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ABSTRACT
Spectral data estimation from image data is an ill-posed
problem since (i) due to the integral nature of solid-state
light sensors the same output can be obtained from an in-
finity of input signals and (ii) color signals are spectrally
smooth in nature and therefore limit the number of linear
independent equation that can be formulated for the identi-
fication problem. To enable the solution of these problems
most methods relay on exact a priori knowledge, such as
smoothness and modality, to formulate hard constraints. In
this paper a new method based on an extended generalized
cross-validation measure is introduced for this type of prob-
lems. The solution is obtained with a genetic algorithm that
maximizes its prediction ability. The method does not re-
quire exact a priori knowledge on the solution, since it is
able to extract this information from the input data.

1. INTRODUCTION

Spectral data estimation is an important issue in several im-
age processing and computer vision tasks. Usually, it in-
volves the estimation, for each wavelength λ (most often
λ is confined to the visible spectrum), of some data distri-
bution X (λ). For instance, many radiometric camera cali-
bration [1], demosaicing [2], color constancy [3] and spec-
tral reflectance estimation methods [4] require the knowl-
edge of the spectral distribution of the light sensor’s sensi-
tivities. Reflectance estimation is another typical situation
where spectral data estimation has to be performed.

Spectral data estimation based on image data is an ill-
posed problem, since (i) due to the integral nature of todays
light sensors, the same sensor output can be obtained from
an infinity of input signals, and (ii) it is observed that colors
can be well approximated with just a few basis functions [4],
which imposes an upper limit on the number of linear inde-
pendent equations for the estimation problem. Fortunately,
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there are some assumptions that can be made on the solu-
tion that enable solving these type of problems. The most
commonly applied constraints are the solution’s (i) positiv-
ity and (ii) its smoothness [4][5][6][7], although other types
of constraints can be found in literature (for instance, Fin-
layson [7] suggests using modality constraints, while local
maxima are constrained in [5]).

Spectral data estimation can usually be formulated in
therms of a least squares with linear inequality constraints
problem [5][6][7]. In this paper the following formulation
will be assumed: let X ∈ Rn×1 be a discrete version of
X (λ) such that Xi ≡ X (λi), λi = λ0 + (i− 1)∆λ,
i = 1...n, and∆λ is the sampling interval. It is seen thatX
can be computed from

min

½
∆λ

mσ2
kAX −Bk2 + α

∆λ4
kDXk2

¾
(1)

subject to CX ≤ H (2)

where AX = B (A ∈ Rm×n, B ∈ Rm×1, D ∈ R(n−2)×n,
C ∈ Rq×n, H ∈ Rq×1) are the m equations (usually
m ¿ n) that can be obtained from the sensor’s outputs,
and α ∈ R+ is a regularization gain that controls the
trade-off between the roughness of the solution as measured
by kDXk2 (∆λ−2DX approximates the second deriva-
tive of X) and the infidelity to the data as measured by
kAX −Bk2. In (1) it is assumed that B is subject to un-
correlated white noise, i.e., B+ε:εi∼N (0,σ). If distinct
noise variances are present in B then (1) still holds if the
following transformations are performed: let the noise as-
sociated to equation i, i = 1...m, be εi∼N(0,σi),then
A ≡ diag (σ/σi)A and B ≡ diag (σ/σi)B.

In practice, C, H and α are defined based on exact a
priori knowledge on X [5][6][7], being the solution very
dependant on these values. In fig.1 bottom the continuous
curves show the sum squared errors (SSE), as a function of
the regularization gain, obtained for several CCD spectral
sensitivity estimation problems with C = −I and H = 0.
As can be observed, the quality of the solution is highly
dependant on the quality of the a priori knowledge (in this



case, the smoothness), which in most cases is difficult or
even impossible to obtain.

In this paper a new method is introduced which is able
to learn the needed knowledge from the input data. The
method uses an extended generalized cross-validation mea-
sure function GCVIC to measure the prediction ability of
the solution X for a particular set of constraints C, H and
parameter α (section 2). The prediction ability is then max-
imized using a genetic algorithm (section 3). Results ob-
tained with this method for light sensor sensitivity estima-
tion problems are introduced and discussed in section 3.1.
Finaly, in section 4, some main conclusions are presented.

2. THE PREDICTABILITYMEASURE

Equation (1) corresponds to the estimation of a spline in
the general sense [8]. Hence, it can be tested how well
the estimated spline predicts the data for different rough-
ness penalty values γ and constraints C and H. This idea
was first applied by Wahba [8] and lead to the introduction
of the GCV (generalized cross-validation) measure for the
unconstrained fitting problem. In this work, the GCV is
extended to linear inequality constrained fitting problems.
This extension results in a newGCV measure, theGCVIC .
The fitting problem in (1) and (2) can be rewritten as in (3).

min
n
kA∗ (γ)X −B∗k2

o
, subject to CX ≤ H (3)

γ ≡ mασ2

∆λ5
, A∗ (γ) ≡

·
A√
γD

¸
, B∗ ≡

·
B
0

¸
From the active set theory [9] it is known that the solution
to the problem in (3) is equivalent to solve an equality con-
strained problem with the subset of constraints which, for a
particular solution, are active, i.e., are verified with equal-
ity. Let C∗ ⊆ C and H∗ ⊆ H be the subset of linear
independent constraints verified with equality for a particu-
lar solution, then the same solution can be found using the
following theorem:

Theorem 1 The best approximate solution to the equality
constrained problem in (4) is (5). (for proof see [9])

min
x

kAX −Bk2 subjected to C∗X = H∗ (4)

X =

pX
i=1

³edi/βi´ z∗i + nX
i=p+1

ebiz∗i (5)

where A = WA

£
DTA 0

¤T
Z, C∗ = WC

£
DC 0

¤
Z

are the generalized singular value decompositions of
A and B, eb = WT

AB, ed = WT
CH

∗, Z−1 =£
z∗1 · · · z∗n

¤
,DA = diag(α1, . . . ,αn) and DC =

diag(β1, . . . ,βp).

Corollary 2 Let X be the solution to (3) using the active
set theory. Then, if C∗X = H∗ are the subset of active
constraints, X verifies

X= Ω+ΘB (6)

with Ω = Z1D−1C WT
CH

∗, Θ = Z2W21, Z, WC , DC , WA

defined as in theorem 1, and

WT
A=

m|{z} n− 2| {z } W11 W12

W21 W22

W31 W32

 p
n− p
m− 2

, Z−1=

p|{z} n− p| {z }£
Z1 Z2

¤

Proof is immediate by taking theorem 1 and the formulation
in (3) and some simple algebraic manipulations.

Let X[k] denote the estimate of X using all but the kth
data point in B. The OCV function measures the overall
predictability of data points by the estimate X[k] and is de-
fined by [8] (Bk - kth element of vector B; Ak - kth row
vector of matrix A):

OCVIC =
1

m

mX
k=1

(Bk −AkX[k])2 (7)

To derive theGCVIC function from (7) some theorems have
to be introduced.

Lemma 3 (extension of lemma 3.1 of Craven and Wahba)
Let h(k, z) be the solution to (3) with linear equality con-
straints and with the kth data point replaced by z, then
h(k,AkX

[k]) = X[k] . (Proof is immediate)

Theorem 4 The OCVIC function for the problem defined
in (3) with linear equality constraints is

OCVIC =
1

m

mX
k=1

(Bk −AkX)2
(1− ρkk)

2
(8)

where ρkk is the kkth element of ρ = AΘ and Θ is as de-
fined in (6).

Proof. To proof this theorem we will show that

Bk −AkX=(1− ρkk) (Bk −AkX[k])

Let Ω1k be the kth element of AΩ. From the
lemma 3, the above equation is equivalent to (1 −
ρkk)(Bk − Akh(k,AkX[k])) = Bk − AkX. Let B∗k ≡
Akh(k,AkX

[k]). From the definition of h and using (6)
it is seen that

B∗k = Ω
1
k + ρk

£
B1 · · · B∗k · · · Bm

¤T ⇐⇒
(1− ρkk)(Bk −B∗k) =

(1− ρkk)Bk − ρk

·
I 0 0
0 0 I

¸T
B −Ω1k =£ −ρk1 · · · 1− ρkk · · · ρkm
¤
B −Ω1k



On the other hand,Bk −AkX =
£
0 1 0

¤
B− ρkB−

Ω1k =
£ −ρk1 · · · 1− ρkk · · · ρkm

¤
B −Ω1k.

Theorem 5 The GCVIC function for the problem defined
in (3) with linear equality constraints is

GCVIC =
1
m kB −AXk2¡
1
m trace (I − ρ)

¢2 (9)

Proof. Proof is immediate by taking a weighted OCVIC
to account for non equally spaced data points, as suggested
by Wahba [8]. It can be shown that ρ is symetric. Hence,
following Wahba, it is possible to find a transformation Γ
such that ΓAΓT is circulant. Taking the OCVIC on this
new system, it is seen that the points are equally spaced and
the transformation is equivalent to take the weights given
by wk =

£
(1− ρkk)/

1
m trace(I − ρ)

¤2
. Substituting this

in (8), (9) is verified.

3. THE GENETIC ALGORITHM

The GCVIC function usually exhibits several local min-
ima. Further, it is seen that its gradient is not straightfor-
ward to compute explicitly. Therefore, given a search space
(∆C,∆H,∆γ), a genetic algorithm (GA) approach is ap-
plied to computemin {GCVIC}, since it is able to perform
a parallel exploration of the search space [10][11], it does
not suffer from local minimum problems and it does not re-
quire the computation of gradients. The implemented GA
uses real coding and its population is composed by 45 chro-
mosomes (Ci,Hi, γi), i = 1, ..., 45. Selection and sam-
pling are performed with the ranking strategy and the uni-
versal stochastic sampling algorithm, respectively [10] [11].
Selection is based upon the GCVIC measure for each of
the chromosomes. The chosen genetic operators are the
extended line recombination operator and the Breeder GA
mutation operator with a mutation probability of 0.1. Gen-
erational reproduction is applied. Given a chromosome
(Ci,Hi,γi) the algorithm computes minγGCV iIC using
(Ci,Hi) and γi as a starting point. This strategy can be
implemented with a line search algorithm which does not
require gradient computation. In the current implementa-
tion the golden section search algorithm is applied. This
hybrid GA strategy exhibits some advantages compared to
standard GA implementations:(i) the specified search inter-
val ∆γ for the regularization gain serves only to specify
starting points. Hence, if the optimal γ is outside the spec-
ified interval it is still achievable as long GCVIC decreases
at the interval limits. (ii) From our tests, it seems that it
enables faster convergence than standard real coded GA.

3.1. Application to light sensor sensitivity estimation

In this section it is shown how the GV CIC measure can
be applied to the light sensor spectral sensitivity estimation

problem. As as been observed in [5], for small values of
γ, the solution to this problem tends to exhibit large val-
ues of SSE due to its oscillation. As γ is increased, os-
cillation is eliminated. However, local maxima of the so-
lution tend to be flatten due to the increased importance of
the smoothness component in the objective function. This
leads to increases of SSE values. Hence, the solution to
this problem can be improved if local maxima are constraint
[5]. Therefore, C and H are build such that the following
constraints are defined: (i) (positivity constraint) Xi ≥ 0,
i = 1, ...,M − 2,M +2, ..., n, and (ii) (maxima constraint)
XM = bXM , XM−1 ≤ bXM ,XM+1 ≤ bXM , where bXM is
the unknown amplitude of the local maxima of the solution.
As for the GA’s search interval ∆ bXM for bXM , an exten-
sion to the method introduced in [5] is applied: let bXM (γ1)
be the estimated local maxima obtained with the regulariza-
tion gain γ1, such that γ1 is the lower limit of the identi-
fied stable regularization gain interval (gains which do not
induce oscillation ofX). The search interval for local max-
ima is defined by ∆ bXM = [max{0, | bXM (0) − δ bXM −bXM (γ1) |}, bXM (0)+ δ| bXM (0)− bXM (γ1) |], δ ∈ [1,∞[,
where bXM (0) is the estimated maxima with the algorithm
introduced in [5]. Parameter δ is not critical, since it simply
establishes a search range for local maxima. In the shown
tests, δ was fixed to 2, but, larger values can be applied.
However, it should be noted that very large values for δ en-
large the search space and increase, therefore, the compu-
tational load. The required search interval of regularization
gains was fixed to ∆γ = [0.01, 5]. To measure the perfor-
mance of the described method a simulation program was
developed as described in [5]. The shown test results are (i)
for an asymmetrical Gaussian model for the spectral sensi-
tivities (these are typical sensitivity curves for some cam-
eras such as the Sony DXC-930 color video camera [6])
and (ii) for the spectral sensitivity curves from a Kodak
DCS200 camera as described in [2]. These two types of sen-
sitivity functions were chosen to evaluate the method’s per-
formance for curves with distinct smoothness and modal-
ity. In these testes 24 (m = 24) patches of the MacBeth-
Color Checker map were applied. Finally, the sampling step
was fixed to ∆λ = 2nm, λ0 = 400nm, λn = 700nm
(n = 150) and the SSE (Sum Squared Error) values were
computed by SSE =

°°Xreal −X°°2 (Xreal represents the
real function). Table 1 summarises the applied conditions
and achieved results. A comparison between the described
estimation method based on theGCVIC measure and by ar-
bitrating γ with C = −I and H = 0 are depicted in fig. 1.
As can be observed the GCVIC technique enables the esti-
mation of suboptimal solutions in the vicinity of the global
optimums. This is in accordance with Craven and Wahba’s
theorem 4.2 [8], since the global optimum is not achievable,
given that the ”expectation efficiency” is usually less than 1.
Further, the method is able to estimateXM (see table 1). An



Channel ∆ bXM Xreal
M

bXM SSE
GR [0.0102,0.0139] 0.0133 0.0132 1.29E-6

GG [0.0102,0.0108] 0.0107 0.0107 2.91E-6

GB [0.0114,0.0128] 0.0126 0.0122 2.25E-6

KR [0.00643,0.00881] 0.00804 0.00839 2.61E-6

KG [0.00594,0.00598] 0.00594 0.00598 6.25E-7

KB [0.00360,0.00374] 0.00377 0.00373 2.02E-6

Table 1. Simulation conditions and results. Legend for first
column: GX - Gaussian curves; KX - Kodak DCS200; X
(R-red, G-green, B-blue).

interesting result is the one obtained for the red channel of
the gaussian curve. As can be observed, the computed so-
lution exhibits a SSE which is more than 300% lower than
the best SSE that can be obtained by varying γ. This is
possible because this method ever comes near to estimate
correctly the real maxima, whileGCVIC enables its identi-
fication.

4. CONCLUSIONS

In this paper a new spectral data estimation technique is in-
troduced. The method is based on an extended generalized
cross-validation measure which, given a particular solution,
measures its prediction ability. No exact a priori knowledge
on the data characteristics are required, since the method is
able to extract the needed constraints from the input data.
This is a relevant result because, in practice, exact a pri-
ori knowledge is often difficult or even impossible to ob-
tain with the required accuracy. Due to the nonlinearity of
the extended generalized cross-validation measure, a hybrid
genetic algorithms is described for its minimization.

The described method is tested on light sensor spectral
sensitivity estimation problems with unknown smoothness
and maxima locations. The obtained results show that the
GCVIC based GA enables the identification of suboptimal
solutions in the vicinity of the global optimum.
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