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Abstract

Spectral data estimation is an ill-posed problem, since
(i) it is difficult to collect sufficient linear independent data
and (ii) due to the integral nature of solid-state light sen-
sors, camera outputs do not depend continuously on input
signals. To solve these problems, most methods relay on
exact a priori knowledge to reduce the problem’s complex-
ity (solution’s space). In this paper a new algorithm is in-
troduced which does not require a priori information. The
method is build upon a new extension of the Bayes Infor-
mation Criterion for ill-posed estimation problems, that is
able to extract this information from the input data. Actu-
ally, the proposed solution is quite general and can readably
be applied to other ill-posed problems, which are common
in computer vision and image processing.

1 Introduction

Many image processing and computer vision tasks re-
quire the estimation of spectral data. Usually, it involves the
estimation, for each wavelength λ (most often λ is confined
to the visible spectrum), of some data distribution x (λ). For
instance, many radiometric camera calibration [1], demo-
saicing, color constancy [2], and spectral reflectance esti-
mation methods [3] require the knowledge of the spectral
distribution of the light sensor’s sensitivities. Further, as
was pointed out by Hardeberg [4], sensor sensitivities are
also important to improve color management systems for
multimedia applications. Another typical situation where
spectral data estimation has to be performed is reflectance
estimation [3].
Spectral data estimation based on image data is an ill-

posed problem, since (i) due to the integral nature of CCD
and APS sensors, the same output can be obtained from an
infinity of input signals, and (ii) it is observed that colors
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can be well approximated with just a few basis functions
[3], which imposes an upper limit on the number of lin-
ear independent equations for the estimation problem. For-
tunately, there are some assumptions that can be made on
the solution to reduce the problem’s complexity. The most
commonly applied constraints are the solution’s (i) positiv-
ity and (ii) smoothness [2][3][5], although other types of
constraints can be found in literature: for instance, Fin-
layson [5] suggests using modality constraints, while local
maxima are constrained in [6].There are several ways to im-
pose the solution’s smoothness. For instance, in [7], for
each point, the absolute value of the second order deriva-
tive of the solution is required to be less than a predefined
threshold, while Finalyson [5] uses projections onto a lim-
ited number of Fourier basis functions. If smoothness is
encoded with a quadratic penalty involving derivatives such
as α

R ¡
x(k) (λ)

¢2
dλ (x(k) (λ) is the kth order derivative of

the model and α is the regularization gain), then we have
the so called Tikhonov regularization, a common technique
to solve ill-posed problems.
Spectral data estimation can be formulated in therms of

a least squares with linear inequality constraints problem
[2][3][5][6]. In this paper the following formulation will be
assumed: let x ∈ Rn be a discrete version of x (λ) such that
xi ≡ x (λi), λi = λ0 + (i− 1)∆λ, i = 1...n, and ∆λ is
the sampling interval, then x can be computed from

min
x

½
∆λ2

mσ2
kAx− yk2 + α

∆λ4
kDxk2

¾
(1)

subject to Ξ ≡ {Cix ≤ di, i = 1, ..., q} (2)

where A ∈ Rm×n, y ∈ Rm, D ∈ Rl×n, C ∈ Rq×n,
d ∈ Rq, Ax = y are the m equations (usually m ¿ n)
that can be obtained from the sensor’s outputs, and α ∈
R+ is a regularization gain that controls the trade-off be-
tween the roughness of the solution as measured by kDxk2
(∆λ−2Dx approximates the second derivative of x) and
the infidelity to the data as measured by kAx− yk2. In
(1) it is assumed that y is subject to uncorrelated white
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noise, i.e., y+ε:εi∼N (0,σ). If distinct noise variances are
present in y then (1) still holds if the following transforma-
tions are performed: let the noise associated to equation i,
i = 1...m, be εi∼N(0,σi), then A ≡ diag (σ/σi)A and
y ≡ diag (σ/σi) y.
In practice, C, d and α are defined based on exact a pri-

ori knowledge on x [2][3][5] [6], being the solution very
dependant on these values. In fig. 1 (b) sum squared er-
rors (SSE) are depict as a function of the regularization
gain for several CCD spectral sensitivity estimation prob-
lems. As can be observed, the quality of the solution is
highly dependant on the quality of the a priori knowledge
(in this case, the smoothness), which in most situations is
difficult or even impossible to obtain. Hence, some val-
idation tool is required to select these parameters. There
are several measures based on the bias-variance/complexity
trade-off principle (GCV [8], UBR [8], etc.), for regular-
ization gain selection. However, these measures are not for
problems with linear constraints. In [9] we extended GCV
for this purpose. In this paper (section 2) a new selection
method based on the Bayes Information Criteria, originally
introduced by Schwartz and later extended by Neath and
Cavanaugh [10] for model order selection in well-defined
regression problems, is developed for model order and con-
straints parameterization selection. This criteria is applied
in section 3 to spectral data estimation problems formulated
in (1) and (2), namely to light sensor sensitivity estimation.
Some main conclusions are also presented in section 3.

2 Extending the BIC for Model and Con-
straints Selection

The general Tikhonov regularization problem subject to
linear inequality constraints in (1) and in (2), can be written
as in 3.

min
x
{kA (γ)x− eyk} , subject to Cx ≤ d (3)

γ ≡ mασ2

∆λ6
, A (γ) ≡

·
A√
γD

¸
, ey ≡ · y

0

¸
Given a regularization gain γ and a set of constraints Ξ,
the optimal solution can be obtained using active set algo-
rithms. However, in most situations, this a priori knowledge
is unavailable. In this section the Bayes Information Crite-
ria is extended in this context. Since the quadratic penalty
in (1) can be seen as a quadratic constraint, for notation
simplicity, all constraints are defined by Σ ≡ ¡

Ξ γ
¢
.

Let θ =
¡
xT σ

¢
be the vector which parametrizes

each model, Y be the set of data for the estimation prob-
lem, and P (Y |θ,Σ) the likelihood for Y based on θ and
Σ. Furthermore, let P (Σ), P (θ|Σ) be prior distributions,

respectively, for the constraints, and for the model’s pa-
rameterization vector, given Σ. The joint a posteriori dis-
tribution f (θ,Σ|Y ) for θ and Σ given the observed data
Y can be obtained with the Bayes rule by (4) (h (Y ) ≡RR
P (Y, θ,Σ) dθdΣ).

f (θ,Σ|Y ) = P (Σ)P (Y |θ,Σ)P (θ|Σ)
h (Y )

(4)

Using this result, to select proper constraintsΣ, one expects
the a posteriori distribution f (Σ|Y ) to be maximized, i. e.,

max
Σ
{f (Σ|Y )}⇐⇒ min

Σ

½
−2 ln

Z
f (θ,Σ|Y ) dθ

¾
(5)

In order to solve the integral in equation (5), the likeli-
hood P (Y |θ,Σ) has to be determined. Let bCx = bd,bC ∈ Rp×n, rank( bC) = p < n , be the active set of
constraints at the solution of (3) computed for a particu-
lar set of parameters Σ. If these constraints are known,
then the solution bx is easily computed as follows: let
A (γ) = U

¡
DTA 0

¢T
Z and bC = V

¡
DC 0

¢
Z,

be the generalized singular value decompositions of ma-
trixes A (γ) and bC, where DA = diag (α1, ...,αn), DC =
diag

¡
β1, ...,βp

¢
, U ∈ R(m+l)×(m+l) and V ∈ Rp×p

are orthogonal matrixes and Z ∈ Rn×n is invertible if

rank
³
AT (γ) bCT´T = n. Using this matrix decom-

position, it follows that bx = Z−1
¡
yT1 yT2

¢T
, y1 =

D−1C V Th ∈ Rp, and

min
y2

n
kHy2 − eek2o (6)

where, DA1 = diag (α1, ...,αp),
DA2 = diag (αp+1, ...,αn), H =

U
¡
0 DTA2 0

¢T ∈ R(m+l)×(n−p) and ee ≡
ey − U

µ ³
DA1D

−1
C V T bd´T 0

¶T
(this result is

partially proven in [9]).
Note that the constraints are subject to null noise, i. e.,bCx = bh + ², ² v limσ→0N

¡
0,σ2I

¢
. Hence, y1 v

limσ→0N
¡
D−1C V Th,Λ

¢
= δ

¡
y1 −D−1C V Th

¢
, where δ

is the Dirac function and Λ ≡ D−1C V σ2V TD−1C . Let θ
T =¡

θT1 θT2
¢
, where θ1 ≡ y1 is the section of the parame-

terization vector computed from the active constraints in Ξ.
From (6) it is seen that θ1 and θ2 are independent. Hence,
P (θ|Σ) = P (θ1|Σ)P (θ2|Σ) = δ

³
θ1 − bθ1´P (θ2|Σ) .

Substituting this result into (5) hilts

BICIC (Σ) = −2 lnP (Σ) + 2 lnh (Y )
−2 lnP

³
Y |bθ1,Σ´ R P (Y |θ2,Σ)P (θ2|Σ) dθ2 (7)

2



To compute the integral in (7), a second order Taylor ap-
proximation of P (Y |θ2,Σ) can be used, as suggested in
[10] for ordinary BIC. Let bθ2 be the maximum likelihood
estimate vector of θ2, then lnP (Y |θ2,Σ) can be approx-
imated for a region near bθ2 as in (8), where F (θ2) is the
Fisher information matrix defined in (9).

lnP (Y |θ2,Σ) ≈ lnP
³
Y |bθ2,Σ´

−(θ2−bθ2)TF(bθ2)(θ2−bθ2)
2(m+l)−1

(8)

F (θ2) ≡ − 1

(m+ l)

∂2 lnP (Y |θ2,Σ)
∂θ2∂θ

T
2

(9)

Taking P (θ2|Σ) = 1, equation (10) follows (as observed
in [10], this approximation holds as long as P (Y |θ2,Σ)
dominates the prior P (θ2|Σ) within a small neighborhood
of bθ2; outside this neighborhood the exponential term in (8)
should be small enough to force the product to zero).

P
³
Y |bθ2,Σ´Z P (Y |θ2,Σ)P (θ2|Σ) dθ2 (10)

≈ P
³
Y |bθ,Σ´ (2π)n−p+12

¯̄̄
(m+ l)F

³bθ2´¯̄̄− 1
2

Note that (6) implies that eei = Hiy2 + ², ² v N ¡0,σ2¢.
Hence, the unbiased estimate of the variance that maximizes
the likelihood is computed by (11).

bσ2 ≡ kHby2 − eek2
m+ l

(11)

On the other hand it is seen that¯̄̄
F
³bθ2´¯̄̄ = 2 (m+ l)−n+p ³bσ2´−n+p−1 ¯̄HTH

¯̄
(12)

Plugging (11), (10) and (12) into (7) and eliminating con-
stant terms (13) is obtained.

BICIC (Σ) = −2 lnP (Σ) + ln
¯̄
HTH

¯̄
+(m+ l− n+ p− 1) ln bσ2 − (n− p) ln (m+ l)

+ (n− p+ 1) ln m+l2π
(13)

3 Results and Conclusions

In spectral data estimation, usually it is assumed that
any radiometric distortions have been removed from the
images. Hence, for a given input signal with power spec-
trum e (λ) the pixel intensity can be assumed to be ρ =R
e (λ)x (λ) dλ + ² ≈ ∆λ

Pn
i=0 xiei + ² (ei ≡ e (λi),

² ∼ N ¡0,σ2¢). In the context of the sensor’s sensitivity
estimation, given a set of input signal ej (λ) and camera
readings ρj , j = 1, ...,m, the jth line of matrix A in (1)

is defined by Aj ≡
¡
e0 ... en

¢
and yj ≡ ρj

∆λ (sev-
eral variations of this formulation are possible, see for in-
stance [2][9]). Photo-electrons of a given wavelength can
be added, but never subtracted, which implies that xi ≥ 0,
and, therefore, C ≡ −I and d ≡ 0. As has been ob-
served in [6], for small values of γ, the solution to this prob-
lem tends to exhibit large values of SSE (Sum Squared
Error) due to its oscillation. As γ is increased, oscilla-
tion is eliminated. However, local maxima of the solu-
tion tend to be flatten due to the increased importance of
the smoothness component in the objective function. This
leads to increases of SSE values. To measure the ability
of the BICIC criterion in identifying the optimal regular-
ization gain γ, a simulation program was developed as de-
scribed in [6]. In these simulations the prior P (Σ) was
modelled with P (Σ) = P (Ξ)P (γ), where P (Ξ) = 1,
P (γ) = N ¡

γt,σ
2
t

¢
, σt =

γt
3 and γt is the lower limit of

the identified stable regularization gain (gains which do not
induce oscillation) as described in [6]. Further, the shown
test results are for the spectral sensitivity curves from a Ko-
dak DCS200 camera. In these testes 24 (m = 24) patches
of the MacBeth-Color Checker map were applied. Gaussian
noise was added to each computed image. We modeled the
noise’s variance to be a linear function of ρ, such that σ = 2
for ρ = 10 and σ = 6 for ρ = 250. This is in accordance
with real cameras [2]. Finally, the sampling step was fixed
to∆λ = 2nm, λ0 = 400nm, λn = 700nm (n = 151) and
the SSE values were computed by SSE = kxTrue − bxk2.
A comparison between the described estimation method
based on the BICIC measure and by arbitrating γ are de-
picted in fig. 1 for the RGB channels of the Kodak DCS200
camera. As can be observed (fig. 1 (a)-(b)) theBICIC tech-
nique enables the estimation of suboptimal solutions in the
vicinity of the global optimums. From fig. 1 (b) it is seen
that for the red and for the green channels SSE minimums
occur at √γ = 0.9 and √γ = 5.21, while the selected γ
with the BICIC criterion are

√
γ = 0.81 and √γ = 4.81

(fig. 1 (a)), respectively. This leads to similar SSE values
as the absolute minimums (fig. 1 (b)). As for the blue chan-
nel, the estimated γ induces a larger SSE. However, as can
be observed in fig. 1 (c), the larger SSE is mainly due to
the approximation error in the lower spectral range of wave-
lengths (400nm to 420nm), where light signal exhibit less
energy, and, therefore, fewer information exists for the esti-
mation problem. Actually, for larger values of γ than 0.71,
SSE decreases mainly due to a smoother approximation of
the sensitivities in the above mentioned spectral region, and
not due to a substantial improvement of the overall estimate.

In this paper a new extension to the Bayes Informa-
tion Criterion is described for ill-posed problems (a rele-
vant class of problems in computer vision and image pro-
cessing tasks) that enables automatic selection of the model
order and constraints parameterization. Based on this per-
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formance measure, a new spectral data estimation technique
is introduced. No exact a priori knowledge on the data char-
acteristics are required in this method (as opposed to other
methods), since it is able to extract this information from
the input data. This is a relevant result because, in practice,
exact a priori knowledge is often difficult or even impos-
sible to obtain with the required accuracy. The method is
tested on light sensor spectral sensitivity estimation prob-
lems with unknown smoothness. The obtained results show
that the BICIC based method enables the identification of
suboptimal solutions in the vicinity of the global optimum.
More results will be shown in the final paper.
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Figure 1. Kodak DCS200 sensitivity estimation results.
(a) Evolution of BICIC with γ. Minimums marked with
circles. (b) SSE evolution with γ. Minimums marked with
circles and selected γ with BICIC marked with squares.
(c) Real and estimated sensitivities withBICIC .
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