore� combining equations �� and ��� �� is obtained��������
hx 
di� � ���� yj � yi

hx 
di� � ��� yj � yi


���

� For clockwise traced contours all points with code directions di � f�� �� �g 
hx 
di� � ��

the bounded region is in the increasing y direction to the point and it is found to lie

in the decreasing y direction if di � f�� �� �g 
hx 
di� � ���� This can be proven in a

similar way as was done above� taking hx 
dj� �yj � yi
 � ��

��



Combining these result with de�nition �� it is veri�ed that� if a point pi � 
xi� yi� �

Cont is taken such that 
xi� yi � �� � 
xi� yi � �� �� Cont then� from property �� for external

contours traced in counterclockwise direction� it is veri�ed that points 
x� y � �� �� Object�


x� y � �� � Object if di � f�� �� �g and that points 
x� y � �� �� Object� 
x� y � �� � Object

if di � f�� �� �g� However� if the contour was traced in the inverse direction then� for external

contours� 
x� y � �� � Object� 
x� y � �� �� Object if di � f�� �� �g and 
x� y � �� � Object�


x� y � �� �� Object if di � f�� �� �g� Therefore� it is seen that � 
xi� yi� di� di��� � ��� For

internal contours� equation �� can be proven using the same strategy�

Proof �


In this section� 
��� is derived�

Proof� Let the ellipse be described by its polar equation 
for simplicity no translation

and rotation e�ects are considered���������
x � 
B cos 
��

y � B sin 
��

� � ��� ��
 � 
 � R� 
���

From �gure � it is seen that 	 � � � �� Since PZ�OP it is veri�ed that

tan 
�� � � �

tan 
��

���

and from equation ��

tan 
�� �
dy

dx
� � �


 tan 
��

���

Therefore�

tan 
	� �


 � �� tan 
��

 tan� 
�� � �


���

Without lost of generality let us analyse equation �� for � � ��� �
�

�
� The maximum value of

��



tan 
	� will occur when� ���������������

d tan���
d�

� �

d� tan���
d��

� �

� � tan 
��

�� � �
�p




���

Substituting �� in �� it is seen that

tan 
	� �

 � �
�
p




���

From �� it is seen that function tan 
	� is monotonously increasing� therefore 	 will be

maximum when tan 
	� reaches its maximum value� that is�

	max � tan
��
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�
p






���
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Figure legends

Figure �� a� Example of several agglomerates which are included inside other agglomerates

of regions� b� Inclusion tree of the contours in 
a� and its splitting indication�

Figure �� a� Contact points determination� b� Initial centre estimation�

Figure �� Computing angle 	�

Figure �� Center correction procedure�

Figure �� Center and radius identi�cation results obtained by 
a� Landau�s method and


b� by Landau�s method with correction steps� Contact points are marked with x on the

contours�

Figure � � Estimated centers and ellipses by the proposed method�

Figure �� Comparison of centre identi�cation results 
rectangles � the described method�

triangles � Wu�s method� circles with horizontal lines � Fitzgibbon�s method� �lled circles �

contact points� dashed lines � identi�ed ellipses by the described method�

Figure �� Condition numbers of S for each segment in �gure �� a� Proposed method� b�

direct estimation�

Figure �� Neural network general scheme�

Figure ��� Training results of the neural network�

Figure �� Aggregation algorithm�s �owchart�
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Figure ��� a� Arc segment representation� b� Reconstructed image�

Figure ��� a� Aggregation matrix� b� CAS tree��

Figure ��� Variation e�ects of T and �� Contact points are represented by circles� Left�

a� T � �� � � �� d� T � ��� �
� � � ��� ��
� g� T � �� � � �� Center� center identi�cation

using contact points in a�� d� and g�� respectively� Right� Aggregation results from b�� e�

and h��

Figure ��� AGP��� results by varying EAS��s center position 
D
�� and localisation 
D���

a� When EAS��s center is above EAS��s center� b� When EAS��s center is below EAS��s

center�

Figure ��� a� Identi�ed centers and contact points� b� Aggregation results�

Figure ��� a� Identi�ed centers and contact points� b� Aggregation results�

Figure ��� a� Identi�ed centers and contact points� b� Aggregation results�

Figure ��� a� Identi�ed centers and contact points� b� Aggregation results�

Figure ��� Integrating along a slice hx 
� �
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Contour Direction d�� d� ��

Clockwise �� �� � �

Clockwise �� �� � ��

Counterclockwise �� �� � ��

Counterclockwise �� �� � �

Table �� De�nition of function �� 
d�� d���

di � � � �

� 
� �cos 
�� sin 
��� cos 
�� sin 
�� sin
�� � cos 
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Table �� De�nition of function � 
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� �� pipj �
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Figure �� a� Example of several agglomerates which are included inside other agglomerates

of regions� b� Inclusion tree of the contours in 
a� and its splitting indication�
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Figure �� a� Contact points determination� b� Initial centre estimation�
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Figure �� Computing angle 	�
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Figure �� Center correction procedure�
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Figure �� Center and radius identi�cation results obtained by 
a� Landau�s method and


b� by Landau�s method with correction steps� Contact points are marked with x on the

contours�
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Figure �� Estimated centers and ellipses by the proposed method�
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Figure �� Comparison of centre identi�cation results 
rectangles � the described method�

triangles � Wu�s method� circles with horizontal lines � Fitzgibbon�s method� �lled circles �

contact points� dashed lines � identi�ed ellipses by the described method�
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Figure �� Condition numbers of S for each segment in �gure �� a� Proposed method� b�

direct estimation�
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Figure �� Neural network general scheme�
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Figure ��� Training results of the chosen neural network�
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Figure ��� Aggregation algorithm�s �owchart�
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Figure ��� a� Arc segment representation� b� Reconstructed image�
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Figure ��� a� Aggregation matrix� b� CAS tree�
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Figure ��� Variation e�ects of T and �� Contact points are represented by circles� Left� a�

T � �� � � �� d� T � ��� �
� � � ��� ��
� g� T � �� � � �� Center� center identi�cation using

contact points in a�� d� and g�� respectively� Right� Aggregation results from b�� e� and h��
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Figure ��� AGP��� results by varying EAS��s center position 
D
�� and localisation 
D���

a� When EAS��s center is above EAS��s center� b� When EAS��s center is below EAS��s

center�
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Figure ��� a� Identi�ed centers and contact points� b� Aggregation results�
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Figure ��� a� Identi�ed centers and contact points� b� Aggregation results�
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Figure ��� a� Identi�ed centers and contact points� b� Aggregation results�
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Figure ��� a� Identi�ed centers and contact points� b� Aggregation results�
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Figure ��� Integrating along a slice hx 
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Training Set Validation Set
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Table �� Best neural network classi�cation performance�
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