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Abstract: Computer vision is a powerful tool for intelligent sensor development.
However, noise in CCD cameras leads to significant radiometric distortions. Therefore,
radiometric image correction is a critical operation, specially when physics-based
models are applied for image processing, as is the case in many industrial applications.
All known radiometric correction methods assume that noise characteristics remain
stable over time. In this paper, a new radiometric correction method is proposed to
account for non static noise effects. The method decomposes radiometric distortion
into multiplicative and additive errors, whose optimal models are computed with a
new extension to the Generalized Cross-Validation Criterion.
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1. INTRODUCTION

Image processing and pattern recognition tech-
niques are powerful tools for building new intelli-
gent sensors for industrial applications (see, for
instance, (Batchelor and Whelan, 1997)). Most
vision systems use CCD cameras for image ac-
quisition. Their popularity stem from their lin-
ear response to light, ease of integration and low
cost. Nevertheless, these devices are prone to sev-
eral noise sources, which can induce significant
radiometric distortions. Currently, there are two
main streams of reasoning in image processing:
(i) interpretation of an image as noise corrupted
data, and (ii) using physical image formation
models to interpret an image. Most of today’s
grey scale algorithms are inspired in the former
approach. However, whenever exact information
is to be inferred from images, the later approach
is preferred, if not imperative. This is particu-
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larly true in color image processing, where precise
image formation models are required to extract,
for instance, reflection characteristics of materi-
als (Farrell et al., 1999). Other areas where this
premise is important are 3D vision (Kamberova
and Bajcsy, 1998) and image restoration applica-
tions (Kempen and Vliet, 1999), just to name a
few.

Noise is an intrinsic property of the image for-
mation process. Healey and Kondepudy (Healey
and Kondepudy, 1994) have identified the main
noise sources, which occur in the image formation
process and have described an algorithm for the
induced radiometric distortion correction. In their
method, it is assumed that noise characteristics
are static over time, i. e., their means and vari-
ances do not change. In practice, as will be shown,
this behavior is only verified under very restricted
conditions. For instance, the model assumes that
dark current noise is stable. However, given its
high temperature dependence, this assumption
will only be verified if the temperature of the im-
age acquisition environment is kept constant. Fur-
thermore, the model assumes that the overall gain
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Fig. 1. Overview of the radiometric correction method.

of each image formation channel does not vary
from image to image. Several authors (see (Chang
and Reid, 1996) and references therein) have re-
ported variations in channel gain, even when the
automatic gain facility is turned off. Other meth-
ods have been proposed for radiometric image
correction, which rely on the same premises. Kam-
berova and Bajcsy (Kamberova and Bajcsy, 1998)
identify linear image transformations such that
for an uniform surface, all pixels in the corrected
image exhibit equal values.

All the above mentioned techniques rely on the
camera’s stable gain and noise characteristics over
time. In this paper we propose a new radiometric
correction procedure, which is able to estimate
and correct the expected radiometric image dis-
tortion for variable gain and noise characteristics.
Using an extended image formation model which
accounts for changing noise characteristics with
temperature, the proposed method operates as
follows (see figure 1): (i) it is assumed that changes
in radiometric distortion due to temperature can
be described with multiplicative and additive er-
ror models, which are estimated during a calibra-
tion phase. (ii) Changes in additive and multi-
plicative errors with respect to a reference image
are obtained from controlled regions in the image,
either by placing reference surfaces in each image
or by covering a small region of the CCD sen-
sor, and from the computed error models. In this
work, additive distortions between two regions of
an image are modelled with regular polynomial
functions. Some mild a priori knowledge on these
mappings is applied to promote accuracy. Namely,
it is seen that the required mappings must exhibit
smoothness and monotonous behaviors. In this
approach, to account for smoothness a regular-
ization term is introduced in the criterion, being
the trade-off between data fidelity and roughness
controlled with a regularization gain. On the other
hand, the monotonous behavior is accounted for
by constraining the model’s first order derivatives
(see section 2). To select for proper model order
and regularization gain, a new extended General-
ized Cross Validation criterion (GCVIC) is intro-
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duced (see section 3). In section 4 some results
and main conclusions are presented.

2. RADIOMETRIC IMAGE CORRECTION

Let D (u, t, T ) be the linearized camera output
for point of coordinates u ∈ N2 at instant t and
temperature T , then

D (u, t, T ) = D (u, t, T ) +N (u, t, T ) (1)

where N (u, t, T ) is a random variable of mean
zero and variance σ2N (u, t, T ) induced by shot,
read and quantization noise and

D (u, t, T ) =A (t) {SR (u) I (u, t) +O (u, T )}(2)
+NF (u, t)

O (u, T ) ≡ ND (u, T ) +NFZ (u) +NIL (u, T )

In (2)A (t), SR (u),ND (u,T ),NFZ (u),NIL (u, T )
and NF (u) represent, respectively, the chan-
nel gain, the photo response non uniformities
(PRNU) in charge collection, the dark current
charge (thermally induced charge), fat zero (artifi-
cial charge introduced by the readout circuitry to
improve the sensor’s spectral sensitivity S (λ)), in-
ternal luminance (mainly charge due to the clock-
ing circuitry) and the offset introduced by the
camera’s transfer function for pixel u. I (u, t) is
defined as

R λn
λ0
I (λ, u, t)S (λ) dλ, being I (λ, u, t)

the SPD (spectral power distribution) of the input
radiation at point u and instant t. For cameras
with almost linear transfer functions, it can be
shown that E [N (u, t)] → 0, since it mainly de-
scribes the expectation of the zero mean sampling
noise, and σ2N is a linear function of D (u, t, T ). In
figure 2 several line and column statistics of dark
images (images taken with the lens cap on) ob-
tained under different environment temperatures
with a Sofretec CF 820 CCD camera are shown.
As can be observed, an environment temperature
change of 14◦C induces a variation in ND (u, T )
and NIL (u, T ) over 300% for this camera.

Let R (λ, u, t) be the reflectance of a Lambertian
planar surface, and let IE (λ) be the SPD of an



artificial light source projected onto that surface.
From the dichromatic reflection model it follows
that the light reflected from these surfaces can be
modeled by the body reflection component, i. e.,

I (λ, u, t) = CI(u)IE (λ)R (λ, u, t) (3)

where CI(u) ∈ [0, 1] accounts for the geometrical
dependent light power distribution and reflection
attenuation. Before light interacts with a sensor’s
cell it has to travel through the lens system which
introduces further attenuation and spectral trans-
formation. Let L (λ) be the spectral transmittance
from the target to the CCD and CL(u) be the lens
light attenuation effect (such as the cos4 and the
vignetting effects), then (CLI(u) = CI(u)CL(u))

I (λ, u, t)= CLI(u)IE (λ)R (λ, u, t)L (λ) (4)

Hence, to perform radiometric image correction,
for each image the multiplicative errors SR(u)
and A(t), and the additive error A(t)O (u, T )
+NF (u, t) have to be estimated. Instead of com-
puting the absolute values for the camera’s gain
and offset error, in this correction approach rel-
ative values, with respect to a reference im-
age D (u, t0, T0) , β (t, t0) = A(t0)/A(t) and
∆D (u, t) = A(t0) {O (u, T )−O (u, T0)} are iden-
tified. This enables correction results given byeD (u) = A(t0)CLI(u) R λnλ0 IE (λ)R (λ, u, t) L (λ) dλ.
Let us assume that each image is composed by
three different regions Si, i = 1, .., 3, such that S1
and S2 form a chess pattern as shown in figure 1.
Further, let us assume that no changes in I (λ, u, t)
occur, i. e., the illumination IE (λ) and the re-
flectance characteristics R (λ, u, t), u ∈ {S1, S2} ,
are kept constant over time. The relative changes
in additive error∆D (u, t) and multiplicative error
β (t, t0) can be computed from the image regions
S1 and S2. Notice that under general computer vi-
sion conditions these constraints may not be feasi-
ble. In these cases,∆D (u, t) can still be computed
by covering region S1 and S2 of the CCD sensor
such that no photocurrent is generated for these
sensor cells. However, under these circumstances,
the method is unable to estimate β (t, t0). As long
as automatic gain is turned off, as will be shown,
good correction results can still be achieved.

Let D (Si, t, T ) be the average image intensity in
region Si, i. e., D (Si, t, T ) = (s (t) kSik)−1

P
u∈SiP

tw∈s(t)D (u, tw, Tw), where s (t) and kSik are
respectively the number of images taken and the
number of pixels in region Si, and let D (u, t0, T0)
be a reference image. Evaluating the difference
between mean intensities in regions S1 and S2,
it is seen that (Ii = I (u, t) ≡

R
I (λ, u, t)S (λ) dλ,

u ∈ Si, i = 1, 2),

Z (S1, S2, t, T ) = D (S2, t, T )−D (S1, t, T )
=

A (t)

s (t) kSik

(
I2
X
u∈S2

CLI (u)SR (u)−

− I1
X
u∈S1

CLI (u)SR (u)

)
+∆N (S2, S1)

(5)

In practice, given that both regions S1 and S2
share the same columns and lines of the image, it
is observed that ∆N (S2, S1)→ 0. Hence, as long
I1 ¿ I2, it is seen that (5) enables the estimation
of β (t, t0). Namely,

β (t, t0) ≡ Z (S1, S2, t0, T0)

Z (S1, S2, t, T )
(6)

If kS1k = kS2k and s (t0) is taken large enough
such that the uncertainty in (6) is mainly condi-
tioned by the data at instant t, it can be shown
that the expected value for β (t, t0), E [β (t, t0)],
and its variance V [β (t, t0)] can be computed as in
(7) and (8), where σ2Si (t) = (s (t) kSik)

−1P
u∈SiP

tw∈s(t) σ
2
N (u, tw, Tw) is the average noise vari-

ance in region Si, i = 1, 2.

E [β (t, t0)] ' A (t)−1A (t0) (7)

V [β (t, t0)]'
¡
σ2S1 (t) + σ

2
S2
(t)
¢
E [Z (S1, S2, t, T0)]

2

s (t) kS1kE [Z (S1, S2, t, T )]4
(8)

On the other hand, the change in the addi-
tive error in region S1 can be computed from
∆D (S1, t) = β (t, t0)

−1
D (S1, t, T )−D (S1, t0, T0),

which leads to

E [∆D (S1, t)] = A(t0) {O (S1, T )−O (S1, T0)}
(9)

V [∆D (S1, t)]' σ2S1 (t)E [β (t, t0)]2+
+V [β (t, t0)]E [D (S1, t, T )]

2 (10)

From (8) and (10), it is concluded that, in order to
minimize the uncertainty of these estimates, the
reference surfaces for S1 should be chosen such
that R (λ, u, t) → 0, u ∈ S1, and R (λ, u, t) → 1,
u ∈ S2, i.e., a black and a white reference surface,
respectively. Taking a similar approach for the
image in region S3, it is observed that∆D (u, t) ≡
β (t, t0)

−1
D (u, t, T )−D (u, t0, T0). Hence,

∆D (u, t) =A (t0)SR (u) I (u, t) + (11)

+A (t0) (O (u, T )−O (u, T0))
Note that in (11) it is assumed that I (u, t0) = 0,
u ∈ S3, while in (7) and (9) it is considered
that I (u, t0) 6= 0, u ∈ {S1, S2}. This can be
accomplished if the reference image is computed
from two distinct images taken with the same
sensor temperature: from the first image, obtained
with the sensor exposed to light, the data for
D (u, t0, T0), u ∈ {S1, S2}, are taken, while from



the second image, obtained with the lens cap one,
pixels D (u, t0, T0) from region S3 are estimated.
To avoid distinct gains A (t) for the two images,
these should be computed from an average of a
large sequence of images acquired with automatic
gain disabled.

Equations (9) and (11) are the basis of the cor-
rection method. Namely, if the mapping y =
fu (a) , y ≡ A (t0) (O (u, T )−O (u, T0)), u ∈ S3,
a ≡ A (t0) (O (S1, T )−O (S1, T0)), are known,
then an image without bias can be obtained from
∆D (u, t)−fu (A (t0) (O (S1, T )−O (S1, T0))). Since
the physical laws which describe these mappings
are not known, a generic formulation is applied to
identify fu, i.e., fu (a) =

Pn
i=0 xiXi (a), n ∈ N,

xi ∈ R, where Xi can be any basis function.
There are some a priori knowledge that can be
integrated into the estimation process to enable a
better estimation accuracy: (i) it is seen that fu
is monotonous increasing, although not linear for
large variation in temperature. The monotonous
behavior is mainly due to blackcurrent. This
charge follows a Boltzmann distribution, hence
increases with temperature. Nonlinearity, is due to
blackcurrent and due to internal illuminance gen-
erated charge. (ii) Further, fu should be smooth.
In the proposed estimation technique, smooth-
ness is imposed by a regularization term in the
criterion build upon the second derivative of fu,
being the trade-off between data accuracy and
smoothness controlled with a positive regulariza-
tion gain, i.e., λ ∈ R+. For smoothness measure
the second derivative of fu is applied. As for the
monotonous behavior of the function, it can be
obtained by constraining the first derivative of
the function to be positive or zero at k regu-
lar points. Hence, if a set of calibration points
{(yi, ai) : i = 1, ...,m} are known for distinct tem-
peratures (obtained from black images with AGC
turned off), fu can be identified by formalizing
the estimation problem in terms of a quadratic
criterion minimization subject to linear inequal-
ity constraints as in (12) (A ≡ £

AT1 , ..., A
T
m

¤T ∈
Rm×n, Ai ≡ [X1 (ai) , ...,Xn (ai)] , i = 1, ...,m,
b ≡ [y1, ..., ym]

T , D ∈ Rn−2×n, C ∈ Rk×n, x =
[x1, ..., xn]

T ). Note that C and D encode −dfu/da
and d2fu/da2, respectively.

min
x

n
kAx− bk2 + λ kDxk2

o
: Cx ≤ 0 (12)

Given n and λ, the best solution can be computed
from (12). However, the optimal n and λ are not
known. If n is chosen too small, then fu will not
be able to capture the dynamics of the data, while
choosing n too high will induce overfitting and
probably some oscillation. On the other hand if
λ → ∞, then (12) will identify a line, while, if
λ → 0 then, again, oscillation may occur. Given
the enormous amount of data and given that n
and λ are not global to the image, an automatic

strategy for selecting n and λ is required. This is
a typical problem of model selection. There are
several model selection techniques (for a survey
see (Hansen and Yu, 2001)). In this work an
extended Generalized Cross-Validation Criterion
(GCVIC) is applied. Namely, select bx, n and λ
such that minn,λ {GCVIC (n,λ)} (as defined in
(19)). Finally, to compensate for PRNU noise, a
similar approach as in (Healey and Kondepudy,
1994) is followed and, therefore, the corrected
image can be computed as described in (13).

eD (u) = S−1R (u) (∆D (u, t)− fu (∆D (S1, t)))
(13)

3. THE EXTENDED GCV MEASURE

The idea of the GCVIC is to test how well the esti-
mated model predicts data for different roughness
penalty values λ and model orders n. This idea
was first applied by Craven and Wahba (Craven
and Wahba, 1979) and led to the introduction
of the GCV (generalized cross-validation) mea-
sure for the unconstrained fitting problem. In this
work, the GCV is extended to the linear inequal-
ity constrained fitting problem. This extension
results in a new GCV measure, the GCVIC . The
fitting problem can be written as in (14).

min
x

n
kA∗x− b∗k2

o
: Cx ≤ H (14)

A∗ =
·
A√
λD

¸
, b∗ =

·
b
0

¸
(15)

From the active set theory (Ciarlet and Lions,
1990) it is known that the solution to the problem
in (14) is equivalent to solve an equality con-
strained problem with the subset of constraints
which, for a particular solution, are active. Let
C∗bx = H∗, C∗ ⊆ C, C∗ ∈ Rh×n, h ≤ k, be the
subset of constraints in (14) verified with equality,
then the solution can be found using the following
corollary:

Corollary 1. Let bx(λ, n) be the solution to (14).
Then, if C∗bx(λ, n) = 0 are the subset of active
constraints, bx verifies

bx(λ, n)= Ω(λ, n)+Θ(λ, n)b (16)

with Ω(λ, n) = Z1 eD−1C WT
CH

∗,Θ (λ, n) = Z2 eD−1A W21,

Z−1 =

p|{z} n− p| {z }£
Z1 Z2

¤
, A∗ = WA

£
DTA 0

¤T
Z,

C∗ = WC

£
DC 0

¤
Z are the generalized singu-

lar value decompositions of A∗ and C∗, DA =
diag (α1, ...,αn), DC = diag

¡
β1, ...,βp, 0

¢
, eDA =

diag (αp+1, ...,αn) , eDC = diag ¡β1, ...,βp¢ and



WT
A=

m|{z} v|{z}W11 W12

W21 W22

W31 W32

 p
n− p

m+ v − n
(Proof is immediate by taking theorem 1 and the
formulation in (14) and some simple algebraic
manipulations.)

Let bx[k](n,λ) denote the estimate of x using all
but the kth data point of b. The OCV (Or-
dinary Cross-Validation) function measures the
overall predictability of data points by the esti-
mate bx[k](n,λ) and is defined by (bk - kth element
of vector b; Ak - kth row vector of matrix A)

OCV (λ, n) =
1

m

mX
k=1

(bk−Akbx[k](λ, n))2 (17)

To derive the GCVIC(λ, n) function from (17)
some theorems have to be introduced.

Lemma 2. Let h(k, z) be the solution to (14) with
linear equality constraints and with the kth data
point replaced by z, then h(k,Akbx[k](λ, n)) =bx[k](λ, n). (Proof is immediate)
Theorem 3. The OCVIC(λ, n) function for the
problem defined in (14) with linear equality con-
straints is

OCVIC(λ, n) =
1

m

mX
k=1

(bk −Akbx(λ, n))2
(1− ρkk)2

(18)

where ρkk is the kkth element of AΘ(λ, n) and
Θ(λ, n) is as defined in (16) .

Proof. Taking Lemma 2, it is straightforward to
proof that

bk −Akbx(λ, n)= (1− ρkk) (bk −Akbx[k](λ, n))

Theorem 4. The GCVIC(λ, n) function for the
problem defined in (14) is

GCVIC(λ, n) =
1
m kb−Abx(λ, n)k2¡
1
m trace (I − ρ)

¢2 (19)

Proof.

To proof this result a weighted OCVIC is taken
to account for non equally spaced data points,
as suggested in (Craven and Wahba, 1979).
It can be shown that ρ is symmetric. Hence,
there exists a transformation matrix Γ such
that ΓρΓT is circulant. Taking OCVIC on this
new system, it follows that the data points are
equally spaced and the transformation is equiv-
alent to take a weighted OCVIC with weights
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Fig. 3. Comparison of radiometric correction results of
two sequences of images taken during the heat up of

a Sofretec CF820 camera. Both image sequences were

captured from patches of the MacBeth ColorChecker

map using different illumination setups . (Top) Im-

age sequence 1 - dark grey patch. (Bottom) Image

sequence 2 - grey patch. The values shown correspond

to the average grey level of pixels in region S3.
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Fig. 4. Variation of ∆D (S1, t) and of β (t, t0). (Top)
Image sequence 1. (Bottom) Image sequence 2.

wk = [(1− ρkk) /trace(I − ρ)]2. Hence, substitut-
ing this in (18), (19) is verified.

4. RESULTS AND CONCLUSIONS

In figure (3) a comparison between Kamberova’s
flatfielding algorithm and the introduced method
is shown. These results were obtained from two
sequences of 51 images taken with a Sofretc CF820
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Fig. 5. Correction results for image no. 1 of image se-
quence no. 1. (Top) Original image (Bottom) Correc-

tion result with new method with gain compensation.

CCD camera for the dark grey patch of the Mac-
Beth ColorChecker and for its grey patch using
different illumination setups. In each image se-
quence the ambient temperature was varied from
about 0◦C to around 22◦C. Further, the reference
image was computed at T ' 22◦C. The results
presented are the average grey level in region S3.
The additive error model orders were computed
using the described GCVIC criterion, which lead
to an average model order of 4.43. In figure (5) the
first image of the grey patch sequence is depict. As
can be observed, all pixels’ additive error models
were properly captured with this strategy. The use
of GCVIC is an important aspect, since besides
avoiding over or underfitting, which could occur
by arbitrating a global model order and regular-
ization gain, it optimizes memory requirements for
model coefficients storage.

For the dark grey patch image sequence, it is seen
that the uncorrected image sequence exhibits an
average grey value variation of 5.3688 and a pixel
grey level standard deviation between 2.2530 and
2.4367. As temperature changes, static correction
strategies are unable to compensate for changing
noise characteristics. Namely, using Kamberova’s
flatfielding techniques, it is seen that the aver-
age grey value variation is similar (5.3498) to
the one observed for the uncorrected image se-
quence, although the grey level standard devia-
tion is drastically reduced in this case (between
0.5348 and 0.9661). This is as due to PRNU as

due to black current correction. On the other
hand, the application of the algorithm described
in section 2 enables a drastic reduction of the
average bias (0.4746 for the algorithm with gain
compensation, and 0.8270 if gain compensation is
disabled). As for the pixels’ standard deviation,
intervals [0.5396, 0.7906] and [0.5393, 0.8001] are
respectively obtained for the algorithm with and
without gain compensation. Similar results are
also obtained for the grey patch image sequence
(see figure 3 bottom). As expected, for T around
22◦C, the algorithm performs as Kamberova’s
method, since in these circumstances the expected
noise characteristics are similar in both methods.
These results suggest that the described algorithm
is applicable both in industrial applications of
CCD sensors, where usually illumination control
and the positioning of the required reference sur-
faces for gain compensation are feasible, and gen-
eral computer vision tasks, where these conditions
are usually not practical or even impossible to
implement.
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