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ABSTRACT
Ill-conditioned or singular data modeling problems are
commonly observed in image processing. To solve these
problems some constraints, such as smoothness and bound-
ary conditions have to be formulated. Further, the optimal
structure of the model is not always self-evident. There are
several criteria that can be applied for ”optimal” regulariza-
tion gain or model selection. However, these measures (i)
are not for problems with linear constraints and, further (ii)
are usually not simultaneously suitable for model and reg-
ularization gain selection. In this paper the Bayes Informa-
tion Criterion is extended for Tikhonov problems with lin-
ear constraints. Using this measure, a new radiometric im-
age correction method is introduced. All known radiomet-
ric correction algorithms assume that radiometric distor-
tions remain stable over time. Our algorithm enables image
correction under time varying distortions. The method de-
composes radiometric image distortions into multiplicative
and additive errors, whose optimal models are computed
with the extended Bayes Information Criterion (BICIC).
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1 Introduction

Ill-posed or singular linear problems are commonly ob-
served in many image processing and computer vision sit-
uations, where (i) few linear independent data exist for the
estimation problem and (ii) the observed data are the re-
sult of an integration process such as convolution. This
type of problems arise in several contexts, such as in cam-
era calibration [1], reflectance estimation [1], and image
restoration [2], just to name a few. To solve these problems
some additional information is necessary. In most cases,
the solution is required to exhibit some set of characteris-
tics, being the most common the smoothness of some func-
tion, curve or surface build upon it. If smoothness is en-
coded with a quadratic penalty involving derivatives such
as γ

R ¡
f (w) (x)

¢2
dx (f(w) (x) is the model’s wth order

derivative and γ is the regularization gain), then the method
is commonly referred to as Tikhonov regularization. Other
type of constraints are due to physical properties, such as
boundary conditions, shape, etc., usually described with

linear inequalities. In some other data modeling problems
enough linear independent data exist, but the underlying
physical process is not well understood. In these cases sev-
eral models must be fit to the data and the best model has
to be selected from these competing models. This problem
arises in many computer vision situations, such as in lens
calibration [3], selection of deformation models to describe
deviations from CAD specifications in inspection tasks and
surface reconstruction for 3D modelling (see [4] and ref-
erences therein). If proper model and regularization gain
are known a priori, then such data modeling problems are
readably solvable. However, in most practical situations,
this knowledge is unavailable. Hence, some criterion is re-
quired to select those parameters. There are several crite-
ria based on the bias-variance/complexity trade-off princi-
ple (BIC [5], AIC [6], GCV [6], etc.), for regularization
gain or model selection. However, these measures (i) are
not for problems with linear constraints and, further (ii)
are usually not suitable for both selection operations. In
section 2 the Bayes Information Criteria, originally intro-
duced by Schwartz [5] and later extended by Neath and
Cavanaugh [7] for model selection in well-defined regres-
sion problems, is extended in this context and applied to
radiometric image correction.

Radiometric image distortions are due to multiplica-
tive errors, induced by variations in amplification gain and
by the sensor’s photo response nonuniformities (PRNU),
and due to additive errors, which are mainly caused by
blackcurrent, by internal luminance and fat zero. The later
are very prone to temperature variations. For instance, for
solid-state sensors it is usually observed that blackcurrent
approximately doubles for every 8oC. On the other hand,
gain variations have been reported, even when automatic
gain is turned off [8]. Hence, in real world applications
these time varying distortions should be corrected. Areas
where this premise is important are color vision [1], 3D vi-
sion [9] and image restoration applications [2], just to name
a few. There are several approaches to radiometric image
correction. Healey and Kondepudy [10] have identified the
main noise sources, which occur in the image formation
process, and have described an algorithm for radiometric
distortion assuming static noise characteristics. In practice,
as will be shown, this behavior is only verified under very
restricted conditions. Other methods have been proposed



for radiometric image correction, which rely on the same
premises. Kamberova and Bajcsy [9] identify linear image
transformations such that for an uniform surface, all pixels
in the corrected image exhibit equal values.

In section 3, a new method for radiometric image dis-
tortion correction, that does not rely on the static behavior
of noise characteristics, is presented. The proposed method
operates in two stages (see figure 1). (i) During a calibra-
tion phase, distortion models for multiplicative and addi-
tive errors are identified. (ii) These models are then applied
to correct each acquired image. Time varying multiplica-
tive image distortions are captured from a controlled image
region. Since these gain variations are global to the im-
age, its correction is straightforward. To capture variations
in additive errors a different approach has to be applied,
since these changes are a property of each pixel. Addi-
tive error can readably be computed for controlled image
regions, i.e., regions where the sensor’s cells light stimu-
lus is kept constant over time. From these controlled sen-
sor cells, variation in additive error can be identified and
used as input to the calibrated error models which relate
these variations to those observed in each cell of the sen-
sor. For most visual inspection applications, this can be
achieved with reference surfaces, since usually in these sit-
uations controlled artificial light is applied. For general
computer vision situations, constant light stimulus can be
achieved by avoiding light exposure of these sensor cells,
for instance using a neutral density filter or by covering that
section of the sensor. If this approach is applied, gain com-
pensation is no longer feasible. However, good correction
results can still be obtained with this strategy, if automatic
gain is turned off.

2 Model and regularization gain selection
with BICIC

Let us assume the general formulation of a Tikhonov regu-
larization problem using a regularized empirical risk func-
tional subject to linear inequality constraints, as in (1) and
in (2).

min
x

½
1

2m
kAx− yk2 + γ

2
kDxk2

¾
, γ ∈ R+ (1)

Ξ ≡ {Cix ≤ di : i = 1, ..., k} (2)

Suppose n defines the order of the linear model to be iden-
tified from the known data Y ≡ {(zi, yi) , i = 1, ...,m},
and γ controls the trade-off between the data fidelity
kAx− yk2 and the smoothness kDxk2 of the model. Fur-
ther, let us assume A ∈ Rm×n, x ∈ Rn, y ∈ Rm,
D ∈ Rl×n, l ≥ n, n ≥ rank (D), where Dx is a dis-
crete approximation to f (w) (x), and C ∈ Rk×n. Given a
set of parameters (γ, n) and constraintsΞ, the optimal solu-
tion can be obtained using active set algorithms (see [11]).
However, in most situations, this a priori knowledge is un-
available. In practice it is seen that if n is too small, then
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Figure 1. Overview of the radiometric correction method.

underfitting may occur, while if n is too large, then usu-
ally overfitting is observed. On the other hand, if γ → 0
then, for ill-posed problems the estimated model tends to
exhibit high frequency oscillation and, therefore, it cannot
be applied for interpolation. If γ →∞, then a line is iden-
tified, ifDx is a discrete approximation to f (2) (x). Hence,
estimating the optimal values for γ, n and Ξ is critical.

In this section the Bayes Information Criteria is ex-
tended for the selection of γ, n and Ξ in problem of (1) and
(2). A similar strategy as applied in [7] for the ordinary
BIC is followed. Since the quadratic penalty in (1) can be
seen as a quadratic constraint, for notation simplicity, all
constraints are defined by Σ ≡ (Ξ, γ). Let P (Y |x, n,Σ)
the likelihood for Y based on x, n and Σ. Furthermore,
let P (n|Σ), P (Σ), P (x|n,Σ) be prior distributions, re-
spectively, for the model of dimension n, given Σ, for
the constraints, and for the model’s parameterization vec-
tor, given n and Σ. The joint a posteriori distribution for
x, n and Σ given the observed data Y can be obtained
with the Bayes rule by (3), where the marginal distribution
h (Y ) ≡Pn

R R
P (Y, x, n,Σ) dxdΣ.

f (x, n,Σ|Y ) = P (n|Σ)P (Σ)P (Y |x, n,Σ)P (x|n,Σ)
h (Y )

(3)
Using this result, to select proper model order n

and constraints Σ, one expects the a posteriori distribution
f (n,Σ|Y ) to be maximized, or equivalently

min
n,Σ

½
−2 ln

µZ
f (x,n,Σ|Y ) dx

¶¾
(4)

In order to solve the integral in equation (4),
P (Y |x, n,Σ)P (x|n,Σ) has to be determined. LetbCx = bd, bC ∈ Rp×n, rank

³ bC´ = p < n (note that
if p = n the solution is uniquely obtained from the
constraints), be the active set of constraints, i.e. constraints
verified with equality, at the solution of (1) and (2)
computed for a particular set of parameters (Σ, n). If these
constraints are known, then the solution is easily computed
from the following theorem.



Theorem 1: Let B ∈ Rt×n, t ≥ n, G ∈ Rp×n,
p = rank {G}, and rank

n¡
BT , GT

¢To
= n. The best

approximate solution to the equality constrained problem
in (5) is (6),

min
x

n
kBx− ek2

o
subject to Gx = h (5)

x = Z−1
¡
wT1 , w

T
2

¢T (6)

where w1 = D−1G V Th ∈ Rp, w2 =
¡
0,D−1B2 , 0

¢
UT e ∈

Rn−p, and B = U
¡
DTB, 0

¢T
Z and G = V (DG, 0)Z are

the generalized singular value decompositions of matrixes
B and G,

DB =

µ
DB1 0
0 DB2

¶
DB1 = diag (α1, ...,αp), DB2 = diag (αp+1, ...,αn),
DG = diag

¡
β1, ...,βp

¢
, U ∈ Rt×t and V ∈ Rp×p are

unitary orthogonal matrixes, and Z ∈ Rn×n is a matrix of
rank n. Further, it is observed that w2 can be computed
from

min
w2

n
kHw2 − eek2o (7)

where H = U
¡
0,DTB2 , 0

¢T ∈ Rt×(n−p) and ee ≡ e −
U
³¡
DB1D

−1
G V Th

¢T
, 0
´T
. (Partial proof of equation (6)

is given in [11]. As for equation (7), it is obtained by sub-
stituting w1 in (5) and performing some simple algebraic
manipulations.)

Using theorem 1, it follows that (1) is equivalent
to minw2 1

2m kHw2 − eek2 , with BT ≡ ¡
AT ,

√
γmDT

¢
,

eT ≡ ¡yT , 0¢, G ≡ bC, h ≡ bd. Substituting this result into
(4) and eliminating constant terms hilts

BICIC (n,Σ) = −2 lnP (n|Σ)− 2 lnP (Σ) (8)

−2 ln
Z
P (Y |w2, n,Σ)P (w2|n,Σ) dw2

To compute the integral in (8), a second order Taylor ap-
proximation of P (Y |w2, n,Σ)P (w2|n,Σ) can be used.
Let bw2 be the maximum likelihood estimate vector of bw2
obtained frommaxw2 {P (Y |w2, n,Σ)P (w2|n,Σ)}, then
lnP (Y |w2, n,Σ)P (w2|n,Σ) can be approximated for a
region near bw2 as in (9), where F (w2) is the Hessian ma-
trix defined in (10).

lnP (Y |w2, n,Σ)P (w2|n,Σ) ≈
lnP (Y | bw2, n,Σ)P ( bw2|n,Σ)− (w2− bw2)TF ( bw2)(w2− bw2)

2
(9)

F (w2) ≡ −∂
2 lnP (Y |w2, n,Σ)P (w2|n,Σ)

∂w2∂wT2
(10)

From (9) it follows that

P (Y |w2, n,Σ)P (w2|n,Σ) ≈
P (Y | bw2, n,Σ)P ( bw2|n,Σ) exp³− (w2− bw2)TF ( bw2)(w2− bw2)

2

´
(11)

Hence, it is observed thatZ
P (Y |w2, n,Σ)P (w2|n,Σ) dw2 (12)

≈ P (Y | bw2, n,Σ)P ( bw2|n,Σ) (2π)n−p2 |F (bw2)|− 1
2

Combining (12) with (8), the BICIC criterion can be de-
scribed by

BICIC (n,Σ) = −2 lnP (n|Σ)− 2 lnP (Σ) (13)
−2 lnP (Y | bw2, n,Σ)P ( bw2|n,Σ)
− (n− p) ln 2π + ln |F ( bw2)|

Note that due the non parametric nature of the problem
(7) implies (14) (see [12]), which leads to F ( bw2) =
m−1HTH.

P (Y |w2, n,Σ)P (w2|n,Σ)
∝ exp

n
− 1
2m

³
kHw2 − eek2´o (14)

Hence, plugging (14) and F ( bw2) into (13), (15) follows.

BICIC (n,Σ) = −2 lnP (n|Σ)− 2 lnP (Σ)
− (n− p) ln 2πm+ 1

m kH bw2 − eek2 + ln ¯̄HTH
¯̄
(15)

3 Radiometric distortion correction

LetD (u, t, T ) be the linearized camera output for point of
coordinates u ∈ N2 at instant t and temperature T , then

D (u, t, T ) = D (u, t, T ) +N (u, t, T ) (16)

where N (u, t, T ) is a random variable of mean zero and
variance σ2N (u, t, T ) induced by shot, read and quantiza-
tion noise and

D (u, t, T ) = A (t)SR (u) I (u, t)+A(t)O (u, T )+NF (u)
(17)

O (u, T ) ≡ ND (u, T ) +NFZ (u) +NIL (u, T )
In (17)A (t), SR (u),ND (u, T ),NFZ (u),NIL (u, T ) and
NF (u) represent, respectively, the channel’s gain, the fixed
pattern noise or photo response non uniformities (PRNU)
in charge collection, the dark current charge, fat zero, in-
ternal luminance and the offset introduced by the camera’s
transfer function and the digitizer for pixel u. I (u, t) is
defined as

R λn
λ0
I (λ, u, t)S (λ) dλ, where I (λ, u, t) is the

SPD (spectral power distribution) of the input radiation at
point u and instant t and S(λ) is the spectral sensitivity of
the image sensor. For cameras with almost linear transfer
functions (most common in scientific and industrial appli-
cations), it can be shown thatNF (u) is approximately con-
stant, since it mainly describes the offset introduced by the
digitizer.

In figure 2 several line statistics of dark images (im-
ages taken with the lens cap on) obtained under different
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Figure 2. Intensity variation of dark images obtained with a
Sofretec CF 820 camera for distinct environment temperatures
T ∈ [6, 20]◦C. (a) Average intensity for odd lines. (b) Variation
of∆N for a sequence of 25 images taken with T ∈ [6, 20]◦C.

environment temperatures with a Sofretec CF 820 CCD
camera are shown. As can be observed, an environ-
ment temperature change of 14◦C induces a variation in
O (u, T ) over 300% for this camera.

To perform radiometric image correction, for each
image the multiplicative errors SR(u) and A(t), and the
additive errorA(t)O (u, T ) +NF (u) have to be estimated.
Let A(t0) be the channel’s gain for a reference image
D (u, t0, T0). Instead of computing the absolute values
for the camera’s gain and offset error, in this correc-
tion approach, relative values β (t, t0) = A(t)/A(t0) and
∆D (u, t) = A(t0) {O (u, T )−O (u, T0)} are identified.

Let us assume that each image is composed by three
different regions Si, i = 1, .., 3, such that S1 and S2
form a chess pattern as shown in figure 1. Further, let
us assume that for the first two regions S1 and S2, no
changes in I (λ, u, t) occur, i. e., the illumination IE (λ)
and the reflectance characteristics R (λ, u, t), (u, v) ∈
{S1, S2} , of the imaged surfaces are kept constant over
time. The image data in regions S1 and S2 enable the
estimation of ∆D (u, t) and β (t, t0). Let D (Si, t, T ) ≡
(s (t) kSik)−1

P
u∈Si

P
tw∈s(t)D (u, tw, Tw) be the av-

erage image intensity in region Si, where s (t) and kSik
are respectively the number of images taken and the num-
ber of pixels in region Si. Evaluating the difference be-
tween mean intensities in regions S1 and S2, it is seen that
(CLI (u) Ii ≡ I (u, t), u ∈ Si, i = 1, 2, CLI (u) ∈ [0, 1]
accounts for geometric power distribution of (i) the light
source, (ii) the reflection and (iii) the lens attenuation),

Z (S1, S2, t, T ) ≡ D (S2, t, T )−D (S1, t, T ) =
A(t)

s(t)kSik
©
I2
P
u∈S2CLI (u)SR (u)

− I1
P
u∈S1CLI (u)SR (u)

ª
+∆N (S2, S1)

(18)

In practice, given that both regions S1 and S2 share the
same columns and lines of the image (due to the chess pat-
tern), it is observed that ∆N (S2, S1) → 0, as can be seen
in figure 2 (c). Hence, as long as I1 ¿ I2, it follows that
(18) enables the estimation of the relative gain variation

β (t, t0):

β (t, t0) ≡ Z (S1, S2, t0, T0)

Z (S1, S2, t, T )
(19)

If kS1k = kS2k and s (t0) is taken large enough such
that the uncertainty in (19) is mainly conditioned by the
data at instant t, it can be shown that the expected value
for β (t, t0) and its uncertainty can be computed as in
(20) and (21), where σ2Si (t) ≡ (s (t) kSik)−1

P
u∈SiP

tw∈s(t) σ
2
N (u, tw, Tw) is the average noise variance in

region Si.

E [β (t, t0)] ' A (t)−1A (t0) (20)

V [β (t, t0)]'
¡
σ2S1 (t) + σ

2
S2
(t)
¢
E [Z (S1, S2, t, T )]

2

s (t) kS1kE [Z (S1, S2, t, T )]4
(21)

On the other hand, the change in the offset for region S1 can
be computed from∆D (S1, t) = β (t, t0)−1D (S1, t, T )−
D (S1, t0, T0), which leads to

E [∆D (S1, t)] ' A(t0) {O (S1, T )−O (S1, T0)} (22)

V [∆D (S1, t)] ' σ2Si (t)E [β (t, t0)]
2+ (23)

V [β (t, t0)]E [D ((S1, t, T ))]
2

From (21) and (23) it is concluded that, in order to
minimize the uncertainty of these estimates, the refer-
ence surfaces should be chosen such that their reflectance
R (λ, u, t)→ 0, u ∈ S1, and R (λ, u, t) → 1, u ∈ S2, i.e.,
a black and a white reference surface, respectively. Taking
a similar approach for the image in region S3, it follows
that ∆D (u, t) = β (t, t0)

−1
D (u, t, T ) − D (u, t0, T0).

Hence,

E [∆D (u, t)] ' A (t0)SR (u) I (u, t) (24)
+A (t0) (O (u, T )−O (u, T0))

Note that (24) implies that I (u, t0) = 0, u ∈ S3, i. e., the
reference image for region S3 is taken without light expo-
sure of the sensor. On the other hand, to be able to compute
the change in gain β (t, t0) using (20), it is imperative that
I (u, t0) 6= 0, u ∈ {S1, S2}. This can be accomplished if
the reference imageD (u, t0, T0) is obtained from two dis-
tinct images with the same sensor temperature. From the
first image, acquired with the sensor exposed to light, the
data for D (u, t0, T0), u ∈ {S1, S2}, are taken, while from
the second image, captured with the lens cap one, pixels
D (u, t0, T0) for region S3 are estimated. To avoid distinct
gains A (t) for the two images, these should be computed
from an average of a large sequence of images acquired
with automatic gain disabled. Equations (22) and (24) are
the basis of the correction method. Namely, if the mappings
w = fu (∆D (S1, t)) , w ≡ A (t0) (O (u, T )−O (u, T0)),
are known, then an image without bias can be obtained



from ∆D (u, t)− fu (∆D (S1, t)), u ∈ S3. Since the ex-
act physical laws which describe these mappings are un-
known, a generic formulation is applied to identify fu,
i.e., fu (∆D (S1, t)) =

Pn
i=0 xiXi (∆D (S1, t)), n ∈ N,

xi ∈ R, where Xi can be any basis function. There are
some a priori knowledge that can be integrated into the
estimation process to reduce the model’s complexity: (i)
it is seen that fu is monotonous increasing, although not
linear, and (ii) fu should be smooth (see figure 2). The
monotonous behavior is mainly due to blackcurrent. This
charge follows a Boltzmann distribution, hence increases
with temperature. Nonlinearity, is due to blackcurrent and
due to internal illuminance generated charge. Smooth-
ness can be imposed with a penalty term in the criterion
as in (1). However, for this particular problem it is ob-
served that the number of parameters to be estimated is
usually much lower than the number of available data, i. e.,
n ¿ m. Hence, to avoid the computational overhead im-
posed by the search for proper regularization gain, smooth-
ness is promoted by constraining the model to exhibit a
monotonous behavior, i. e., dfu (z) /dz ≥ 0. Note that
if these constraints are not imposed, then for non equally
spaced data clusters, large amplitude oscillation can occur
for large model orders. Hence, if a set of calibration points
{(∆D (u, ti) ,∆D (S1, ti)) : i = 1, ...,m} are known for
distinct temperatures, fu can be estimated by formulat-
ing the estimation problem in terms of least squares min-
imization subject to linear inequality constraints as in (25).
Calibration data can be obtained from black images, i.e.,
images taken with the lens cap on, under different tem-
peratures. For these images I (u, t,λ) = 0 and there-
fore ∆D (u, t) = A (t0) (O (u, T )−O (u, T0)).Note that
C ∈ Rk×n encodes dfu (z) /dz at k equally spaced points
between min {∆D (S1, ti)} and max {∆D (S1, ti)} , and
that A ≡ £

AT1 , ..., A
T
m

¤T ∈ Rm×n, Ai ≡
[X1 (∆D (S1, ti)) , ...,Xn (∆D (S1, ti))] , i = 1, ...,m,
y ≡ [∆D (u, t1) , ...,∆D (u, tm)]T , while the model’s pa-
rameterization vector is defined as x ≡ [x1, ..., xn]T .

min
x

n
kAx− yk2

o
: Cx ≥ 0 (25)

For a given n, the best solution can be computed from (25).
However, the optimal n is not known. Using the Bayes
Information Criterion for inequality constrained problems
introduced in section 2, this goal can be achieved with
minn {BICIC (n,Σ)}. Since all the constraints are de-
terministic, it is observed that P (Σ) = 1 and P (n|Σ) =
P (n). Further, given that no a priori knowledge on the
optimal n is available, P (n) is taken to be a uniform dis-
tribution, hence −2lnP (n) = 0. Finally, to compensate
for PRNU noise, a similar approach as used in [10] is ap-
plied and, therefore, the corrected image can be computed
as described in (26).

DC (u) = S−1R (u) (∆D (u, t)− fu (∆D (S1, t)))(26)

= A (t0)CLI (u)

Z
S (λ) I (u, t,λ) dλ
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Figure 3. Patch number 22. (a) Variation of ∆D(S1, t). (b)
Variation of β (t, t0). (c) Comparison of correction results ob-
tained with several methods. (d) Comparison of correction results
with and without gain compensation.(e) Image number 1. (f) Cor-
rection result of image number 1 using gain compensation.

4 Results and conclusions

In figures 3 and 4 some comparisons between Kamberova’s
flatfielding algorithm and the described method are sum-
marized. These results were obtained from two sequences
of 51 images taken with a Sofretc CF820 CCD camera (this
camera has automatic gain control), respectively, for uni-
formly illuminated (i) dark grey (patch number 22) and
(ii) grey (patch number 21) patches of a MacBeth Col-
orChecker map using distinct illumination setups. For each
image sequence the camera was cooled down to 0oC dur-
ing 2 hours. After this period the camera was mounted at an
environment temperature of 22oC and the image sequence
was captured during the warm-up process. Each image is
the result of an average of s (t) = 100 acquisitions. Fur-
ther, the reference image was computed at T = 22◦C, us-
ing s (t0) = 1000. Therefore, the shown variance in pixel
intensity after radiometric correction is mainly due to the
correction process itself. The results depict in figure 3 (a)-
(b) and in figure 4 are the average grey level in region S3.

For the dark grey patch image sequence (see figure
3), it is seen that the uncorrected image sequence exhibits
an average grey value variation of 5.3688 and a pixel in-
tensity standard deviation between 2.2530 and 2.4367. As



temperature changes, static correction strategies are unable
to compensate for changing noise characteristics. Namely,
using Kamberova’s flatfielding techniques, it is observed
that the average grey value variation is similar (5.3498) to
the one observed for the uncorrected image sequence, al-
though the pixel intensity standard deviation is drastically
reduced in this case (between 0.5348 and 0.9661). This
is both due to PRNU correction, and the image’s non uni-
form offset attenuation. On the other hand, the application
of the algorithm described in section 3 enables a consider-
able reduction of the average grey level variation (0.4833
for the algorithm with gain compensation, and 0.8204 if
gain compensation is disabled). As for the pixels’ stan-
dard deviation (see figure 3 (e)), intervals [0.5392, 0.7995]
and [0.5394, 0.7899] are respectively obtained for the algo-
rithm with and without gain compensation. Further results
shown in figure 3 are for additive error models computed
with x0 = 0. Similar results are also observed for the
grey patch image sequence (see figure 4). As expected,
for T around 22◦C, all variants of the algorithm perform
as Kamberova’s method, since in these circumstances the
expected noise characteristics are similar. These results
suggest that the described method is applicable both (i) to
industrial applications of CCD sensors, where usually illu-
mination control and the positioning of the required refer-
ence surfaces for gain compensation are feasible, and (ii)
to general computer vision tasks, where this conditions are
usually not practical or even impossible to implement. In
the later case, the gain compensation is not feasible. How-
ever, as can be deduced from the shown results, even for
cameras with small gain variations, good correction results
can be achieved with the proposed strategy without gain
compensation. Further, from the above results it can be
concluded that BICIC enables the identification of proper
model order to capture the dynamics in offset variation (for
this camera an average order model order of 3.48 was ob-
tained), since, when compared to Kamberova’s method, (i)
all correction results exhibit lower pixel standard deviation
and (ii) average intensity variation is drastically reduced
(over 90% in the worst case and over 95% in the best case).
A typical image after correction is shown in figure 3 (f). As
can be observed, this corrected image is smooth. Finally,
the use ofBICIC enables the use of a very general imaging
model for additive error correction. A sharp imaging model
is only required if gain compensation is to be implemented,
which in most practical applications is not necessary since
usually automatic gain is disabled.
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