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Abstract

Light sensor spectral calibration is an ill-defined prob-
lem.  For the identification problem one needs a priori
knowledge of the characteristics of the sensor, which is dif-
ficult to get in most situations. A new methodology is pre-
sented in this paper that does not rely on any a priori knowl-
edge of the sensor’s characteristics. The method uses an
extended generalized cross-validation function to measure
predictability of the identified sensor’s spectral behavior.
The prediction error is minimized with a hybrid genetic al-
gorithm. Further, an extended image formation model is
introduced to model changes in additive and multiplicative
errors. The calibration problem is formulated to be inde-
pendent of these changes by previously identifying and re-
moving them from the images.

1. Introduction

There are several situations in color vision (namely in
physics-based), such as illumination and reflectance esti-
mation [8], color correction [5], demosaicing [19], just to
name a few, where the knowledge of the sensor’s spectral
sensitivities is desirable, if not fundamental. The compu-
tation of these sensitivities usually requires the sensor to
be exposed to luminous signals with known SPDs (Spec-
tral Power Distribution). The intended input-output rela-
tions are obtained indirectly with error minimization tech-
niques, or directly through sampling. Indirect sensitivity
estimation is an ill-posed problem due to its integral nature,
i. e., the sensor’s sensitivity does not depend continuously
on its output, since there are rapidly oscillating functions
which come arbitrarily close to being annihilated by the in-
tegral operator. On the other hand, natural colors can be rea-
sonably well approximated with just a few basis functions
which drastically reduces the number of linear independent
constraints for identification. Therefore, it is seen that most
methods impose some smoothness constraints to promote
realistic estimations. In Lee’s [13] calibration method a

Macbeth-ColorChecker color map is applied,which is com-
posed by 24 distinct color and gray scale patches. Using the
24 patches and assuming the knowledge of the illumina-
tion’s SPD, an under-constrained linear equation set is ob-
tained. It turns out that the solution is very noise dependant.
Sharma and Trussel [17] introduced some additional con-
straints to force causal and smooth estimations. Basically,
they impose an upper limit on the function’s roughness. It
can be proven [7] that this approach is equivalent to a But-
terworth low-pass filter, being the cut-off frequency con-
trolled by the roughness threshold. Barnard and Funt [1]
linearized these constraints and formulated the calibration
problem to enable a least squares with linear constraints so-
lution. Given the importance of the smoothness constraint
for the calibration task, several approaches have been intro-
duced. Hubel et al. [12] used a Wiener filter to improve
and enable smooth estimations. They model the covariance
matrix as a first order Markov process where smoothness is
imposed by a user specified correlation coefficient between
adjacent elements. Finlayson and Hordly [9] tackled the
problem by limiting the frequency components of the sen-
sitivity function S () through modeling with Fourier’s 9 to
15 first basis functions. In [9] further constraints are for-
mulated on the solution’s modality. The above approaches
on indirect estimation techniques require precise a priori
knowledge of the sensitivity curves to be computed to for-
mulate hard constraints for the identification problem. A
different approach is described in [19], enabling direct spec-
tral sensitivity functions’ sampling. Although very promis-
ing, the method implies the use of a monochromator to gen-
erate known and narrowband luminous signals which are
then applied directly to the light sensor.

Automatic color inspection is a special case of color vi-
sion since usually it may be assumed that the illumination
source and the lens are a property of the system. Hence, it
suffices to calibrate Q(\) = Ig(N\)S(A)L(X), being L(\)
the spectral distortion introduced by the lens and Ig())
the SPD of the illumination source. Recently we have in-
troduced a method to estimate Q(\) based on calibrated
color reference charts [2]. In our method, smoothness is



promoted with a regularization term based on the second
derivative of ((A). We observed [2] that an increase
in the approximation error, for large regularization gains,
is mainly due to excessive attenuation introduced in local
maxima, for large changes in slope occur. We derived a
new method [3] based on maxima estimation and constrain-
ing that is able to stabilize the estimation error. As all men-
tioned indirect and direct estimation techniques, it assumes
that (i) the noise sources in image formation are stable over
time (for real cameras this is usually not verified), (ii) some
a priori knowledge is available on the function’s shape (al-
though in our method this is a mild condition) and (iii) max-
ima are precisely estimated (for band-limited function in the
red region, usually some errors are committed).

In this paper a new method is introduced for spectral
camera calibration which is able to learn the needed knowl-
edge from the input data. The method uses an extended
generalized cross-validation function GC'Vi¢ to measure
the prediction ability of the estimated function. The pre-
diction ability is then maximized using a combined genetic
algorithm (GA) with a golden section line search technique.
In this method an image formation model is applied, where
variability of multiplicative and additive errors are assumed.
These errors are accounted for by the algorithm.

2. Image formation model

Noise is an intrinsic property of the image formation pro-
cess. Healey and Kondepudy [11] have identified the main
noise sources which occur in the image formation process
and have described a set of algorithms for their correction
and characterization. In their method, it is assumed that the
noise characteristics are static over time, i. e., their means
and variances do not vary. In practice, this behavior is only
verified under very restricted conditions. For instance, the
model assumes that dark current noise is stable. However,
given its high temperature dependance, this assumption will
only be verified if the temperature of the image acquisition
environment is kept constant. Further, the model assumes
that the overall gain of each image formation channel does
not vary from image to image. Several authors [18][5] have
pointed out variations in channel gain. Hence we use the
following extension to Healey’s and Kondepudy’s image
formation model. Let & (u,v,t) be the linearized camera
output for point (u, v) at instant ¢, then

E(ua U,f) = Mg (ua Uat) +N (ua Uat) (1)

where N (u,v,t) is a random variable of mean 0 and vari-
ance o% (u,v,t) induced by shot, read and quantization

noise and y¢ defined as in (2).

pe (w,v,t) = A(t) {Sr (v, v) I (u,v,t) +

Np (0,7 (6) + No (w,0)} + pip (w,v,8) P

In (2) A(t), Sgr (u,v), Np (u,v,7(t)), 7(t), No(u,v)
and pp (u,v,t) represent, respectively, the channel gain,
the fixed pattern noise in charge collection, the dark cur-
rent charge, the temperature, other background charge
such as fat zero and internal luminance (N, (u,v) <
Np (u,v,7(t)) and N, (u,v) = constant spatially and
over time) and the offset introduced by the camera’s trans-
fer function for pixel (u,v). I (u,v,t) is defined as
Jor T (A u,v,t) S (A) dA, being I (A,u,v,t) the SPD of
the input radiation at point (u,v) for instant ¢. For cam-
eras with almost linear transfer functions (note that, even
for so called linear cameras, the transfer function may not
exhibit linearity due to charge collection sites capacitance
dependence on collected charge [16]), it can be shown that
pip (u,v,t) — 0 and o3 is a linear function of y¢ (u, v, t).

Dark current is generated by thermal electron excitation.
According to [10] the number of collected electrons at each
collection site due to temperature effects follows a Boltz-
mann distribution. Real solid state sensors exhibit dark cur-
rent noise variations from site to site, which is mainly due
to the inability of producing exact alike sensor cells. Hence,
we characterize the dark current noise to be

Np (u,v,7 () = Kp (u,v) n (7 (1)) ®)

where K (u,v) is a random variable with mean 1 and spa-
cial variance 0%, .

Let R (), t) be the reflectance of a dielectric, non homo-
geneous and planar surface at instant ¢, and let I (\) be
the SPD of an artificial incandescent light source projected
on that surface. From the dichromatic reflection model, if a
convenient geometrical setup is chosen, then it is seen that
the light reflected from these surfaces can be modeled by
the body reflection component [2], i. e., T (A, u,v,t) =
Cr(u,v)Ig (A) R(A,t), where Cr(u,v) € [0,1] accounts
for the geometrical dependent light power distribution and
reflection attenuation. Before light interacts with a sensor’s
cell it has to travel through the lens system which intro-
duces further attenuation and spectral transformation. Let
L ()) be the spectral transmittance of the lens system and
Cr(u,v) be its light attenuation effect (such as the cos* and
the vignetting effects), then

I(\wu,v,t) =Cr(u,v)Cr(u,v)Ig (A) R (A1) L(N)
“4)
Hence, combining (1), (3) and (4), and assuming that the
camera’s transfer function is reasonably linear, it follows
that each linearized pixel output may be described by

& (u,v,t) = Clu,v)A(t) x (5)
x [ QO RO AN+ AN, (u,v)

+AM)Kp (u,v)n (7 (t)) + N (u,v,t)



where @ (}) Ie(A)L(N)S

= (A) and C(u,v) =
Cr(u,v)Cr(u,v)Sg(u,v).

In our calibration approach, for each image, the data
of three surfaces Ny, No and N3 are acquired simultane-
ously, keeping the geometrical and reflectance coefficients
(Rx, (A), Rx2(X)) constant for surfaces Ry and N, along the
calibration procedure. The reflectance of the third surface
is varied from image to image. Let

 Z (N, Nq, 1)
ﬁ(tatl) = 7 (Nla NQ,tl) (6)
such that Z (N1, Ny, t) = Hmﬁs(t) > € (uyv,t)—

(u,v)ER tEs(t)
mmh ReuX2) 3 3 €(u,v,t). [N represents
(u,v)ER, tES(L)
the number of points in N and s(¢) is the number of
images taken to compute the average image at instant
t. It can be shown that E[G(¢,t1)] = A(t)/A(t1),
for N; spatially near Ny, and that V [B(¢,t1)] <

2 2
ARG, (Z(N1,1N2,t1)) (”?v (N1, ) + 5 Ry, Ra)” 0 (N%t))

(E is the expectation operator and V' is the variance op-
erator; it is considered that ||Ny]] = [|[Ng|| and that s(¢;)
is chosen large enough so that the variance of 3 (¢,t1) is
mainly conditioned by the noise at instant ¢). Hence, to
have low estimation variance one should have large values
for (1) [IN:]|, ¢+ = 1,2, (ii) s(¢) and (iii)) Z (N, N2, 1)
(this can be achieved by choosing a white and a black
reference surfaces for Ny and N, k£ (Nq,Ng) can be
computed from dark images, for instance by taking an
image with the lens cap on. If a sequence of s images
with (A u,v) = 0 are averaged, then & (u,v,t) =
A {Kp (u,v)n (7 (t)) + No (u,v)} + N (u,v,t) (note
that if automatic gain is turned off and a large value for
s is used, then, due to the independence of A and the
noise sources, A(t) = FE(A)) and the signal’s varlance

decreases linearly with s, since V' [{ (u, v,t)] = ('N . From
this averaged image it is possible to compute x (Nz, N;),
with the required accuracy by fixing s. Let x (X;, X;) be
defined by (7) and let £ (u, v, to) be a reference dark image.
From (7) it is seen that if s is taken large enough then the
expected value can be approximated by (8). In practice,
k (N;,N;) should be obtained from distinct dark images
using robust averaging. Let % (X;, R;) and o2 be the mean
and the variance of the set of computed £, (X;,R;) from
different dark images and let w; be a subset such that w; =
{w: |kw (R, Nj) =R (N, Ry5)| < po,}. If the estimator is
defined by 1 (R;,R;) = [w1]| ™" X e, Fw (Ri, X)) it is
observed that the variance of the estimate is less than p?

%/ lwll-

HNlJH (s, Z £(u,v,t) —£(u,v,t0)
Ni,N' = 7
Bty \mln\ ; f(“avaf)*é(u,wo) M
HNIJ-H( 2)3@ Kp (u,v)
E N;, N — WY)ER 3
™ " Sy o
(u,v)ER;

The change in additive error can be computed and elim-
inated as follows: let A (N;,¢,¢1) be defined by

Z [5 (uavat) *6(t,t1)f (u,v,tl)]
(u,v)€EN;
[IN]|

ARy, t,t) =

©)

The expected value of A is given by (10) for (u,v) € N3

and by (11) for (u,v) € N;, ¢ = 1,2. Therefore, an image
without bias can be obtained from (12).

> Clu,v)x

(u,v)€ER;
V)] dA+ D (R, t,t1)

|H

E (AN, tt)) = A(t)

R ||
fA " R(A\t)— R(\t

(10)

E(A(N;,t,t1)) = D (N, ¢, t1) (11)

C(N?n tv tl)

Combining (10), (11) and (12) and writing the integrals in
matrix format using trapezoidal integration with step size
A, it follows

= A (N3,t,t1) — R (N“ N3) A (Ni,t,tl) (]2)

Ut)Q =0 (13)

U(t) = [ (R3,t) R (t2) — (1 — a(Rg, 1)) R (t1) — R(t)]"

o (Rg, 1) = p (tz&)jii?’t’;’tl) (14)

andR( D =[RNo,ti), R(No+ AN 1), oo, R (O, 8],
=[Q (M), QMo +AN,...Q\)]".

3. Spectral calibration of light sensors

Equation (13) enables the computation of @
the reflectance R(t), t = ti,...,tmt2, of refer-
ence surfaces are known. Namely, if m + 2 im-

ages are taken such that R(¢;)) # R(t;), @ #
j, then AQ = B, BT = [0 K] € R>"
AT:[ UT (t3) UT (tm+2) A)\IV ] e R™™ and
1‘7; = [ 1 1 ] € R™”. The normalization intro-

duced in Q (Q = KQ) is performed to avoid the trivial
solution of (13). If the same normalization gain K is to be



Figure 1. Continuous curves - estimated curves for
/¥ = 0.01,1,5, dotted curves - ideal values.

applied for each of the camera’s channels then the proce-
dure we have described in [2] may be used to compute K.
However, for most applications K can be chosen such that
K e R'.

Formulating the spectral calibration problem in terms of
a quadratic criterion minimization subject to linear con-
straints, it is seen that the criterion is described by (15)
(the regularization term based on the discrete approxima-
tion Bz € R(2%7 of the second derivative of Q is im-
posed for smoothness purposes) subject to positivity, that
is, @z > 0,2 =1,---,n. This is an intrinsic physical con-
straint, since light sensor cells do not emit light.

E= HAQ B|* + -2 |IDQ|*,a e RT (15)

x|

From figure 1 it can be observed that for small values
of « the estimation of @ ()\) exhibits oscillations. As « in-
creases, these oscillations are attenuated due to the added
importance of the second derivative term. However, for
large « it is observed that the solution tends to smooth ex-
cessively local maxima. In [3] we have used this obser-
vation to derive additional constraints to improve the solu-
tion of (15). However, the method exhibits two unsolved
problems, namely: (i) which is the best v = "X“; for the
problem and (ii) the maxima estimation technique can pro-
duce relatively large estimation errors whenever Q () is
band-limited and the channel is tuned for a spectral region
where R (A, t;) are almost linearly dependant. For instance,
from fig. 4 it is observed that for the red channel the sim-
ple estimation technique enables lower SSE (Sum Squared
Error) values than the maxima constraining technique, al-
though the later exhibits a much smoother SSE evolution
curve. This is mainly due to the maxima extrapolation er-
ror.

3.1. The GCV;c measure

Equation (15) corresponds to the estimation of a spline
in the general sense [7]. Hence, we might test how well
the estimated spline predicts the data for different rough-
ness penalty values . This idea was first applied by Wahba
[7] and resulted in the introduction of the GC'V (general-
ized cross-validation) measure for the unconstrained fitting
problem. In this work, the GC'V is extended to the linear in-
equality constrained fitting problem. This extension results
in a new GCV measure, the GCV¢.

Let (A, Qar) be the estimated maxima. The fitting
problem may now be written as

min{E}: E = ||4* ()@ - B*|” (16)

subject to C(Ax)@ < H(Q ) (17)

co-[ le-[2] o

where C' and H are formed to describe the following con-
straints: (1) Q. >0i=1,...,M—2M+2,...,n, (i)

Q= Q. (i) @y, < QM and Qpr4q < QM From
the active set theory [6] it is known that the solution to the
problem in (16) and (17) is equivalent to solve an equality
constrained problem with the subset of constraints which,
for a particular solution, are active, i.e., are verified with
equality. Let C* C C(Ay) and H* C H(Qus) be the
subset of constraints in (17) verified with equality, then the
solution can be found using the following theorem:

Theorem 1 The best approximate solution to the equality
constrained problem in (19) is (20). (for proof see [6])

min ||AX — B|? subjectto C*X = H*  (19)

p n
X=3"(d/g)+ > b @0
i=1 i=p+1
where A = WA[DT O] Z, C* =W, [Dc O]Z
are the generalized singular value decomposztlons of
Aand B, b = WIB d = WIH* Z7! =
[zf n] D4 = diag(ai,...,an) and Do =
diag(ﬂl’ ’Bp)

Corollary 2 Let @(7, A, @M) be the solution fo (16) and
(17) using the active set theory. Then, if C*Q) = H* are the
subset of active constraints, () verifies

Q(y, Aars Qur)+O0(y, s, Qur) B
(1)

Qs M, Q)=



with Q(y, A, Qar) = Z\Dg*WEH*, O(y, Aur, Qar) =
p p—k
< ——
ZoWa, Z74 = [ Z4 Zo
defined as in theorem 1, and

| . Z We, DC, Wy

m_ n-—2
—~
wT= Wi Wia 4
War  Wa n—p
W31 W32 m—2
Proof is immediate by taking theorem 1 and the formulation
in (16) and several simple algebraic manipulations.

The above corollary is the framework to derive the
GCVc measure, which is based on the definition of the or-
dinary cross-validation function [7]. Let Q[k] (v, Anr, Qar)
denote the spline estimate of @ using all but the kth data
point of B. The OCV function measures the overall pre-
dictability of data points by the estimate Q (v, Ays, Qar) and
is defined by (B}, - kth element of vector B; Ay - kth row
vector of matrix A)

m

1 N .
OCVic = - Z(Bk — AeQM (v, \ar, Qun))? (22)

k=1

To derive the GC'V;¢ function from (22) some theorems
have to be introduced. For notation simplicity, let X% =

QW (v, A\ar, Qar), then:

Lemma 3 (extension of lemma 3.1 of Craven and Wahba)
Let h(k, z) be the solution to (16) with linear equality con-

straints and with the kth data point replaced by =z, then
h(k, A XF) = X+

Proof. From the definition of X¥ it is seen that the so-
lution is obtained from (the constraints are omitted for sim-

plicity)
2

55 8] (rerx-m)| —

(23)
Equation (23) can equivalently be written by

|4 () x¥ - B

min

with BT = [ B, ApX ¥ B,, 0 ], which
corresponds to the definition of h(k, A, X*). B

Theorem 4 The OCV¢ function for the problem defined
in (16) with linear equality constraints is

24)

1 & (B — ApX)?
OCVicg=—Y —(— 7
! m ,;1 (1= prr)?

where py. Iis the kkth element of AO(vy, /\M,@M)
and Oy, \r, Qur) is as defined in (21) and X =
Qs A\, Qur)-

Proof. To proof this theorem we will show that
By — 4 X=(1— py.) (B — Ap X1

Let ) be the kth element of AQ.  From the
lemma 3, the above equation is equivalent to (1 —
pre)(Be — Aph(k, AL X™)) = By — A1 X. Let By =
Aph(k, A, X¥). From the definition of h and using (21)
it is seen that

By = +p [ Br Bi -+ Bn | <=
(1 = pps)(Br — BZ) ?
I 0 0
(1_pkk)Bk_pk|:0 0 I] B_Qllc:
—Pr1 1= P Pkm]B_Qi

On the other hand, B, — A, X =[ 0 1 0 | B—p,B—
Qi:[ ~Pk1 L= prg Pkm ]B*Q}c‘ u

Theorem S The GCVi¢ function for the problem defined
in (16) with linear equality constraints is

2 IB - AX|?
(%h‘ace (pr))2

Proof. Proofis immediate by taking a weighted OC'V;¢ to
account for nonequally spaced data points. It can be shown
that p is symetric. Hence, following Wahba, it is possible to
find a transformation I such that T AT'” is circulant. Taking
the OC'V¢ on this new system, it is seen that the points are
equally spaced and the transformation is equivalent to take

the weights wy, = [(1 — pyp.) /= trace(] — p)]2 .

GCOVic = (25)

3.2. The learning algorithm

Equation (25) can be applied to find the best set of pa-
rameters (7, Ayr, @pr) for the estimation problem in (16)
and (17). Namely, @ can be computed from (16) and (17),
such that (25) is minimized.The GC'V;¢ function is non-
linear and, therefore, a nonlinear optimization technique is
required. In this paper we use a genetic algorithm approach,
since it is able to perform a parallel exploration of the search
space [14] and does not suffer from local minimum prob-
lems. Our approach is summarized in figure 2. First a set
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Figure 2. Spectral calibration algorithm.

of images of surfaces with known spectral reflectance are
acquired with the camera whose sensor(s) is to be charac-
terized. These images enable the computation of matrixes
A and B. Using the algorithm introduced in [3], the func-
tion’s maxima are estimated. Let @ (Aps,y4) be the local
maxima obtained with the regularization gain 4, such that
v, is the lower limit of the identified stable regularization
gain interval (gains which do not induce oscillation of the
identified function). The search interval for local maxima is
@ﬁned bZAQM = [max{0, |Qm —6Qm —Q ()\Jga 71) [}
Qu+6|1Qn —Q (Aar,v1) |], 6 € [1,00[, where @ is the
estimated maxima with the algorithm we have introduced
in [3]. Parameter ¢ is not critical, since it simply estab-
lishes a search range for the local maxima. In our tests we
have fixed 6 = 2, however, larger values may be applied.
The only reason for not using very large values for 6 is that
the search space will be enlarged, increasing, therefore, the
computational load. To compute @ (Aas,7y;) and Qas the
algorithm requires that a search interval A~y of regulariza-
tion gains to be specified. The lower limit of this interval
should be chosen such that the identification result exhibits
strong oscillation (in our tests we use 0.01). On the other
hand, the upper interval limit should be chosen such that it
produces a very smooth estimation (we use 5). The exact
interval limits are not critical, since, if a very high upper
limit is specified, the algorithm is able to correct it (for de-
tails refer to [3]). As for the lower interval limit, it suffices
if it induces oscillation of the solution of (15) subject to the
positivity constraint. If A,; is to be searched, then a search
interval Ay, should be specified at this stage. In our im-
plementation, Ay, is fixed and equal to A, retrieved from
the maxima estimation method, for two reasons: (i) it can
be shown that if the neighborhood of the local maxima is
reasonably symmetrical, then it will be located at the same
wavelength(s) for any regularization gains, as long oscilla-
tion is avoided, and (ii) another search parameter increases
dramatically the computational load.

Once the search space (A@ M, AXpr, Ay) has been es-
tablished a genetic algorithm is applied to minimize the
GCVjc measure. The implemented genetic algorithm
uses binary coding, being the size | of each chromossom

Figure 3. Relation between SSE (continous) and
GCVi¢ (dashed) for red calibration curve in figure 4
(curves scaled to the same scale). These curves were ob-
tained from 5000 chromosomes sorted by their GC'Vio
and averaged in classes of 100 chromosomes.

(Qiy, Nay, ). i = 1,..., 1.5 (1.51 - the population size), a
function of the intended precision for each of its variables.
As for the initialization, 50% of the chromosomes are ini-
tialized randomly and for the other 50%, Q% is a result
of evenly dividing the search space A@ a» with 4% on the
upper limit of A~y. Selection and sampling are performed
with the ranking strategy and the universal stochastic sam-
pling algorithm, respectively [15]. Selection is performed
on the GC' V¢ measure for each of the chromosomes. The
chosen genetic operators are the multi-point crossover op-
erator with a crossover probability of 1 and the mutation
operator with a mutation probability of 1/! (approx. 0.05).
Generational reproduction is applied. Given a chromosome
(Qss Ny, 7Y), two strategies can be applied: (i) the algo-
rithm computes Q(Q%,, As,~*) with (16) and (17), and,
using this result computes the predictability of the solution,
i. e., GCV} and returns to the GA for the next iteration, or
(ii) the algorithm computes min, GCV/ using (Q’,, Xb,)
and ~* as a starting point (this is represented in figure 2
by the dashed components). The second strategy can be
implemented with a line search algorithm or a gradient de-
scendent method. In our implementation we use the golden
section search algorithm. From our tests, it seems that this
strategy enables faster convergence.

4. Results and conclusions

To objectively measure the performance of the described
method, a simulation program was developed as suggested
in [4] and using the image formation model introduced in
(1). Phong’s model was applied to obtain light reflection
results. All images were computed with interface and body
reflections. The lens was modeled with a pinhole model
with focal center and aperture attenuation. Since the main



noise source in image formation is normally distributed [11]
with a standard deviation usually in the range on € [2, 6]
[1] we modeled the noise to be a linear function of the 4.,
such that oy = 2 for u = 10 and oy = 6 for pe = 250.
The sensor’s dark current noise was assumed to be 7 (t) =
10+ 6 (t) RGB units, with § (t) € [—2, 2] being a random
offset. The sensor’s channel gain A (t) was considered to
vary A(t) = Ao (t) (1+64(t)), 64 (t) € [-0.1,0.1], and
Ag (t) was computed such that for a white surface the max-
imum camera output does not clip. As illumination source,
the SPD of a Tungsten lamp was applied, with a gain change
G(t) = 1+ 6¢(t), éc(t) € [-0.1,0.1]. In this paper
we present the calibration results obtained with this illu-
mination source combined (i) with a asymmetrical Gaus-
sian model for S ()\) (these are typical sensitivity curves
for some cameras such as the Sony DXC-930 color video
camera [1]) and (ii) with the spectral sensitivity curves
from a Kodak DCS200 camera obtained with the algorithm
described in [19]. These two types of sensitivity func-
tions were chosen to evaluate the method’s performance
for curves with distinct smoothness and modality. In these
testes 24 patches of the MacBeth-Color Checker map were
applied. For each surface, 10 images were taken and aver-
aged. Finally, the sampling step was fixed to A\ = 2nm
and the SSE (Sum Squared Error) values were computed

~ 2
by SSE = HQreal - Q(Q]\/h )‘Ma 7) H P where Qreal repre-

sents the real function. In fig. 3 the relation between SSE
and GCVj¢ evolution is depicted. As can be observed,
GCVie T when SSE 7, being therefore an ideal func-
tion for learning the intended parameters, which for other
methods have to be arbitrated based on a priori knowledge
on the spectral curves. The estimation results are exhibited
in fig 4 and fig. 5. A summary of the applied conditions
and obtained results can be found in table 1. Fitting with-
out maxima constraints exhibit rapid varying SSFE values
with ~. Constraining maxima enables much better estima-
tion results, since slower varying and lower SSE values are
feasible in this case. However, whenever Q) is not iden-
tified in the vicinity of the real maxima, it is seen that the
approximation errors tend to be much higher as compared to
the best S\SE values obtained without maxima constraints.
Further, for both methods, in real situations, it is not pos-
sible to know where the SSE minima is located. These
disadvantages are solved with the GCV;¢ based method,
which enables the automatic selection of the “best” set of
constraints and regularization gain. For instance, for the red
channel’s curve in fig. 4, the GC'Vj¢ based method obtains
an approximation whose SSFE is more than 300% lower
than the best SSE obtained with the simple identification
method and more that 500% lower than the best SSE com-
puted with the maxima constraints based algorithm. This is
possible, because neither of the former methods ever come
near to correctly estimate the maxima. It is observed that the
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Figure 4. Assymmetrical Gaussians. Top: SSE evolu-
tion with . Continuous curves SSE of the solution with-
out maxima constraints; dashed curves - SSE of the solu-
tion with maxima constraints; dash-point curves - best esti-
mate with GC'V]¢ (7y not shown). Bottom: @ - continuous
curves; ()—dashed curves.

GCV;e based method enables the identification of subop-
timal solutions in the vicinity of the global minimum. This
behavior is in accordance with Wahba’s theorem 4.2 [7],
since the global optimum is not attainable, since the “ex-
pectation efficiency” is usually less than 1.

This paper introduces a new fitting technique for the ill-
posed sensor’s spectral calibration problem. In our method,
based on a new GC'V;¢ measure, no a priori knowledge on
the sensor’s characteristics is required, since the method is
able to learn the needed constraints and the regularization
gain from the input data. This is a relevant result because
knowledge on the sensor’s spectral characteristics is in most
cases very difficult or even impossible to obtain with the re-
quired accuracy. Further, these characteristics may vary sig-
nificantly as sensors age [5] (for instance through color filter
transmittance changes with aging). We have also introduced
a physics-based image formation model that accounts for
multiplicative and additive error changes with time. Using
this model we have shown how to compensate for changing
error sources. Finally, the outlined strategies can be eas-
ily adapted to similar problems, as for example, for spectral
reflectance estimation.
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