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ABSTRACT:
Detection of elliptical shapes is of extreme importance in several computer vision ap-

plications. In this paper a new method for irregular elliptical shapes localization in multi-

connected regions is described. This method first computes a set of elementary arc segments
which are then aggregated using geometrical decision criteria and a posteriori aggregation
probabilities obtained from a neural network for Bayes classification. To identify and char-
acterize the elementary arc segments a cluster identification, a contour grouping strategy
and some extensions to Fitzgibbon’s ellipse fitting method are introduced. These methods
are applied successfully in the setup of an automatic lime granule inspection system. The
algorithm has proven to be very robust since it is able to correctly detect elliptical shapes

even when noisy data are present.
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I. INTRODUCTION

Segmentation and localisation of elliptical shapes is a fundamental operation in several com-
puter vision applications which comprehend many different areas, such as the detection of
tumors in medical image analysis or the identification of components in industrial applica-
tions. Localisation of these shapes is a relative simple task when their regions are found to be
isolated in the treated images. However, whenever in the presence of partial juxtaposition or
superposition of adjacent regions, there is a substantial increase in the problem’s complexity,
since, in these circumstances, it is not possible to identify the contours of the several distinct
regions in their entire extension. In these situations, the problem solution usually involves
some model search procedure. In this category of methods, techniques such as the Hough
transform, least square and least median square fit algorithms are included.

The Hough transform, in spite of being robust, exhibits several limitations, as due to
its high memory requirements, as due to its low computational efficiency. Namely, it is
verified that sequential Hough transform implementations for elliptical shapes search exhibit
behaviors of order O(n%). If the gradients direction is known, then the complexity is reduced
by a factor of n [1].

There exist basically two type of methods for ellipse fitting [2] [3]: (i) the least square
fitting methods and (ii) the least median fitting methods. It is verified that, in principle, these
methods exhibit efficient localisation behaviors whenever the intended shapes are regular.
However, in the presence of irregular shapes, as is the case for lime granules, the results
obtained by these strategies tend to decline rapidly. Usually it is seen that (i) several ellipses
are identified for each segment and that (ii) it is not straightforward to determine the ellipses
in multi-connected regions due to the difficulty of deciding which boundary segments of the

region belong to each elliptical structure.



It is important to the pulp and paper industry to recycle intermediate reagents for both
economical and environmental reasons. One of these paths is used for bleaching liquor
recovering which is performed by a causticizing chemical reaction. The velocity of this
reaction and consequently its efficiency is highly conditioned by the quality of the lime
used. This fact leads to the need for the analysis of lime granules properties, usually left
to human inspection. However, the high costs of manual inspection and the fatigue of
human operators, which introduce high variances in the resulting data, are stimulating the
development of computer-based systems for inspection tasks. Lime granules are more or less
elliptical in shape and therefore their automatic visual inspection can be seen as an elliptical
object localization and measurement problem.

In this paper a new and robust method, based on geometrical properties and a neural
network used as a Bayes estimator, is introduced for localisation of irregular elliptical shapes
in multi-connected regions. This method is applied in the setting of an automatic lime gran-
ule visual inspection system. The algorithm is inspired in human visual perception theory,
namely on the Gestalt’s principals for perceptual organisation. According to this theory,
perceptual organisation of visual information is governed by a set of properties, which are
partially quantified in this paper for arc segments by several geometric measures. Learning,
based on past experience is also recognised to play an important role in perception by the
Gestalt theory [4]. In the developed method, learning is encompassed by a neural network.
Several work exist on perception in general (see [5] for a survey) and on perception using
neural networks in particular by exploring their optimisation capabilities [6][7] and dynam-
ics [8]. We use a neural network as a noise tolerant tool to compute non parametrically
aggregation probabilities between arc segments, i. e., to compute accurate probability val-

ues even when large biases occur in some of the applied features. Using the classification



structure proposed in [5], this method may be considered a 2D structural level perception
organisation algorithm, since 2D features are involved in the reconstruction of 2D shapes.
In [4], Kanizsa suggests that perception of shapes is performed by first identifying in the
visual field regular regions in space or time. After separation of the visual field the process
continues with the perception inference of completion of whatever is absent or occluded [5].
This strategy is followed in this paper. Namely, the algorithm applies a two-stage process:
(i) in a first stage elementary arc segments (arc segments which are bounded by contact
points between distinct regions) are identified and some measures, which quantify some of
the properties mentioned in the Gestalt psychology, are extracted. This stage is described in
section II.. (ii) In a second stage, described in section III., the obtained elementary arcs are
grouped together using geometrical properties and a neural network classifier to reconstruct
the elliptical shapes present in the image. In section A. a new contour grouping method
based on the Green’s discrete theorem is introduced. This method enables the identifica-
tion of all clusters of elliptical regions in the image. In section B. the methodology applied
throughout the identification and characterisation of elementary arc segments is described.
In this section some extensions to Fitzgibbon’s ellipse estimation algorithm are presented.
Namely, a strategy to avoid inversion problems is developed, due to near singularity defini-
tions of the scatter matrix, which is needed for measure extraction. Section III. describes
the aggregation algorithm used for elliptical shape reconstruction from the elementary arc
segments. This method is based on geometrical properties and uses a Bayes classification
approach implemented with a neural network. Finally, in section IV. the main conclusions

and results are presented.



1. LOCALIZATION OF IRREGULAR ELLIPTICAL SHAPES

Let F be the original digital image and F'® the binary image obtained from F. In this
paper it is required that all inner areas of the elliptical regions in the image be filled with
the same gray level. For discussion purposes, it will be assumed that these regions are filled
with the maximum gray level (white) and that the image’s background is filled with the
minimum gray level (black). This is very easy to accomplish whenever a threshold selection
algorithm (see [9] for a survey) can be used for image segmentation, which, for industrial
applications, is relatively straightforward, since light and acquisition conditions are usually
controllable. In the outlined inspection problem we use a minimum cross-entropy threshold
selection method [10] [11].

Once the binary image is obtained, the localization procedure for clusters of irregular
elliptical shapes is initiated. The method described in this paper is composed by two-stages:
(i) elementary arc segment identification and characterisation - these operations will be
described in the following sections, and (ii) elementary arc segment grouping - the grouping

strategy will be outlined in section III..

A. Contour grouping using the Green’s theorem

Elementary arc segments (EAS) are obtained from the contours of the clusters of regions
identified in the binary image. In this step, the contour tracing algorithm must be able
to identify each independent group of contours belonging to each cluster of multi-connected
elliptical regions in the image (a cluster of multi-connected regions may include in its interior
other independent clusters of regions).

Before describing the cluster’s identification strategy, let us first introduce some defini-

tions which will be used along the paper.



Definition 1 A contour point is a point that does not exhibit /-connectness.

Definition 2 For external contours, the cluster’s region lies always inside the area defined

by the contour.

Definition 3 For internal contours, the cluster’s region lies always outside the area defined

by the contour.

Definition 4 A cluster of irreqular multi-connected elliptical regions is considered to be any
set of multi-connected irregular elliptical regions, such that there exists a continuous path,
completely included inside the cluster’s region, connecting any two points of the set. (See
figure 1 (a). Contours Conty 4 and Conty s define one of the several clusters exhibited in the

image. )

Let SC; e {Cont;,...,Cont;,} be the set of contours of the jth cluster of regions in
the image and C'ont;; be its ith contour. Whenever a new contour starting point p e/ (z,y)
is detected (new contour points are detected by an image horizontal, from top to bottom,
scanning procedure), it is determined whether it belongs to an outer contour of a new
cluster of regions or to an internal contour of an already identified cluster. This task is
performed using the Green’s discrete theorem [12] [13] (validation of equation 2). Namely,
point p belongs to an internal contour of an already identified cluster if and only if point p

is included inside an external contour (most outer contour) of an already scanned cluster, i.

e.(1),

dj=1,...K:pCContj, (1)

Cont;, — contour number 1 of cluster j



K - number of identified clusters

If equation 1 is verified for some j, then the new contour is appended to set SCj, else
a new cluster has been detected and, therefore, K is incremented by one and a new set
SCx = {Contg 1} is created.

The inclusion test in equation 1 is easily performed with the Green’s discrete theorem [12]
[13]: let Cont;, ] {p1, P2, .--,Pn}, n - number of points in the contour, be the set of points
that form the contour, where each point p, et (x,,9,,d,) is described by its co-ordinates
(x,,y,) and by its chain code direction d,. If equation 2 is corroborated, then point p is

included inside C'ont; ;. Since equation 2 has to account for the contour’s direction, functions

C, and D, should be redefined as in equations 5 and 6 (see proof 1 in appendix).

n

S IA(r: — 2y, — y) Dy (dey,de) + T (22 — 2y, — y) Cy (day de)] = 1 (2)

z=1

l<z#0o0ry#0

0O<=z=0andy=0

l<z>0andy=0

0<=x<0o0ry#0

0<a<(b+3)mod8
Cy(a,b) = (5)

t < else

)

t<be{l,2,3,4} Na € {0,1,2,3}
Dy(a,b) =49 —t<be {0,567 Nac {4,567} (6)

0 < else

\



1 < counterclockwise direction contours
t= (7)
—1 < clockwise direction contours
Given that equation 2 depends on the contour’s direction, it is imperative that it is clearly
determined prior to the use of the Green’s theorem. For this purpose equation 12 can be
applied (see proof 2 in appendix): let Cont be a closed contour, Y ,_, h, (di) = 0, hy(d) -

horizontal displacement for chain code d, such that there are no common points in Cont,

that is, (8) holds,

Bi,je{l,..,n}:pi=piNi#j (8)

Further, let p; o (x;,y;,d;) € Cont, such that p; is not a local extreme point, that is,

pi € Cont : hy (d;) hy (d;_1) > 0 9)

and let S be the set of all points p; =l (z;,y;,d;) € Cont, such that z; + h, (d;) = z; and

points p; and p; exhibit inverse chain code directions, that is
J
> hy(dr) =0, j+1#iAhg (dj) hy (d;) <0 (10)

k=i

or

then, it is seen that:

Clockwise <= Ay (i,S) <0
Dir = (12)

CounterClockwise <= Ay (i, S) > 0

MG =Y he(d) [Z 3 (d@] (13

k=i



Points p; obtained with equation 11 may not correspond to local extreme points. If, however,
this happens, then a new point p; and a new set S must be computed. Valid points must,

therefore, verify

e (dj-) s (d7) > 0 (14)

Functions h, (d) and h, (d) are, respectively, the horizontal and the vertical pixel displace-
ment for chain code d.

This contour grouping strategy identifies the whole set of independent clusters (clusters
not included inside any other cluster) of multi-connected regions in the image. All external
contours are always the first C'ont;; in their cluster SC;. Furthermore, it is verified that the
inclusion order of the contours in each SCj is increasing, that is, there does not exist a pair

of contours {Cont;;, Cont;,} € SC; such that

i<w:Cont;; C Contj, (15)

It often happens that some clusters are completely included inside other clusters (see
figure 1 (a)). In these cases, the grouping algorithm only identifies one external contour -
the most outer contour of the cluster that is not included inside any other cluster - and,
therefore, only one set SC; will be created by the outlined grouping strategy (see figure 1 (a)
- only set SC exists). To solve these situations, all contours’ sets are inspected to identify all
levels of clusters. Solving these situations at this stage has several advantages: (i) computing
requirements are reduced. Given that the region of one ellipse is always defined in one
independent cluster, it is useless to inspect adjacent clusters to identify the ellipse. (ii) For
neighbour clusters it is further avoided to perform physically non-causal ellipse identification,
which could arise under highly noisy situations. These false identifications could of course

be detected by performing a convexity test on the identified structures. However, this would



increase unnecessarily the algorithm’s complexity and computational requirements.

To identify the whole set of clusters, first an inclusion tree is constructed. In these trees
each node represents a contour belonging to the same set SC;. Whenever a node exhibits a
link to a child node, it is implied that the child node contour is included inside the father
node contour. Note that the tree’s root is Cont; ;.

To perform the inclusion test the Green’s discrete algorithm is once again applied. Note
that, given the property expressed in equation 15, any contour C'ont finds always its correct
order in the inclusion tree. In figure 1 (b) the obtained inclusion tree from the set of contours

of figure 1 (a) is shown. These inclusion trees exhibit some useful properties:

1. If a child node of an extern contour node has links to child nodes, then it represents

an internal contour of a cluster.

2. Those nodes which do not exhibit any links to child nodes may represent internal or

external contours

3. Those child nodes whose father nodes represent internal contours can represent internal

or external contours.

The last step of the grouping procedure is to identify all clusters present in each inclusion
tree. This is performed with a recursive algorithm based on the above stated properties. For
each inclusion tree the following steps are applied (the initial argument is the tree’s root;
note that only those contours which correspond to the several Cont;;, 7 = 1,..., K, are

initially marked as external contours):

Inputs:

node - a node of the tree; initial value: the tree’s root

10



Outputs:

Identified sets of clusters

Algorithm of Determineclusters (node)

Begin

For (each childnode of node) do

If ([childnode has childnodes and node represents an external contour| or [childnode
represents an internal contour]) then
Mark childnode as an internal contour

Determineclusters (childnode)
Else

Mark childnode as an external contour
Disconnect child node and all its descendant nodes from the tree
Increment K and construct a new cluster SCy with them

Delete all Cont included in the new tree from the previous SC}

End

External and internal contours are easily identified using the following function ¥ (see
proof 3 in appendix): choose point p; = (z;,y;, d;) € Cont such that (z;,y; — 1), (x;,y; + 1)
¢ Cont and d;,d;_y € {0,1,7} or d;,d;_1 € {3,4,5}(function A, (dy,ds) is defined in table
1):

Extern < V (x;, y;, d;, di—1) = +1

Cont = (16)
Intern <V (z;,y;,d;, d; 1) = —1

11



Pz, y+ Dy (di,do)) — [P (z,y — Dy (dv, do))
[P (z.y)

This test enables the detection of any level of inclusions of clusters which might exist in

U (2,y,dy, dy) = (17)

the image. At the end of this step a set SC = {SC4, ..., SCk} of contours is obtained (K -
number of clusters in the image).
Finally, external contours of clusters must be stored in counterclockwise direction and

internal ones with the inverse direction.

B. Computing elementary arc segments

Once all clusters have been determined, the elementary arc segments are identified. An
elementary arc is defined as a set of sequential points of a contour C'ont;, ; that are delimited
by two adjacent contact points (a subset of corner points) between distinct elliptical regions.

There are currently two categories of methods that can be applied for corner point detec-
tion: (i) polygonal approximation methods [14] [15] and (ii) curvature based methods [16].
While the first ones try to fit a polygon, by minimizing the fitting error, to the curve, the
second type of methods use a curvature measure (direct estimation, curvature estimation
after gaussian filtering or scale-space curvature estimation) to compute maximum and min-
imum curvature points. Curvature based methods exhibit the advantage of their accuracy
in corner point localisation. However, it is generally seen that their computing requirements
are higher than for polygon approximation methods.

In this work, corner points are obtained by the incremental splitting polygonal approx-
imation method [15] which is computationally very efficient. Let p;,p; € Cont be the two
points in a contour with the maximum distance between them. To compute the corner points

of C'ont the splitting method proceeds as follows:

1. Find point p, € Cont, such that p, is a point between p; and p; on the contour, with

12



maximum distance to the chord defined by p; and p;.

2. If the distance between p, and p;p; is greater than T (predefined threshold), then p,

is taken as a corner point and Goto step 3 else Stop.

3. Apply recursively the algorithm to segments p;p, and p,p;.

The distance between p;p; and any point p, is obtained with the use of the incremental
distance: let {p;, pi+1,...p;} be the ordered sequence of points of the contour between p; and

pj, and dist, be the distance from p, to p;p;, then:

dZStZ = dZ.Stzfl + 0 (dzfl) (18)

diStO =0

4 () - function defined in table 2. Note that ¢ (d) = —d ((d + 4) mod 8)

d;-chain code direction of point p, to point p,,1

After the calculation of all corner points, the contact points between the elliptical shapes
(corner points which delimit convex regions) are identified with the application of the fol-
lowing criterion:

Convexity Criterion: elementary arcs are convex. Kim and Rosenfeld [17] have shown
that an arc segment is convex if every point of a line segment, defined by any two points of
that arc segment, lie inside the region of support.

Let p; ot (x;,y;) be the ith corner point obtained by the incremental splitting method
in contour Cont ;. Point p; is considered to be a contact point if and only if its region of

13



support is non convex (it delimits two distinct convex regions), that is:

B (P,) = black (19)

where f? (P,,) represents the pixel gray level in the binary image at coordinates P, et

(T, Ym); P represents the middle point of the line segment defined A points to the right
and to the left of p; (see figure 2 (a)). By this way, for each contour Conty, ; a set of contact

points C'PS}, ; et {C’Plk’j, ey C’P’C’j} ( C’Pik’j— ith contact point of C'onty, ;, ncp - number of

nép
contact points in contour Conty ;) is obtained. In figure 5 some results obtained with this
method are shown. Thresholds 7" and A could be avoided by using a scale-space approach
for contact point determination as in [18] (actually these values define indirectly the scale
of each curve) or an adaptive scale method [19][20]. One the one hand, it is seen that the
former methods are quite computationally intensive and that the later ones exhibit high
noise sensibility [21]. On the other hand, it is verified that the aggregation algorithm is
able to coupe with incorrectly identified contact points, i. e., identification of contact points
which are physically non existent. The algorithm is however not able to treat situations
where physically relevant contact points have been missed. We, therefore, use threshold
values which define a scale representation where all significant, and probably some non-
significant, contact points are identified. Since contact points are defined by accentuated
concave neighbourhoods it is verified that the number of identified contact points varies
smoothly with scale definition.

An elementary arc segment (EAS) is formed by a subset of contiguous contour points

belonging to the same contour that are bounded by two adjacent contact points, that is, for

each Conty, ; (p. € Conty,;):

i de j j
2ASH S LOPR p.....OPk)} (20)
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1. Characterization of elementary arc segments

Once all elementary arcs have been identified, a set of ellipse related measures (center,
eccentricity) are computed for each FAS. These measures are later used in the elliptical
shapes reconstruction procedure. In this section an extension to Fitzgibbon, Pilu and Fisher’s
[22] algorithm, used for the above mentioned measures estimation, is presented.

Given the general conic represented by an implicit second order polynomial

F(x,a)=xa=a2r’+bry +cy’* +dr+ey+f=0 (21)

T
wherea= |, p ¢ d e f] and x = [ﬁ zy y2 oz oy 1 the fitting is generally

approached by minimizing the algebraic distance error:

np
Er =) F (x;,a)’ = ||Da’ (22)
i=1
T
D= [xl X X3 ... Xpp-1 Xpp (23)

np — number of points in the curve

For highly irregular arc segments it is seen that the scatter matrix S = D?D is very often near
singularity which leads to inversion problems, since the matrix’s condition number (defined as
the ratio between the largest singular value of S to the smallest) is usually higher than 10'°.
For double precision floating point representation to prevent a roundoff error the condition
number should be less than 10'2. Therefore, direct estimation using equation 22 is avoided.
In our approach the ellipse center is first estimated using a gradient descent method. At
this step the arcs are assumed to be circular. Each estimated center is then corrected using
a set of geometrical properties. Using the estimated center as a constraint, the singularity
source in S is reduced (a redefinition of S which exhibits much smaller condition numbers,

15



usually in the order of 10°, is introduced) and equation 22 is applied to compute the intended
parameters.

The initial estimation of the centers is performed with Landau’s algorithm [23] [24]. Given

kg def kg def .

an elementary arc segment EAS;” = {(z1,91), .. (T2, Y2) 5 ooy (T, Ynp) } (CPY = (1, 11);

i d o
C’leijl 24 (Znp, Ynp); np - number of contour points in the elementary arc segment), for each

de
e lef

point a radial vector 77; is defined. If a circular arc of radius R and center = (T4, Ya) 18

outlined, then its radius and center may be computed iterating equations 24 and 25.

1 &
Tor=— > | Tw—R T, — @, (24)
np w=1
1 &
R, = — T — @y 25
o wzll (25)

["+, - unity vector with the same direction as T

@ ; - estimated center vector in the ith iteration

R; - estimated radius in the ith iteration

For the initial center and radius the method described in [24] is applied: let Py «f (x1,11) be

the middle point of the EASf’j, and P, el (72, y2) the middle point of the chord defined by

points C' P/ and C’Plﬁ]1 (see figure 2 (b)), the initial center @ and radius Ry are obtained

by

. (” U ) (26)

Ry =~ (27)
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@o = (12 + (Ry — h)cos (), 42 + (Ry — h) sin (¢)) (28)

D, h - computed as shown in figure 2 (b)

In the proposed method equations 24 and 25 are iterated until the required precision T'p
(we use Tp = 0.1) is obtained at a maximum number € of iterations (we use a fixed value of

e = 100). Therefore the stop condition is given by:

| @y — @] <Tporv>ce (29)

T'p - predefined precision

These threshold values are not critical, since centers are further corrected using a set of
geometrical properties as will be explained below.

It is seen that Landau’s method produces satisfactory results if the FAS are smooth and
approximately circular. However, given the irregular shapes which characterize most of the
regions, the number of points of each elementary arc segment is often reduced. It is also
common to find several FAS with almost linear shapes. These two factors are responsible
for abnormal centers identification (see figure 5 (a)). To overcome this problem, a set of
correcting steps is introduced. These steps are based on the following geometrical properties:

Property 1: Let @ be the internal angle between OP and PW (see figure 3). Let PW
be the line segment normal to the tangent line segment PK at point p and 7 be the length
relation between the ellipse’s axes as defined in (92). It is seen that the maximum value of

0 for p € ellipse is given by (30) (see proof 4 in appendix):

Ormax = MAZ o[y 7] {0 (a)} = tan™" <772;\/ﬁ1> (30)

17



For lime granules usually n € [0.5, 2], hence, 0. € [—19.5,19.5] degrees. However, given
the irregular shapes of most FAS, a maximum deviation of { degrees (it is suggested to take
¢ = £30°) is allowed. The fulfillment of this property is imposed by the following procedure:

if # > ( then vector m is rotated, with respect to point P;, by ¢ = —6 degrees, that is:

cosp —sing
a = [G_P1]+P1 (31)
sing cos
Property 2: The center of an ellipse lies always inside the region bounded by its border
contour. Therefore, the estimated center a must lie inside its region of support R* (see figure
4) of segment E’AStk’j. This property is verified and its fulfillment is imposed to the identified
elementary arc segments through the following steps: (i) determine point Ps (Ps = P; — m)

as shown in figure 4; (ii) if ‘]T& N Rk‘ < ‘Pl PN Rk‘ then apply equation 31 with ¢ = m;

(iii) if f2 (v4,9.) ¢ R* (outside the object) then determine line segment P;Ps such that

/(P P3) = Z(Pya) and PP; C R*, that is, determine point P; such that the obtained line
segment P P; (same slope as Pya) lies entirely inside the region of support R* (see figure 4);
%

iv) obtain the new center a as in equation 32 (|7 N R| represents the length of vector 7
g

that lies inside region R).

o= % (P + Py) (32)

To compute point P the following method can be applied: if line segment P; P; intercepts
a region Ry, then it is seen that there exists at least one point of Ry’s contour (Cont,)
which belongs to line segment P,P,. A point belongs to a line segment if two conditions
are verified: (i) the point lies on the line defined by the line segment, and (ii) the point is

situated between that line’s segment start and end points. If R,’s contour is considered a

18



continuous parametric function, condition (i) implies that:

dp, € Conty : p— f(t)cos () — g(t)sin(¢p) =0 (33)
z=f(t)
Cont,, =
y=g(t)

p = xcos (1)) +ysin (¢) - polar equation of the line defined by PP,

Since, however, R,’s contour is discrete (finite set of pixels of coordinates p, = (z,,v.)),
the equality of equation 33 is only obtained under certain conditions. Therefore, instead of
equation 33 it is considered that point p, lies on the line segment defined by P P, if PPy

intercepts pixel of coordinates p., that is:
Ap.] = |p — . cos (1) — y. sin ()] < V05 (34)

An efficient implementation of equation 34 is suggested in [15]: let Ap, be the Euclidean

distance between the line defined by P; P, and pixel p, of contour Cont,,, then:

Apr = p — w108 () — yisin () (35)

Ap.i1=Ap, +6(d,) (36)

d () - function defined in table 2

d, - chain code direction of pixel p, € Cont,,

19



As for condition (ii) it is seen that p, lies between the endpoints of line segment PP if

equation 37 is verified [25] (function I" () is defined in equation 62).

D (py1py @) T (9 py s ) < 0 (37)
(v, £y)sin(¢) —p
Pyt = (:L’Z + 7, <05 (9) ) ,7 € R\ {0} (38)

Property 3: For those arc segments which are perfectly elliptical, it is verified that
the modulus of the identified radius is exactly half the modulus of the diameter with the
direction of the vector defining the radius. Given the irregular shapes of regions in natural
scenes, it is frequently seen that abnormal values are identified. To correct this problem,
minimum values for radius (R) are imposed, that is, R > 0 ‘@‘, 0 €]0,1[. The several
identified R values are limited in the upper bound by a function of the diameter’s modulus
with the direction of Pia. These conditions are imposed by the following procedure: (i)
determine line segment P, P; as explained in property 2; (ii) rotate vector a?ﬁ (vector whose
origin is the identified center) by o = 7 radians with respect to point a. In this way point
Py is determined (see figure 4); (iii) if R < 6 |Psa| or Py € Psa and |Psa| < & |Pra| then
obtain the new center as in equation 32 (in our implementation 6 = 0.1; all shown results
where obtained with this value).

In figure 5 several results obtained by Landau’s method and with the described correction
algorithm are presented. As can be observed, this simple algorithm enables the corrections
of the centers in those situations where Landau’s method fails.

To compute the intended eccentricity measure, the function F'(x,a) has to be estimated
for each elementary arc segment. In order to fit an ellipse to each of the elementary arc
segments we use a least square approach with the following constraints (constraint 3 assures
that the estimated function corresponds to an ellipse [22]; (z,,y,) - identified center):
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—2cd+be
4ac—b?

1. Constraint 1: z, =

—2e+-bd
4ac—b?

2. Constraint 2: y, =
3. Constraint 3: 4ac — b* =1

Substituting constraints 1 and 2 into equation 21 it is seen that:
T =1 — X,

N=Y—"Ya

F (X17 al) =aix; = ax% + bxiy + C?/% +f1=0 (40)

T
where a; = [ a b c fi } and x; = [ 22 xy y? 1 ] . Following Fitzgibbon, Pilu and

Fisher [22], the fitting problem is:

min (Er) = min (||Da1||2) subjected to the quadratic constraint al Ca; = 1 (41)
00 20
0 -1 00
C= (42)
20 00
00 00

Applying the Lagrange multiplier A, the solution of equation 41 is equivalent to:

2D”Da; — 2ACa; =0 (43)
alCa; =1
which may be rewritten as:
Sa; = A\Ca, (44)
alCa; =1 (45)
S=D'D (46)
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The solution to this system may be computed using the generalized eigenvectors. The
solution which yields the lowest residual al'Sa; = \; should be taken, where a; = y;u; and

Ai
w;Su’’

i — (47)

It should be noted that the scatter matrix S is now invertible, since the singularity problems
(see figure 8 for a comparison between condition numbers) are avoided by taking out of D
the z and the y columns. In figure 6 the centers and ellipses estimated with the proposed
method are shown and in figure 7 a comparison of center identification using this approach

and the methods of Fitzgibbon, Pilu and Fisher [22] and Wu and Wang [26] is presented.

III. RECONSTRUCTION OF ELLIPTICAL REGIONS USING A NEURAL

NETWORK AND GEOMETRICAL DECISION CRITERIA

After characterization of elementary arc segments, a new stage is initiated to reconstruct the
elliptical shapes from the identified EAS. This task is accomplished through an aggregation
procedure between FAS based on a posteriori probability analysis, computed with a neural
network, and a set of geometrical decision criteria. These criteria are used both for measures
definition (applied to compute a feature vector which is used as the input to the neural

network) and as decision criteria which are applied in the aggregation method.

2. Geometrical decision criteria

According to Gestalt psychologists, visual perception is highly influenced by properties such
as proximity, continuity, similarity, closure and symmetry [5]. Through the analysis of some
of the geometrical properties of the elementary arc segments a subset of these properties
are used to establish aggregation validation criteria and several measures which allow to
quantify some of these properties. Namely the aggregation point and the shared adjacency
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criteria are inspired on the continuity property. These criteria enable the method to assert if
continuity is physically plausible. The proximity property is measured by the proximity and
the concentricity criteria, while closure influenced the definition of the completeness and the
center position criteria. Similarity is quantified by the curvature criterion.

Aggregation Point Criterion: the aggregation between two arc segments EAS;c 7 and
EAS(’]’“’! must preserve the contour direction. When this operation is performed, it should
affect the pair of contact points which are closest to each other. Since internal contours are
stored in the clockwise direction and external contours are stored in the inverse direction, to
fulfil this criterion, it is seen that, the aggregation may only be performed between contact
points (CP,CPY) or (CP[Y}, CPM). If other combinations were chosen, it would not be
possible to assure the contour direction preservation of the resulting segment.

Proximity Criterion: contact points of sequential elementary arc segments belonging to
the same object tend to be localized at smaller distances from each other than to other
contact points. This criterion leads to the definition of an aggregation distance measure: let

EASM and EASH be two aggregation candidates, their aggregation distance measure is
i q gereg gereg

defined by:

D = min (|CPHCP | |CPECPY

i,q

) (48)

’

The aggregation candidate of EAS" is EASH if and only if (N - number of EAS in cluster

k):
q= MinArg,— . i—1it1,.,N {D;,]ZJJ} (49)

Concentricity Criterion: let EAS;C’j and EASQ“Z be two convex arc segments with centers
a; and ao, respectively. They belong to the same elliptical object if they are concentric,
that is, their centers lie in relative proximity. This criterion leads to the definition of second
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aggregation distance measure:

D" = |aras| (50)

i,

Completeness Criterion: Almost complete arc segments tend to aggregate with less com-
plete arc segments. A completeness measure for an EASf’j arc can be defined by (see figure
2 (b)):

ok _ Radius B ‘m‘
" Chord Height | PP,

(51)

Tt is seen that C/ €0, oo].

The introduced proximity, concentricity and completeness criteria enable the introduction of
an “energy measure” for the resulting aggregation between two EFAS. This measure should
be inversely proportional to the probability of both FAS belonging to the same elliptical
object. It is seen that this probability decreases whenever the measures of equations 48, 50

and the inverse of equation 51 increase. Therefore, this measure is defined by:

. , . 1 1
Bl = (D7 4 DAY s (14— + 52
q q q C;C,] Céc,l ( )

In [27] and [21] the perceptual grouping problem is formulated as an energy minimisation
problem, where the energy function includes, as in this case, terms related to closure and
proximity. In our method the energy definition is given by the sum between the distance
measures plus the sum of the closure measures weighted by the sum of the distance measures.
In practice it is observed that the proximity measures are much higher than the closure
measures. Therefore, this weighted sum is used to avoid almost complete arcs to exhibit
small energy measure. Although, theoretically, almost complete arcs may exhibit values of
C which may tend to 0, in practice it is observed that these values are usually greater than 0.5.
If the simple summation would be applied, F would be dominated mainly by the proximity

24



terms. However, by taking the weighted terms, E is increased, in these cases, between 2
and 4 times its values due to the proximity measures alone. As for the less complete arcs,
it is seen that the sum of the inverse closure measures is usually less than 1, leading to a
domination of £ by the proximity measures. Therefore, £ will increase for almost complete
arcs and will decrease (for similar proximity values) whenever in the presence of combinations
between incomplete arcs or between almost complete and very incomplete arcs.

Curvature Similarity Criterion: If two arcs belong to the same elliptical object, then
they should exhibit similar curvatures. The similarity measure should account for geometrical

similarity and for scale similarity. A suitable measure is (b, ¢, fi as computed in equation

40)

Q= 0OFc (53)

VPR —l<<=n>1

Ec = — eccentricity (54)

Vi-np?<=n<l1

A=n>1 A

B<=n<l1
_/=h
A= o (56)
_/=h
B = " (57)

a' =cos? € +beosésiné + csin® € (58)

¢ =sin?€ —bcosésiné + ccos? € (59)
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£= %cot_1 <1 ; C) (60)

Let EASf’j and EAS(’;’I be two aggregation candidates with € defined respectively by €2

and €25, then their similarity measure is defined by:

, Q Q
E Skl ] 1
CES;: mazx {Qz’ o, (61)

Reciprocity Criterion: if arc segment EASf’j is adjacent to arc segment EAS(’;J, then the
inverse is also true.

In the proposed aggregation algorithm, this criterion is used to eliminate aggregations when-
ever the aggregation choice is not mutual. That is, the aggregation between arcs EASf 7 and
EAS;“’Z only takes place if the first chooses the second as its preferred aggregation candidate
and vice-versa.

Shared Adjacency Criterion: if two arc segments EASf’j and EAS;“’Z are adjacent with
aggregation points (C’Pik’j,C’qufl), then it is also verified that EASM™ and E’ASécjrll are
adjacent by the same set of points and should therefore be aggregated together. However, if
the aggregation set of points is given by (C’PZTI, C’Pq’“’j), then the same property is verified
but in relation to arcs EASY jrjl and E’AS(I;LZI. This criterion enables the correction of some
aggregation situations, namely, when less correct identified centers lead to less well defined
outputs from the neural network.

Note that whenever an aggregation is performed it is implied that a physical connection
exists between the two FAS as well as between their adjacent FAS which share the same
contact points used for aggregation. Therefore, there always exists a redundancy in data for
performing the aggregation decision. As can be observed in figure 6, FAS with almost linear
shapes may lead, under certain circumstances, to biased estimations of centers. These biases
result in less correct D?, CES and E measures, which in turn may saturate the output of the
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neural network classifier. This effect is minimised by training the neural network explicitly
with all the defined features to enable it to learn a noise tolerant behaviour. However,
classification errors may occur. In these cases, data redundancy is used, as will be explained
later, to recover from these situations.

Center Position Criterion: if two FAS (let them be FAS; and EAS, with centers a; and
as, respectively) aggregate together, then their centers must lie on the same side of the line
segment defined by the set of contact points obtained with the aggregation point criterion

(let it be {C'P;,C'Py}). This is mathematically expressed by:

F(C’Pl,C'Pg,al)F(C’Pl,CPg,ag) >0 (62)

[ (p1,p2,p3) = (w2 — 21) (Y3 — y1) — (w3 — 21) (Y2 — Y1) (63)

This is another closure motivated criterion. Note that whenever (62) is not verified, the two

EAS are not sufficiently ”faced” to each other, in order to be considered for aggregation.

3. The neural network classifier

It is intuitively known that if two E'AS exhibit appropriate values of the measures in equa-
tions 48, 50, 51, 52 and 61, they belong to the same elliptical region. However, the exact
nature of the relationship among the above mentioned measures is unknown. Neural net-
works are well known for their capability to learn non linear relationships between input
and output data. In this work we use a neural network to compute the a posteriori aggre-
gation probability between all pairs of EAS of a cluster of elliptical regions. Basically, the
purpose is to assure that objects with similar characteristics may be assigned and cataloged
accordingly to a predefined set of classes.

In recent years, neural networks have been used as pattern classifiers in several fields
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of application. Their massively parallel distributed architecture and their ability to learn
from experience makes them adequate for classification and function approximation problems
which are tolerant to noise but to which hard rules cannot be easily applied. These classi-
fiers often provide reduced error rates when compared to conventional statistical approaches
and are a powerful and flexible means for mapping a fixed number of inputs into a set of
discrete classes. It has been proven by several researchers [28][29] that given infinite training
data, consistent neural classifiers trained using least square error minimisation approximate
the Bayesian decision boundaries to arbitrary precision. If they are reasonably well trained,
network outputs are expected to approximate the corresponding a posteriori class probabil-
ities and can be summed to one. Estimation accuracy depends on the network’s complexity,
the amount of training data, and the degree to which training data reflect true likelihood
distributions and a priori class probabilities.

Usually, classifiers are seen as a three block system, where the first two blocks are respec-
tively responsible for creating a measures vector and a feature vector which can then be
applied in the classification phase (third block). The first two blocks have been described
in the preceding section. We will now focus our analysis on the last block. Its task is to
map an input vector x¢ € R into a symbol C (x¢) € K ] {w1,ws, ..., wn, }, which di-
vides the G-dimension Euclidean space in Ny regions, so that each region corresponds to
a class w;. Since our goal is to identify the FAS that aggregate from those who do not,
we simply have Ny = 2. For the Bayes optimum decision, a vector x¢ is assigned to class
i if P (wilxc) > P(wj|xc),Vj # 4, so the Bayes optimal boundary is the loci of all points
x¢& 0 P(wi|xg) — P(wj|xg) = 0 for a two-class problem. If we define the neural classifier
as a function IT : R — RY, where x4 are the input or feature vectors of G dimensions

and y' the target vectors of V dimensions, such that y* € T et {©!,0% ...,0"} each one
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codifying one of the Ny possible classes, then we can estimate y, such that y = II(x¢). Each

component of y can be obtained in such a way that
Nk
ji 2 1T (xc) = > _O!P(y; = ©]|xc) (64)
j=1

where IT* is the estimator that minimizes the Euclidean mean squared error, i.e, the optimum

estimator. If the ©' € T vectors are of Nydimensions and if its component 4 clearly identifies

the w; class, that is,
O £ OF,  Vicq. Nep Vkell. Ne) i} (65)
then the last term of equation 64 can be simplified and
Ji = O P(wi|xc) + ... + 07 Plwnelxc),  Vieq,..,ve} (66)

that is, the outputs are the estimates of the linear combinations of a posteriori probabilities
of the N classes.

One of the main problems one can encounter when designing a multilayer feedforward
neural network is related to the number of hidden layers to use and the number of neurons
per layer. Several thoroughly discussions can be found in [30][31][32]. In order to reduce the
probability of getting stuck in a local minimum the network was tuned using the momentum
with an adaptive learning rate algorithm from [33] with a training set composed by 841 pairs

of FAS. It was considered, for training purposes, that

i 0.9 < EASf’j,EAS(’;’l € same ellipse

0.1 < EASf’j, EAS;“’Z ¢ same ellipse

where AGPZ.’f&j’l is the a posteriori aggregation probability between EAS™ and EASH. We
assume that the application maps the classes into target vectors such that w; — 0.1 and
wy — 0.9 (0 and 1 could be used instead; however, as pointed out in [34] this should be
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avoided since sigmoids will exhibit these values only when their inputs are very large), and

therefore we have V = 1. Replacing these results in equation 66 comes
th ~ 0.1P(y; = 0.1|x¢) + 0.9P(y1 = 0.9]x¢) = 0.1P(w1|xc) + 0.9P(wa|x¢) (68)

Since the classes are mutually exclusive and since they use up all classification possibilities,

it is seen that P(w;|xc) = 1 — P(ws|x¢),and therefore we can rewrite this equation as:
i~ 0.1+ 0.8P(ws|xc) (69)

The neural network inputs xc reflect several geometrical measures of each FAS as well
as joined measures of pairs of FAS (figure 9). The input vector for each pair of EAS
(EASH, EASF!) is composed by six measures: D;’;’j’l, D:,’;’j’l, Ef;lj’l-ln (2 + ord (D;,];’j’l»a

C’ESE’qj’l, CH7 and CHt (ord (D;’;’j’l> is a function which returns the number of possible

aggregation combinations with EAS’Z{~C 7 with less D! measure than Elk ’j’l). These measures

q
are all normalized to the interval [0, 1].

Several neural networks with different architectures have been trained and tested: net-
works with one and two hidden layers, with different numbers of neurons as well as different
activation functions in the hidden layer, although all from the sigmoid type since we needed
to learn the nonlinearities in the data. The sigmoid activation function of the output layer
has been kept constant and of type logsig, so that the network outputs would be in the
interval [0; 1]. Table 3 shows the best training results obtained with different networks.

The simplest architecture was chosen, composed by 6 input, 9 hidden and 1 output neurons,
all with [ogsig type activation functions. Although, in theory, equation 49 should hold, in
practice, if we have noisy pairs of EAS then it is seen that the AGPZ.’f&j’l may exhibit values
different from the ideal ones. Therefore we say that an output n is wrong if A(n) > 0.3 and

T(n) = 0.1, or A(n) < 0.6 and T(n) = 0.9, where A is the output matrix and T the target
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matrix. The interval [0.3;0.6] is, therefore, considered to be indefinite. Table 3 shows the
results obtained with the chosen neural network (N(6,9,1) with logsig activation funtions)
as well as other tested networks. An error of 0.433% was obtained with the validation set
(231 EAS) for a network trained only with artificial EAS (this was performed to test the
neural network’s generalisation capabilities). This error became smaller by tuning the neural

network with a training set of FAS of real lime granules.

4. Aggregation of elementary arc segments using a posteriori aggregation probabilities and

geometrical decision criteria

Although the a posteriori aggregation probabilities obtained by the neural network are re-
liable, it is seen that, for highly irregular pairs of FAS incorrect values may be obtained.
To solve these problems a method based on a subset of the mentioned decision criteria and
a voting strategy for critical boundary situations (when an aggregation candidate set of
EAS exhibit conflicting AGP values among some of them) is developed. In this method,
the aggregation point and the proximity criteria are always applied to determine the pairs
of aggregation candidates. These pairs are validated using the reciprocity (this criterion is
applied using the neural networks output values) and the center position criteria. Whenever
an aggregation is performed between a pair of FAS the shared adjacency criterion is applied
to their neighbors.

Using the neural network outputs, we assume, for decision purposes, that a pair of FAS
belongs to the same elliptical region if its a posteriori aggregation probability degree is
greater than 0.5. Since we only have two classes, each EFAS should be classified in such a

way that verifies P(w;|xc) > 0.5,Vw; € K, that is, it should be assigned to the class with
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the highest a posteriori probability. Replacing this result in equation 69 comes

i — 0.1
?”W > 0.5 <= § > 0.5 (70)

For each cluster k of identified elliptical regions a matrix Ax.y (N - number of FAS in

cluster k)
Anwn [i,q] = AGPSY (71)

is constructed. It should be noted that this matrix is symmetrical with respect to its di-
agonal, since AGPféj’l = AGPq]f;j’l. From Ayyy the absolute maximum value Ayy.y [i,q]
is obtained, which represents the strongest a posteriori probability between two EFAS. For
each of identified EFAS, their relative maximum values are searched in Ay, that is, if pair
{EASf’j, EAS(’;J} has been found to have the absolute maximum AGP value in Ay y then

segments EAS;* and EAS}™" are searched, such that:

AN><N [Z, w] > 0.5
(72)

Anxnlg,y] > 0.5

where w,y € {1,2,..., N}, w # i and y # q. Whenever a new relative maximum has been
found, the described search procedure is repeated with the obtained FAS. All EAS obtained
with (72) are organised in a tree structure. The tree’s root is formed by {EASf’j, EAS;“’Z}
and the first level of nodes is composed by all EAS such that (72) is verified. Nodes are
appended to the tree only once, even when they are chosen multiple times. The second level
of tree nodes are obtained using the same procedure and by substituting ¢ or 7 in (72) by the
node’s FAS number. These trees will be used to implement an hierarchical voting scheme to
assert majority. Whenever a set of FAS are candidates for a given elliptical structure it may
occur that, due to misclassification, there exist conflicting AG P values among them. In these
cases, the aggregation will be considered with such an FAS if the majority of the candidate
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E AS exhibit correct AGP values regarding this arc segment. However, it is seen that if the
arc does not physically belong to the ellipse under analysis it will probably add several EAS,
i. e., in the case it defines a different ellipse which is constituted by several EAS, to the
tree. Therefore, the misclassified FAS could easily win majority. To avoid these situations,
majority for a node of level z is computed only with the tree’s nodes of level w < zif 2 > 1 or
w<1ifz<1,wC Z;. Each tree defines a candidate set, noted here by C'AS, of EAS for
an elliptical structure. Once a tree has been computed the aggregation algorithm is initiated.
A flowchart of the aggregation method is exhibited in figure 11. From figure 11 it can be
observed that if the number of FAS in C'AS is 2 (only one pair of candidates for aggregation
exists), then the aggregation point and the proximity criteria are applied to compute the
aggregation points. With these points the center position criterion is tested and, if the test is
positive, both FAS are aggregated and the shared adjacency criterion is applied to establish
the aggregation between their neighbors; else the aggregation decision is postponed (it may
happen that another FAS chooses one of this candidates for aggregation). However, if the
number of FAS € CAS is greater than 2, then the reciprocity criterion must be verified
for all possible pairs of FAS € C'AS. If this condition holds, then the aggregation point
and the proximity criteria are used to establish the best aggregation pair (with the smallest
D' measure between each pair). The aggregation operation is only performed if the center
position criteria is verified for the identified pair {EAS;, EAS;} € CAS, in which case the
new pair forms a new FAS. This procedure is repeated until only one FAS exists in C'AS.
Once again, if the aggregation conditions are met then the shared adjacency criterion must
be executed. However, if, at least, one FAS of the aggregation set C'AS does not fulfil the
reciprocity criterion with respect to another FAS € CAS, then the aggregation cannot be

performed without further information. To solve these situations, a voting strategy is used.
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Each FAS; € CAS votes once for each FAS, € CAS oflevel w < zif z>1orw < 1if
z < 1 whenever AGPZ.’;ﬂ < 0.5. After the voting operation all FAS which have received more
than 50% of the votes are excluded from the aggregation set. For each E'AS; with less than
50% of the votes, the proximity criterion is applied to obtain its aggregation candidate EAS,,.
If its candidate exhibits 0 votes then it is a strong aggregation candidate and, therefore, the
center position criterion should be applied to confirm the aggregation. Otherwise, if FAS,
has received at least 1 vote, then it is an unreliable candidate. In this case, its neighbors,
defined by their aggregation points (see the shared adjacency criterion), must be verified
for all the criteria and if the conditions are met, then, by applying the shared adjacency
criterion, segments £AS; and FAS, are aggregated. Note that whenever it is not possible to
assure a correct aggregation decision between a pair of FAS, the decision process is carried
out with their neighbor information. This redundancy has proven to be very robust, as noisy
data can be rejected with the voting and neighborhood analysis strategies.

Figure 12 (a) shows a cluster of elliptical regions. For simplicity, only the granule formed
by segments {4,9,10, 14,19} will be considered. The AGP values for these segments are
listed in figure 13 (a). Three misclassification values have been intentionally introduced to
test the aggregation algorithm’s performance with noise. Assume that the new absolute
maximum value has been computed for segments 4 and 9. According to the algorithm, their
relative maximum values are computed. From figure 13 (a) it is seen that the reciprocity
criterion does not hold for all segments. In consequence, we proceed with the voting system.
Segments 4 and 10 have 1 vote each, segment 19 has 2 votes and segments 9 and 14 have 0
votes, as can be derived from figure 13. The first segment of C'AS is segment 4. Since it has
less than 50% of the votes, we apply the aggregation point criterion to its contact points.

Segment 14 is chosen as a possible candidate. Since it has 0 votes, we apply the center
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position criterion and if it holds we aggregate the two FAS. The shared adjacency criterion
is executed and segments 3 and 15 are aggregated. Since the contour direction must be
preserved, the next F'AS chosen is segment 19, despite its 2 votes against. This implies that
we must check its neighbours (segments 5 and 18). Since they aggregate, segments 4 and 19
must also aggregate (shared adjacency criterion). The process is then repeated for all the
other segments of the CAS set (figure 13 (b)) and, finally, a new absolute maximum value is
computed for the remaining £ AS. A special case exists between segments 9 and 10. In this
case the shared adjacency can not be performed since the two aggregation points coincide.
In these cases the shared adjacency criterion is skipped. The whole process is repeated for
all EAS in the cluster. Figure 12 (b) shows the results.

The described algorithm was able to correct several noisy informations introduced in the
neural network output during the test procedures. On the other hand, it is seen that the
output information obtained with the neural network is highly reliable. This is partially
verified by the small errors obtained during its learning stage with respect to the learning

set as well as to the validation set.

5. Discussion and results

In this section several results obtained with the described method will be shown and its
robustness discussed.

The algorithm employs several threshold values which, however, are not critical to its
successful behaviour. In our implementation most of these values are taken constant. For
contact point computation two threshold values are applied (7" and A). In figure 14 the
variation effects of these parameters are illustrated. As can be observed the number of

identified contact points changes smoothly with 7" and A. The aggregation method will only
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breakdown if physical contact points are missed by the identification procedure, i. e., the scale
parameters are taken to high, as shown in figure 14 (e). In these cases, several EFAS may be
identified as one, being the algorithm unable to split them, since it operates only with FAS
aggregation. When the scale parameters are taken too low, several physical non-existent
contact points will be identified as in figure 14 (a). The aggregation algorithm is able to
solve these situations, since the analysis departures from F AS properties. Therefore, if these
E AS exhibit appropriate feature measures they will be correctly classified and aggregated by
the method. As will be shown, even when feature values lead to incorrect classification, the
aggregation method solves these situations in most cases using the redundancy in data. The
main disadvantage of detecting non significant contact points is the increased computational
load. In figure 14 (c), 14 (f) and 14 (i) the aggregation results of the identified EAS in figure
14 (a), 14 (d) and 14 (g) are shown. As expected, in figure 14 (i), not all physically existent
granules have been obtained, since, as can be observed in figure 14 (h), due to incorrect
scale definition some contact points have been missed. These situations may, however, be
partially avoided if a scale-space approach is used for contact point determination.

With regard to threshold T}, it is observed from (29) that it only serves as an early stop
condition for the iterative center estimation method, that is, if the FAS is sufficiently circular
then the intended precision for center estimation may be obtained in a few iterations. For
less circular arcs, usually the maximum iteration condition serves as stop condition. The
obtained precision is not critical, since the identified centers are further treated with the
enumerated geometrical correction principals (see section IL.).

Threshold € is always taken as e = 100, since if convergence is not obtained after 100
iterations then it is seen that the arc segment is highly irregular and, therefore, it probably

requires several hundreds of iterations for its center to converge (not necessarily to a correct
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value). However, since further correction steps are taken, we stop the estimation process
after € iterations.

For center estimation correction another threshold (¢) is applied. This threshold controls
maximum and minimum values of the radius. In our implementation, 6 = 0.1 and all results
shown in this paper where obtained with this value.

The described aggregation method uses extensively data redundancy to recover from clas-
sification failure situations. This data redundancy is expressed in the shared adjacency
criterion. Namely, whenever a given E'AS exhibits less than 50% of rejection votes from
its CAS members, the shared adjacency criterion is applied to establish the aggregation
decision. This mechanism only fails when there are insufficient number of votes for a given
EAS (this condition may be relaxed and be performed for any number of votes) or when the
adjacent EAS used with the criterion exhibit noisy feature values that prevent their aggrega-
tion. Both situations are unlikely to happen simultaneously given the good responses of the
neural network and the center estimation method. Potential failures are mainly due to large
biased center identification, which usually may occur for very small or for very linear EAS.
Even in these situations, biases are largely reduced by the correction method’s property 3.
As for the voting mechanism, it is seen that when more than 50% of votes are obtained there
is still a significant chance of aggregation between these FAS if they are rejected due to
misclassification. This occurs if their adjacent FAS are analysed before them (note that an
aggregation establishes a physical connection).

In figure 15 the robustness of the neural network is tested by varying the D! and D?
measures (and indirectly the £, CES and C}) for pair {EAS;, EASs} of figure 12 (a). D?
has been varied by shifting £ AS;’s center. For this pair of EAS the normalised measures

are D; = 0.068 and Dy = 0.055. Possible Dy values for centers of FAS; (such that the

37



center position is physically plausible) are Dy € [0;0.188] and Dy € [0;0.274], respectively
for centers positioned above and under FASs’s center. As can be observed from figure 15
both intervals are slightly above the correct classification ranges. This means that the neural
network would output correct classification results even under misidentified centers for £'ASy
as long they are physically plausible (included inside the granule). In this particular case,
improper classification would be achieved when FAS; radius (R) approximates 0 (Dy >
0.148) or for large values of R (D2 > 0.18), i. e., R is almost outside the granule. This
behaviour is obtained, since noisy data sets have been included in the neural network’s
training database. All feature values are explicitly shown to the network to enable it to
learn a noise tolerant behaviour.

Typical results obtained with the outlined method are shown in figures 16 to 19. Note

that in these results several non physical contact points have been detected.

1v. CONCLUSIONS

A new and robust algorithm for highly irregular elliptical object localization in multi-
connected regions, applied to a lime granule inspection system, is presented in this paper.
The method first identifies all clusters of granules in the image. For this propose a new
inclusion method based on the Green’s theorem is described. For each cluster, the algorithm
decomposes all regions into a set of £ AS and several measures are extracted from each FAS.
Since some of these measures are ellipse related measures, an extension to Landau’s method
is described for center estimation, and Fitzgibbon’s direct ellipse estimation technique is
reformulated to avoid inversion problems of the scatter matrix. An ordered set of EAS for
each elliptical region is then constructed upon a posteriori probabilities, which are computed

by a neural network and a search path method based on geometrical properties analysis. All
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critical situations (where classification results alone may lead to contradictions) are solved
with the aid of a voting method and a neighborhood analysis scheme to confirm aggregation.
This system has proven to be very reliable. Namely, it was able to correct several noisy
informations introduced in the neural network output during the test procedure. Given the
noise rejection ability of the path search method and the reduced errors obtained by the
neural network, this method exhibits a robust behavior in lime granule localization. Other
advantages come from the use of a neural network to solve the problem. It is well known
that its generalization capabilities allow us to deal with noisy data situations, as it was the
case when, for test purposes, a neural network, trained only with artificial EAS, was tested
with real FAS.

The method employs several threshold values. However, it is seen that only two of these
values - T and A, which code indirectly the curves’ scale for contact point estimation-
influence the algorithm’s performance, since all the other threshold values are constant in
the system’s implementation. Further, 7' and A may be avoided by using a scale-space
approach for contact point detection.

Appendix

Proof 1:

In this section, we derive (7), the direction invariant discrete Green theorem implementa-
tion.

Proof. Given the Green’s theorem
ON oM
Md Ndy| = — — —— | dzd 73
f, e + N //R{ax ay]” (73)
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where

= - closed, piecewise smooth and counterclockwise plane curve
R - region bounded by =

M, N - continuous functions with continuous first order derivatives in R

it can be shown that, for a clockwise closed curve, the Green’s theorem may be rewritten as

]i [Mdr + Ndy] = / / {a—N - —] dady (74)

where

— . . .

= - closed, piecewise smooth and clockwise plane curve
leading to

jé_ [Mdz + Ndy) = - jé_ (Mdz + Ndy] (75)

Tang [13] has shown that

§ (s Ny = 3 B2 (5.9) Dy (520) + £ (59) Cy 5:.9)] (70
where
f (117, y) aa—];f - aa—]yw

xy)sz(i,y)
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L - counterclockwise discrete contour path of R

Combining equation 75 and 76, it is verified that

= [Mdz + Ndyl = =3, [Fr (2,y) Dy (2,9) + [ (2,9) Cy (v, y)] =

(77)
=Y [Fa(z,y) D, (z,y) + f (x,y) C, (z,y)]
L' - clockwise discrete contour path of R
and therefore
Pr="0, (78)
C, = —C’;

This result is expressed in equation 7.

]

Proof 2:

In this section we will prove equation 12 for counterclockwise traced contours. For clock-
wise traced contours the prove is similar.

Proof.

Property 1: If Cont is a closed contour (Y ,_; h, (di) = 0), then it is verified that for all
points p; € Cont, that do not correspond to local extreme points, that is, hy (d;—1) by (d;) >
0, there exists at least one pp € Cont, k + 1 # 7, such that Zf:j hy (d,) = 0. That is, there
exists at least one point py1; € Cont with the same horizontal displacement as point p;. It
can be shown that under these conditions the following equality holds h, (d;) + h, (dx) = 0.

For counterclockwise traced curves it is verified that the enclosed region’s area may be

computed using the Green’s theorem (equation 73) by taking M = —y and N = 0, that is

Area = // drdy = — 7{ ydx > 0 (79)
R =
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which, for our coordinate system (inverted y axes), has to be rewritten to

Area = — // dxdy = 7{ ydx > 0 (80)
R =
For discrete curves dx = h, (d), therefore equation 80 is approximated by
]{ydm ~ > yihe (d;) (81)
= i=1

Integrating equation 81 along a slice of width h, (d;) at point p; (see figure 20) it is seen that

(note that for vertical point transitions h, () = 0):
Area = yihy (di) + Y yihe (d;) >0 (82)
Rewriting equation 82 with y; = y; + Zi: hy (dy) we get

ho () yi + 3 B (dj)

JjES

Yi + JZ_: h, (dk)] >0 (83)

Grouping the terms with common y; equation 84 is obtained.
j-1
Yi [hx (di) + >l (dj)] > = hy(d)) [Z h, (dk)] (84)
jes jes k=i

From property 1, it is seen that for closed contours, under constraint of equation 14:

he (di) + Y he (d;) =0 (85)

JjeS

Hence, combining equations 84 and 85 we finally get:

> by (dy) []i hy (dk)] >0 (86)

JjeS

Proof 3:

In this section function ¥ (x;,y;, d;, d;_1) is derived.
Proof.

Closed contours exhibit the following properties:
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1. For counterclockwise traced contours it is seen that for all points with code directions
d; € {0,1,7} (hy (d;) = 1) the bounded region is found to be in the decreasing y
direction to the point and it is found to lie in the increasing y direction if d; €
{3,4,5} (h, (d;) = —1). Proof. we have already shown that for counterclockwise

traced contours (see proof 2)

) | @] >0 (87)
) [ 0]

Substituting Zf;zl hy (dy) = y; — y; it is seen that

D s he (@) [y —yi] >0 (88)

Without loss of generality, let us consider that there exists only one point p; € S
(for more points it can be proven by grouping pairs of points in set S). In this

case equation 88 resumes to
ha (dj) [y; — vi] > 0 (89)

From equation 85, it is seen that

Therefore, combining equations 89 and 90, 91 is obtained:
hy (d;) = -1 <= y; >y

hy (di)) =1<=y; <y

2 For clockwise traced contours all points with code directions d; € {0,1,7} (h, (d;) = 1)
the bounded region is in the increasing y direction to the point and it is found to lie
in the decreasing y direction if d; € {3,4,5} (h, (d;) = —1). This can be proven in a
similar way as was done above, taking h, (d;) [y; — vi] <0.
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Combining these result with definition 1, it is verified that, if a point p; = (7;,vy;) €
Cont is taken such that (z;,y; — 1), (x;,y; + 1) ¢ Cont then, from property 1, for external
contours traced in counterclockwise direction, it is verified that points (z,y — 1) ¢ Object,
(z,y+1) € Object if d; € {3,4,5} and that points (z,y + 1) ¢ Object, (x,y — 1) € Object
if d; € {0,1,7}. However, if the contour was traced in the inverse direction then, for external
contours, (z,y — 1) € Object, (z,y+ 1) ¢ Object if d; € {3,4,5} and (z,y + 1) € Object,
(z,y — 1) & Object if d; € {0,1,7}. Therefore, it is seen that W (z;,y;, d;, d;—1) = +1. For
internal contours, equation 16 can be proven using the same strategy. m

Proof 4:

In this section, (30) is derived.

Proof. Let the ellipse be described by its polar equation (for simplicity no translation

and rotation effects are considered):

x = nBcos (a) .
a€|0,2r],neR (92)

y = Bsin (@)

From figure 3 it is seen that # = 3 — «. Since PZ1OP it is verified that

1

tan (y) = “tan (@) (93)

and from equation 92

dy 1
t = =—=——"— 94
an () dx ntan (o) (94)
Therefore,
-1

tan (9) = (1= D tan (@) (95)

~ ptan?(a) + 1

s

2]. The maximum value of

Without lost of generality let us analyse equation 95 for o € [0,
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tan (#) will occur when:

dtan(f)

=0

1

d? tan(6) = —

) >0 == 7 (96)
¥ = tan ()

Substituting 96 in 95 it is seen that
-1
tan (0) = ——— (97)

From 97 it is seen that function tan (f) is monotonously increasing, therefore 6 will be

maximum when tan (#) reaches its maximum value, that is:

Omax = tan ' ("2—\_/;> (98)
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Figure legends

Figure 1: a) Example of several agglomerates which are included inside other agglomerates

of regions; b) Inclusion tree of the contours in (a) and its splitting indication.
Figure 2: a) Contact points determination; b) Initial centre estimation.
Figure 3: Computing angle 6.
Figure 4: Center correction procedure.

Figure 5: Center and radius identification results obtained by (a) Landau’s method and
(b) by Landau’s method with correction steps. Contact points are marked with x on the

contours.
Figure 6 : Estimated centers and ellipses by the proposed method.

Figure 7: Comparison of centre identification results (rectangles - the described method;
triangles - Wu’s method; circles with horizontal lines - Fitzgibbon’s method; filled circles -

contact points; dashed lines - identified ellipses by the described method)

Figure 8: Condition numbers of S for each segment in figure 7. a) Proposed method; b)

direct estimation.
Figure 9: Neural network general scheme.
Figure 10: Training results of the neural network.

Figure 11 Aggregation algorithm’s flowchart.
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Figure 12: a) Arc segment representation; b) Reconstructed image.

Figure 13: a) Aggregation matrix; b) C'AS tree..

Figure 14: Variation effects of 7" and A. Contact points are represented by circles. Left:
a)T =2 A=4;d) T €[3,5, A c[4,12];g) T =6, A =4. Center: center identification
using contact points in a), d) and g), respectively. Right: Aggregation results from b), e)

and h).

Figure 15: AGP; 3 results by varying EAS;’s center position (D?) and localisation (D).
a) When FAS;’s center is above FAS3’s center; b) When EFAS;’s center is below FAS3’s

center.

Figure 16: a) Identified centers and contact points; b) Aggregation results;

Figure 17: a) Identified centers and contact points; b) Aggregation results;

Figure 18: a) Identified centers and contact points; b) Aggregation results;

Figure 19: a) Identified centers and contact points; b) Aggregation results;

Figure 20: Integrating along a slice h, () .
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Contour Direction | dy,dy | Ao
Clockwise 0,1,7| 1
Clockwise 3,4,5 | —1

Counterclockwise | 0,1,7 | —1
Counterclockwise | 3,4,5 | 1

Table 1: Definition of function A, (dy, ds).

0

1

2

3

—cos (1)

sin (1) — cos (1))

sin (1)

sin(1) + cos (1)

Table 2: Definition of function d () (v =Z pip; + 3).
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Figure 1: a) Example of several agglomerates which are included inside other agglomerates

of regions; b) Inclusion tree of the contours in (a) and its splitting indication.
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Figure 2: a) Contact points determination; b) Initial centre estimation.
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Figure 3: Computing angle 6.
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Figure 4: Center correction procedure.
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Figure 5: Center and radius identification results obtained by (a) Landau’s method and
(b) by Landau’s method with correction steps. Contact points are marked with x on the

contours.
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Figure 6: Estimated centers and ellipses by the proposed method.
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Figure 7: Comparison of centre identification results (rectangles - the described method;
triangles - Wu’s method; circles with horizontal lines - Fitzgibbon’s method; filled circles -

contact points; dashed lines - identified ellipses by the described method)
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Figure 8: Condition numbers of S for each segment in figure 7. a) Proposed method; b)

direct estimation.
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(a) (b)

Figure 12: a) Arc segment representation; b) Reconstructed image.
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Figure 13: a) Aggregation matrix; b) CAS tree.
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(9) (h)

Figure 14: Variation effects of 7" and A. Contact points are represented by circles. Left: a)
T=2 A=4;d) T €[35],Aec[4,12];g) T =6, A = 4. Center: center identification using

contact points in a), d) and g), respectively. Right: Aggregation results from b), e) and h).
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Figure 15: AGP, 3 results by varying FAS;’s center position (D?) and localisation (D).
a) When EAS;’s center is above FAS3’s center; b) When EAS;’s center is below FASs’s

center.
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(a) (b)

Figure 16: a) Identified centers and contact points; b) Aggregation results.
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Figure 17: a) Identified centers and contact points; b) Aggregation results.
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(a) (b)

Figure 18: a) Identified centers and contact points; b) Aggregation results.
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Figure 19: a) Identified centers and contact points; b) Aggregation results.
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Figure 20: Integrating along a slice h, () .
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Training Set Validation Set
(841 samples) (231 samples)
Misclassif. | # Classif. | Misclassif. | # Classif.
Percentage | Errors Percentage | Errors
logsig/logsig
N(6,5,1) 0.000% 0 0.433% |
N(6,9,1) 0.000% 0 0.000% 0
N(6,12,1) 0.000% 0 0.433% |
N(6,15,1) 0.000% 0 0.433% |
logsig/logsig/logsig
N(6,6,3,1) 0.000% 0 0.433% 1
N(6,8,4,1) 0.000% 0 0.000% 0
N(6,12,6,1) 0.000% 0 0.433% |
tansig/logsig
N(6,5,1) 0.238% p 0.000% 0
N(6,9,1) 8.790% 74 10.400% 24
N(6,12,1) 0.000% 0 0.000% 0
N(6,15,1) 8.790% 74 10.400% 24
tansig/tansig/logsig
N(6,6,3,1) 0.120% 1 0.433% 1
N(6,8,4,1) 8.790% 74 10.400% 24
N(6,12,6,1) 0.000% 0 0.000% 0

Table 3: Best neural network classification performance.
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