
Challenges of Distributed Interactive Media State Transmission
Pedro Ferreira1, João Orvalho2, Fernando Boavida3

Communications and Telematics Group (LCT) of CISUC – Centre for Informatics and Systems of the University of Coimbra
 Polo II, 3030 COIMBRA – PORTUGAL, Tel.: +351-239-790000, Fax: +351-239-701266, E-mail: {SPIHUU��RUYDOKR��ERDYLGD#GHL�XF�SW}

Abstract1

This paper describes a middleware platform and application
programming interface (API) for distributed interactive media
state transmission, the Status Transmission Framework API
[1], which was originally developed for distributed
collaborative virtual environment applications.

We also aim to describe some of the research we are doing
on extending the API to support all kinds of distributed
interactive media, and more heterogeneous platforms and
technologies, such as wireless and ad hoc networks, and small
resources devices (such as PDA or GSM phones).

The emergence of pervasive networked data sources, such
as web services, sensors, and mobile devices, enables
context-sensitive, mobile applications [2]. The Status
Transmission Framework can be used as model and support
framework for the development of such distributed
applications.

I. INTRODUCTION

A. Distributed interactive media

Distributed multimedia applications which have a high
degree of interactivity, such as distributed collaborative
virtual environment applications and some CSCW –
Computer Supported Collaborative Work – applications, use
interactive media. An interactive media may change
according to user interaction with the media, which is
opposite to streaming media, such as audio and video, which
does not change at all with user interaction.

Distributed interactive media may be subdivided into
discrete and continuous distributed interactive media,
according to the type of media changes that may happen. We
now describe these types of interactive media.

B. Discrete distributed interactive media

Discrete distributed interactive media changes its state only
by user interaction. So, the state changes only in some
perfectly defined instants. The media does not change due to
the passing of time.

The mechanisms used to guarantee consistency for discrete
distributed interactive media normally implement a causal
order of messages [4].

1 Superior School of Technology of Tomar, Polytechnic Institute of
Tomar
2 College of Education, Polytechnic Institute of Coimbra
3 Informatics Department, Faculty of Sciences and Technology of
Coimbra University

C. Continuous distributed interactive media

Continuous distributed interactive media changes both by
user interaction and by the passage of time, and so messages
need to include a timestamp so that the relative timing
between actions can be reproduced.

The mechanisms used to maintain consistency in discrete
distributed interactive media could not be applied to the
continuous case [4], because, in this case, a causal order does
not suffice.

D. Consistency control and recovery mechanisms

Several consistency control and recovery mechanisms exist
for distributed interactive media. These are divided into
optimistic and pessimistic approaches.

Pessimistic approaches prevent inconsistencies using floor
control and locking techniques. These are very inefficient
techniques not adequate for applications with high user
interactivity requirements.

Optimistic approaches allow for short-term inconsistencies
to happen and then correct them. The most important
optimistic techniques are dead reckoning, timewarp and state
requesting [5].

II. STATE TRANSMISSION FRAMEWORK

A. General architecture

The Status Transmission Framework [1] – STF - is a
middleware platform for the transmission of state in
distributed collaborative virtual environment applications.

This platform consists in an application-programming
interface – API – that provides multiple services to
applications. These services include state transmission and
reception, distributed latejoin, virtual environment
partitioning, internal virtual time synchronization and
statistics collecting services to test the API.

The services provided by the STF API – designed and
implemented in Java - are represented by Java interfaces,
which are implemented by a channel manager – a special Java
class.

The channel manager class – currently only
STFChannelManager – uses a multipoint communication
channel to handle the services provided by STF to a specific
application.

This architecture allows for future expansion and
optimizing of STF without having to change existing
application code, just by creating new channel manager
classes or changing the code of existing ones. An application
that wishes to use the new channel manager only has to
instantiate that manager class instead of the old
STFChannelManager class. New service interfaces may be

added to be used by applications specially designed for the
new versions of STF.

We now describe each of the services provided in the first
version of STF.

B. State transmission services

Methods and properties of the STFMessager interface
represent the state transmission services provided by STF.
This interface has methods to transmit state update messages,
represented by instances of the STFStateMessage class. Each
state update message includes the state – represented by any
class that implements the STFState interface -, the entity key
– represented by any class that implements the STFKey -, and
the message priority.

The fundamental concept used by STF is that the virtual
world is divided in entities, which have changing states. A
state change of any entity always causes a state update
message to be sent. Since the concrete state information and
entity key defining information are very dependent on
specific applications, STF has two interfaces to represent
them. An entity is represented by classes implementing the
STFKey interface. A state is represented by classes
implementing the STFState interface.

State update messages are internally marked with
timestamps, and organized into state interaction streams, as
suggested by Georganas research [6], and represented in
Figure 1. This is done in order to facilitate bandwith -
optimizing strategies through the use of QoS – Quality of
Service - related classifications.

Key

State

Timestamp

Priority

S
T

F
S

ta
te

M
es

sa
ge

IN OUT

Figure 1 - State interaction streams

State transmission is optimized according to the state
classification. This optimization is done on a per interaction
stream basis. The STF API, through the STFState interface,
allows states to be classified by:

- The state redundancy: A state may be redundant or
essential. An essential state is always transmitted
reliably. A redundant state is transmitted if not
overwritten by a more updated state.

- The state volatility: A state may be volatile or not
volatile. A volatile state is a state that can be
completely lost.

- The state independency: A state may be independent
or cumulative. An independent state completely
defines a state, independently of any previously
transmitted state. A cumulative state is a state
update, dependent of previous state transmissions.

Some of the possible combinations of state classifications
do not make sense and are consequentially illegal and the
STF behaviour in these cases is undefined. For example, it is
illegal to have a state that is simultaneously essential and
volatile.

C. State reception services

Received state update messages are delivered to the
application through methods of the STFApplication interface.
This interface must be implemented by the application main
class and contains methods to receive state update messages.
These messages may be regular state update messages,
unordered messages and latejoin process messages.

When a regular state update message is received STF
buffers the message until it is delivered and processed by the
application. The state update message may be discarded by
STF using the same classification characteristics and similar
mechanisms than those used to transmit the message.

A reception lag time may be enabled and configured to
force regular state update messages to remain in the buffers
during a minimal time period. This enhances the STF API
ability to reorder received messages and in this way prevent
the need for a timewarp in the application.

D. Latejoin services

A distributed latejoin service is provided by STF to allow
nodes to join an ongoing session or rejoin the same session
after being disconnected due to network failures.

This is a completely distributed mechanism implemented
using replicated optimizing state update message caches, and
a specially designed distributed latejoin protocol.

The STFLateJoin interface has all methods to enable and
disable, configure and run latejoin processes. Latejoin
messages are delivered to the application by methods of the
STFApplication interface.

E. Partitioning services

A simple virtual environment partitioning service is
provided by STF through methods of the STFPartitioner
interface. This interface allows the application to enable and
disable virtual environment partitioning and to define the
used partition. A partition is a set of STFKey objects,
representing a set of specific virtual environment entities.

F. Virtual time synchronization services

The STF API uses an internal virtual clock synchronization
protocol that makes the use of external synchronization
services not needed. The use of a virtual clock, as suggested
by Augusto Ciuffoletti [7], is necessary because Java does not
allow us to change the system clock.

The protocol used is completely distributed and
independent of any external time source excluding the
currently connected nodes of the session.

G. Statistics collecting services

A statistics collecting mechanisms intended to ease testing
of the STF platform is also provided. The methods needed to
control and use this mechanism are defined in the
STFStatistics interface. The STFStatisticsData class
represents the statistical data, for a specific stream or for the
total of all the streams.

H. Tests

Several different tests were made to the STF platform and
its services. Transmission and reception tests were published
as part of a paper presented in IDMS 2001 [8], whilst latejoin
and virtual time synchronization tests were published as part
of a master thesis [1].

The most important conclusions taken from these tests were
the correct functioning of the STF API and all its services,
with guaranteed low message delays, and especially the
correct adaptation to changing bandwidth requirements.

We present here some of the test results obtained for state
transmission and reception [8]. The graph in Figure 2 shows
the STF API adapting to bandwidth limits by discarding not
needed state messages (volatile and redundant).

General message throughput ARMS

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

5 20 35 50 65 80 95 11
0

12
5

14
0

15
5

17
0

18
5

20
0

21
5

23
0

24
5

26
0

27
5

29
0

30
5

32
0

33
5

35
0

36
5

38
0

39
5

Messages / second

M
es

sa
ge

s
in

 2
0

se
co

nd
s

Processed

Transmitted

Received

Figure 2 - STF Message processing tests

III. FUTURE CHALLENGES
There are currently many new challenges for network

applications, including distributed state transmission
middleware, and research is under way on many
technological and architectural topics. We now present some
of the most important areas of research and its corresponding
challenges for distributed interactive media applications, and
most specifically for distributed state transmission
middleware.

A. Wireless and ad hoc networks

Currently, wireless networks and mobile phone networks
are on the way of convergence.

Wireless networks appeal to an increasingly larger number
of users, both because of their increasing speed and

bandwidth and their decreasing price, especially in terms of
end-user devices.

Now available in bandwidths until 54Mbps [9], and
commonly used at 11Mbps, WiFi networks promise to be the
leading force in this convergence scenario, together with
UMTS - Universal Mobile Telecommunications System -
and the future generation mobile phone standards, probably
completely implemented using ipv6 [10]. There are currently
some plans by US mobile phone companies, which aim to
join UMTS and WiFi on a common mobile phone network.
This may enable interactive multimedia application builders
to free themselves of the limits imposed by the UMTS
standard for mobile phone networks.

There is a parallel convergence of the different terminal
hardware devices on a very Internet - similar architecture, but
freed from physical (i.e., wire) limits.

The applications for these kinds of technologies are infinite,
limited only by man’s imagination and current market needs.

Ad hoc wireless networks also present some challenges for
new applications to address. How to allow the use of all the
application functionality without a central coordinating entity
is an obvious use for peer to peer network technology.

Telematics is the next wave in mobile computing [11], but
needs to address issues such as security and privacy of data,
scalability and device - independence. For the later, Java [3]
is the platform of choice, especially J2ME – Java 2 Micro
Edition.

B. Pervasive computing

The pervasive computing field aims to develop devices and
services for true personal computing. The ideal situation is
for the user to just forget that it’s using small computers. This
is only possible with a very high degree of integration of
these devices with the user everyday life.

The emergence of pervasive networked data sources, such
as web services, sensors, and mobile devices, enables context
- sensitive, mobile applications [2]. The Status Transmission
Framework could be used as model and support framework
for the development of such distributed applications.
However, some problems must be addressed, such as small
processing power, small memory and little or none persistent
storage capacity. Other problem is data composition, caused
by the large number of different data sources possible [12].

C. Embedded systems

There is also an opportunity for embedded systems design
to include support for distributed interactive media state
transmission.

Most available equipment that is really mobile has normally
very little resources, in terms of memory, processing power
and persistent storage capacity.

Embedded systems must address all the feature requests of
an increasingly more ubiquitous networked world.

A distributed state transmission middleware platform would
also be useful for applications where embedded systems are a
required component. Smart sensors, for example, can be

applied in medical implants connected to each other and a
base station via a wireless network [13]. This kind of
applications has a lot of potential for medical research, and
future medical treatments. It also introduces a lot of
addressable problems, such as network and processing
requirements, low power operation, material constraints,
reliability, robustness and fault tolerance, scalability, security
and interference issues.

D. Multimedia integration

Tighter multimedia integration is desirable in the future in
order to make the state transmission framework API more
transparent and easy to use.

Our current research is now focusing integration with
Java3D [3] and the JMF – Java Media Framework [3] - since
the Status Transmission Framework API is entirely written in
Java. One issue to address is how to represent the state of
Java3D scene graphs, allowing for programmer introduced
extensions as specified by the platform, and have the Status
Transmission Framework handling all the needed network
interchanges of information. Another issue to address is how
to encapsulate in Java3D, extended by the Status
Transmission Framework API, the state classification used to
optimize network utilization.

IV. CONCLUSIONS
In this paper we described ongoing work and research on

the Status Transmission Framework API, a middleware
platform for state transmission in distributed interactive
media applications.

Originally developed as a middleware platform for state
transmission for distributed collaborative virtual environment
applications [1], this platform is now being extended to
support all kinds of distributed interactive media, for different
target platforms. These include pervasive computing,
embedded systems, wireless and ad hoc networks.

In addition to describing the architecture of STF and
summarising the tests to which the prototype has been
subject, the paper presented in general terms the main
challenges that face new, emerging platforms, of which the
Status Transmission Framework is a concrete example.

V. REFERENCES
[1] Pedro Miguel da Fonseca Marques Ferreira, “Transmissão
de estados em ambientes de realidade virtual distribuídos e
colaborativos”, Faculty of Sciences and Technology of the
University of Coimbra, Coimbra, Portugal, Master Thesis,
2001
[2] Norman H. Cohen, Hui Lei, Paul Castro, John S. Davis II,
and Apratim Purakayastha, “Composing Pervasive Data
Using iQL”, Proceedings of the Fourth IEEE Workshop on
Mobile Computing Systems and Applications (WMCSA
2002), Callicoon, New York, 20-21 June 2002, pp. 94-104
[3] Javasoft, http://java.sun.com/
[4] Jurgen Vogel, Martin Mauve, “Consistency Control for
Distributed Interactive Media”, ACM Multimedia 2001, pp.
221-230

[5] Martin Mauve. “How to Keep a Dead Man from
Shooting”, in Lecture Notes in Computer Science, Vol. 1905:
Hans Scholten, Marten J. van Sinderen (editors), Interactive
Distributed Multimedia Systems and
Telecommunication Services, Springer-Verlag, Berlin
Heidelberg, 2000, pp. 144-157. (Proceedings of IDMS 2000
– 7th International Workshop on Interactive Distributed
Multimedia Systems and Telecommunication Services, CTIT /
University of Twente, Enschede, The Netherlands, October
17-20, 2000).
[6] Shervin Shirmohammadi and Nicolas D. Georganas. “An
End-to-End Communication Architecture for Collaborative
Virtual Environments”, Computer Networks Journal, Vol.35,
No.2-3, Febr. 2001, pp.351-367.
[7] Augusto Ciuffoletti, “Uniform Timing of a Multi-cast
service”, Proceedings of the 19th IEEE International
Conference on Distributed Computing Systems, May 31 to
June 04, 1999, pp. 478, Austin, Texas
[8] João Orvalho, Pedro Ferreira and Fernando Boavida,
“State Transmission Mechanisms for a Collaborative Virtual
Environment Middleware Platform”, Springer-Verlag, Berlin
Heidelberg New York, 2001, pp. 138-153, ISBN 3-540-
42530-6 (Proceedings of the 8th International Workshop on
Interactive Distributed Multimedia Systems – IDMS 2001,
Lancaster, UK, September 2001)
[9] The Working Group for WLAN standards, IEEE 802.11
Wireless Local Area Networks,
http://www.manta.ieee.org/groups/802/11/
[10] S. Deering, R. Hinden, Internet Protocol, Version 6
(IPv6) Specification , RFC 2460, December 1998.
[11] Chatschik Bisdikian, Isaac Boamah, Paul Castro, Archan
Misra, Jim Rubas, Nicolas Villoutreix, Danny Yeh, Vladimir
Rasin, Henry Huang, Craig Simonds, “Intelligent Pervasive
Middleware for Context - Based and Localized Telematics
Services”, Proceedings of the second international workshop
on Mobile commerce, Atlanta, Georgia, USA, 2002, pp. 15-
24, ISBN 1-58113-600-5
[12] Norman H. Cohen, Apratim Purakayastha, Luke Wong,
Danny L. Yeh, “iQueue: A pervasive Data Composition
Framework”, Proceedings of the Third International
Conference on Mobile Data Management (MDM’02),
Singapure, January 8-11, 2002, pp. 146
[13] Loren Schwiebert, Sandeep K. S. Gupta, Jennifer
Weinmann, “Research challenges in wireless networks of
biomedical sensors”, Proceedings of the seventh annual
international conference on Mobile computing and
networking, Rome, Italy, 2001, pp. 151-165, ISBN 1-58113-
422-3.

